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Abstract

The concept of fractional derivatives is used in the mathematical formulation of stress-
strain relationship for viscoelastic materials. Several simple fractional derivative models are
introduced. In particular, the fractional oscillator which consists of a mass and a fractional
Kelvin element is suggested as a more accurate model for the elastomeric bearings used in
base isolation systems. Solution procedures for obtaining the dynamic response of base-
isolated structure idealized as a single-degree-of-freedom system are presented. Numerical
step-by-step algorithms are developed to the analysis of linear systems in time domain, and
can be extended to treat the nonlinear systems as well. Alternative approaches, namely the
Laplace transformation and Fourier transformation methods, are also employed in the
analysis of linear systems for comparison purposes. Numerical examples show that the solu-

tions obtained by the step-by-step scheme are in good agreement with the Laplace and Fourier
solutions.

The fractional derivative model is used to fit the results of an experimental test program
in which a base-isolated bridge was subjected to simulated earthquake loading on a large shak-
ing table. In fitting the amplification factor curve obtained from the tests of the bridge deck
when subjected to harmonic excitations, the linear fractional derivative model is found to be
better than the conventional models. A nonlinear fractional derivative model is proposed to
account for the strain effect of rubber in correlation with the earthquake simulated tests. This
model is found to give good agreement with the experimental results. The solution procedure

is then extended to the dynamic analysis of a base-isolated multi-degree-of-freedom system.
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CHAPTER 1
INTRODUCTION

1.1 Brief Historical Review of Fractional Calculus

The generalization of derivatives and integrals to arbitrary order, now contained in the
theory of Fractional Calculus, is not a new concept. Its existence was first questioned as early
as in 1695 by Leibniz. Some analytical works on this subject were carried out by Abel, Liou-
ville and Riemann in the first half of the nineteenth century.! The first significant application
of fractional calculus was due to Heaviside who introduced fractional differentiation in his
investigation of the transmission line theory.? This concept was then extended by Gemant
who observed that the stiffness and damping properties of viscoelastic materials appeared to
be related to fractional powers of frequency, and thus suggested the use of fractional time
derivatives in the stress-strain relation for certain types of materials.4 Other applications out-
side pure mathematics now include those to rheology, potential theory, electrochemistry,
diffusion and general transport theory.® It appears that many problems in physical science can
be expressed and solved succinctly by recourse to fractional calculus. However, its applica-
tions are still considerably few, mainly because of its unfamiliarity and the lack of recent

development in the theory.

1.2 Applications of Fractional Calculus to Viscoelasticity

As mentioned earlier, Gemant first suggested the use of fractional derivatives in the
viscoelastic model. Later, Scott-Blair used this approach to model the observations made by
Nutting that the stress relaxation phenomenon could be described by fractional powers of
time.® In late 60’s and 70’s, Caputo and Minardi found good agreements with the experimen-
tal results in frequency domain, when applying this concept to model the viscoelastic proper-
ties of geological strata, some metals and glasses.”>8:9 In about the same period, other related
works include those contributed by Slorimsky,!? Smit and de Vries.!! Besides presenting the

fractional calculus formulation of viscoelastic stress-strain law, both of these papers give some



physical insight into the fractional derivative models.

More recently, Bagley and Torvik have shown that the generalized (fractional) derivative
constitutive equations are effective in modeling several viscoelastic materials having distinctly
different mechanical properties.!2: 13,14 This is attained with fewer parameters than the con-
ventional viscoelastic models which contain time derivatives of integral orders only. Stiassnie
also obtains a similar conclusion by considering a two-stage standard test to a polymeric
material.!> Rogers shows that the use of polynomial operator of fractional degree describes
the complex shear modulus accurately and efficiently.!6 In particular, he develops a general-
ized fractional Maxwell model that always produces causal response and also offers a feasible
explanation between fractional calculus and molecular dynamics. The model parameters are
determined by means of Bode diagrams. Very recently, Koeller!” has shown that Rabotnov’s
theory of hereditary solid mechanics!8 is equivalent to requiring that the stress in the dashpot
is proportional to the fractional derivative of the corresponding strain. He then generalizes

this theory and obtains creep and relaxation functions for various fractional calculus models.

1.3 Physical Justification of Fractional Derivative Models (FDM)

So far most of the applications of fractional calculus in science and engineering are in
solving diffusion problems, including heat in solids, vorticity in fluids, chemical species in
homogeneous media, and electricity in resistive- capacitative lines.> In these somewhat ideal-
ized problems, the fractional order of derivative is usually 1/2 and, in some cases, 1/4 . In
the theory of viscoelasticity, the fractional calculus approach has originally evolved as an
empirical method of describing the mechanical properties of viscoelastic materials. Such
approach is justified by the fact that it is effective in fitting the storage modulus and the loss
factor curves by one equation with only a few parameters. Otherwise, these two curves are
normally fitted by two independent empirical equations. Conceptually, the fraction calculus
approach is a more reasonable one since the storage and loss moduli are actually interre-

lated.!?



