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Abstract

Accounts of human physical reasoning based on simulation
from a noisy physics engine have enjoyed considerable suc-
cess in recent years. However, simulating complex physical
dynamics can be a computationally expensive process, and it
is possible that people use faster, cheaper shortcuts to make
predictions and inferences in complicated physical scenarios.
Here we asked people to predict the eventual destination of a
ball on a 2D bumper table (in the style of Smith, de Peres, Vul,
and Tenenbaum (2017)). We designed scenarios that we ex-
pected would modulate the use of heuristics and simulation:
the bumper table provided varying degrees of containment to
constrain future outcomes and to make a containment heuris-
tic more useful, and could have more or less internal struc-
ture to vary the reliability of noisy simulation. As the con-
tainment heuristic becomes more useful, and as simulation be-
comes more expensive, we expected that people would switch
from using simulation to rely more on rapid heuristic-based
predictions and therefore respond faster. Instead, we found
that even when containment was very predictive, people were
progressively slower and less accurate as simulation complex-
ity increased, indicating that they persisted in using simulation
rather than containment heuristics.
Keywords: simulation; heuristics; physics

Introduction
In everyday life we are constantly tasked with making pre-
dictions about how physical objects will behave and inter-
act, whether changing lanes in traffic or stacking dishes in
the sink. Such inferences are so commonplace that we rarely
think twice about them. However, the mechanisms by which
we are able to make these inferences are far from obvious: at
a minimum, they require a rich understanding of how things
in the world tend to move and the ability to make rapid predic-
tions based on this knowledge, both non-trivial achievements
from a computational perspective.

Prior research has shown that a range of human physical
inferences can be captured by Intuitive Physics Engine mod-
els that rely on simulations of physical outcomes performed
with a probabilistic physics engine similar to those used in
computer games (Battaglia, Hamrick, & Tenenbaum, 2013).
By sampling from these simulations, probabilistic models can
generate a reasonable representation of the physical world
and make predictions accordingly (Ullman, Spelke, Battaglia,
& Tenenbaum, 2017). Such models have been successful in
reproducing human judgments across a range of tasks and do-
mains, from predictions about object balance (Battaglia et al.,
2013), mass (Hamrick, Battaglia, Griffiths, & Tenenbaum,

2016), and velocity (Smith & Vul, 2013) to liquid dynamics
(Bates, Yildirim, Tenenbaum, & Battaglia, 2018) and causal
attribution (Gerstenberg, Peterson, Goodman, Lagnado, &
Tenenbaum, 2017).

While simulation allows us to reproduce many features of
human physical reasoning, there are also situations where
people’s behavior is inconsistent with the use of an intuitive
physics engine (Smith, Battaglia, & Vul, 2018). Empirically,
human behavior sometimes differs significantly from predic-
tions made by simulation-based models, suggesting that we
have sophisticated strategies for avoiding simulations when
other forms of inference will suffice (Smith, Dechter, Tenen-
baum, & Vul, 2013). In particular, research on errors in phys-
ical judgment have shown that people often hold a number
of systematic biases which are inconsistent with even ba-
sic physical simulations (see Davis & Marcus, 2015 for an
overview of some of these). Underlying this difference is a
criticism of simulation as a computational account of all hu-
man physical reasoning: simulation of almost any sort, but
particularly of complex physical phenomena, may require
considering the interactions between a large number of ob-
jects over time. Because interactions between objects add
uncertainty to predictions (Smith et al., 2013), in complex
scenarios these simulations might therefore require keeping
a large number of objects in mind and yet still produce very
uncertain predictions. These sorts of considerations have led
some to argue for a limited role of simulation in human phys-
ical reasoning (Davis & Marcus, 2016).

In light of the challenges posed to a simulation-based ac-
count of human physical reasoning, what alternatives can ac-
count for people’s ability to make diverse predictions about
physical interactions in the world around them? A large body
of research supports the idea that humans are adept in their
use of heuristics and other simplified qualitative prediction
strategies, including in the domain of physical predictions
(Gigerenzer & Todd, 1999). Prior work has shown that people
can represent certain topological relationships like contain-
ment using only first-order logic (Davis, Marcus, & Frazier-
Logue, 2017). Given the large number of strategies available
to reasoners and the flexibility with which we navigate the
physical world, it has been proposed that humans selectively
utilize a toolbox of prediction techniques, including simula-
tion, qualitative reasoning, and logical inference, as well as
analogical and rule-based strategies (Davis & Marcus, 2015).

