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Abstract: Volatile organic compounds (VOCs) offer unique insights into
ongoing biochemical processes in healthy and diseased humans. Yet, their
diagnostic  use  is  hampered  by  the  limited  understanding  of  their
biochemical  or  cellular  origin  and  their  frequently  unclear  link  to  the
underlying diseases. Major advancements are expected from the analyses of
human  primary  cells,  cell  lines  and  cultures  of  microorganisms.  In  this
review, a database of 125 reliably identified VOCs previously reported for
human healthy and diseased cells was assembled and their potential origin
is discussed. The majority of them have also been observed in studies with
other human matrices (breath, urine, saliva, feces, blood, skin emanations).
Moreover,  continuing  improvements  of  qualitative  and  quantitative
analyses, based on the recommendations of the ISO-11843 guidelines, are
suggested  for  the  necessary  standardization  of  analytical  procedures  and
better comparability of results. The data provided contribute to arriving at a
more complete human volatilome and suggest potential volatile biomarkers
for future validation.
Dedication:This  review  is  dedicated  to  the  memory  of  Prof.  Dr.  Anton
Amann, who sadly passed away on January 6, 2015. He was motivator and
motor for the field of breath research.

Keywords:  Biomarker,  Breath  analysis,  Cancer,  GC-MS,  Human  cell  lines,  Standardization,  Volatile
organic  compounds  (VOCs),  Volatilome.

1. INTRODUCTION

The  complexity  of  biological  processes  only
now  begins  to  be  matched  by  similarly  complex
methodological  advances  for  their  analysis.  Most
recently volatile organic compounds (VOCs) have
received considerable interest to obtain insights into
physiological  and  pathophysiological  processes,
and  to  exploit  the  knowledge  of  their  absence/
presence or changes in their concentration profiles
or  VOC composition  in various body  matrices for

*  Address  correspondence  to  this  author  at  the  Daniel  Swarovski
Research  Laboratory,  Department  of  Visceral-,  Transplant-  and
Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria;
Tel:  +4351250427819;  Fax:  +4351250424625;  E-mail:
jakob.troppmair@i-med.ac.at

disease detection and therapeutic monitoring [1, 2].
A  major  advantage  of  VOCs  in  this  regard  is  the
fact that they are readily and noninvasively obtain
able and may be sampled as often as desired with
acceptable  discomfort.  However,  their  main
disadvantage in comparison to e.g. nucleic acid- or
protein-based  markers  is  the  current  shortage  of
information on the total number of VOCs produced
by  human  cells  and  an  insight  how  their  normal
composition  in  breath  is  qualitatively  or
quantitatively  altered  by  stress,  age,  time  of  day,
gender,  activity,  disease  status  or  the  transport  to
the site of their detection. Moreover, in most cases
the  information  about  the  metabolic  pathways
leading  to  their  production  or  degradation  is
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missing.  Due  to  these  reasons  it  is  crucial  to
investigate the production of volatile metabolites on
the cellular level, performing in vitro  experiments
with cancer and non-transformed human cell lines
or  ex  vivo  experiments  with  human  tumor  and
healthy  tissues  surgically  excised  from  respective
patients. The main challenges towards establishing
breath  analysis  as  a  diagnostic  or  monitoring  tool
are:

Establishing of standardized procedures and
overcoming the technical issues for sampling
and  analyses  of  VOCs  found  in  different
emanations  of  the  human  body
Achieving  unambiguous  identification  of
VOCs
Linking VOCs to a particular cellular source
and  the  underlying  biochemical  processes,
which  lead  to  their  generation
Identifying  the  underlying  causes  for
differences in the VOC fingerprints between
different  cell  types  or  different  phenotypes
of the same cell population
Understanding  the  inter/intra-  person  vari-
ability
Establishing  the  genotype-phenotype  rela-
tionship for VOC production

The  main  goal  of  this  review  was  to  create  a
database  of  volatile  organic  compounds  found  in
the  analyses  of  human  cell  lines.  The  database
contains  only  reliably  identified  species  with
confirmation of e.g. chromatographic parameters in
addition  to  the  mass  spectra  library  match.
Additionally,  potential  biochemical  processes
underlying  VOCs  production  as  well  as  technical
issues  affecting  analysis  of  those  volatiles  in  cell
culture studies are discussed. This review is current
as of January 2016.

2.  THE  COMPLEXITY  OF  THE  HUMAN
VOLATILOME

Attempts  have  been  made  to  identify  VOCs
produced by primary cells, established cell lines as
well as by healthy and diseased humans. The study
of  small  samples  of  tumor  and  normal  tissue
obtained during surgery may provide an additional
information  [3  -  5],  circumventing  the  problems
associated  with  the  ideal  experimental  conditions

for in vitro studies with cell lines (type of medium,
nutrients  availability,  oxygen  supply,  etc.)  or
problems  with  in  vivo  study  on  humans  (breath
analysis) such as dietary regimes, physical activity,
smoking,  etc.  While  the  analysis  of  cell  culture
head  space  or  human  breath  is  most  frequently
performed,  also  other  body  fluids  are  targeted
including  breath,  urine,  saliva,  feces,  blood,  and
sweat  [6].

A  compendium  of  1849  VOCs  contributing  to
the volatilome of healthy humans has been recently
published [6]. Out of these species 874 compounds
were  detected in  breath,  279 in  urine,  504 in  skin
emanations, 353 in saliva, 130 in blood, and 381 in
feces.  Amongst  the  breath  VOCs,  15.7%  are  also
listed for urine, 11.9% for skin emanations [7 - 13],
8.0% for blood [14, 15], 16.2% for saliva [16 - 18]
and  22.8%  for  feces  [2].  Hence,  numerous
compounds appearing in exhaled breath are present
in  other  matrices  (urine,  skin,  blood,  saliva  and
feces)  but  these  matrices  also  have  unique
compounds. The overlap between feces and breath
may be striking given the difference in the origin,
location and composition of  these sources.  Breath
volatiles mainly would be derived from living cells
of the body and eventually also from the presence
of  infectious  agents,  while  feces  will  contain  a
small  fraction of  cells  derived from the gut  lining
and a substantial  fraction of bacteria.  A particular
focus of VOC research has been on their  possible
use  as  biomarkers  for  various  diseases  [19  -  22],
most prominently cancer [4, 21 - 33], but also liver
[34 - 37], or renal diseases [38 - 41]. However, the
problem  with  selection  of  breath  biomarkers  for
cancer is  very complex and advanced quantitative
statistical  tests  need  to  be  applied  as  those
compounds are typically present not only in cancer
patients  but  also  in  healthy  controls,  hence  the
clinical  relevance  could  not  be  demonstrated  for
any  of  the  so  far  reported  candidate  VOCs.  For
some  promising  cancer-related  metabolites  their
application  as  biomarker  may  be  limited  as  they
originate also from other, often exogenous, sources.
One  of  the  most  prominent  examples  for  this  is
ethanol (CAS: 64-17-5), which is produced by lung
tumour  tissues,  released  into  the  headspace  of
A-549 non-small cell lung cancer cells and exhaled
by  lung  cancer  patients  [4]  is  present  in  food,
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beverages  and  is  produced  by  intestinal  bacteria
such  as  Escherichia  coli.