Among other researhers!® 1! in the attempts to trace the physical origin of the frac-
tional derivative models, Bagley and Torvik show that the fractional derivative does arise

naturally in at least the following cases:

i) In a half-space of Newtonian viscous fluid undergoing the motion induced by the
sinusoidal motion of a plate on the surface, the shear stress at any point is proportional

to the time semi-derivative, i.e. derivative of order 1/2, of the fluid velocity.20

(i)  For polymer solutions and polymer solids with no crosslinking and under certain res-
trictions, the shear stress can be expressed in terms of the time semi-derivative of the

shear strain.?!

In the second case, the semi-derivative arises as a result of the retardation spectrum
being proportional to the half-power of retardation time. Similarly, a related molecular
theory taking into account the intermolecular hydrodynamic forces is developed by Zimm?2?
and, if put in the fractional derivative form, the fractional order is found to be 2/3 . Cer-
tainly for real materials with crosslinking and more complicated microscopic structure, one
would not expect the fractional order to be exactly 1/2 or 2/3 . Nevertheless, these observa-
tions provide a link between microscopic theories of ideal viscoelastic media and macroscopic
behaviors of real materials. More importantly, the fractional derivative model in viscoelasti-

city theory is not totally empirical.

1.4 Characteristics of Rubber and its Engineering Applications

A rubber (or elastomer) is a polymeric material (natural of synthetic), with long flexible
molecular chains having the ability to deform elastically when vulcanized. Vulcanization is a
process by which the rubber molecules are linked with adjacent molecules at intervals along
their lengths, usually by sulphur, to form a stable crosslinked elastic material.23 Rubber is a
very versatile and adaptable material and has been used in engineering for over 100 years. Its
physical properties such as strength, modulus, fatigue resistance and heat resistance can be

varied at will over a wide range by adding different iypes and levels of vulcanizing agents,



fillers and protective agents.2* Rubber has the following advantages over many other engineer-
ing materials: (i) High compressive strength; (ii) Good energy absorption; (iii) Ability to
undergo large deformations and recover (160,000 times more elastic than steel in shear ); (iv)
Good electrical insulation properties; (v) Resistance to fatigue, abrasion and corrosion; and
(vi) Can be moulded.?’ As an engineering material, rubber has a wide range of applications,
for examples, to bridge bearings, dockside fenders, suspension systems, acoustic insulation,
vibration isolation and flexible couplings. Particularly because of its first three characteris-

tics, rubber in the form of multilayer elastomeric bearings has made the century-old concept

of base isolation a reality.

1.5 Base Isolation Systems

The conventional earthquake resistant designs rely on strength and ductility of the struc-
tural components to resist the earthquake induced forces and to dissipate the seismic energy,
thereby preventing the collapse of structures in case of earthquake. In contrast, base isolation
approach aims to reduce the damaging horizontal seismic force transmitted to the structures.
In principle, this is achieved by building the structure on a system of foundation bearings that
serves to decouple the structure from the horizontal ground motion. During earthquakes, the
superstructure virtually floats as a rigid body and is thus isolated from the horizontal ground
motion to some extent. As such, not only is the primary structure protected from earthquake

destruction, damages to its contents and occupants are greatly reduced as well.

Base isolation concept has long been discussed, but the main problem has always been
that of controlling the very large relative displacement that can occur. With the advance in
rubber technology, special multilayer elastomeric bearings can be designed to sustain these
amplitude substantially. These bearings have been developed following the extensive and
confident use of rubbers in bridge bearings?% and acoustic isolation bearings for buildings.2’
Many years of experience with bridge bearings show that rubber, with the appropriate protec-
tive agents, is reliable and resistant to environmental damage, including oil and fire.28 Recog-

nition of the superior engineering properties of rubber has led to the use of elastomeric




bearings in several base-isolated buildings that have been built or are still under construction.
A good review of the development of base isolation, experimentation on this concept and the

implementation to actual structures is presented by Kelly.2%

1.6 Motivation for Use of FDM in Base Isolation Systems

With a suitably designed base isolation system, the superstructure of the building moves
almost as a rigid body during an earthquake. Large relative movement and large energy dissi-
pation take place only across rubber bearings. It is therefore essential to construct a good con-
stitutive model for rubber bearing in order to predict the seismic response accurately. In
most of the dynamic analyses for rubber base isolation systems, linear viscous damping is
assumed. This means that the loss factor is linearly proportional to the frequency, which is
not true for rubber and many other engineering materials. Typical storage modulus and loss
factor curves for vulcanized and unvulcanized natural rubbers30 are shown in Figs. 1.1 and
1.2. It is clear that linear viscous model (i.e. a mass connected to a Kelvin model) is not a
good idealization of the actual behavior of rubbers. It tends to overdamp the high-frequency
response. To this end, one might proceed to use generalized Kelvin (or Maxwell) model as in
the standard viscoelasticity approach, involving derivatives of integral orders only in the con-
stitutive equation. However, as seen in many previously mentioned papers, more terms are
usually required than it would be in the fractional calculus approach. As a result, one obtains
a high order constitutive equation which is not convenient for computation, especially in

dynamic problems.