1450



Figure 1: A simple trial with partial containment and two ob-
stacles. At left is what participants see when prompted to
guess a target after 2.5s of animated ball movement. At right
is feedback after guessing “green” and seeing the ball ani-
mated on the remainder of its path.

The idea that humans are able to balance simulation-based
prediction with alternative prediction strategies is intuitively
appealing because it offers a way to unify simulation-based
accounts with complementary accounts of physical inference
based on e.g. topological and visual features. However, it
raises a number of additional questions. If humans are able to
flexibly recruit different strategies for making physical pre-
dictions, what determines the choice of one strategy over the
other? How and when do we switch between fine-grained
simulation methods and more coarse qualitative analyses?
The exact mechanisms for such decisions remain poorly un-
derstood. For example, when novel but reliable and visu-
ally salient heuristics are available, people often fail to use
them unless the existence of such heuristics are made explicit
(Callaway, Hamrick, & Griffiths, 2017). A simple hypoth-
esis is that compared to simulations, topological predictions
are faster, lower fidelity, and less generally applicable; conse-
quently, topology ought to be used when the scenario makes
topological cues particularly useful, and renders simulations
particularly imprecise and costly by complex scenarios. In
other words, if computationally expensive simulations are
unlikely or unable to produce a confident prediction, while
topology can, a rational agent should make a guess based
on simpler heuristics or visual features rather than waste re-
sources on repeated simulations.

In the present study, we tested the hypothesis that people
balance the precision and cost of simulation against the ap-
plicability of topological analysis when making physical pre-
dictions. Our experiment builds on prior research in several
important ways. First, we examine people’s reasoning about
containment scenarios because prior research has shown that
containment relationships can be expressed propositionally
and that intuitive inferences about containment can be made
with such knowledge-based reasoning even with very little
information (Davis et al., 2017). As such, it is an ideal sim-
plified model for physical inference. Second, containment
relationships can in some cases be visually processed rapidly

and automatically (Strickland & Scholl, 2015). Finally, prior
research has used a similar paradigm to explore the degree
to which people simulate or use topological inference when
making physical predictions in scenarios involving contain-
ment relationships. Smith et al. (2013) modeled inference on
a prediction task using noisy simulation but found that peo-
ple’s predictions were more rapid than the model predicted in
scenarios involving containment. Building on these results,
Smith et al. (2017) presented participants with similar tasks
in which a containment heuristic was available but found ev-
idence for simulation across all the tasks. However, in the
tasks presented to participants, the simulation required was
fairly straightforward and temporally limited. Therefore, in-
sofar as simulation and topological processing happened in
parallel or participants reasoned that simulation was a con-
sistently viable strategy, they may have failed to leverage a
more coarse containment-based judgment out of habit or con-
venience (Smith et al., 2017). We hypothesize that when
topological predictions are available and simulation proves
intractable or uncertain, participants will be more likely to
make their predictions based on topology. In line with this
hypothesis, Davis & Marcus (2015) argue that simulation is
most effective on relatively short time scales and small spa-
tial scales such that simulation is straightforward and reliable.
Here we violate this condition by including trials in which
the number of obstacles (complexity level) makes simulation
both more uncertain and potentially longer. We expect that
participants, faced with predictions involving unreliable sim-
ulations, will pursue alternative strategies for prediction: an
agent that rationally trades off the advantages of simulated
inference with the computational costs should select more
favorable knowledge-based inference strategies when condi-
tions support them.

Experiment

In the present study, we tested the hypothesis that people
would switch from using slower simulation to faster heuris-
tics when simulation becomes less efficient. Specifically, we
presented participants with a task which required them to
make predictions about the path of a ball in a series of two-
dimensional environments. We manipulated (a) how much
the topography of the environment allowed a simple topolog-
ical “containment” heuristic to identify the answer (degree of
containment), (b) the complexity and uncertainty of simula-
tions in the environment (degree of complexity). The core
prediction is that participants would favor using simulation to
obtain an answer when simulations were easy and topology
was uninformative, but would switch to relying on contain-
ment, or other coarse topological cues when they were partic-
ularly effective, and simulation was particularly ineffective.
Specifically, we rely on the assumption that using a fast con-
tainment heuristic would be more efficient than simulation,
thus we predict that for high-containment scenarios, increas-
ing complexity would decrease response times.