Frequently  underestimated  sources  of  volatile
compounds in breath gas are inter alia (i) nutrition
and  medication  uptake  [42  -  45],  (ii)  physiology
(hemodynamics,  distribution  in  body  compart-
ments)  [46,  47]  and  (iii)  metabolism  of  intestinal
bacteria [48, 49]. Detection of VOCs in general, but
also their further identification, may be additionally
complicated  by  the  fact  that  their  concentration
levels  are  affected  by  metabolic  processes,  which
may undergo large fluctuations, e.g. in response to
physical  activity  [50 -  52],  or  smoking [42].  Also
the  individual  VOC  fingerprint  of  a  certain
pathological  state  may  be  shaped  by  the  immune
response  [53].  Published  work  also  suggests  that
VOCs  can  exert  immunomodulatory  effects.
Toluene  (CAS: 108-88-3) inhibits  the secretion of
interferon-gamma  (IFN-gamma),  interleukin-4
(IL-4) and IL-13 but increases the production rate
of  the  tumor-necrosis-factor-alpha  (TNF-alpha)
from  human  peripheral  blood  mononuclear  cells
(PBMC) [54]. Similarly, the study of Sarma et al.
[55]  confirms  that  aromatic  hydrocarbons  such  as
benzene (CAS: 71-43-2), toluene (CAS: 108-88-3),
o-xylene  (CAS.  95-47-6)  and  ethylbenzene  (CAS:
100-41-4)  but  also  chlorinated  hydrocarbons  such
as  dichloromethane  (CAS:  75-09-2)  and
trichloroethylene  (CAS:  79-01-6)  induce  the
apoptosis of human promyelocytic leukemia HL-60
cells.

3.  COMPOUNDS  APPEARING  IN  THE
HEADSPACE  OF  CULTURED  HUMAN
CELLS

Bearing in mind that human beings are hosts for
bacterial,  fungal,  or  other  cells  of  non-human
origin,  which  outnumber  the  body’s  cells  by  far
[56],  the  identification  of  those  VOCs,  which  are
really  human  cell-derived  becomes  a  formidable
challenge. Metabolites produced by microbiota will
be  present  not  only  in  breath,  but  also  in  all  the
other above mentioned sources. Thus, it is essential
to  study  clean  populations  of  cells  and
microorganisms, to identify the cellular origin of a
given volatile compound. A major challenge is that
not  all  human  or  microbial  cells  will  grow  in
culture and thus are amenable to analyses of VOC

metabolism. In particular human primary cells have
limited  life  spans  and  any  attempt  for
immortalization may alter cellular metabolism. Due
to  the  complexity  of  studying  VOC production  at
the organismic level the use of human primary and
established  cell  lines,  both  of  normal  and
transformed  origin,  will  be  an  important  part  in
correctly assessing the full range of human-derived
VOCs  and  in  assigning  the  cellular  origin  of
particular  VOCs.  This  work  will  be  paralleled  by
the  analysis  of  microorganisms  associated  with
healthy  and  diseased  human  individuals.  Cell
culture studies should be also useful in identifying
compounds,  which  are  associated  with  a  specific
phenotype, e.g. oncogenic transformation [53, 57 -
69], or infection [63, 70]. Moreover, primary cells
from humans and genetically altered animals may
be  analyzed  to  establish  genotype/phenotype
relationships  for  particular  VOCs.

The  work  on  cell  lines  has  already  started  to
yield  invaluable  insights  into  the  biochemistry  of
volatile  compounds  observed  in  human  organism
[53,  57  -  62,  64  -  68].  In  the  literature  survey,
altogether  125  volatile  compounds  were  found  to
fulfill  the  criterion  of  reliable  identification  by
spectral  library  match  and  retention  time
confirmation  (Table  1).  For  this  purpose,  the
present  study  is  focused  only  on  CAS-identified
VOCs  which  have  been  either  released  or
consumed by  specific  cell  lines.  Among them are
23  alcohols,  32  hydrocarbons,  25  aldehydes,  17
ketones,  11  esters,  7  carboxylic  acids,  2  ethers,  1
aromatic  amine,  1  nitrile  and  6  sulfur-containing
compounds.  Amongst  VOCs  forming  this  set  84
were observed also in exhaled breath, 58 in saliva,
48 in skin emanations, 31 in blood, 50 in urine and
79  in  feces  [6].  18  compounds  are  not  present  in
this recently published compilation [6].

Disease  states  may  go  along  with  both
quantitative and qualitative differences in particular
metabolites.  Metabolic  analyses  of  tumors  have
shown that tumor progression frequently results in a
metabolic rewiring of the cell (e.g. Warburg effect),
which is driven by alterations in cancer genes or the
metabolic enzymes themselves [72]. The existence
of  VOCs  more  readily  produced  or  consumed  by
transformed than normal cells is supported by work
with cell lines [58, 59, 61, 62, 64-67]. VOC profiles
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Table 1. List of 125 VOCs which have been found to be released (↑) or taken up (↓) by different cell lines. The
table takes into consideration the results of studies published untill the end of 2015. All these compounds have
been  identified  by  spectral  library  match  and  retention  time  by  GC-MS,  except  acetaldehyde  which  was
determined exclusively with SIFT-MS. Information on the presence of a VOC of interest in feces, urine, breath,
skin emanations, blood and saliva is based on Ref. [6].

Class Compound CAS
Body Fluids Normal Cells Cancer Cells

F U Br Sk Bl Sa Cell
type Profile Reference Cell type Profile Reference

Alcohols Ethanol 64-17-5 F U Br Bl Sa A549 ↑ [58]

A549 ↑ [85]

1-Propanol 71-23-8 F U Br Bl Sa A549 ↑ [84]

Lu7466 ↑ [84]

Lu7387 ↑ [84]

A549 ↑ [85]

Lu7466 ↑ [85]

2-Propanol 67-63-0 F U Br Bl Sa A549 ↑ [84]

A549 ↑ [85]

2-Methyl-1-propanol 78-83-1 F U Br Bl Sa hFBÂ ↑ [58]

2-Methyl-2-propanol 75-65-0 Br Bl HBEpC ↑ [58] Lu7466 ↓ [85]

2-Methyl-1-butanol 137-32-6 U VGP ↑ [60]

Mm ↑ [60]

3-Methyl-1-butanol 123-51-3 F U Bl Sa hFBÂ ↑ [58] RGP ↑ [60]

Mm ↑ [60]

SW1116 ↑ [68]

1,4-Butanediol 110-63-4 GES-1 ↑ [67]

Cyclohexanol 108-93-0 U Lu7387 ↑ [84]

1-Hexanol 111-27-3 F U Sk Sa Mm ↑ [60]

2-Ethyl-1-hexanol 104-76-7 F U Br Bl Sa hFBÂ ↑ [58] NCI-H2087 ↑ [65]

HDF ↑ [162]

1-Heptanol 111-70-6 F SW1116 ↑ [68]

