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SUPPLEMENT

Micronutrients in HumanMilk: Analytical Methods
Daniela Hampel,1,2 Daphna K Dror,1 and Lindsay H Allen1

1USDepartment of Agriculture, Agricultural Research Service,Western HumanNutrition Research Center, Davis, CA and 2Department of Nutrition, University
of California, Davis, Davis, CA

ABSTRACT

Exclusive breastfeeding is recommended by the WHO for the first 6 mo of life because human milk protects against gastrointestinal infections and
supplies balanced and adequate nutrient contents to the infant. However, reliable data on micronutrient concentrations in human milk are sparse,
especially because some micronutrients are affected by maternal diet. Microbiological and competitive protein-binding assays, nuclear magnetic
resonance or inductively coupled plasma spectroscopy, and chromatographic analyses are among themethods that have been applied to human-
milk micronutrient analysis. However, the validation or evaluation of analytical methods in terms of their suitability for the complex human-milk
matrix has been commonly ignored in reports, even though the human-milk matrix differs vastly from blood, plasma, or urine matrixes. Thus,
information on the validity, accuracy, and sensitivity of the methods is essential for the estimation of infant and maternal intake requirements to
support andmaintain adequatemilkmicronutrient concentrations for healthy infant growth anddevelopment. In this review,we summarize current
knowledge onmethods used for analyzingwater- and fat-soluble vitamins as well as iron, copper, zinc, iodine, and selenium in humanmilk and their
different forms in milk; the tools available for quality control and assurance; and guidance for preanalytical considerations. Finally, we recommend
preferred methodologic approaches for analysis of specific milk micronutrients. Adv Nutr 2018;9:313S–331S.

Keywords: human milk, fat- and water-soluble vitamins, minerals, analytical methods, microbiological assay, competitive protein-binding
immuno-assay (CPBA), inductively coupled plasma spectroscopy (ICP), liquid chromatography–mass spectrometry (LC-MS)

Introduction
The methods used for micronutrient analysis in human milk
are commonly derived from methods developed for other
matrixes, such as plasma or urine. Although neither plasma
nor urine contains mentionable amounts of fat or sugars,
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these macronutrients constitute >10% of human milk by
weight (1, 2), which will affect the physical and chemical be-
havior of the sample and requires adjustments in the sam-
ple preparation protocol. Micronutrients in human milk are
commonly analyzed by using microbiological, colorimetric,
and competitive protein-binding assays (CPBAs); GC and LC
with the use of UV, fluorescence, or MS detection; atomic
absorption spectroscopy (AAS); and inductively coupled
plasma spectroscopy–atomic emission spectroscopy (ICP-
AES) or ICP-MS. Additional techniques applied to human
milk include animal studies and radioisotope dilution assays,
or voltammetry. The latter approaches have been shown to
be inferior to the newer techniqueswith regard to sample vol-
ume, costs, and time. Some reportedmethods are not suitable
for analyzing micronutrients in human milk (3), or different
methods for the same micronutrient analysis are not compa-
rable (4–6). These concerns reiterate the importance of eval-
uating the suitability of methods chosen for analysis. In this
review, we summarize the current knowledge of and evaluate
the methodologic approaches reported for analyzing water-
and fat-soluble vitamins, iron, copper, zinc, iodine, and se-
lenium in human milk. In addition, we discuss the different
forms of the micronutrients present in human milk.
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Current Status of Knowledge
Thiamin (vitamin B-1)
Thiamin in breast milk exists in its free form as well as in 2
of its phosphorylated forms: thiaminmonophosphate (TMP)
and thiamin pyrophosphate. Free thiamin and TMP are the
main forms of vitamin B-1 in human milk (7, 8).

Analyses of thiamin in milk have been mostly con-
ducted via the classic thiochrome reaction and micro-
biological and HPLC methods (9). Bacteria described
for microbiological assays include Lactobacillus fermenti,
Saccharomyces cerevisiae, Ochromonas malhamensis, and
Leptostylus viridescens [American Type Culture Collec-
tion (ATCC) 12706]. Only L. viridescens provides results
comparable to the thiochrome assay, whereas other bacte-
ria are susceptible to matrix constituents (e.g., sugars, reduc-
ing agents, calcium). This type of analysis requires enzymatic
hydrolysis of the phosphate esters due to differential growth
response to thiamin, TMP, and thiamin pyrophosphate (10–
14).

The thiochromemethod has beenwidely used for thiamin
analysis in biological matrixes. Free thiamin as well as its
phosphate esters are derivatizedwith potassium ferrocyanide
under alkaline conditions, yielding thiochrome.HPLCmeth-
ods continue to use this well-known reaction via pre- or post-
column derivatization of the thiamin vitamers, followed by
fluorescence detection (8, 15–22); however, HPLC-UV anal-
ysis has also been reported for human milk (23). Free thi-
amin can also be quantified by ultraperformance LC–tandem
MS (MS/MS) simultaneously with other B-vitamins, after re-
moval of proteins and nonpolar constituents, without the
need of derivatization (24, 25).

Thiamin values used as the basis for Adequate Intake (AI)
estimates for infants aged 0–6 mo were obtained by using
the thiochrome method (26–28). Even though this approach
is less susceptible to matrix interferences than the microbi-
ological assays, the more recent approaches that use chro-
matographic separation before fluorescence detection of the
thiochrome derivatives is preferred due to the added repro-
ducible separation of the analytes from the matrix and rapid
accurate and stable quantitation of total thiamin in breast
milk.

Riboflavin (vitamin B-2)
Riboflavin (7,8-dimethyl-10-ribityl-isoalloxazine) and its
coenzymatic form FAD are the prevalent forms of vita-
min B-2 in human milk. Other flavins present include 10-
hydroxy-ethylflavin and traces of 10-formyl-methylflavin,
7α-hydroxy-riboflavin, 8α-hydroxy-riboflavin, and FMN
(4, 18).

Quantitative analyses of vitamin B-2 in human milk in-
clude microbiological and spectroscopic (UV, fluorescence)
methods (4, 12, 28–30). Lactobacillus rhamnosis (formerly
Lactobacillus casei; ATCC7469) has been the common choice
for microbiological approaches, which include acidic hydrol-
ysis, protein precipitation, and neutralization before incuba-
tion with the growth medium. However, matrix constituents

(e.g., starch, protein degradation products, or FFAs) and dif-
ferent growth responses to the different forms of the vitamin
deem this approach more susceptible to errors (13, 31).

Fluorometric techniques are based on the conversion of
riboflavin to lumiflavin (6,7,9-trimethylisoalloxazine) un-
der alkaline conditions, which possess significantly stronger
fluorescence than does the native riboflavin. Although
additional preparation steps can enhance the specificity, the
actual reaction does not occur quantitatively and varies
tremendously with experimental conditions and instrumen-
tal set-up (13, 32–34).

HPLC separation followed by fluorescence detection has
emerged as a common technique for riboflavin analysis in hu-
man milk (18, 35, 36). However, values obtained need to be
corrected for the internal quenching in FAD caused by the
formation of an intramolecular complex, which might have
been neglected in reports before 1990 (4, 37). Alternatively,
FAD can be converted quantitatively into riboflavin by en-
zymatic treatment before fluorometric analysis (4, 29, 38).
More recently, riboflavin and FAD analysis via ultraperfor-
mance LC-MS/MShas been described for the first time to our
knowledge, enabling the analysis of the prevalent vitamin B-2
vitamers in their native forms (21, 24, 39).