1451



Figure 2: Twelve trials for Scenario 1, increasing in simula-
tion complexity in the horizontal direction and containment in
the vertical direction (highest containment at top). The high
containment, high complexity trials offer a simple topological
prediction without needing to simulate the ball’s interaction
with the walls and obstacles.

Participants
Participants were 81 undergraduates from the University of
California, San Diego who received course credit for partici-
pation. The experiment lasted approximately 25 minutes.

Methods
We used a task that is very similar to Smith et al. (2017). Dur-
ing the experiment, participants were shown a series of trials
depicting a blue ball on a flat surface (600 pixels by 600 pix-
els). The ball was surrounded by walls and square obstacles
that the ball could bounce off. Each trial contained a red and a
green target and the goal of the task was to determine whether
the ball would hit the red target or the green target first (see
Figure 1). Before making a guess, participants were shown
2.5s of the ball’s movement, after which the ball paused in
its trajectory and participants pressed either the “R” or “G”
key to indicate their guess for the red or green target. After
participants made their guess (or 10s elapsed), the ball would
resume its movement until it hit one of the targets. At the end
of each trial, participants received points based on their accu-
racy and their response time: -10 for an incorrect guess, 0 for
no guess, variable points for a correct guess based on time to
respond (see Figure 1). The points for a correct guess were
allotted based on an exponential decay function of response
time so participants were rewarded for guessing quickly if
they could generate an accurate guess rapidly, but the penalty
for longer response times quickly diminished. To illustrate,
participants received 100 points for responses at 250ms, 71
points at 1000ms, and 45 points at 2000ms.

Participants read a brief set of instructions and completed
three practice trials before doing the experimental trials. Each
participant completed all trials in the experiment: 48 trials

representing each complexity and containment level across
four scenarios, with 64 “distractor” trials (discussed below)
for a total of 256 trials. The order of the trials was randomized
for each participant, as was the selection of the red and green
target for reach trial.

Stimuli

The trials were grouped into four qualitative scenarios, and
within each scenario they were parametrically manipulated
along two dimensions that modified the uncertainty of simu-
lations and the availability of topological predictions.

Scenario: Each trial belonged to one of four possible sce-
narios corresponding to the containment structure that the tar-
gets were placed in. For example, one scenario placed the ball
inside variants of a box where one of the targets was placed
in the opening, while another had the ball traveling down a
right-angled tunnel with a target at one end. (see Figure 5).

Containment: Each scenario had three distinct contain-
ment levels that varied how much the ball and one of the tar-
gets were contained by the set of walls in the scenario. In
the high containment trials for each scenario, the ball was
virtually guaranteed to hit one of the targets because the ball
and that particular target were almost entirely contained by
the walls. In the low containment trials, the walls provided
only minimal containment for the ball and one of the targets,
rendering topology and containment fairly uninformative.

Simulation Complexity: For each scenario and contain-
ment level, there were four complexity levels which varied the
degree of uncertainty involved in simulating the ball’s path.
This was accomplished by placing an increasing number of
square obstacles throughout the scene: simulation therefore
required accommodating the growing possibility of the ball
bouncing off one or more obstacles before hitting one of the
targets, making simulation results less certain. The lowest
complexity levels for each scenario and containment level had
no such obstacles, while the highest complexity levels had
eight obstacles spread throughout the scene (see Figure 2).

Each unique scenario, containment, complexity combina-
tion was rotated 90, 180, and 270 degrees to allow for more
trials and to prevent the scenarios from being too predictable.
In addition, there were 64 distractor trials that were iden-
tical to the high containment trials in each scenario, except
that both targets were placed inside or outside the contain-
ing structure. These were added to prevent participants from
adopting a strategy of assuming that every trial would have
a containment structure or other topological best guess once
they had seen a number of trials in which that was the case.