1-Octanol 111-87-5 F U Sk NCM460 ↓ [68]

1-Nonanol 143-08-8 F GES-1 ↑ [67]

MGC-803 ↑ [67]

1-Decanol 112-30-1 F Sk NCM460 ↓ [68] SW1116 ↓ [68]

SW480 ↓ [68]

2-Undecanol 1653-30-1 NCM460 ↑ [68] SW1116 ↑ [68]

SW480 ↑ [68]

Phenol 108-95-2 F U Br Sk Sa TBE ↑ [63]

Benzyl alcohol 100-51-6 F U Br Sk Sa RGP ↑ [60]

VGP ↑ [60]

Mm ↑ [60]

2-Phenylethanol 60-12-8 F Sk Sa FOM ↑ [60] RGP ↑ [60]

Mm ↑ [60]

Carveol 99-48-9 U Br TBE ↑ [63]

4-Butoxy-1-butanol 4161-24-4 GES-1 ↑ [67]

MGC-803 ↑ [67]

4-Isopropoxybutanol 31600-69-8 GES-1 ↑ [67]

MGC-803 ↑ [67]

1-Tetradecanol 112-72-1 Sk HeLa ↓ [83]

Aldehydes Acetaldehyde 75-07-0 F U Br Sk Bl Sa NL-20 ↑ [66] CALU-1 ↑ [66]

HBEpC ↓ [58] CALU-1 ↓ [59]

35FL121
Tel+

↓ [66] NCI-H2087 ↓ [65]

HMSC ↓ [66] HL-60 ↑ [114]

Acrolein 107-02-8 F U Br Sk Sa CALU-1 ↓ [59]

MCF-7 ↑ [115]

MCF-7/Adr ↑ [115]

n-Propanal 123-38-6 F U Br Sk Sa A549 ↓ [84]

Lu7387 ↓ [84]

Hydroxyacetaldehyde 141-46-8 HeLa ↓ [83]

(E)-2-Butenal 123-73-9 F Br Sa hFB ↓ [58]
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Class Compound CAS
Body Fluids Normal Cells Cancer Cells

F U Br Sk Bl Sa Cell
type Profile Reference Cell type Profile Reference

Aldehydes HBEpC ↓ [58]

Methacrolein 78-85-3 F U Br Sa HBEpC ↓ [58] CALU-1 ↓ [59]

HUVEC ↓ [62] NCI-H1666 ↓ [64]

A549 ↓ [58]

HepG2 ↓ [61]

A549 ↓ [84]

Lu7466 ↓ [84]

Lu7387 ↓ [84]

n-Butanal 123-72-8 F Br Sk A549 ↓ [84]

Lu7466 ↓ [84]

Lu7387 ↓ [84]

A549 ↓ [85]

2-Methylpropanal 78-84-2 F U Br Sk hFB ↓ [58] CALU-1 ↓ [59]

HBEpC ↓ [58] NCI-H2087 ↓ [65]

HUVEC ↓ [62] A549 ↓ [58]

HepG2 ↓ [61]

A549 ↓ [85]

2-Methyl-2-butenal 1115-11-3 CALU-1 ↓ [59]

A549 ↓ [58]

A549 ↓ [84]

Lu7466 ↓ [84]

Lu7387 ↓ [84]

2-Ethylacrolein 922-63-4 A549 ↓ [58]

HepG2 ↓ [61]

n-Pentanal 110-62-3 F U Br Sa A549 ↓ [84]

Lu7466 ↓ [84]

Lu7387 ↓ [84]

2-Methylbutanal 96-17-3 F U Br Sk Sa hFB ↓ [58] NCI-H2087 ↓ [65]

HUVEC ↓ [62]

3-Methylbutanal 590-86-3 F U Br Sa hFB ↓ [58] CALU-1 ↓ [59]

HBEpC ↓ [58] NCI-H2087 ↓ [65]

HUVEC ↓ [62] NCI-H1666 ↓ [64]

A549 ↓ [58]

HepG2 ↓ [61]

A549 ↓ [84]

A549 ↓ [85]

n-Hexanal 66-25-1 F U Br Sk Bl Sa HBEpC ↓ [58] CALU-1 ↓ [59]

HUVEC ↓ [62] NCI-H1666 ↓ [64]

HepG2 ↓ [61]

HL-60 ↑ [114]

n-Heptanal 111-71-7 F U Br Sk Bl Sa Lu7466 ↓ [84]

Lu7387 ↓ [84]

2-Octenal, (E) 2548-87-0 F HeLa ↓ [83]

n-Octanal 124-13-0 F U Br Sk Bl Sa HBEpC ↓ [58]

HUVEC ↓ [62]

2-Ethylhexanal 12/5/2007 Br HeLa ↓ [83]

2,4-Nonadienal, (E,E) 5910-87-2 HeLa ↓ [83]

2-Nonenal, (E) 18829-56-6 Sk Sa HeLa ↓ [83]

n-Nonanal 124-19-6 F U Br Sk Sa HUVEC ↓ [62] HeLa ↓ [83]

FOM ↓ [60]

Benzeneacetaldehyde, α-
ethylidene

4411-89-6 F HeLa ↓ [83]

2,4-Decadienal, (E,E) 25152-84-5 HeLa ↓ [83]

Benzaldehyde 100-52-7 F U Br Sk Bl Sa hFB ↓ [58] HepG2 ↓ [61]

HUVEC ↓ [62] RGP ↓ [60]

HDF ↑ [162] VGP ↓ [60]

NCM460 ↓ [68] Mm ↓ [60]

SW1116 ↓ [68]

HeLa ↓ [83]

SW480 ↓ [68]

Tetradecanal 124-25-4 F Sk Sa HeLa ↓ [83]

�������	
����������
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Class Compound CAS
Body Fluids Normal Cells Cancer Cells

F U Br Sk Bl Sa Cell
type Profile Reference Cell type Profile Reference

Acids Acetic acid 64-19-7 F U Br Sk Sa TBE ↑ [63] HeLa ↓ [83]

A549 ↑ [85]

Lu7466 ↑ [85]

2-Methylpropionic acid 79-31-2 F Br Sa FOM ↑ [60]

n-Butyric acid 107-92-6 F U Br Sk Sa FOM ↑ [60]

2-Methylbutyric acid 116-53-0 F U FOM ↑ [60]

3-Methylbutyric acid 503-74-2 F Br Sk FOM ↑ [60] VGP ↑ [60]

n-Octanoic acid 124-07-2 F Br Sk Mm ↑ [60]

n-Dodecanoic acid 143-07-7 Sk Sa HeLa ↓ [83]

Esters Methyl acetate 79-20-9 F Br HBEpC ↑ [58]

Methyl acrylate 96-33-3 A549 ↑ [85]

Ethyl acetate 141-78-6 F U Br Bl Sa HUVEC ↑ [62] A549 ↑ [84]

A549 ↑ [85]

n-Propyl acetate 109-60-4 F Br Sa HBEpC ↑ [58] HepG2 ↑ [61]

n-Butyl acetate 123-86-4 F Br hFB ↓ [58] CALU-1 ↓ [59]