Mikheeva et al. (40) described a rapid riboflavin analysis
in breast milk by voltammetry. This approach takes advan-
tage of the oxidizability of riboflavin at a glassy-carbon indi-
cator electrode. The samples are subjected to acidic hydrol-
ysis and protein precipitation before analysis. The riboflavin
potential, however, varies considerably with pH, which also
affects the rate of the electrode process and its mechanism,
highlighting the intricacies of this method (40).

TheAI value for infants aged 0–6mo is based on riboflavin
concentrations on human milk obtained by UV detec-
tion and fluorometric measurements after HPLC separation
(4, 26). However, the direct analysis of riboflavin without the
need of derivatization is preferred to avoid the intricacies at-
tached to this mandatory additional sample preparation step.

Niacin (vitamin B-3)
Niacin refers to nicotinic acid (pyridine-3-carboxylic acid)
and nicotinamide (pyridine-3-carboxylic acid amide).
Nicotinamide and its coenzymatic forms nicotinamide
mononucleotide (NMN), NAD, NAD(P), and nicotinamide
riboside have been reported to be present in human milk
(18, 41, 42).

Most niacin analyses in humanmilk have been conducted
by using microbiological assays with the use of Lactobacil-
lus arabinosus (12, 43–45). However, growth-stimulating or
growth-depressing interferences might cause errors during
the analysis (13, 46).

Current methodologic approaches for analyzing nicoti-
namide in human milk include HPLC coupled with UV,
diode array detection, and MS/MS (18, 21, 23, 24, 47). Fur-
thermore, 1H-NMR has been used for measuring nicoti-
namide within a human-milk metabolome analysis in
human milk (48), and a novel fluorometric enzyme-coupled
assay has been reported for the analysis of nicotinamide
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riboside, NMN, and NAD (42). Unfortunately, none of these
techniques includes all forms of niacin for analysis.

The AI for niacin for infants aged 0–6 mo (26) is based on
a single study by Ford et al. (12) that used a microbiological
assay with the use of L. arabinosus, which continues to be a
suitable choice for analysis. Alternatively, LC-MS/MS can be
used for nicotinamide and nicotinic acid analysis, which will
additionally provide information on other B-vitamin con-
centrations in the sample (24, 39), whereas the fluoromet-
ric enzyme-coupled assay offers quantitative data on nicoti-
namide riboside, NMN, and NAD (42).

Vitamin B-6
Vitamin B-6 (2-methyl-3-hydroxy-5-hydroxy methyl pyri-
dine derivatives) refers to the biologically active equivalent
and metabolically interconvertible pyridoxine, pyridoxal,
and pyridoxamine and their phosphorylated forms. Pyri-
doxal represents the principal form of vitamin B-6 in human
milk, with possible contributions of pyridoxal-5′-phosphate
(7–64%), pyridoxamine-5′-phosphate, pyridoxine, and pyri-
doxamine (49–51).

Quantitative determination of vitamin B-6 is generally
carried out by microbiological assays or LC-based methods.
Saccharomyces uvarum (ATCC 9080) has been widely used
for human-milk analysis (13, 28, 52–57). However, high salt
amounts can suppress growth of the medium, and different
growth responses for pyridoxine, pyridoxal, and pyridoxam-
ine add to the assay’s complexity. Hydrolyzing the samples
followed by the chromatographic separation of the vitamers
before addition to the yeast basal medium allows the deter-
mination of each vitamer individually (13, 14, 58–62). Other
microorganisms such as Kloeckera brevis and Lactobacillus
casei have also been described (12, 63, 64), but the extensive
sample preparation and complexities of microbiological as-
says have led to the development of chromatographic meth-
ods for vitamin B-6 analysis (9).

HPLC coupled with fluorescence detection has emerged
as a valid method for vitamin B-6 analysis in human milk.
Sample analyses described include treatment with sulfosal-
icylic acid, bisulfate derivatization, photochemical conver-
sion, or conversion into 4-pyridoxolactone (49–51, 65, 66).
Results obtained with the analytical methods were in good
agreement with the microbiological assay. The use of LC-
MS/MS for the analysis of vitamin B-6 bypasses the manda-
tory derivatization for fluorescence detection and allows the
direct analysis of the native form (21, 24, 39).

The vitamin B-6 AI for infants aged 0–6 mo is based on
the mean concentration in milk of 19 well-nourished but un-
supplemented mothers with intakes near the RDA (26, 52).
Vitamin B-6 concentrations were analyzed by using micro-
biological assays. The recent developments of HPLC-based
methods provide amore robust and rapid approach for mod-
ern vitamin B-6 analysis.

Cobalamin (vitamin B-12)
Vitamin B-12 is the collective term for cobalt-containing
corrinoids. Only the biologically active cobalamins
are selectively transported into human milk (67–69).

Methylcobalamin represents the dominant form of vitamin
B-12 in humanmilk followed by 5′-deoxyadenosylcobalamin
and small amounts of hydroxocobalamin and cyanocobal-
amin, all bound to haptocorrin, which potentially interferes
with vitamin B-12 analysis (69–72).

Early approaches for the analysis of vitamin B-12 in hu-
manmilk were carried out bymicrobiological assays with the
use of Euglena gracilis as the test organism (70, 71, 73, 74)
utilizing enzymatic digestion with papain to release the vi-
tamin B-12 from binding to haptocorrin and conversion of
the different forms into cyanocobalamin. Alternatively, Lac-
tobacillus leichmanii (National Collection of Industrial Bac-
teria 8118) has also been used to assay vitamin B-12 micro-
biologically (75), but interferences by deoxyribonucleosides,
such as thymidine and other compounds, can result in an
overestimate of vitamin B-12 concentrations (76, 77).

Radioisotope dilution assay, first described by Lau et al.
(78) for serum vitamin B-12, has also been applied for
human-milk analysis (28, 69, 78–88). This approach is based
on competitive binding of endogenous vitamin B-12 and
added radioactive vitamin B-12 to limited binding sites on
intrinsic factor (78, 89), but no validation has been described
for the use of human milk as matrix.

Competitive protein binding coupled with chemilumi-
nescence detection appears to be the method of choice
for vitamin B-12 analysis in human milk in current years
(36, 90–92). Lildballe et al. (72) proposed the removal
of apo-haptocorrin (apoHC) before vitamin B-12 analy-
sis because the analysis of untreated samples with high
amounts of apoHC resulted in artificially high or low vita-
min B-12 concentrations, depending on the analyzer used;
apoHC < 10 nmol/L appeared not to interfere with the anal-
ysis (72). The most recent report describes a competitive
chemiluminescence enzyme immunoassay without the need
of haptocorrin removal before sample preparation and anal-
ysis and lower detection limits for vitamin B-12 in milk (93),
which was used for vitamin B-12 analysis in the most recent
studies (21, 94–97).

Vitamin B-12 values used to set the AI for infants aged
0–6mowere obtained from themilk of 9 well-nourished, un-
supplemented Brazilian mothers analyzed via radioisotope
dilution assay (26, 85). Given the lack of validation of these
types of assays for humanmilk, the use of competitive chemi-
luminescence enzyme immunoassays as described above is
the preferred method for vitamin B-12 analysis in human
milk.