For each trial, we captured participants’ accuracy (correct
or incorrect) and response time. Previous results using the
same target task have provided evidence that participants are
likely to make simulated inferences for this task across a
range of scenarios and further that response time is corre-
lated with time required to simulate the outcome (Hamrick,
Smith, Griffiths, & Vul, 2015; Smith et al., 2017). We ex-
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pected response time to be a reasonable measure of partic-
ipants’ reliance on simulation for the inference in the task:
as the complexity of the simulation required to make a pre-
diction increased, so too should the response time. In con-
trast, predictions made via topological inference should show
little change in response time as complexity of the scene in-
creased. When one of the targets was clearly contained in the
same space as the ball, the uncertainty or duration of the ball’s
simulated path should not have had any bearing on judging
which target the ball would hit first if participants were tak-
ing advantage of this containment information. Therefore, we
expected to see a relationship between simulation complexity
and response time which held for trials in which participants
made a prediction by simulation but failed to hold for trials
where participants were instead using visual cues which fa-
cilitated more coarse topological predictions.

Results
Two of the 81 participants were excluded from analysis due to
technical difficulties logging their data. For each participant,
we excluded data from the 64 distractor trials. These were in-
cluded in the experiment to prevent the inference that all trials
would have a more and a less contained target. However, the
data from these trials is not relevant to the present analyses.
All subsequent analyses were therefore conducted with data
from 79 participants over 192 trials (twelve trials for each of
the four scenarios, rotated each of 0, 90, 180, and 270 de-
grees). For all analyses, response times were log-transformed
to account for their skewed distribution (Whelan, 2008) but
transformed back for reporting and display.

Response times
To assess whether participants were avoiding costly simula-
tions when simulations were particularly uncertain and topo-
logical conditions supported more efficient predictions, we
examined average response times across each level of com-
plexity and containment. The results are illustrated in Figure
3a. We were interested in comparing response times in low-
containment trials to high-containment trials, where an effi-
cient topological prediction about which target the ball would
hit was available. Rather than a stabilization or even a de-
crease in response time as complexity increased in high con-
tainment trials (signaling a switch to topological prediction),
Figure 3a shows that response times increased progressively
as containment increased from low to high and within each
containment level as complexity increased from none to high.
Moreover, the high-containment trials were slower, and less
accurate (Figure 3b), than low-containment trials.

In a repeated measures ANOVA, response times vary with
containment and complexity, (F(2, 156) = 55.63, p < 0.001
and F(3, 234) = 8.87, p < 0.001, respectively). However,
consistent with the fact that participants are not treating com-
plexity differently in high containment trials, there is no
containment-complexity interaction (F(6, 468) = 0.487). Par-
ticipants relying on topological information to infer which
target the ball would hit in high containment trials would have

(a) Response times across conditions

(b) Accuracy across conditions

Figure 3: (a) Mean response time across containment and
complexity levels. Despite the availability of simple topolog-
ical predictions in the high containment, high complexity tri-
als, response time is highest. (b) Mean accuracy across con-
tainment and complexity levels. Accuracy steadily decreases
at higher containment levels, even though more contained tri-
als would seem to make prediction more certain.

been able to do so quickly. As complexity increased, so too
would the time required to simulate the ball’s possible out-
comes. Therefore, predictions made via topological analysis
in high containment, high complexity trials could potentially
be done in less time than required for prediction by simula-
tion in trials with the same degree of complexity but lower
containment. Even with complexity levels which make simu-
lation difficult and topological information which makes pre-
diction simple, participants showed no sign of using a con-
tainment heuristic.

Accuracy
In light of our findings that response times both increased as
complexity increased within each containment level and also
increased across containment levels, one interpretation is that
this pattern was a result of a speed-accuracy tradeoff. Insofar
as additional complexity in a given scenario made simula-
tion more difficult and uncertain, participants may have spent
more time confirming their predictions without any other
change in their simulations or prediction strategies. To test
this, we looked at each participant’s accuracy in a given con-
tainment and complexity level (there are 16 trials in a given
containment and complexity level for each participant). The
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Figure 4: Performance of participants in high containment,
high complexity trials only by trial order quartile. Accuracy
remains close to chance and does not improve over the course
of the experiment, suggesting that participants likely did not
switch at any point to topological inference cues or other
strategies that would have improved their accuracy.

mean accuracy proportions across all participants for each
complexity and containment level are shown in Figure 3b.