HBEpC ↓ [58] NCI-H2087 ↓ [65]

HUVEC ↓ [62] NCI-H1666 ↓ [64]

A549 ↓ [58]

HepG2 ↓ [61]

A549 ↓ [84]

Lu7387 ↓ [84]

Ethyl propionate 105-37-3 F Br HUVEC ↑ [62]

n-Propyl formate 110-74-7 Br GES-1 ↑ [67]

n-Propyl propionate 106-36-5 F Br HepG2 ↓ [61]

Ethyl butanoate 105-54-4 F Br HUVEC ↑ [62]

Methyl decanoate 110-42-9 Sk NCM460 ↓ [68] SW1116 ↓ [68]

SW480 ↓ [68]

2-Octyl benzoate 6938-52-9 HeLa ↑ [83]

Ethers Methyl tert-butyl ether 1634-04-4 Br Bl hFB ↑ [58] A549 ↑ [58]

CALU-1 ↓ [59]

NCI-H1666 ↓ [64]

Ethyl tert-butyl ether 637-92-3 Br HBEpC ↑ [58] A549 ↑ [58]

CALU-1 ↓ [59]

NCI-H1666 ↓ [64]

Hydrocarbons Isoprene 78-79-5 Br Sk Bl HepG2 ↓ [61]

n-Pentane 109-66-0 F Br Bl A549 ↓ [84]

A549 ↓ [85]

Methylcyclopentane 96-37-7 Br Bl Sa A549 ↓ [84]

Cyclohexane 110-82-7 F Br Sa A549 ↓ [84]

A549 ↓ [85]

2-Methyl-1-pentene 763-29-1 Br A549 ↑ [58]

A549 ↓ [84]

2-Methylpentane 107-83-5 F Br Bl Sa NCI-H2087 ↑ [65]

3-Methylpentane 96-14-0 F Br Bl Sa A549 ↓ [84]

A549 ↓ [85]

2-Heptene 14686-13-6 Br Sa HepG2 ↑ [61]

n-Heptane 142-82-5 Br Sk Bl Sa A549 ↓ [84]

A549 ↓ [85]

3-Methylhexane 589-34-4 Br A549 ↓ [84, 85]

3-Methylheptane 589-81-1 F Br Sa hFB ↑ [58]

HBEpC ↑ [58]

4-Methylheptane 589-53-7 Br hFB ↑ [58]

HBEpC ↑ [58]

n-Octane 111-65-9 F Br Sk Sa hFB ↑ [58] A549 ↑ [58]

A549 ↓ [84]

2,3,3-Trimethylpentane 560-21-4 Br hFB ↑ [58] CALU-1 ↑ [59]

HBEpC ↑ [58]

2,3,4-Trimethylpentane 565-75-3 Br hFB ↑ [58]
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Class Compound CAS
Body Fluids Normal Cells Cancer Cells

F U Br Sk Bl Sa Cell
type Profile Reference Cell type Profile Reference

Hydrocarbons 2,4-Dimethylhexane 589-43-5 Br Sk hFB ↑ [58]

n-Nonane 111-84-2 Br Sk Sa A549 ↓ [84]

2,3,5-Trimethylhexane 1069-53-0 Br hFB ↑ [58] CALU-1 ↑ [59]

4-Methyloctane 2216-34-4 F Br CALU-1 ↑ [59]

2,4-Dimethylheptane 2213-23-2 F U Br CALU-1 ↑ [59]

2,4-Dimethyl-1-heptene 19549-87-2 Br Sk hFB ↑ [58] A549 ↑ [58]

HBEpC ↑ [58]

1,3,5-Undecatriene, (3E,5Z)- 51447-08-6 HeLa ↓ [83]

2,9-Dimethyl-5-decyne 19550-56-2 HeLa ↓ [83]

2,6,11-Trimethyl-dodecane 31295-56-4 F GES-1 ↑ [67]

3-Hexadecene, (Z)- 34303-81-6 HeLa ↓ [83]

Benzene 71-43-2 F U Br Sk Bl Sa hFB ↑ [58] A549 ↓ [84]

A549 ↓ [85]

Toluene 108-88-3 F U Br Sk Bl Sa HUVEC ↑ [62]

o-Xylene 95-47-6 F U Br Bl Sa A549 ↓ [84]

p-Xylene 106-42-3 F U Br Sk Bl Sa A549 ↓ [84]

Styrene 100-42-5 F U Br Sk Bl Sa A549 ↑ [84]

Ethylbenzene 100-41-4 F U Br Sk Bl A549 ↓ [84]

Cumene 98-82-8 F Br A549 ↓ [84]

Ketones Acetone 67-64-1 F U Br Sk Bl Sa HBEpC ↑ [58] A549 ↑ [58]

TBE ↓ [63] VGP ↑ [60]

A549 ↓ [84]

2-Butanone 78-93-3 F U Br Sk Bl Sa MGC-803 ↑ [67]

CALU-1 ↓ [59]

A549 ↑ [85]

Hydroxyacetone 116-09-6 F Br HeLa ↓ [83]

3-Hydroxy-2-butanone 513-86-0 F Br Sa FOM ↑ [60] VGP ↑ [60]

2-Pentanone 107-87-9 F U Br Sk Sa hFB ↑ [58] A549 ↑ [58]

HBEpC ↑ [58] HepG2 ↑ [61]

3-Pentanone 96-22-0 F U Sk Bl A549 ↓ [84]

3-Penten-2-one 3102-33-8 hFB ↓ [58]

2-Hexanone 591-78-6 F U Br Sk hFB ↑ [58]

2-Heptanone 110-43-0 F U Br Sa HepG2 ↑ [61]

3-Heptanone 106-35-4 F U Br HUVEC ↑ [62] HepG2 ↑ [61]

Acetophenone 98-86-2 F U Br Sk Sa Lu7387 ↓ [84]

2-Octanone 111-13-7 HUVEC ↑ [62]

3-Octanone 106-68-3 F U Br Sa HepG2 ↑ [61]

MGC-803 ↑ [67]

2-Nonanone 821-55-6 F U Br Sk Sa NCM460 ↑ [68] HepG2 ↑ [61]

HUVEC ↑ [62] SW1116 ↑ [68]

SW480 ↑ [68]

2-Undecanone 112-12-9 F Sk Sa HeLa ↑ [83]

2-Tridecanone 593-08-8 Sk Sa HeLa ↑ [83]

2-Pentadecanone 2345-28-0 Sk Sa SW480 ↑ [68]

HeLa ↑ [83]

VSCs Dimethyl sulfide 75-18-3 F Br Sk Bl TBE ↑ [63] HepG2 ↑ [61]

Ethyl methyl sulfide 624-89-5 U Br HepG2 ↑ [61]

3-Methylthiophene 616-44-4 F Br HepG2 ↑ [61]

Isobutyl methyl sulfide 5008-69-5 HepG2 ↑ [61]

2-Methyl-5-(methylthio)-furan 13678-59-6 U HUVEC ↑ [62] HepG2 ↑ [61]

Methanesulfonic anhydride 1/3/7143 HeLa ↓ [83]