Another commonly used model is the hysteretic damping model (or sometimes known as
the rate-independent damping model), in which the stiffness and loss factor are assumed to be
frequency independent. This is certainly not true for a wide range of frequency. A drawback
is that this mode! is physically unrealizable because it implies non-causal response, i.e.
response exists prior to the application of the excitation.3! This may vitiate the usefulness of
this model in transient problems. Another disadvantage is that this model is convenient only

in Fourier (frequency) approach. In real time analysis, one might define the damping force in



phase with the velocity but proportional in magnitude to the displacement.32 However, it is
rather cumbersome to use this model as a jump in damping force arises whenever there is a
change in the direction of motion. The alternative ad-hoc representation of damping force in
time domain is a stiffness term divided by excitation frequency. This approach is clearly not
appropriate for transient problems. The fractional derivative model, if properly constructed,
has no such problems.

The above advantages of the fractional derivative model over conventional approaches
motivate the study of its possible application to construct a more realistic constitutive model
for rubber bearings so that the seismic response of base-isolated structures can be more accu-

rately predicted .




CHAPTER 2
LINEAR FRACTIONAL DERIVATIVE MODEL

2.1 Definitions and Properties of Fractional Derivatives

Derivatives and integrals are sometimes called differintegrals in one word for brevity in
fractional calculus. Fractional differintegration is an operator that generalizes the
differentiation or integration to non-integral order. There are several definitions which are
equivalent to one another. One commonly used definition due to Riemann and Liouville is

the following:

_ 47 /@)
aqu [f(t)]= [d(t—a)]"
1 d" . f) .
Tni-q) a i(z.-f)‘?"”‘ dr], n>q=0,n integer 2.1a)

1 [
I’(*q)l(t-r)q” dr . 4<0 (2.1b)

In the theory of viscoelasticity , we are concerned with the influence of the entire response
history on the current response. The lower limit (a) should thus be —~oco . However, if we
assume f(t) = 0,t <0, then _D{ is identical to (D/. Hence a is usually taken as 0 and the
short hand notation for such derivative is written as D?[f ()] , or sometimes simply D7/ if
the independent variable is understood. Furthermore g is taken to be non-negative from here

onwards, as is normally done in the applications to viscoelasticity.

An algebraic definition for fractional derivatives as a limit of a (backward) difference

quotient is33

AR (1)

DALF ()= Jim =2 2.2)
where
sfw =3 ey 9] ra-im 2.3)
j=0
gl _ _T(g+])
HE Tg-j+1)J! (24)



Some important properties :
In the following , we assume that the differintegral of the functions can be determined (

i.e. the functions are differintegrable’ ) , and n is an integer.

(i) Linearity :

Dfc\f1(t) + c2f At)] = e\ DILf ()] + c2DLf (1)), (2.5)

where ¢, , ¢, are constants .

(ii) Laplace transformation? :

n-1
L{DUF@]) = sL{f())- X s* DIk (0)], n-l<g<n (2.6)
k=0
where
L{f) = ‘[ exp(-st) f(t) dt @2.7)

For O<g<1, Eq. (2.7) reduces to
LD ()]} = sTL{f (1)} (2.8)
Because of this relatively simple form , the range 0<g <1 is preferred.

(iii) Fourier transformation :

Under the usual condition that the Fourier transform of f(¢) defined as below exists
F(f() = [ f) exp(-iwt)dt (2.9)

and the additional condition that f(¢)=0, t<0, we have

FDIf O] = (w) F{f(t)}, ¢>0 (2.10)
in which
. e ' |
i? = cos 5 +ising (2.11)

For proof of Eq. (2.10) , see Appendix A .

(iv) Composition rule’ :



In general ,
DIDCf =Dpi*Cf _ pi-Q(f-D-2DQ [] (2.12)
Certainly , it would be nice to have
DiDYf =DiCf (2.13)
This is in fact true for the following cases:
(a) g is a positive integer .
(b) Q is a positive integer , n ,and f(0)=1(0)= - =f""Y0)=0.

(¢) S can be expressed as follows :
fi) = zpiaj ' ,p>-1 ,ap#0 ,D2f%0 (2.14)
j=
A particular case of (c) is when p=0,Q<1,
f() = ijaj v (2.15)
j=

This says that Eq. (2.13) holds as long as f(z) can be expressed as a polynomial in ¢

and O<1 .

2.2 General Fractional Derivative Model

The conventional viscoelastic models, such as generalized Maxwell or Kelvin models,

can be represented in general by the following stress-strain (r-v) relationship34 :

J
a; D’ 4(1) (2.16)
j=0

K
Zbk Dk 1'(1) =
k=0

The general fractional derivative model is an extension of the above model, having the follow-

ing constitutive equation:

K J
S b D™ 1(1) = a; DY v(1) (2.17)
k=0 j=0

where g; and r, are the fractional orders of time derivatives, usually in the range between 0
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and 1 for reasons that would be clear later.