Folate (vitamin B-9)
Folate is the collective term for the large group of hetero-
cyclic compounds that all possess the biological activity of
folic acid (pteroylglutamic acid). Milk folate is covalently
bound to whey-binding proteins and predominantly present
as pteroylpolyglutamates and as N-5 methyltetrahydrofolate,
with a minor contribution of reduced folacin derivatives (3,
98–101) and traces of folic acid, p-aminobenzoylglutatmate,
and its acetamide derivative p-aminobenzoylglutatmate ac-
etamide (102).
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The commonly used method for folate analysis has been
a microbiological assay with the use of L. casei ATCC 7469,
because this bacterium responds to all forms of folate (103,
104). Other microorganisms used include Streptococcus fae-
calis, Pediococcus cerevisiae, and Lactobacillus casei. These
bacteria possess differential responses to the different folate
vitamers, allowing differential analysis of folate forms in hu-
manmilk (12, 54, 74, 98, 105–118). More recent studies used
α-amylase and protease in addition to the folate conjugase to
aid in the liberation of the vitamin, which results in higher
concentrations.

HPLC with fluorescence detection (FLD) has been used
for folate in human milk (18); however, the method applied
was not adjusted for the form of folate present in milk (3).
Only recently, an LC-FLD method has been described that
allows the analysis of the main forms of folate in milk (119).

Competitive protein-binding radio- and chemilumines-
cence assays have also been used for folate analysis in
milk (36, 81, 84). However, these assays are not validated
for the human-milk matrix and appear to overestimate
free folacin in the presence of polyglutatmate forms of
5-methyltetrahydrofolate (5).

The folate AI for infants aged 0–6 mo has been estimated
from several publications with the use of a microbiological
assay for folate measurement (26, 99, 101, 120). This ap-
proach remains the method of choice for folate analysis in
human milk; however, recent advances in the analytical field
may offer a valid alternative in the future (119).

Pantothenic acid (vitamin B-5)
Pantothenic acid [d(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-
oxobutyl)-β-alanine] consists of pantoic acid bound to β-
alanine. Approximately 85–90% of pantothenic acid in hu-
man milk is available in its free form. Although it is a key
factor in lipid metabolism, this vitamin does not occur in the
lipid fraction in substantial amounts (121).

Microbiological assays, RIA, and HPLC-UV analysis have
been described for pantothenic acid analysis in human milk.
Microbiological assays use microorganisms such as L. casei,
L. arabinosus, and Lactobacillus plantarum; enzymatic treat-
ments appeared not to increase pantothenic acid concentra-
tions (12, 18, 43, 45, 122–124).

RIAs include incubation of the sample with bovine intesti-
nal alkaline phosphatase and pantetheinase. However, com-
plete protein removal was not achieved with commonly used
techniques such as boiling or autoclaving (121, 125).

LC coupled with UV detection has been used for pan-
tothenic acid analysis allowing the quantitation of 0.5 ppm,
even though the vitamin lacks the necessary chromophores
for strong UV absorption (23, 126). Recently, MS/MS detec-
tion has also been described for human-milk analysis, mea-
suring several B-vitamins simultaneously (39). Alternatively,
1H-NMR has been used in a human-milk metabolome study
to quantify pantothenic acid along with nicotinamide and
other metabolites such as sugars, amino acids, and energy
metabolites (48).

The AI for pantothenic acid is based on a study in the
United Kingdom that used a pooled sample from 96 women
from 5 cities (26, 127). Unfortunately, no information about
the methods used for analysis is available. Even though the
majority of analyses have been conducted via microbiolog-
ical assays, chromatographic separation followed by UV or
MS/MS detection may be beneficial with regard to accuracy
and reproducibility, sample volume, time, and costs.

Biotin (vitamin B-7)
Biotin (cis-hexahydro-2-oxo-1H-thieno [3,4-d]imidazole-4-
pentanoic acid) in human milk accumulates to >95% in the
skimmed-milk fraction. Less than 3% is reversibly bound
and <5% is covalently bound to macromolecules (128).
Forms found in early and transitional human milk include
biotin and its metabolites bisnorbiotin (∼50%) and biotin
sulfoxide (∼10%). Although biotin concentrations are fairly
constant throughout lactation, the ratio of biotin to its
metabolites shifts in favor of the actual vitamin (13, 129–
131).

Biotin analyses in milk have been carried out by micro-
biological and sequential solid-phase assays. Microbiological
approaches regularly use L. arabinosus and L. plantarum as
test organisms (12, 18, 43, 123, 124, 132). Growth-stimulating
compounds such as oleic and aspartic acid can interfere with
the determination, resulting in overestimated concentrations
(133).

Sequential solid-phase assays that use 125I-labeled avidin
have been suggested as an alternative technique for biotin in
milk (128–130, 134). 125I-labeled avidin is mixed with vary-
ing amounts of biotin (standard curve) and with several dilu-
tions of the samples. The remaining avidin-binding sites will
be bound to an immobilized biotin-albumin complex; its ra-
dioactivity is inversely related to the biotin concentration in
the sample.

To our knowledge, no validation of a chromatographic
method has been described for biotin analysis in human
milk. UV detection has been used for multivitamin prod-
ucts (133), but due to the lack of chromophores in the biotin
molecule this approach lacks the necessary sensitivity for bi-
otin analysis in milk. However, LC-MS/MS has been men-
tioned to be a feasible approach for free biotin analysis in the
human-milk matrix (24) and later described (39).

The biotin AI for infants aged 0–6 mo is based on val-
ues obtained from a few reports that usedmicrobiological as-
says (26, 135–137). These types of assays are still commonly
used. Future advances as indicated above are directing toward
novel LC-MS/MS approaches for biotin analysis in human
milk.

Choline
Forms of choline (N-trimethylethanolamine) in humanmilk
include mainly free choline and its metabolites phospho-
choline and glycerophosphocholine, with minor contribu-
tions of lipophilic phosphatidylcholine (lecithin) and sphin-
gomyelin. Its concentration doubles 6–7 d after birth due to
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increasing amounts of phosphocholine and glycerophospho-
choline (138, 139).

Choline measurements in milk samples have been deter-
mined by using radioenzymatic assays, 1H-NMR, and chro-
matographic techniques. The radioenzymatic assay is based
on the conversion of choline to phosphorylcholine-32P in
the presence of choline kinase and ATP-γ -32P and was used
mainly in the 1970s (140–144).

1H-NMR has been suggested for choline analysis. Water-
soluble choline, phosphocholine, and glycerophospho-
choline and the lipophilic metabolites were extracted before
separate analysis of both fractions (48, 139, 145, 146). Both
HPLC as well as GC-MS have been described for choline
analysis in humanmilk. TheGC approach uses laborious and
complex sample preparation involving an array of equipment
(18, 138, 147, 148). HPLC with electrochemical detection
(ECD) can be applied after simple hydrolysis and enzymatic
treatment (18, 149, 150). More recently, various LC-MS/MS
methods have been introduced for choline analysis in human
milk. Water- and fat-soluble forms of choline can be ana-
lyzed directly after a simple extraction step without further
isolation or derivatization (147, 148, 151, 152).