VNCs Pyrrole 109-97-7 F U Br Sa A549 ↓ [58]

Acetonitrile 75-05-8 F Br Bl Sa CALU-1 ↓ [59]

VSCs: Volatile Sulfur-containing Compounds, VNCs: Volatile Nitrogen-containing Compounds. Cell line abbreviations: NSCLC,
non-small-cell lung carcinoma, GES-1: SV40 transformed human fetal gastric epithelial, cell line MGC-803: human gastric cancer;
SW1116: large intestine, carcinoma, adenocarcinoma; NCI-H2087: non-small-cell lung carcinoma, NSCLC; NCM460: NCM460, a
normal  human  colon  mucosal  epithelial  cell  line;  SW480:  Colorectal  Adenocarcinoma;  CALU-1:  lung  cancer;  HMSC:  human
mesenchymal stem cells; 35FL121 Tel+: Telomerase positive lung fibroblast cells; HL-60: human promyelocytic leukemia; HepG2:
hepatocyte carcinoma; A549: lung adenocarcinoma; NCI-H1666: bronchioloalveolar and lung adenocarcinoma; FOM: Neonatal
foreskin melanocytes; TBE: Human primary tracheobronchial epithelial cells; VGP: Vertical growth phase primary melanoma; RGP:
radial growth phase primary melanoma; HBEpC: human bronchial epithelial primary cells; MCF-7: human breast adenocarcinoma
cells; MCF-7/Adr: human breast adenocarcinoma cells a doxorubicin-resistant subline; Mm: metastatic melanoma; HUVEC: human
umbilical vein endothelial cells; NL-20: normal lung epithelial cells; hFB: human fibroblasts; HDF: human dermal fibroblasts; HeLa:
human epithelial cervical carcinoma cells; Lu7466: lung adenocarcinoma; Lu7387: lung adenocarcinoma.
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released  from  cell  lines  were  also  compared  with
those of paired samples of isolated tumors/healthy
lung  tissues  and  exhaled  breath  from  lung  cancer
patients  and  healthy  controls,  respectively.  This
work  demonstrated  significantly  higher  concen-
trations in all three types of cancer samples studied
(cells,  tissues,  patients'  breath)  for  ethanol  (CAS
64-17-5) and n-octane (111-65-9) [4]. Additionally,
2-methylpentane  (CAS  107-83-5)  and  n-hexane
(CAS  110-54-3),  released  by  NCI-H2087  lung
cancer  cells  (adenocarcinoma)  were  observed  at
significantly higher levels in exhaled breath of lung
cancer patients. Importantly, these compounds are
not  related  to  smoking  [42]  and  have  also  been
traced  in  other  body  emanations  (Table  1).

Furthermore,  2-methylpentane  was  also  found
by Poli et al., [5] at higher levels in breath of lung
cancer patients. All seven compounds present in all
sources tested have been found in the headspace of
bacteria  [73  -  79],  although  so  far  mostly  patho-
genic  strains  have  been  analyzed.  These  findings
suggest  that  complementary  research  on  human-
produced VOCs from different sources with tissue
and culture studies will help in the validation of the
true human origin of candidate compounds as well
as  their  potential  disease  association.  However,
cancer cell  lines may also differ from real cancer.
For instance, straight-chained saturated aldehydes
(e.g. n-hexanal (CAS 66-25-1) and n-octanal (CAS
922-63-4)) exhibit  higher concentrations in breath
gas of lung cancer patients as compared to healthy
volunteers  [27,  28,  80,  81]  or  blood  [82]  of  lung
cancer patients as compared to healthy volunteers,
whereas  cancer  cells  have  been  shown  to
metabolize these compounds [59, 64, 65, 83 - 85].
The  contrary  profiles  for  several  aldehydes  in  the
breath  gas  samples  and  the  headspace  of
transformed cell lines may be related to differences
in  the  expression  of  aldehyde  dehydrogenase
(ALDH)  isoforms  (see  section  4.2  below)  or
hypoxic  conditions  in  the  cultures  under  in  vitro
conditions,  not  observed  in  vivo  (see  section  4.3
below).

4.  BIOCHEMICAL  PROCESSES  UNDER-
LYING VOC PRODUCTION

Even  though  more  than  100  different  volatile
biomarkers  for  lung  cancer  have  been  proposed

during  the  past  10  years  [21,  22,  32],  the
biochemical  background  of  most  of  these
compounds  has  not  been  elucidated.  Biochemical
pathways  leading  to  the  production  of  various
classes  of  potentially  cancer-related  VOCs
(hydrocarbons, alcohols, aldehydes, ketones, esters,
nitriles,  and  aromatic  compounds)  have  been
reviewed  recently  [21,  22,  86].  Alkanes,  alcohols
and aldehydes are produced via various processes,
including  the  reduction  of  hydroperoxide  by
cytochrome P450,  as  a  secondary product  of  lipid
peroxidation.  Aldehydes  are  generated  also  from
amino  acid  and  carbohydrate  catabolism.  Other
sources are related to smoking [87], dietary intake
or  exposure  to  indoor-air  pollutants  [88].  Ketone
production has been linked to stress conditions, e.g.
cancer, where increased fatty acid oxidation results
in the formation of ketone bodies, which in turn can
be  secreted  via  breath,  urine  and  skin.  Moreover,
increased  protein  metabolism  during  cachexia  or
under  ketogenic  diet  results  in  the  increase  of
ketone bodies levels [89]. Acetone (CAS: 67-64-1)
concentrations  can  also  vary  in  response  to  food
consumption  [90].  Esters  are  present  in  many
natural  fats  and  oils,  and  can  be  hydrolyzed  by
esterases (e.g. lipases) to yield alcohols and acids.
Nitriles and aromatic VOCs are usually considered
to be contaminants from exogenous sources, mainly
cigarette  smoke  [42,  91],  but  also  outdoor-air  /
environmental  pollutant  [92,  93]  such  as
automobile  emission  [94].  Acetonitrile  (CAS:
75-05-8)  is  predominant  in  the  exhaled  breath  of
smokers and practically absent in the breath of non-
smokers; it  is  also readily detected in the urine of
smokers [95, 96]. The combined knowledge of the
cellular source and underlying biochemical process
will provide a rationale base for the use of VOCs in
the  detection  of  metabolic  alterations,  which  are
caused or associated with diseases. Isoprene (CAS:
78-79-5),  which  is  thought  to  be  produced  in  the
liver [97 - 99] and in muscles [46, 100] has not yet
been  observed  in  cell  culture  experiments.  In  the
headspace of HepG2-cells isoprene levels decrease
(about  5-fold)  when  compared  to  headspace  of
medium  only  [61],  and  may  be  caused  by  the
cytochrome P450 oxidation of this hydrocarbon to
mono- and di-epoxides by liver microsomes [101 -
103].
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4.1. Oxidative Stress and CYP-Oxidase Enzymes