In the frequency domain, Eq. (2.17) yields
K J
[ (i w)* ] T(w) = [ D a,(iw)?] ¥(w) (2.18)
k=0 j=0

where 7(w) and ¥(w) are the Fourier transforms of r(¢) and y(¢) , respectively .
The complex shear modulus is then given by
J
2 aj(i w)q’
Gw) = L—r (2.19)
E bi(iw)*
k=0

This can be decomposed into the real and imaginary parts, i.e.
Gw) = G(w) + i Gylw) (2.20)
where G(v) and G,(w) are known as the storage (elastic) modulus and the loss modulus,

respectively, and their ratio

G (w)

G @) (2.21)

tand =

is called the loss factor (or loss tangent).
Note that G,(w) must not be negative. Otherwise, physically it means that the energy is

created instead of dissipated during the loéding and unloading process.

2.3 Spring-pot Element

The simplest form of Eq. (2.17) is
(1) = Gon? D[y(1)] , Osg=1 (2.22)
where G and 5 have the dimensions of shear modulus and time, respectively.

For g=0 and ¢=1 , this equation becomes the respective stress-strain equation for a
purely elastic material obeying Hooke’s law of elasticity and a purely viscous material obeying
Newton’s law of viscosity. Thus, it is reasonable and natural to propose this constitutive

relation for viscoelastic material which is known to behave in between. Koeller shows that
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this model does allow a continuous transition of mechanical properties from the solid state to
the fluid state when g is varied from zero to one.!” Smit and de Vries,!! as a matter of fact,
make a remark that ¢ indicates the state of material on a scale ranging from 0 for the purely
elastic case to 1 for the purely viscous case. They refer this element as the ’intermediate
mode!’ while Koeller calls it the ’spring-pot’ because the element is intermediate between a

spring and a dash-pot. Figuratively, it is represented by a diamond as shown in Fig. 2.1 .

The storage modulus and the loss factor are, respectively,

G (@) = Gy (nw)qcosl’zi (2.23)

tané = tan"—z‘f- (2.24)

Note that nw is dimensionless and thus called the normalized frequency. This simple model
is attractive for some applications where the loss factor is frequency independent. Caputo3’
incorporates this concept in the wave equation for a dissipative medium . Stiassnie!3 indeed
uses just the spring-pot element to obtain reasonably good agreement with the experimental
results for a polymeric compound subjected to a standard creep-relaxation test. This element,
however, gives G (w) = 0 and it therefore cannot characterize materials which do not relax to
zero stress. This problem can be resolved by adding a spring in the model, as illustrated in the

following section.

2.4 Fractional Kelvin (FKV) Model

If the dashpot in the conventional Kelvin model is replaced by a spring-pot element, one

obtains the so called ’fractional Kelvin model’. For this model, the stress-strain relation is

)= Go(1+an’Di)+(t) , a>0 (2.25)
from which
Giw)=Go[1+ a(nw)qcoslz‘l] (2.26)
a(nw)"sin-%g-
tans = (2.27)
g

1 +a(pw)? cos—i-
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Note that, for @ > 0 , the range 0<g <1 should be imposed in order to avoid negative
storage and loss moduli over the entire (positive) frequency range. When g=1 , this model
recovers to the Kelvin model for which G (w) is constant and tan s is linearly proportional to

w .

Figures 2.2 and 2.3 present the curves of storage modulus and loss factor for different
values of ¢ over four decades of normalized frequency. When these figures are compared
with Figs. 1.1 and 1.2 , this model seems promising for describing the properties of natural
rubber in the rubbery region, i.e. in the frequency range before the storage modulus and the

loss factor increase sharply.

2.5 Numerical Example

To compare the effectiveness of the fractional derivative models and the conventional
viscoelastic models, a numerical example of fitting the storage modulus and loss factor curves
is presented here. The experimental data for a lightly vulcanized Hevea (natural) rubber are
taken from p.458 of Reference 19. The frequency range considered here is 10°2 -~ 10? rad/s ,
which covers the dominant frequency range for most seismic problems. The following models

are used to fit these data by the least square method:

Conventional : (a) Hysteretic damping model
(b) Kelvin model

(c) Standard linear solid

Fractional : (d) Spring-pot element

(e) Fractional Kelvin model

The loss factor curve (Fig. 2.4) is first used to determine all the model parameters except the
stiffness constant (Gy) , which is then found by fitting the storage modulus curve (Fig. 2.5). It
can be seen clearly that the fractional derivative models fit the experimental data much better
than the conventional models do. Among all these models, FKV model is the best for

describing the viscoelastic properties in the rubbery range that is the usual operating region



13

for base isolation problems.

2.6 Fractional Standard Linear Solid (FSLS) Model
The conventional standard linear solid has the the following constitutive relationship:
(1) + b(t) = Go [¥(1) + ¥(1)] (2.28)
1ts counterpart in the fractional derivative theory is given by
(1 + 6D 7(t) = Go (1 + aD9%) ~(t) (2.29)

In the frequency domain , the complex shear modulus is

B l+a(iw)?
G(w) = Go-———-—————l Th(io) (2.30)

It can be shown easily that the storage and loss moduli are non-negative if 0<g <1 ,a>b .
With just an additional parameter over the FKV model, this model can fit the experimental
data fairly well over an enormous range of frequency , as shown in Figs. 2.6 and 2.7. How-

ever, in the frequency range of interest in seismic problems, FKV model is preferred.