The choline AI for infants aged 0–6 mo was based on 2
studies that used RIA and GC-MS analysis (26, 138, 143).
However, given the possible radiation exposure and laborious
sample preparation for the methods described, LC-MS/MS
provides validated results with only minimal sample prepa-
ration without possible radiation exposure.

Vitamin C
Ascorbic acid (AA), as the principal form of vitamin C,
and dehydroascorbic acid (DHAA) represent the biolog-
ically relevant forms of vitamin C in human milk (153,
154). Assays used for vitamin C quantitation in human milk
include titration, colorimetric, and chromatographic tech-
niques. Early approaches for AA measurement in human
milk include AA oxidation to DHAA and titration with 2,6-
dichlorophenolindophenol (155–157). However, other re-
ducing substances present interfere with the accuracy of the
method.

Colorimetric assays are mostly based on a method
published for whole-blood and urine samples (158). Af-
ter oxidizing AA, the DHAA is converted into its 2,4-
dinitrophenylhydrazine derivative, which, under acidic con-
ditions, forms a colored product for analysis (28, 54, 56, 80,
116, 154, 157, 159, 160). O-phenylenediamine fluorometry
has also been described for human-milk analysis (161).

More recent approaches include HPLC with UV detec-
tion, FLD, or ECD (18, 36, 81, 124, 153, 154, 162, 163). The
fluorometric approach is initiated by reducing AA to DHAA,
which is converted into a quinolaxine derivative for anal-
ysis (81). Elaborative sample preparation for UV detection
has also been described (18); however, the most recent ap-
proaches describe the reduction in DHAA by DTT to AA,
which then will be analyzed after adding meta-phosphoric
acid (154, 163).

A comparison of the chromatographic and the colorimet-
ric approach showed that HPLC provided more satisfactory
results, because the latter cannot determine total vitamin C
content and results for AA were almost 40% lower (154).
Moreover, the HPLC method uses less material and reagents
and is simpler and less time consuming; thus, HPLC mea-
surements of vitamin C in humanmilk should be carried out
by using HPLC-UV.

The vitamin C AI for infants aged 0–6 mo is based on
values mainly obtained by colorimetric assays (164). Given
the described intricacies of that approach, HPLC methods
should be used for vitamin C analysis in human milk.

Vitamin A
Forms of vitamin A in human milk include retinol, retinyl
esters, and β-carotene (165, 166). Early approaches for mea-
suring this fat-soluble vitamin in human milk describe col-
orimetric assays. Sample preparation includes protein precip-
itation with or without saponification for the removal of fatty
constituents and extraction of the vitamin with petroleum
ether. Treating the vitamin A–rich extract with antimony
trichloride in chloroform results in a brilliant blue color
(Carr-Price reaction), which is quantifiable via a photoelec-
tric colorimeter (167–169). Alternatively, trifluoroacedic acid
in chloroform can also be used as chromogenic solution for
spectrophotometric analysis (166, 170).

Fluorometry has also been described for vitamin A anal-
ysis in human milk. Following the basic protocol of protein
precipitation, saponification, and extraction, vitamin A con-
centrations are determined by using the fluorescent proper-
ties (31). The majority of vitamin A analyses, however, have
been conducted by using HPLC coupled with UV, fluores-
cence, and MS detection (18, 36, 81, 171–211). Although
protein precipitation has been carried out with ethanol or
methanol, saponification has been described before or after
the extraction procedure with the use of a range of nonpo-
lar solvents such as hexane, petroleum ether, or diethyl ether.
Potassium hydroxide has been commonly used for saponi-
fication; however, incubation time and temperature are not
uniform, and enzymatic (lipase) hydrolysis may be used as
a pretreatment to the saponification step to release retinol
and carotenoids (179). Compounds used as internal stan-
dards include didehydroretinol acetate (189, 192), retinal (o-
ethyl) oxime (207, 208), β-apo-8′ carotenal methyl oxime
(181, 182), α-tocopherol acetate (171, 172), retinyl acetate
(173), and β-apo-8′ carotenal (191). Didehydroretinol ac-
etate can be added before saponification.

Recently, the iCheck FLUORO portable fluorometer (Bio-
analyt GmbH)was introduced for rapid, quantitative analysis
of vitamin A in milk, serum and plasma, or fortified foods.
A comparison with the well-established HPLC-UV method
showed that results obtained by this new technique highly
correlated with the established method, but that values were
greater with the use of HPLC, and the difference increased
with increasing vitamin A concentrations (207).
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Alternatively, LC-MS/MS has been described for vitamin
A analysis following a similar sample preparation that in-
cludes saponification and hexane extraction (212).

The AI for vitamin A for infants aged 0–6 mo is based on
values obtained from breast milk from 46 women by using
colorimetric and HPLC methods (110, 171, 210, 211, 213).
The latter has been the dominant technique for vitamin A
analysis and allows chromatographic separation and rapid
analysis of the different forms of vitamin A as well as sepa-
ration from matrix constituents.

Vitamin D
VitaminD in humanmilk ismostly present as vitaminD2 (er-
gocalciferol) and vitaminD3 (cholecalciferol), with contribu-
tions from their 25-hydroxy metabolites (214–216) and pos-
sibly 24,25-dihydroxyvitamin D and 1,15-dihydroxyvitamin
D. These sterols are secreted into milk while bound to their
plasma- or cytosol-binding proteins, but with time migrate
into the lipid portion (215). A water-soluble form of vitamin
D, D-3β-sulfate, has also been reported (217, 218), but has
been shown to be biologically inactive and therefore has been
discarded as a significant contributor to vitamin D activity in
milk (216, 219).

A modified antimony chloride test has been described for
vitaminD analysis in humanmilk (218); however, HPLC-UV
and CPBA for better sensitivity for the minor vitamin D vita-
mers have been widely used. The samples undergo a stepwise
purification process, including methanol precipitation, alka-
line backwash for removal of interfering lipids, and prepar-
ative HPLC (215, 216, 219–225). Analytical HPLC-UV has
also been applied after solid-phase extraction (18).

An isotope dilution LC-MS/MS method has been de-
scribed for measuring vitamin D and its metabolites in hu-
manmilk. Samples are purified by solid-phase extraction be-
fore analysis (226).

The vitamin D AI for infants aged 0–6 mo is not based on
milk concentrations but on observations that a minimal in-
take of 2.5μg/d most likely prevents rickets (227). This value
was doubled to set the AI to account for the lack of vitamin
D from sunlight exposure. However, the established HPLC
and CPBA or LC-MS/MS methods should be applied when
evaluating human-milk vitamin D status.

Vitamin E
Vitamin E refers to the 8 chemically related α-, β-, γ -, and δ-
tocopherols andα-,β-, γ -, and δ-tocotrienols, which differ in
structure and bioavailability (228, 229). α-Tocopherol is the
only biologically active form of vitamin E; the other vitamers
do not convert into the active form (230).

Early approaches for vitamin E analysis in humanmilk ap-
plied TLC and GC-MS. The lipid fraction is extracted by us-
ing ethanol, ethyl ether, and petroleum ether before saponi-
fication. After a purification step, the tocopherol fraction is
used for TLC or GC-MS (231). Moreover, a colorimetric as-
say with the use of 2,2′-bipyridine-FeCl3 has been described
as being used parallel to TLC or paper chromatography (232,
233).