The production of some hydrocarbons has been
linked to the presence of reactive oxygen species,
the oxygen free radicals that may leak from site of
their production in mitochondria into a cytoplasm.
In  particular,  the  peroxidation  of  polyunsaturated
fatty  acids  (PUFA)  such  as  linoleic  acid  (CAS:
60-33-3) [104] present in the cell membrane, may
result in the production of straight chained alkanes
(e.g.  ethane,  CAS:  74-84-0  and  pentane,  CAS:
109-66-0).  It  has  been  also  suggested  that  free
radical peroxidation of PUFA leads to generation of
methylated  hydrocarbons  [105],  which  has  been
disputed by others [106, 107]. Further oxidation of
those alkanes by cytochrome P450 (CYP) oxidase
enzymes – activated in transformed cells [108] and
induced  by  aromatic  hydrocarbons  from  tobacco
smoke  [109]  –  leads  to  formation  of  alcohols,
ketones  and  aldehydes  that  may  be  detected  in
diverse  body  fluids  and  breath  gas  [21].
Nevertheless, alcohols are mainly derived from the
uptake  of  food  and  beverages  and  may  enter  the
blood  stream  through  simple  diffusion.
Additionally,  low  molecular  alcohols,  mainly
ethanol  (CAS:  64-17-5),  can  be  produced  via
pyruvate  metabolism  by  intestinal  bacteria,  e.g.
Escherichia  coli  [49].

4.2. Aldehyde Dehydrogenase

Aldehyde dehydrogenase (ALDH) enzymes (19
isoforms)  are  responsible  mainly  for  oxidation  of
cytotoxic  aldehydes  to  carboxylic  acids  [110].
Additionally  they  are  involved  in  (i)  ester  hydro-
lysis,  (ii)  scavenging  the  hydroxyl  radical,  (iii)
potentially  serving  as  antioxidants  by  NAD(P)H
production,  and (iv)  contributing to  the  regulation
of  retinoic  acid  production  [111  -  113].  Elevated
metabolic  activity  of  ALDH  in  the  transformed
cells  will  lead  to  the  strong  degradation  of
aldehydes.  This  was  confirmed  in  the  in  vitro
studies with human transformed cells, where uptake
of aldehydes was observed for lung carcinoma cells
NCI-H1666, NCI-H2087, CALU-1, A549, Lu7466,
Lu7387 [58, 59, 64, 65, 84, 85] and liver carcinoma
cells  HepG2  [61].  Intriguingly,  for  NL20,  HL60,
MCF-7  transformed  cell  lines  the  release  of  low-
molecular  aldehydes  was  observed  [66,  114,  115]
suggesting down-regulation of ALDH activity.

Indeed,  there  is  evidence  that  only  particular
isoform(s) are active in specific tumor types [111],
for  instance  increased  expression  of  the  ALDH1
isoform  could  result  from  smoking  and  subs-
tantially contribute to malignant transformation of
lung  cells  [116].  The  ALDH1  isoform  was  also
positively  correlated  to  stage  and  grade  of  lung
tumors  in  the  clinical  study  based  on  303  human
specimens from independent cohorts of lung cancer
patients [117].

4.3. Culture Conditions and Oxygen Supply

A  fundamental  concern  in  all  in  vitro
experiments  is  how  well  they  recapitulate  the  in
vivo situation. Cell culture experiments are also not
able to reproduce changes, which may affect VOCs
after  their  production  to  the  site  where  they  are
released.  While  analyzing  cells  in  the  standard
tissue  culture  setting  (which  usually  provides
optimized  growth  conditions)  may  provide  a  first
approximation, the task for the future is to imitate
the real conditions present in the body. The effect
of changing growth conditions on VOC production
has  been  noted  in  the  analysis  of  tumor  cells
growing in 2D versus 3D cultures, the latter being
more  similar  to  in  vivo  conditions  of  the  tumor
growth [118]. Availability of nutrients and oxygen
in  tissue  is  typically  optimized  in  the  in  vitro
experiments and may thus differ considerably from
the situation in the tissue. In the human body, the
growth of a tumor will result in hypoxic conditions
due to insufficient diffusion of oxygen [119, 120].
An  altered  respiration  process  (anaerobic
fermentation  in  cytosol)  leads  to  different  inter-
mediate  products  (conversion  of  pyruvate  into
lactate),  which  may  cause  qualitative  and
quantitative  changes  in  the  profile  of  volatile
metabolites.  Other  processes  induced  under
hypoxic conditions, such as degradation of cellular
components  during  autophagocytosis  [121]  may
further  complicate  the  metabolic  fate  of  VOCs.  It
was  recently  suggested  that  hypoxia  may  lead  to
increased  oxidative  stress  and  enhanced  lipid
peroxidation  hence  to  appearance  of  aliphatic
hydrocarbons  in  the  breath  of  cancer  patients,
respectively  in  the  headspace  of  cancer  cell  lines,
whereas hyperoxic conditions prompt to generation
of oxidized products, such as alcohols [105]. Also
intermediates  or  end  products  will  accumulate  in
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tissue  culture  but  may  be  further  metabolized  or
excreted in the in vivo situation.

4.4. Cell Death

Another  important  issue  concerning  in  vitro
studies  with  cells  is  to  discern  whether  volatile
metabolites detected in a headspace originate from
metabolism of  living  cells  or  from decaying  dead
cells. This task was addressed by Pyo et al. [122] in
their  experiments with human non-small  cell  lung
cancer  A549  cells.  Depending  on  the  dose,  the
cisplatin treatment of A549 cells caused apoptosis
(manifested by cell shrinkage, DNA fragmentation
or chromatin condensation), or necrosis (character-
ized  cytosolic  swelling  and  loss  of  plasma  mem-
brane integrity) at higher concentrations. A strong
correlation  (R2=0.99)  between  the  percentage  of
apoptotic cells and the quantities of nonanal (CAS:
124-19-6),  1,3-di-tert-butylbenzene  (CAS:  1014-
60-4) and 2,6-di-tertbutyl-1,4-benzoquinone (CAS:
719-22-2)  was  observed.  Additionally,  n-decane
(CAS: 124-18-5) was assigned to the necrotic phase
of these cells.  The release of alkane and aldehyde
from apoptotic and necrotic cells suggests that lipid
peroxidation  mediates  the  cytotoxic  effects  of
cisplatin in addition to the well-known formation of
DNA adducts leading to cell cycle arrest.

4.5. Immune Activation

Distinct  profiles  of  VOCs  released  from
different  types  of  human  B-cells  under  in  vitro
conditions  were  reported  by  Aksenov  et  al.  [53].
They  have  observed  that  a  specific  allele  in  the
Human Leukocyte Antigen (HLA) complex (class I
antigen) impacts on downstream signal transduction
and  metabolic  pathways  in  the  human  B-
lymphoblastoic cell line C1R. Those results suggest
possible  detection  of  unique  VOCs  produced  by
human  B-cells  circulating  in  an  organism  during
infection,  cancer  or  other  affected  medical  state.
However,  VOCs  discussed  in  these  works  were
identified  only  by  mass  spectra  match  (not
confirmed  with  standards)  [53,  57].