CHAPTER 3
RESPONSE OF SDOF FRACTIONAL OSCILLATOR

3.1 Single-degree-of-freedom ’Fractional Oscillator’

Consider a base deck mounted on an elastomeric base isolation system with no super-
structure. The elastomeric base isolation system is usually idealized as a single-degree-of-
freedom (SDOF) oscillator, i.e. a lumped mass connected to a Kelvin model. The latter is
here replaced by a fractional Kelvin model, as shown in Fig. 3.1, and the system might be
called a SDOF °fractional oscillator’. The system is linear if the parameters ( m,k.,c.,q ) are

constants.

The equation of motion of the base deck due to ground motion is

my(t) + cDIWv(t) + kv(t) = f(1) 3.1
where
m = mass of the deck,
¢ = damping constant of rubber bearings,
k = static stiffness of rubber bearings in horizontal shear direction,
v(t) = relative displacement of the deck with respect to the ground,
f(t) = forcing function = —miig () ; iig(t) is the ground acceleration.

The fact that D9 (=,Df) is used in Eq. (3.1) requires the following assumption:
vte) =0, t <0 3.2)

Otherwise, _,Df should be used instead. Equation (3.1) can be solved by the following

methods:
(1) Laplace transformation method.

(2) Fourier transformation method.

14
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(3) Step-by-step integration scheme in time domain.

The first two methods are applicable only for linear systems.

3.2 Laplace Transformation Method
Let f(s) and ¥(s) denote the Laplace transforms of f(7) and v(¢) , respectively. Taking

the Laplace transform of Eq. (3.1) and using Eq. (2.6) , we obtain

JS(s) (3.3)

msi+cs? +k

v(s) =

The response is evaluated by the following complex inversion integral (numerically in gen-

eral):
a+ioo

v(1) = 5—17; f V(s)exp(st)ds for some a (3.4)

a-i
3.3 Fourier Transformation Method

Let F(w) and V(w) denote the Fourier transforms of f(¢) and v(r) , respectively. Taking

the Fourier transform of Eq. (3.1) and using Eq. (2.10) , we obtain

_ Flw)
Viw) = -mw +c(iw)? + k (3.5)

In this approach, assumption (3.2) is not necessary so long as (Df is replaced by _,Df in Eq.

(3.1) . The response is evaluated by the inverse Fourier transformation as follows:

V(1) = ’5.17 fV(w)exp(iwt)dw (3.6)

For numerical computation, the discrete Fourier transform would be used instead of the con-
tinuous Fourier transform. An efficient numerical algorithm known as the Fast Fourier

Transform (FFT) algorithm can be used for this purpose.

3.4 Numerical Scheme in Time Domain

To facilitate the incorporation of nonlinearity, such as reduced stiffness due to the
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amplitude effect, in later works, Eq. (3.1) is preferably solved in time domain, rather than
Fourier or Laplace domains. A numerical step-by-step solution technique has to be developed
to compute the response of the base isolated structure subjected to an arbitrary ground

motion.

The acceleration can be approximated by a central difference as follows:
§(1) = 712— [v(t+h) = 2v(2) + v(t~h) ] + O(hD) (3.7)

where h is the time step size used in the numerical scheme. Only the truncation error is con-
sidered in the error analysis. Let v, be the numerical solution of v(t=nh) at the n' step.

Then the numerical representation of Eq. (3.7) is

. 1
Vp = 71'5' [ Vst = 2V, + Vo1 ] (3.8)

As for Dy(t),0 <g <1, we obtain from Eq. (2.1a)

1 d v
DY) = ey d {(z-.f)q dr (3.9

An equivalent form of Eq. (3.9) is’

1 v(0) . [ v(r)
DIv(t) = I‘(l—q)[ r +£(z—7)4 dr] (3.10)

Change of variables in the above integral gives

!

Dv() = I‘(ll—q) [ Vt(f) +£‘}(Ir;f) dr ] G.11)

Note that the first term and thus the singularity in either Eq. (3.10) or Eq. (3.11) disappear if
the system is initially at rest, i.e. v(0) = 0 . Moreover, the singularity would never occur in
the numerical step-by-step scheme since ¢=0 is used as the initial time to determine the
responses that follow, rather than a time at which the solution is to be determined. Thus, it is

fine to include this term in the numerical scheme.
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3.4.1 Linear L1-Algorithm

The integral in Eq. (3.11) at t = nh can be written as

n-1(+Dh

I(t=nhk) = ‘[V(’ Dogr= 3 j ”(‘ 2een) o, (3.12)
j=0

T

If v(¢) is assumed to be piecewise linear in each subinterval [jh,(j+1)#], we obtain the LI-
algorithm.> It would be called the linear L1-algorithm here to be distinguished from the qua-
dratic L1-algorithm proposed later. In this algorithm, the velocity term in the subinterval is

approximated by

v(z—f)z-vl:-f—:}-l-vl:-f;‘-, jh<T<(+1)h (3.13)

which is independent of r in the subinterval.