In contrast to what would be predicted by a speed-accuracy
tradeoff in which the containment and complexity levels that
participants spent the most time on also have the highest ac-
curacy, mean accuracy steadily decreases from low to high
containment scenarios. In low containment trials, mean ac-
curacy was above 90% across all complexity levels, while
in high containment and high complexity trials, where par-
ticipant response times were the largest, accuracy was only
nominally above chance (95% CI 51.3% - 55.4%). In a re-
peated measures ANOVA, both containment and complexity
accounted for a significant portion of the variance in accu-
racy (F(2, 156) = 829.5, p < 0.001 and F(3, 234) = 15.7,
p < 0.001, respectively), as well as the interaction between
them (F(6, 468) = 61.79, p < 0.001). As the containment
and complexity of trials increased, participants spent more
time making judgments and their accuracy decreased: these
data are inconsistent with an account of prediction in which
people process topological features to make the judgment as
efficiently as possible. One alternative is that people persist in
simulating outcomes in such trials even when alternatives are
readily available. Under this account, participants would be
expected to simulate more as complexity increased in order
to overcome the uncertainty imposed by increases in com-
plexity. They might do this even when increasing levels of
containment made topological predictions simple.

Strategy changes
Another interpretation of the current results is that people
may have eventually switched to heuristic-based strategies in
the more complex trials, but not right away. We predicted that
the difficulty of simulation on high complexity trials would
encourage participants to employ alternative inference strate-
gies where available. But it may be that the complexity of a
trial in and of itself is insufficient to induce strategy change.
For example, participants might need to see several complex
trials and infer that high complexity trials are likely to recur

and are not “one offs”. Or, participants might overestimate
the accuracy of simulation-based inferences: only after get-
ting wrong answers on complex trials would they pursue al-
ternative inference strategies.

If participants were switching to heuristic-based strategies
as a result of familiarity with the task or low accuracy on
complex trials, we might expect a difference between high
complexity, high containment trials encountered earlier ver-
sus later in the experiment. This difference would be re-
vealed in changes in accuracy over the course of the exper-
iment: if participants eventually ended up using a topologi-
cal inference strategy for these high containment, high com-
plexity trials, we would expect near perfect accuracy for any
such trials. Figure 4 shows accuracy on high containment,
high complexity trials only, arranged by the trial order quar-
tile in which participants saw them. Participants performed
relatively poorly on the high containment, high complexity
trials at the outset. Critically, there is no sign of improvement
over the course of the experiment: in an ANOVA with par-
ticipants’ mean accuracy by quartile, accuracy did not vary
significantly across quartiles (F(1, 78) = 2.359, p = 0.129). If
participants had switched to a topologically based inference
strategy, we would expect an increase in accuracy since high
complexity, high containment trials enable a very confident
containment-based solution. Figure 4 suggests that direction-
ally, participants appeared to get worse on the high accuracy,
high containment trials and remain fairly inaccurate through-
out the experiment.

Scenario and rotation differences
A third account for the higher response times and lower ac-
curacy as containment and complexity increased is that this
overall pattern reflects a great deal of variance across scenar-
ios. In a repeated measures ANOVA of response time that
adds scenario on top of containment and complexity, there
are significant main effects of containment and complexity
(as described before) as well as scenario (F(3, 234) = 64.89, p
< 0.001), reflecting the fact that participants’ response times
seemed to vary across scenarios. In Figure 5, we show mean
response times across containment and complexity levels but
further broken down by scenario. The pattern of response
times is fairly consistent for low containment trials but the
directionality of response times as complexity increases in
high containment trials varies across scenarios. In scenar-
ios 1, 2, and 4, response times in high containment trials
stabilize or diminish at higher complexity levels, which is
qualitatively consistent with our hypothesis that participants
would make faster predictions when topological conditions
supported a coarse analysis and made simulation highly un-
certain. Indeed, the effects of containment and complexity
are not homogeneous across scenarios, revealed by significant
interactions between scenario and containment (F(6, 468) =
6.935, p < 0.001), and scenario and complexity (F(9, 702) =
4.662, p < 0.001). The three-way interaction between sce-
nario, containment, and complexity is weaker, but also sig-
nificant (F(18, 1404) = 1.626, p = 0.047), indicating that the
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(a) Response time broken down by scenario