5. ANALYTICAL CHALLENGES

Amongst  the  analytical  techniques  used  for
determination  of  volatile  metabolites,  gas

chromatography-mass  spectrometry  (GC-MS)  is
considered to be the gold standard [14, 24, 26, 28,
30, 33, 42, 78, 123, 124].  Other analytical techni-
ques  embrace  proton  transfer  reaction-mass  spec-
trometry (PTR-MS) [125], selected ion flow tube-
mass spectrometry (SIFT-MS) [71,  126,  127],  ion
mobility  spectrometry  (IMS)  [128  -  130],  laser
spectrometry  [131  -  133],  and  sensors  or  sensor
arrays [21, 100, 134 - 138]. The major merit of the
GC-MS techniques  lies  in  advanced identification
mechanism  and  ability  of  analyzing  hundreds  of
species  simultaneously,  whereas  SIFT-MS  and
PTR-MS methods offer near real-time analyses. In
turn, IMS, laser spectroscopy and especially sensor
arrays have a potential for miniaturization, although
they  provide  limited  identification  and  very
complex  mathematical  algorithms  (such  as  neural
network and machine learning) are involved in the
interpretation of acquired signals [139 - 141].

Although  GC-MS  is  the  most  versatile  tool
amongst the analytical techniques, there is an issue
of  comparability  between  results  gathered  in
different laboratories.  The main reason for this,  is
the lack of standardization in methodology e.g. for
sample  collection,  preparation,  GC-MS  analysis
and the missing validation of the analytical method
used.  Both,  identification  and  quantitative  VOCs
analyses  are  questionable  in  some  cases  and
important parameters as detection limits are either
inadequately  determined  or  entirely  missing.  The
quality  of  some  of  the  published  results  from  in
vitro  studies  suffers  largely  due  to  questionable
identification of analytes which is often the case in
direct  mass  spectrometric  techniques  (inadequate
VOC identification based on single mass-to-charge
ratio “m/z” is discussed elsewhere [142 - 144]) or
sensors  (no  attempt  of  VOC  identification  at  all)
but,  unfortunately,  appears  also  in  GC-MS-based
studies.

5.1. Sampling Procedure

Contrary  to  breath  or  other  body  fluids,  the
collection  of  the  headspace  gas  from cell  lines  or
bacteria  cultures  does  not  require  transport
containers  (bags  or  bulbs)  and  the  sample  can  be
directly entrapped on an adsorption device such as
solid phase microextraction (SPME) fiber, sorption
tube  or  needle  trap.  Despite  the  time-consuming
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handling,  these  techniques  ensure  well  controlled
sampling,  high  reproducibility,  and  stability.  The
most  commonly  used  technique  for  adsorptive
preconcentration  is  SPME,  where  a  thin  layer  of
adsorbent coats a tiny fiber [145]. The benefits of
SPME  are:  low  costs  (desorption  directly  in  GC
injector),  relatively  small  as  compared  to  tubes
uptake of water from humid gases thus no influence
on  chromatographic  separation,  good  sensitivity,
and automation of adsorption as well as desorption
processes.  Since  the  appropriate  quantification  is
important to reveal a relation between VOC profiles
and health status in general, the sample preparation
technique  must  ensure  quantitative  precon-
centration  for  sensitive  analysis.  In  this  regard,
SPME  is  considered  to  be  a  “semi-quantitative”
technique,  as  the  masses  of  adsorbed  analytes
depends  on  their  partition  coefficient  and  reaches
maximum  when  equilibrium  between  their
concentration  in  a  “sample”  gaseous  phase  and  a
“fiber” solid/liquid phase is reached. Nevertheless,
when  parameters  for  adsorption,  storage  and
desorption are well controlled, both sensitivity and
reproducibility are very high and SPME technique
can be successfully used in in vitro studies focused
on  the  cellular  metabolism  of  VOCs.  While  most
research  on  volatile  metabolites  released  from
human  cell  lines  focuses  on  very  volatile  organic
compounds (vVOCs), in some particular cases also
the  heavier  (semi-volatile)  fraction,  respectively
unstable  reactive  VOCs,  is  targeted.  For  this
purpose  the  detection  limits  and  quantitation  with
SPME-GC-MS  may  need  improvement.  It  is
typically achieved by increasing SPME extraction
efficiency  through  a  derivatization  process  that
converts  polar  analytes  into  their  less  polar
analogues. Such conversion of selected low volatile
compounds into more volatile derivatives increases
their  partition  coefficients  (SPME fiber/gas  rarely
SPME fiber/water) and may also improve their GC
separations without a need of GC column exchange
[146], but most importantly it improves the stability
of  reactive  species,  such  as  aldehydes,  on  SPME
fiber  [80,  147,  148].  Nevertheless,  to  ensure  the
lowest detection limits and the broadest spectrum of
collected VOCs, so called “exhaustive” adsorption
techniques  can  be  used,  whereby  the  gaseous
sample is  drawn through a tube filled with one or
more sorbents in a quantity considerable larger than

in  SPME.  Thus  in  contrast  to  SPME,  all  sample
components  present  at  trace  concentration  levels
are  quantitatively  adsorbed  on  sorption  tube,  if
adsorbent  selection  and  adsorption  parameters
optimization  were  done  correctly.  The  sorptive
properties  of  adsorbents  commonly  used  for
preconcentration of the gaseous samples have been
investigated  in  numerous  research  articles  [149  -
152] review papers [153] and the guidelines for the
selection  of  appropriate  adsorbents  for  VOC
sampling  are  available  on  manufacturer  websites.

Presence  of  pollutants  or  loss  of  volatiles  can
considerably  distort  the  original  chemical  finger-
print  produced  by  cells  under  study  conditions.
Thus,  the  isolation  of  the  head-space  atmosphere
from  the  external  environment  can  considerably
improve  the  reliability  of  analyses.  Another  im-
portant  issue  is  the  selection  of  inert  and
contaminant-free  materials  (tubing,  cultivation
flasks etc.) for experimental setups. Glass or some
inert  polymers  such  as  Teflon,  or  polyether-
etherketone  (PEEK)  seem  to  be  the  materials  of
choice in this context. While the gas phase from a
closed  system can  be  easily  adsorbed  on  a  SPME
fiber (so called static headspace), the application of
sorption  tubes  or  needle  trap  devices  normally
requires a carrier gas to drag the sample (so called
dynamic  headspace),  which  must  be  additionally
purified with filters or catalyst to reduce the risk of
sample contamination and improve the background
[58, 59, 61, 62, 64, 65].

Regardless  of  preconcentration  technique,  it  is
recommended  to  investigate  the  adsorption  para-
meters  (saturation/breakthrough,  sample  volume,
temperature, etc.) and desorption parameters (tem-
perature,  duration,  split  ratio,  etc.)  before  using  a
method for sample analysis. Especially important is
to minimize/eliminate water uptake, for example by
elevating  slightly  the  adsorption  temperature
(“warm  trap"),  that  decreases  sample’s  relative
humidity  [154].