However, HPLC methods have been mainly used for vi-
tamin E analysis in human milk, applying FLD, ECD, or
UV detection. Sample preparation usually includes protein
precipitation and extraction with the use of hexane. Anal-
yses have been reported with and without saponification of
the sample (163, 171, 172, 200, 202, 203, 206, 228–230, 234–
249). However, saponification will convert α-tocopherol ac-
etate into α-tocopherol; thus, α-tocopherol concentrations
include the amounts of α-tocopherol acetate when the sam-
ple undergoes saponification (250). The use of LC–diode ar-
ray detection–MS/MS has been reported for vitamin E anal-
yses in milk from different animal species as well as human
milk and can be considered a valid alternative for tocopherol
analysis in human milk (212, 251).

The AI for vitamin E for infants aged 0–6 mo (164) is
estimated from 5 studies that used HPLC for analyzing to-
copherol content in human milk (171, 228, 236, 243, 252).
HPLC coupled with fluorescence or UV detection is a well-
studied and suitable technique for quantifying vitamin E in
human milk; LC-MS/MS is a valid alternative.

Vitamin K
Vitamin K in human milk consists mainly of phylloqui-
none (vitamin K-1) and menaquinone-4 (vitamin K-2).
Menaquinone-6 has been found in trace amounts (212,
253, 254).

The biological curative chicken test is one of the first
methods described for vitamin K analysis (255). However,
HPLC has superseded other techniques due to its superior
sensitivity (254). Methods described include FLD, ECD, and
UV detection. Generally, lipase treatment of the lipid extract
is followed by a 2-step purification process that uses column
chromatography and semi-prep HPLC before analysis (253,
254, 256–269). A 2 orders ofmagnitude higher sensitivity can
be achieved when using FLD and ECD compared with UV
detection; however, both require the conversion of the vita-
min K vitamers into their reduced form for detection. This
can be achieved chemically, electrochemically, photochem-
ically, and online post–column solid-phase catalytic reduc-
tion by using zinc, platinum oxide, or platinum. The latter
has been described as the easiest alternative for vitamin K re-
duction (254).

LC-MS/MS has been described for vitamin K analysis.
Samples undergo lipase treatment, protein precipitation, and
hexane extraction. After a silica cartridge clean-up step, the
extract is ready for analysis (212).

The vitamin K AI for infants aged 0–6 mo is based on
reports that used HPLC-FLD, HPLC-ECD, and UV detetc-
tion (213, 256–258, 260, 261). Given that ECD requires rig-
orous exclusion of oxygen, the reduction step used may be
incomplete (254), and the lower sensitivity of UV detection,
HPLC-FLD is the preferred method for vitamin K analy-
sis. Alternatively, LC-MS/MS provides the needed sensitiv-
ity and no reducing agent for vitamin K analysis in human
milk (212).
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Iron
Iron in human milk is found in the lipid as well as in
the low-molecular-weight compound fraction; only small
amounts are bound to lactoferrin (270). Little is known
about the mechanisms that regulate iron concentrations in
humanmilk. It is transported by divalent metal transporter 1
through the basolateral membrane into aveoli and exported
by ferroportin in the apical membrane (271).

Colorimetric techniques, such as the orthophenanthro-
line method, have been used for iron analysis in human milk
as one of the first approaches (272, 273). In the more recent
past, AAS has emerged as the method of choice for iron anal-
ysis. Sample preparation includes lyophilizing and ashing of
the sample before acid (nitric acid, sulfuric acid) digestion; in
addition, microwave digestion with the use of nitric acid and
hydrogen peroxide have been described (270, 272, 274–302).
Inductively coupled argon plasma spectrometry and ICP-MS
have been proposed as a valid alternative for iron analysis in
human milk (303–307). These approaches also require sam-
ple digestion by nitric acid or hydrogen peroxide.

The iron AI for infants aged 0–6 mo is based on 9 reports
that mostly used AAS and inductively coupled argon plasma
spectrometry for analysis (213, 275, 277, 281–284, 288, 289,
306). Both methods are suitable for iron analysis in human
milk.

Copper
Copper is mostly found in the skim-milk fraction of human
milk, but substantial amounts are also present in milk fat
(308). Copper-binding proteins inmilk include casein, serum
albumin, and ceruplasmin (309, 310).

Early techniques for copper analysis in human milk in-
clude colorimetric assays, such as the diethyldithiocarbamate
method (272, 311). A rapid wet digestion with the use of ni-
tric, perchloric, and sulfuric acid is followed by deionization
of interfering iron with citrate or pyrophosphate under alka-
line conditions before analysis (311). However, AAS has been
one of themain analytical techniques used for copper analysis
in humanmilk over the past 30–40 y (272, 274, 275, 277–281,
283, 284, 286, 288–290, 293, 296–298, 302, 308, 312–322).
Other techniques used for copper analyses include ICP-AES
(303–306, 323, 324), ICP-MS (307, 325–329), or neutron ac-
tivation analysis (NNA) (330).

The copper AI for infants aged 0–6 mo was established
by the review of 16 reports (213). Methods used to deter-
mine copper concentrations in those reports include AAS,
ICP-AES, and ICP-MS (275, 277, 279, 280, 284, 288, 289, 305,
306, 312, 315–317, 325, 327); both techniques are valid ap-
proaches for copper analysis in human milk.

Zinc
Like iron and copper, zinc can be found in both the whey and
fat fractions of human milk (286). A substantial amount of
zinc is associated with citrate, a low-molecular-weight bind-
ing ligand (272) as well as with casein and serum albumin as
zinc-binding proteins (309).

Early approaches used colorimetric methods with the use
of dithizone as a reagent (272, 331). However, AAS has
emerged as one of the main techniques for zinc analysis in
humanmilk (272, 274, 275, 277–280, 283–285, 288–290, 293,
295–300, 302, 308, 312–322, 329, 332–343). More recently,
ICP-AES and ICP-MS have also been described for zinc anal-
ysis in milk (303, 304, 306, 323, 324, 326–329, 344).

The zinc AI for infants aged 0–6mo is based on 12 reports
that usedAAS and ICP-AESor ICP-MS.All of the approaches
are valid methods for analyzing zinc in human milk.

Iodine
More than 75% of the iodine content in human milk is
present as ionic iodide (345–347). Iodine is concentrated by
the lactating breast due to increased expression of the main
iodine transporter during lactation. However, maternal in-
take also influences the iodine concentration in milk (348–
351).

The main approach for analyzing iodine in breast milk
has been a colorimetric measurement based on the Sandell-
Kolthoff reaction, in which iodine catalyzes the reduction
in cerium (IV) by arsenic (III) under acidic conditions. The
sample undergoes an ashing process before analysis and can
be measured by using an autoanalyzer (347, 349, 352–367).
ICP-MS has been shown to provide comparable results to the
colorimetric method without analytical bias between the 2
approaches (368–374). However, a recent study showed that
ICP-MS should be themethod of choice for analyzing breast-
milk iodine concentrations due to its superior recovery and
sensitivity when compared with the colorimetric Sandell-
Kolthoff approach, indicating a previously unreported bias
between the 2 methods (6).

Other analytical techniques for iodine analysis include
neutron-activated analysis (301, 375), ion chromatography
coupled withMS (376–378), and the use of an iodide-specific
electrode (346, 379). The 2 latter approaches usually only pro-
vide results for iodide, not the total iodine content of breast
milk.