Integration of Eq. (3.12) in each subinterval leads to

I(t=nh) = (- q)h 2 j = Va0 [G+D9 = i) (3.14)

Hence the linear L1-algorithm for Eq. (3.11) is

A Yo, 5 - g _ j1-
Dfvn = I'(1-q) {tq (1- q)h 2 Onoj = Ynejet) [G+D177 = j179]) (3.15)
or
Dy, = {(1 (I)Vo + ’E Vnoi = Voo, l) [(j+1)l—q - jl-q]} (3 16)
n ha F(2 ~q) nd “ n-j n-j- .

Equation (3.16) can be written in the quadrature form as follows:

n
Dy, = —,;L ijv, , 0<g<I (3.17)
where
1 - . -
o= gy (-1 -0 4 (1-g)n 7]
I
W, =
Ir'(2-q)
Mooy = T (G410 = 2170 4 =10 ], 1<) < -l

r2-q)
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It is shown in Appendix B that the truncation error introduced in the approximation of

D%v(t) by Eq. (3.17) is at most of order h'~7 | i.e.
l n
Div(t) = —h—; ,§)Wj"j + Oh'-9) (3.18)
Substitution of Egs. (3.7) and (3.18) into Eq. (3.1) leads to
n
-}-z"—;- (Vo1 =2Vn +Vp_1) + 715; Sw,v; + kv, = f(nh) + O(h?) + O(h'-9) (3.19)
, o’

This suggests the following multi-step numerical scheme:

Wnst Vney = f(nh) = 2 w;v; (3.20)
j=0
where

w; -,fq—w,, 0<j<n-2

- m c

Wpoy = 72—2" + Fwn'l
— _  2m 4 k
w, = —"‘}Tz—‘ + —}—z—q»w,, +

_ m

Wpey = —h”f

The global truncation error can easily be shown as O(h279). The error becomes close to first
order when ¢ is close to one. For this reason, a quadratic L1-algorithm that has accuracy of
an order higher than the linear L1-algorithm is proposed in the following section. Further-
more, the assumption of piecewise linearity is, in a strict sense, inconsistent with Eq. (3.7)

that requires v(f =nh) be at least twice differentiable.

3.4.2 Quadratic L1-Algorithm

The quadratic L1-algorithm is a refinement of the linear counterpart by assuming that
v(t) is piecewise parabolic in two consecutive subintervals, (j-1)4 <t < (j+1)A , for evalua-
tion of the integral in the first subinterval. The ultimate form is the same as Eq. (3.20) except
for the different quadrature weights, which are derived in Appendix C. The order of the qua-

dratic L1-algorithm is 3—¢g . The question that remains is the stability of these two numerical
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algorithms. This will be discussed later .

3.4.3 Shifted L1-Algorithms

The implementation of either linear or quadratic L1-algorithm in the form of Eq. (3.20)
is not convenient since n=t/h grows and becomes very large as ¢ increases. To reduce the
number of terms required in the quadrature formula, we approximate ¢D7v(t) by (Dfv(t) ,
where s is the shifted lower limit of the fractional derivative. Let s =¢ - ¢, ; 1, is a fixed
’time window’ , only inside which the influence of the response history on the current

response is to be included. See Fig. 3.2 .
Iftr = nh ,t, = Nh , Eq. (3.17) is approximated by
N

Wiveons, 0=g<l (3.21)
j=0

1
leqvn = "]7(}'
in which the quadrature weights still remain unchanged. The modified L1-algorithm with
shifted derivative could be called the ’shifted’ 1.1-algorithm.

For s<0 , Eqgs. (3.17) and (3.21) are equivalent since v(¢t) = 0,1<0 . For s>0 , the
difference is -
A= oDiv(t) - ;Dfiv(r)
S

= 1 v(0)  _v(s) v(t-7)
p el Seral il Raraatd (3.22)

Integration of Eq. (3.22) by part gives

g (v
A= T-2) g(w)“q dr (3.23)
or
q ¢ v(t-71)
A=—P(1_q),[ S AT (3.24)

Hence, a bound for the difference can be obtained as follows:

t

|a] £ —2— Jax |,y |'[1 dr|
“,T

P(l_q) Ost<s I+g
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1 1 1
= Ta-9) oeem V()] [?g_ ) ] (3.25)

For ¢=0 and ¢ =1, inequality (3.19) gives a zero bound, which is consistent with the fact that

the zeroth and first derivatives are invariant with the time shift.

A larger bound is given by

1 1
a1 S Fgy e )| o7 (3.26)

Note that 1/T(1-q) is between 0 and | for 0 <q <1 . We should then try to make 7,21 to
keep this bound as small as possible. This gives us a crude guide line that N > 1/h . The last
inequality is a rather pessimistic bound. The integrand in Eq. (3.23) tends to cancel out since
the seismic response v(¢) is usually oscillatory with almost zero-mean. As such, we would
expect the actual difference be much smaller than this bound. Both linear and quadratic ver-
sions of shifted L1-algorithm will be checked by considering some forcing functions for which

the alternative solutions can be obtained by Laplace or Fourier transformation methods.