5.2. Reliable VOC Identification

Unfortunately, numerous GC-MS studies report
compounds which were only identified on the basis
of  the  spectral  library  match.  Apart  from  fund-
amental  mistakes  in  VOC  identification,  such  as
multiple detection of a single analyte on a sample
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chromatogram  or  attribution  of  more  than  one
compound  to  a  single  peak  (assuming  baseline
resolution), researchers seem to forget that although
a  mass  spectrum  is  characteristic  for  a  certain
substance, it is not unique. Compounds – especially
structural  isomers  containing  the  same  functional
group  –  can  have  very  similar  spectra.  Conse-
quently,  only  comparing  the  mass  spectrum of  an
unknown  sample  component  to  the  reference
spectra in a commercial  MS library (NIST, Wiley
and others) may be misleading. This is particularly
important  in  case  of  unresolved  peaks,  where  the
spectrum of a certain analyte is “contaminated” by
the spectrum of a neighboring, unseparated sample
components or by the impurities originating from a
background.  Therefore,  in  agreement  to  existing
guidelines  [155]  the  identification  of  an  unknown
analyte has to be supported with independent data,
i.e. the chromatographic parameters (retention time
or  retention  index)  have  to  be  analyzed  for
reference  standards  under  identical  experimental
conditions.  Furthermore,  compound  names  pro-
vided  are  often  not  supported  by  unique  numeric
identifiers such as, e.g. Chemical Abstracts Service
registry number (CAS-number, see https://scifinder
.cas.org),  which  could  assist  the  unambiguous
identification but  also the comparison of  different
studies. This issue plays a particular role in case of
complex  volatiles  such  as,  e.g.  5-Isopropenyl-2-
methyl-7-oxabicyclo [4.1.0]heptan-2 -ol detectable
in  breath  gas  [33].  Therefore,  it  is  recommended
supporting a CAS number respective to the reported
analytes  for  the  purpose  of  comparability  of  the
published  data  from  diverse  research  groups.

5.3. Reliability of the Analytical Method

Once  the  optimal  conditions  for  sample
collection,  adsorptive  preconcentration,  storage,
thermal  desorption  and  off-line  GC-MS
measurement  are  investigated,  the  analytical
method  needs  to  be  validated  to  prove  that  it  is
acceptable  for  its  intended  purpose.  The  repeated
measurements  (at  least  3  times)  of  reference
standards at increasing concentrations spiked with
sample  matrix  (calibration)  can  be  used  to
determine  the  dynamic  range  of  response,  which
demonstrates  the  optimum  range  of  linearity,
precision (repeatability), and accuracy (closeness to
a  “true”  value)  for  quantitative  analysis.  The  last

one depends also on the selectivity that refers to the
extent to which a method as a whole can determine
the target analyte without interferences [156]. In the
case  of  adsorptive  preconcentration  techniques  an
important parameter to evaluate is the robustness of
an  analytical  method,  which  demonstrates  if  the
measured  analyte’s  concentration  remains  unaffe-
cted as a consequence of a small change in a certain
parameter  (for  instance  slightly  elevated  tempe-
rature  of  adsorption  that  affects  sample  relative
humidity).

Particular  attention  should  be  paid  to  correct
determination  of  the  detection  limit  of  an  applied
analytical  method.  According  to  the  IUPAC  “the
limit  of  detection  (LOD)  is  expressed  as  the
concentration  or  the  quantity  derived  from  the
smallest  measure  that  can  be  detected  with
reasonable  certainty  for  a  given  analytical  pro-
cedure” [157]. This definition is, unfortunately, not
precise  and  leaves  quite  some  room  for
interpretation.  In  many  analytical  techniques,
including chromatography and mass spectrometry,
it  relays  on  the  signal  to  noise  ratio  (S/N)
determined  for  repeated  blank  measurements,
which is then multiplied with a factor to achieve a
desired confidence level, for instance k=3 for 99%
of confidence level [157]. Consequently, unrealistic
low LODs can sometimes be found in the published
literature, which under realistic circumstance would
fall far short of the required performance.

Instead,  it  is  recommended  to  determine  the
LOD  according  to  the  standards  outlined  in  the
ISO-11843  guidelines  [158],  which  evaluate  the
detection  capability  of  an  analytical  method  by
actually  calculating  the  risk  of  both  false  positive
and  false  negative  errors.  It  is  an  important
difference that the limits here are a function of the
acceptable  error  rates  –  meaning  the  same  ana-
lytical method can have different limits depending
on  the  acceptable  errors  of  different  tasks.  The
critical  values  determined  (detection  limit,
quantification limit, and detection decision) derive
from the calibration data performed under the same
analytical  conditions as  for  real  sample instead of
blank  [159].  Importantly,  the  other  sub-standards
from  the  set  ISO-11843  provide  procedures  for
more complex scenarios and additionally for linear
calibration cases (ISO 11843-2). They also address
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cases of non-linear calibration (ISO 11843-5) that
may  occur  when  SPME  is  used  for  high
concentration  of  target  VOCs,  Poisson distributed
measurements (ISO 11843-6) particularly important
for  direct  mass  spectrometric  techniques  or
situations, where no calibration data are used, if the
preparation of standards close to detection limit is
impossible (ISO 11843-3).

CONCLUSION

Compiling the human volatilome is a formidable
task,  which  is  still  at  a  very  early  stage.  A  first
comprehensive  overview of  candidate  compounds
found  in  various  emanations  of  the  human  body
comprising  1765  candidates  with  an  associated
CAS-number,  has  been  recently  published  [6].
Almost all substances encountered in the analyses
of  normal  and  transformed  human  cells  in  vitro
(Table 1) have been observed in exhaled breath. At
present, there are no single tumor-specific volatile
compounds  for  which  clinical  relevance  could  be
proved. Alternatively, panels of compounds may be
preferentially  associated  with  the  transformed
phenotype. The relation between volatile profiles of
cancer  cell  lines  and  the  breath  profiles  of  cancer
patients  is  still  far  from  being  understood.  If
required,  growth  conditions  can  be  changed
drastically to meticulously investigate the particular
metabolic  pathway  leading  to  VOCs  production.
Otherwise,  the  conditions  of  in  vitro  experiments
with  cell  cultures,  such  as  oxygen  supply  or
nutrients availability, need to be carefully adjusted
to mimic as much as possible the in vivo situation.
We  also  propose  the  implementation  of  the
ISO-11843  guidelines  for  the  standardization  of
analytical procedures to ensure the comparability of
results  gathered  in  different  research  laboratories.
The  use  of  cell  lines  but  also  of  cultures  of
microorganisms making  up  the  human microbiota
will be essential to unambiguously assign VOCs to
their cellular source and the underlying biochemical
processes  leading  to  their  generation  and  meta-
bolism. This combined knowledge will provide the
basis for a rationale use of VOCs as biomarkers for
disease detection or treatment monitoring.

The library  of  endogenously  produced compo-
unds,  released  by  human  cells  in  vitro,  is  an
important  starting  point  for  future  work  and

discussions.  It  will,  in  particular,  be interesting to
look  at  all  these  compounds  in  experiments  with
real-time analysis of exhaled breath under different
conditions  and  with  different  exhalation  kinetics.
Following  the  trend  of  miniaturization,  candidate
biomarkers  validated  in  patients  studies  may  be
used to develop selective nanosensors as a point of
care devices for screening purposes [160, 161].
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