The iodine AI for infants aged 0–6 mo is based on only
a few reports that used the colorimetric approach (353, 366)
or the iodide-specific electrode, capturing only the ionic io-
dide (346). On the basis of recent findings with regard to ICP-
MS and the colorimetric assay (6), ICP-MS is the preferred
methodologic approach for analyzing total iodine concentra-
tions in human milk.

Selenium
The majority of selenium in human milk is bound to pro-
teins, whereas only aminor faction is associatedwith themilk
fat (380). Several analytical approaches have been used for
selenium analysis: GC coupled with ECD (GC-ECD), a flu-
orometric method, AAS, NNA, and inductively coupled ar-
gon plasma spectrometry. GC-ECD analysis requires sample
digestion and conversion of the various oxidation states of
selenium into Se (IV) before derivatization with the use of
4-nitro-o-phenylenediamine and removal of interferences
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with hydroxylamine sulfate, EDTA, and urea. The Se-
derivative is extracted by toluene before analysis (380–386).

The fluorometric method includes the wet-ashing with
the use of hydrogen chloride and perchloric acid (HClO4)
and derivatization by using 2,3-diaminonaphthalene and
extraction into cyclohexane. Fluorescent interferences are
removed by back-extraction of the selenium complex with
concentrated nitric acid (324, 387–397).

Other methodologic approaches include hydride genera-
tion, flow-injection hydride, and electrothermal AAS (320,
322, 398–405); instrumental NNA (301, 330, 401, 406–408);
ICP-MS and ICP-AES (326, 409, 410); and isotope dilution
MS (411).

The selenium AI for infants aged 0–6 mo is based on 13
reports that used GC-ECD and NNA (164); however, not all
of the reports used provide information about the method-
ologic approach for analysis. Compared with the methods

used in the reports, AAS includes less sample handling and
no radiation steps.

Quality assurance andmethod validation
Although external reference material is readily available
for analysis in plasma or serum samples, there is, to our
knowledge, no certified standard for analyzing micronutri-
ents in human milk. The National Institute of Standards and
Technology recently developed a fortified and nonfortified
human-milk standard reference material (SRM) for organic
contaminants such as polychlorinated biphenyl congeners or
chlorinated pesticides. However, the respective certificates of
analyses include some minerals such as copper, iron, or cal-
cium and could be used for quality assurance of the listed
minerals. Alternatively, National Institute of Standards and
Technology SRM 1849a infant/adult nutritional formula has
been analyzed for evaluation duringmethod development for

TABLE 1 Preferred methods for vitamin and mineral analysis in human milk1

Vitamin Forms reported in humanmilk Methodology References

Thiamin Thiamin, TMP, TPP LC-FLD, LC-MS/MS (8, 22, 24)
Riboflavin Riboflavin, FAD, 10-OH-ethylflavin, and

traces of 10-formyl-methylflavin,
7α-OH-riboflavin, 8α-OH-riboflavin,
and FMN

LC-MS/MS, LC-FLD (4, 24)

Niacin Nicotinamide, NAD, NADP, NR, NMN LC-MS/MS, microbiological assay,
fluorometric enzyme-coupled
assay

(24, 42, 43)

Vitamin B-6 Pyridoxal, PLP, PN, PM LC-MS/MS, LC-FLD (24, 50)
Cobalamin Methylcobalamin

5′-deoxyadenosylcobalamin,
hydroxo-cobalamin,
cyanocobalamin

CPBA–chemiluminescence (72, 93)

Folate Pteroylpolyglutamates, N-5
methyltetrahydrofolate folacin
derivatives, folic acid, and
p-aminobenzoylglutatmate and its
acetamide derivative

Microbiological assay (104, 120)

Pantothenic acid Pantothenic acid LC-MS/MS, microbiological assay (25, 43)
Biotin Biotin, bisnorbiotin, biotin sulfoxide CPBA–radiodetection, LC-MS/MS (25, 134)
Choline Choline, phosphocholine,

glycerophosphocholine,
phosphatidylcholine, sphingomyelin

LC-MS, GC-MS/LC-radiodetection (147, 415)

Vitamin C Ascorbic acid, dehydroascorbic acid LC-DAD (154)
Vitamin A Retinol, retinyl esters LC-DAD, LC-MS/MS (203, 212)

β-Carotene
Vitamin D Vitamins D2 and D3 CPBA/LC-DAD, LC-MS/MS (220, 226)

25(OH)D2, 25(OH)D3
24,25(OH)2D and 1,15(OH)2D

Vitamin E α-, β-, γ -, and δ-tocopherols LC-FLD/DAD, LC-MS/MS (203, 212)
α-, β-, γ -, and δ-tocotrienols

Vitamin K Phylloquinone, menaquinone-4 LC-FLD, LC-MS/MS (212, 254)
Iron Iron ICAPS/ICP-MS (297, 306, 307)

AAS
Copper Copper ICAPS/ICP-MS, AAS (297, 306, 307)
Zinc Zinc ICAP/ICP-MS, AAS (297, 306, 307)
Iodine Iodide, iodine ICP-MS (6)
Selenium Selenium AAS (404)

1 AAS, atomic absorption spectroscopy; CPBA, competitive protein-binding assay; DAD, diode array detector; FLD, fluorescence detection; ICAPS, inductively coupled
argon plasma spectroscopy; ICP-MS, inductively coupled plasma–MS; MS/MS, tandem MS; NMN, nicotinamide mononucleotide; NR, nicotinamide riboside;
PLP, pyridoxal-5′-phosphate; PM, pyridoxamine; PN, pyridoxine; TMP, thiamin monophosphate; TPP, thiamin pyrophosphate; LC; 1,15(OH)2D, 1,15-dihydroxyvitamin
D; 24,25(OH)2D, 24,25-dihydroxyvitamin D; 25(OH)D2, 25-hydroxyvitamin D2; 25(OH)D3, 25-hydroxyvitamin D3.
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vitamin analysis in human milk (24, 25, 412). However, in
addition to the apparent matrix differences, the forms of vi-
tamins present in the infant formula SRM differ considerably
from those in milk (24); thus, its use for method validation
for the human-milk matrix is very limited.

In lieu of a certified human-milk SRM, in-house pooled
breast milk has been used for method validation and qual-
ity assurance (6, 8, 22, 24, 72, 93). Standard addition exper-
iments should be used to validate the unknown concentra-
tions of the micronutrients of interest to ensure accuracy and
precision of the results (413). Without proper validation of
the unknown concentration, the pooled milk samples may
be used to evaluate precision but not accuracy.

Preanalytical considerations
Choosing a suitable protocol for human-milk sampling is as
important as using an appropriate method for analysis. Al-
though many studies have been devoted to milk micronutri-
ent analyses, the variations in milk collection protocols are
numerous. We found that the circadian variance was signifi-
cant for fat- andwater-soluble vitamin concentrations inmilk
fromBangladeshi mothers and that some vitamin concentra-
tions differed on the basis of the collected aliquots within a
feeding, but none of those differences were substantial (414).
Maternal supplementation was reflected in breast-milk ri-
boflavin and pyridoxal concentrations shortly after inges-
tion, showing the importance of the timing of sample collec-
tion when mothers consume supplements (414). Mock et al.
(129) found significant differences in biotin concentrations
between breasts for some study participants.