(b) High containment example of each scenario (1–4)

Figure 5: (a) Response times are consistent across scenarios
in lower containment and complexity levels but diverge con-
siderably at higher containment and complexity levels. (b)
A high containment (low complexity) trial for each scenario.
Complexity was increased by adding more square obstacles.

pattern in scenario 3 is quite unusual. However, we cannot
confidently conclude that any of the scenarios would reliably
produce the sort of two-way interaction between containment
and complexity that our hypothesis predicts.

Finally, it is worth noting that even though rotated versions
of the trials were identical in configuration and ball move-
ments, simply turned 90, 180, or 270 degrees, participants
may have treated rotated versions of the trials differently. A
repeated measures ANOVA of response time as a function
of scenario and rotation found that rotation accounted for a
significant amount of the variance (F(3, 234) = 6.995, p <
0.001), scenario was significant (as outlined above) and that
there was a significant interaction between scenario and ro-
tation (F(9, 702) = 2.939, p = 0.002). Whether this reflects
some sort of bias towards e.g. the targets being at the top of
the screen is unclear.

Conclusion
In this study we presented participants with physical predic-
tion tasks that simultaneously varied the degree to which a
simple containment heuristic could be used to make effec-
tive predictions and the complexity required to simulate out-
comes instead. Our hypothesis was that as increasing com-
plexity made simulations more and more uncertain and effort-

ful, participants would pursue less costly topological predic-
tion strategies. When conditions permitted such knowledge-
based predictions, response times would reflect the rapid and
efficient use of containment heuristics. We found no evidence
of participants flexibly using heuristics when simulation was
complex. In fact, participants spent the longest on trials that
had the highest degree of containment; meanwhile, their ac-
curacy was lowest on these same trials.

Why might participants have spent more time and been less
accurate on trials where a simple containment-based predic-
tion was available? First, it’s possible that the structure of the
task at the outset biased participants towards a simulation-
based strategy in a way that might have been difficult to over-
come, even when complexity of trials made simulation diffi-
cult. Earlier work that used static control stimuli in a similar
task found evidence that people used simulation even with
static stimuli (Smith et al., 2017). Therefore, it’s possible
that participants had a high “fixedness” when confronted with
complex trials. Additionally, it has been shown that when ex-
plicitly instructed to apply distinct simulation strategies, par-
ticipants show notable performance differences on mental ro-
tation tasks (Flusberg & Boroditsky, 2011). In the present
study, participants were not instructed to simulate or make a
containment-based inference and were solving the problems
as they naturally would, but future work might look at how
instructions play a role in guiding more efficient strategies.

Alternatively, Smith et al. (2017) suggest that if simulation
and alternative prediction strategies are running in parallel,
detecting scenarios in which participants switch from a de-
fault simulation-based prediction to a more qualitative one
that is quicker but more coarse might require enough time for
simulation to run out. In the present study, average response
times in the slowest high containment, high complexity trials
were still less than one second on average (see Figure 3a).
Perhaps participants, upon finding that they were not able to
make an accurate simulation-based prediction on these trials,
still did not spend long enough attempting an accurate an-
swer to detect the containment relationship or make a predic-
tion based on such a holistic topological feature. Insofar as
the higher containment and complexity trials simply required
longer to visually process the full scene, participants may
have resorted to an even quicker and more general heuris-
tic in order to respond quickly, such as the target that was the
shortest Euclidean distance or seemed most directly along the
ball’s initial path irrespective of obstacles. Alternatively, par-
ticipants may have simply persisted in slower and less effi-
cient simulations on high containment, high complexity trials
rather than pursue alternate strategies (Hamrick et al., 2015).
Future research will need to carefully design stimuli in order
to control for the many ways participants might make predic-
tions and consider other hypotheses that allow for manipula-
tion of the uncertainty of simulations during prediction.
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