3.4.4 Stability of L1-Algorithms

If the damping term is neglected, the numerical scheme is essentially a central difference

method. Equation (3.22) can be alternatively put in the following form:

[“;n*‘ } -A {v:i, ] + [(l)}f(nh)hz/m (3.27)

where

A= 10

252
2-wh —]} : w2=k/m

For stability, the absolute value of the eigenvalues of A must be smaller or equal to one.

Thus,
h<T/x (3.28)

This would be an approximate stability criterion if we include the damping term, which is
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usually small. Nevertheless, the time step should be considerably smaller than T /= so as to
discretize the vibration response with reasonable accuracy. In general, # < T/10 is a good

rule of thumb, and thus the stability is not a problem in practice.

3.5 Numerical Examples

The response of a SDOF fractional oscillator due to the following excitations are studied

by implementing the shifted L1-algorithms:

(1) Unit impulse function, (1) .

(2) Unit step function, h(r).

(3) Sinusoidal function, sinw? where w is the forcing frequency.

(4) El Centro Earthquake ground motion, May 18, 1940 (NS component).

For comparison, Laplace and Fourier methods are used to obtain the transient and the
steady-state solutions, respectively, whereas the Fast Fourier Transform technique is

employed in the case of earthquake excitation. The following two systems are considered:

@ m=1,k=1,c=0.1,qg=0.5

i

®b) m=1,k=10,c=3,9 =0.13

System (a) has ¢=0.5 that permits us to obtain analytical solutions for excitations (1)~(3) by
the Laplace transformation method (Appendix D). System (b) has dynamic properties similar
to those of the lightly vulcanized natural rubber discussed in Sect. 2.5 . The static stiffness
k =10 gives a natural period of about 2 seconds, a typical characteristic period of rubber bear-

ings used in base isolation .

3.5.1 Impulsive Excitation

The equation of motion is
(mD? + ¢D? + k ) v(t) = (1) (3.29)

Integrating from ¢ = 0" to¢ = 0* , we have
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0* 0*
m (v(0*) - v(07)) + c!D"v(z)dt + k([v(t)dt =1 (3.30)

Assuming the system is at rest before the excitation, we have v(0") = 0. The second integral
is zero too since the displacement v(z) should be a continuous function. This further implies

that v(¢) cannot be an impulse-like function; neither can D?v(1) be one by Eq. (3.10) . Thus

0+
JD"v(t)dt = 0. Equation (3.30) becomes

N

v(0*) = p (3.31)
The initial velocity is used to determine v, in the numerical scheme, simply by

vy = hv(0*) (3.32)

We consider system (a) here for the reason mentioned earlier. Based on the static stiffness,
the natural period (T') is 2= seconds. The common rule of thumb for the step size in numeri-
cal time domain solutions is 4 < 0.17 which is about 0.6 second here. For the first trial, we
take & = 0.5s5s and N = 4, thus 1, = 2 5. Figures 3.3 and 3.4 show the numerical solutions
obtained by the linear and quadratic Ll-algorithms, respectively. Both solutions are fairly
good as compared to the 'exact’ solution obtained by the Laplace method, the quadratic solu-
tion being slightly better than the linear solution. If N is changed to 50 so that the time win-
dow is greatly increased to ¢, = 255, the solutions are not improved though (Fig. 3.5) .
This implies that the main error source is the coarseness of time step, rather than the width of
time window. With a smaller time step, » = 0.45s. and N = 5, we get somewhat improved
results (Figs. 3.6 and 3.7) . The quadratic solution is again slightly better than the linear solu-
tion. Finally, using a smaller time step, # = 0.2 5. , we obtain very good solutions by both

algorithms (Fig. 3.8) .

3.5.2 Step Excitation

The essential difference between the responses in this case and in the previous case is

that, the system now oscillates about a non-zero mean position. The numerical shifted
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solutions are not as good as in the previous case, as expected from the discussion in Sect.
3.4.3 . Otherwise, the observations made from the numerical results are similar to those in
the previous section. The same parameters are considered and the results are presented in

Figs. 3.9-3.13 for different values of # and N .

3.5.3 Sinusoidal Excitation

The forcing function is sinwt , £>0 . The transient solution as well as the steady-state
solution are studied here, by comparing the results with the Laplace and Fourier solutions.
We take h = 0.5s. , N = 4 as before for the first trial, and w = 1 for resonance. The tran-
sient solutions are good, as shown in Fig. 3.14 , whereas the steady-state solutions in Fig. 3.15
show some discrepancy in the amplitude of vibration. Once again, the quadratic solution is
slightly better than the linear solution. With & = 0.4s. , N = 5, the solutions are improved
significantly (Figs. 3.16 and 3.17) . In particular, the quadratic solution is almost exact in this

case. No instability is observed at all as time marches on to even ¢ = 100 .