Some micronutrients such as minerals are generally sta-
ble and tolerate various storage conditions, but the use
of trace element–free supplies is necessary to avoid cross-
contamination. Vitamins, however, contain an array of dif-
ferent chemical and physical properties. Their light, temper-
ature, and pH sensitivities (9) have to be considered when
collecting milk samples. Collection under dim light in am-
ber containers and sample storage at subambient tempera-
tures (−70°C) are suggested to minimize potential analyte
degradation. Nicotinamide, in particular, has been shown to
be sensitive to storage and handling, showing some degrada-
tion within the analytical run and lower precision when sam-
ples were undergoing thaw-freeze cycles (also true for FAD)
compared with other B-vitamins (24).

Thus, depending on the micronutrient of interest, sam-
ple collection and storage conditions should accommodate
the specific needs of the micronutrient of interest to mini-
mize analyte losses and cross-contamination. Maternal sup-
plement consumption affects the milk concentrations of at
least some milk vitamins and needs to be considered when
scheduling the sample collection to ensure a representative
sample collection.

Conclusions
A wide array of methodologic approaches have been de-
scribed for analyzing micronutrients in human milk, includ-
ing microbiological assays, chromatographic techniques, or

ICP. The preferred method for analysis, however, is depen-
dent on the micronutrient of interest and its (active) forms
found inmilk (Table 1). Although somemicronutrients such
as vitamin B-12 or folate are bound to milk proteins, others
such as thiamin or riboflavin are found in their free as well as
in their phosphorylated or coenzymatic forms. Nevertheless,
several micronutrients can be analyzed simultaneously (e.g.,
vitamins A and E and carotenoids; iron, copper, and zinc; or
multiple B-vitamins).

Although microbiological assays are the preferred choice
for analyzing folate, niacin, and possibly pantothenic acid,
chromatographic approaches have been adapted for the ma-
jority of the micronutrients discussed. Mineral analyses have
evolved over time from the colorimetric approaches to more
sophisticated techniques such as AAS or ICP-MS and ICP-
AES, and vitamin B-12 is usually analyzed by using CPBAs.
Nevertheless, a substantial number of methods used for mi-
cronutrient analysis in human milk fail to provide accurate
and reliable data; moreover, conditions for sample collection
and storage are equally important for the accurate determi-
nation of micronutrient concentrations in milk. The lack of
certified human-milk standards can be overcome by validat-
ing an in-house pooled milk sample, preferably by standard
addition experiments. The information available in this re-
view should aid in the understanding and interpretation of
the validity of values reported in the literature and in the se-
lection of suitable methods for micronutrient analysis in hu-
man milk in future studies.
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230. Martysiak-Żurowska D, Szlagatys-Sidorkiewicz A, Zagierski M.
Concentrations of alpha-and gamma-tocopherols in human breast
milk during the first months of lactation and in infant formulas.
Matern Child Nutr 2013;9:473–82.

231. Hiromasa K, Choemon K, Kunio Y, Tomokichi T. Identification of α-,
β-, γ - and δ-tocopherols and their contents in human milk. Biochim
Biophys Acta Lipids Lipid Metab 1975;380:282–90.

232. Herting DC, Drury E-JE. Vitamin E content of milk, milk products,
and simulated milks: relevance to infant nutrition. Am J Clin Nutr
1969;22:147–55.

233. Ali J, Kader H, Hassan K, Arshat H. Changes in human milk vitamin
E and total lipids during the first twelve days of lactation. Am J Clin
Nutr 1986;43:925–30.

234. Moffatt PA, Lammi-Keefe CJ, Ferris AM, Jensen RG. Alpha and
gamma tocopherols in pooled mature human milk after storage. J
Pediatr Gastroenterol Nutr 1987;6:225–7.

235. Moltó-Puigmartí C, Castellote AI, López-Sabater MC. Ultra-
high-pressure liquid chromatographic method for the analysis
of tocopherols in human colostrum and milk. J Chromatogr A
2009;1216:4388–94.

236. Boersma ER, Offringa PJ,Muskiet F, ChaseWM, Simmons IJ. Vitamin
E, lipid fractions, and fatty acid composition of colostrum, transitional
milk, and mature milk: an international comparative study. Am J Clin
Nutr 1991;53:1197–204.

237. Clemente HA, Ramalho HM, Lima MS, Grilo EC, Dimenstein R.
Maternal supplementation with natural or synthetic vitamin E and its

levels in human colostrum. J Pediatr Gastroenterol Nutr 2015;60:533–
7.

238. Delgado FJ, Contador R, Álvarez-Barrientos A, Cava R, Delgado-
Adámez J, Ramírez R. Effect of high pressure thermal processing on
some essential nutrients and immunological components present in
breast milk. Innov Food Sci Emerg Technol 2013;19:50–6.

239. Haque R, Ferdousi S, Islam SN, Sultana R, Ferdousi SS. Antioxidant
vitamin (E&C) contents in colostrum of Bangladeshi women. Delta
Med Coll J. 2014;2:53–7.

240. Henderson RA, Jensen RG, Lammi-Keefe CJ, Ferris AM, Dardick KR.
Effect of fish oil on the fatty acid composition of human milk and
maternal and infant erythrocytes. Lipids 1992;27:863–9.

241. Lacomba R, Cilla A, Alegría A, Barberá R, Silvestre D, Lagarda MJ.
Stability of fatty acids and tocopherols during cold storage of human
milk. Int Dairy J 2012;27:22–6.

242. Lammi-Keefe CJ. Tocopherols in humanmilk: analyticalmethod using
high-performance liquid chromatography. J Pediatr Gastroenterol
Nutr 1986;5:934–7.

243. Lammi-Keefe CJ, Ferris AM, Jensen RG. Changes in human milk
at 0600, 1000, 1400, 1800, and 2200 h. J Pediatr Gastroenterol Nutr
1990;11:83–8.

244. Ortega RM, López-Sobaler AM,Martínez RM, Andrés P, QuintasME.
Influence of smoking on vitamin E status during the third trimester of
pregnancy and on breast-milk tocopherol concentrations in Spanish
women. Am J Clin Nutr 1998;68:662–7.

245. Quiles JL, Ochoa JJ, Ramirez-Tortosa MC, Linde J, Bompadre
S, Battino M, Narbona E, Maldonado J, Mataix J. Coenzyme Q
concentration and total antioxidant capacity of humanmilk at different
stages of lactation in mothers of preterm and full-term infants. Free
Radic Res 2006;40:199–206.

246. Resende FBS, Clemente HA, Bezerra DF, Grilo EC, de Melo LR, Bellot
PE, Dantas RC, Dimenstein R. Alpha-tocopherol concentration in
serum and colostrum of mothers with gestational diabetes mellitus.
Rev Paul Pediatr 2014;32:178–86.

247. Syväoja EL, Piironen V, Varo P, Koivistoinen P, Salminen K.
Tocopherols and tocotrienols in Finnish foods: humanmilk and infant
formulas. Int J Vitam Nutr Res 1985;55:159–66.

248. Romeu-NadalM, Castellote A, López-SabaterM. Effect of cold storage
on vitamins C and E and fatty acids in human milk. Food Chem
2008;106:65–70.

249. Romeu-Nadal M, Morera-Pons S, Castellote A, López-Sabater M.
Determination of γ - and α-tocopherols in human milk by a direct
high-performance liquid chromatographic method with UV–vis
detection and comparison with evaporative light scattering detection.
J Chromatogr A 2006;1114:132–7.

250. Rodrigo N, Alegrıa A, Barbera R, Farre R. High-performance liquid
chromatographic determination of tocopherols in infant formulas. J
Chromatogr A 2002;947:97–102.

251. Gentili A, Caretti F, Bellante S, Ventura S, Canepari S, Curini R.
Comprehensive profiling of carotenoids and fat-soluble vitamins in
milk from different animal species by LC-DAD-MS/MS hyphenation.
J Agric Food Chem 2013;61:1628–39.

252. Lammi-Keefe C, Jensen R, Clark R, Ferris A. Alpha tocopherol,
total lipid and linoleic acid contents of human milk at 2, 6, 12
and 16 weeks. In: J Schaub, editor. Composition and Physiological
Properties of Human Milk. New York: Elsevier Science; 1985. p. 241–
5.

253. Isshiki H, Suzuki Y, Yonekubo A, Hasegawa H, Yamamoto Y.
Determination of phylloquinone and menaquinone in human
milk using high performance liquid chromatography. J Dairy Sci
1988;71:627–32.

254. Indyk HE, Woollard DC. Vitamin K in milk and infant formulas:
determination and distribution of phylloquinone and menaquinone-
4. Analyst 1997;122:465–9.

255. DamH, Glavind J, Larsne EH, Plum P. Investigations into the cause of
the physiological hypoprothrombinemia in new-born children. Acta
Med Scand 1942;112:210–6.

Analyzing micronutrients in human milk 327S



256. von Kries R, Shearer M, McCarthy P, Haug M, Harzer G, Göbel
U. Vitamin K1 content of maternal milk: influence of the stage of
lactation, lipid composition, and vitamin K1 supplements given to the
mother. Pediatr Res 1987;22:513–7.

257. Greer FR, Marshall S, Cherry J, Suttie JW. Vitamin K status of
lactating mothers, human milk, and breast-feeding infants. Pediatrics
1991;88:751–6.

258. Haroon Y, Shearer MJ, Rahim S, Gunn WG, McEnery G, Barkhan
P. The content of phylloquinone (vitamin K1) in human milk, cows’
milk and infant formula foods determined by high-performance liquid
chromatography. J Nutr 1982;112:1105–17.

259. Haroon Y, Schubert CA, Hauschka PV. Liquid chromatographic dual
electrode detection system for vitamin K compounds. J Chromatogr
Sci 1984;22:89–93.

260. Canfield LM, Hopkinson JM, Lima AF, Silva B, Garza C. Vitamin K in
colostrum andmature humanmilk over the lactation period—a cross-
sectional study. Am J Clin Nutr 1991;53:730–5.

261. Canfield LM,Hopkinson JM, LimaAF,MartinGS, SugimotoK, Burr J,
Clark L, McGee DL. Quantitation of vitamin K in human milk. Lipids
1990;25:406–11.

262. Fournier B, Sann L, Guillaumont M, Leclercq M. Variations of
phylloquinone concentration in human milk at various stages of
lactation and in cow’s milk at various seasons. Am J Clin Nutr
1987;45:551–8.

263. Abe K, Hiroshima O, Ishibashi K, Ohmae M, Kawabe K, Katsui G.
Fluorometric determination of phylloquinone and menaquinone-4 in
biological materials using high performance liquid chromatography. J
Pharm Soc Japan. 1979;99:192–200.

264. Lambert WE, Vanneste L, De Leenheer AP. Enzymatic sample
hydrolysis and HPLC in a study of phylloquinone concentration in
human milk. Clin Chem 1992;38:1743–8.

265. Thijssen HH, Drittij MJ, Vermeer C, Schoffelen E. Menaquinone-
4 in breast milk is derived from dietary phylloquinone. Br J Nutr
2002;87:219–26.

266. Shino M. Determination of endogenous vitamin K (phylloquinone
and menaquinone-n) in plasma by high-performance liquid
chromatography using platinum oxide catalyst reduction and
fluorescence detection. Analyst 1988;113:393–7.

267. Bolisetty S, Gupta J, Graham G, Salonikas C, Naidoo D. Vitamin K
in preterm breastmilk with maternal supplementation. Acta Paediatr
1998;87:960–2.

268. Pietschnig B, Haschke F, Vanura H, Shearer M, Veitl V, Kellner S,
Schuster E. Vitamin K in breast milk: no influence of maternal dietary
intake. Eur J Clin Nutr 1993;47:209–15.

269. Kojima T, Asoh M, Yamawaki N, Kanno T, Hasegawa H, Yonekubo
A. Vitamin K concentrations in the maternal milk of Japanese women.
Acta Paediatr 2004;93:457–63.

270. FranssonGB, Lönnerdal B. Iron in humanmilk. J Pediatr 1980;96:380–
4.

271. Montalbetti N, Dalghi MG, Albrecht C, Hediger MA. Nutrient
transport in the mammary gland: calcium, trace minerals and
water soluble vitamins. J Mammary Gland Biol Neoplasia 2014;19:
73–90.

272. Lönnerdal B, Keen CL, Hurley LS. Iron, copper, zinc, and manganese
in milk. Annu Rev Nutr 1981;1:149–74.

273. Sandell E. Colorimetric Estimation of Traces of Metals. New York:
Inter-science; 1944.

274. Murthy GK, Rhea US. Cadmium, copper, iron, lead, manganese, and
zinc in evaporated milk, infant products, and human milk. J Dairy Sci
1971;54:1001–5.

275. Picciano MF, Guthrie HA. Copper, iron, and zinc contents of mature
human milk. Am J Clin Nutr 1976;29:242–54.

276. Siimes MA, Vuori E, Kuitunen P. Breast milk iron—a declining
concentration during the course of lactation. Acta Paediatr Scand
1979;68:29–31.

277. Vaughan LA,Weber CW, Kemberling SR. Longitudinal changes in the
mineral content of human milk. Am J Clin Nutr 1979;32:2301–6.

278. Fransson GB, Lonnerdal B. Distribution of trace elements and
minerals in human and cow’s milk. Pediatr Res 1983;17:912–5.

279. Fransson GB, Gebre-Medhin M, Hambraeus L. The human milk
contents of iron, copper, zinc, calcium andmagnesium in a population
with a habitually high intake of iron. Acta Paediatr Scand 1984;73:471–
6.

280. Vuori E, Mäkinen S, Kara R, Kuitunen P. The effects of the dietary
intakes of copper, iron, manganese, and zinc on the trace element
content of human milk. Am J Clin Nutr 1980;33:227–31.

281. Garza C, Johnson CA, Harrist R, Nichols BL. Effects of methods of
collection and storage on nutrients in human milk. Early Hum Dev
1982;6:295–303.

282. Lemons JA, Moye L, Hall D, Simmons M. Differences in the
composition of preterm and term human milk during early lactation.
Pediatr Res 1982;16:113–7.

283. Mendelson RA, Anderson GH, Bryan MH. Zinc, copper and iron
content of milk from mothers of preterm and full-term infants. Early
Hum Dev 1982;6:145–51.

284. Dewey KG, Lonnerdal B. Milk and nutrient intake of breast-fed
infants from 1 to 6 months: relation to growth and fatness. J Pediatr
Gastroenterol Nutr 1983;2:497–506.
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