3.5.4 Earthquake Excitation

The first 20-second ground acceleration of El Centro 1940 Earthquake (NS component)
is taken as the ground excitation to system (b) that simulates a base isolation system of
T = 2 s. First, the FFT technique is employed to obtain a solution for comparison. The
input signal is sampled at every 0.04 s. ; this means that the frequency content is captured up
to about 12.5 Hz. Then, the linear L1-algorithm with the same time step, i.e. A = 0.04 5. , is
used. With such a small time step, the linear algorithm is little different from the quadratic
algorithm. We take N = 25 to make ¢, = 1 5. As shown in Fig. 3.18 , the multi-step solution
is found to be in good agreement with the FFT solution. With N = 40 so that ¢, is increased
to 1.6 s., we obtain almost perfect agreement (Fig. 3.19) .

The number of floating point operations (flop) in these two approaches are comparable. (

An addition and a multiplication is counted as one flop. ) The effort in computing the FFT of

a function discretized at 2”7 points is 2°*' p flop. When using the FFT algorithm for a non-
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periodic function, a trailing zero-excitation with a duration equal or longer than the duration
of the input time history is usually added to its tail. This is to ensure that the initial response
is not affected by the response near the end of actual excitation. In the example, the ’period’
of total excitation is taken to be 40.96 s. With 4 = 0.04 s. , P is 10 . Thus the computation of
the response by inverse FFT alone requires 20,480 flop. In the shifted L1-algorithm with
tw = Nh , we need N flop to compute the response at each time. The total number of flop is
thus Nt/h . For ¢t = 20 5. and 4 = 0.04 5. , the computation takes 12,500 flop if N = 25, and
20,000 flop if N = 40 . Therefore, the seemingly tedious multi-step L1-algorithm is actually

at least as efficient as the FFT approach.

3.6 Response of System with Non-zero Initial Displacement

The solution procedures discussed so far are applicable to systems that are assumed to
be at rest before 1=0 . Now suppose a system has a non-zero displacement v(¢) = vo for
t < 0. In this case, we use _,,Df in place of DY (=0Df) . Let v (1) = v(t) - vo . The equation

of motion becomes
mv'(t) + ¢ —DIV() + ¢ ~Dive + kv'(t) + kvy = f(1) (3.33)

The general form of Eq. (3.10) for arbitrary a is

o1 v@) |, [_¥)
DIV = 5y L ay j ooy 7] (3.34)

which, for a = -oc0 and v(t)=vy, , leads to —oDfveg =0 . Also, note that
~DfVI(t) = oDFv*(t) since v*(¢) = 0 for t < 0. The equation to be solved thus reduces to

one with zero response history prior to =0 :
mi* (1) + DIV (1) + kv*(t) = £(t) - kv, (3.35)

This equation can then be dealt with by the solution procedures developed before.




CHAPTER 4
CORRELATION OF FRACTIONAL DERIVATIVE MODELING
WITH SHAKING TABLE TEST RESULTS

4.1 Experimental Program

An extensive series of shaking table tests of base-isolated bridge deck superstructures has
recently been carried out at the Earthquake Simulator Laboratory of the Earthquake Engineer-
ing Research Center of UCB. In the tests a one-half scale model of a bridge deck was
mounted on multilayer natural rubber bearings. The bridge deck model was loaded by addi-
tional lead weights to increase the inertia to achieve dynamic similitude such that the stress
and acceleration are the same in the model and the prototype. The total weight of the model
was about 100 kips (45 tonnes). The input earthquake signal is subjected to a time compres-
sion by a factor equal to the square root of the scale factor. A cross-section of the bridge deck
model on bearings is shown in Fig. 4.1. The bearings are mounted on load cells to allow con-

tinuous monitoring of shear forces. A side elevation of the model is shown in Fig. 4.2.

Rubber Bearings

The rubber bearings used in the test are shown in plan and cross-section in Fig. 4.3.
They have fourteen layers of 3/8 in. (9.5 mm) -thick rubber and thirteen 1/8 in. (3.2 mm)
steel reinforcing plates. At each end there is a 1/2 in. (12.7 mm) -thick steel plate with holes
for dowels which key the bearings to the load cells below and the bridge deck above. The for-
mulation from which the bearings were made was developed by the Malaysian Rubber Pro-
ducers’ Research Association (MRPRA). To develop the frequency characteristics for the
bridge deck, it was necessary to select a fairly soft rubber and that chosen was MRPRA EDS
3936 with a nominal shear modulus at 50% strain of 100 psi (0.70 Mpa) and an IRHD of 55.
The rubber as compounded by the manufacturer had a hardness of 50 and a 50% shear

modulus of 105 psi (0.73 Mpa), and a minimum elongation at break of 550%.
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Shaking Table

The shaking table is a 20ft x 20ft x Ift (6.1m x 6.1m x 0.3m) prestressed concrete slab,
driven independently in the vertical direction by servo-controlled actuators. The 100 kip (45
tonnes) dead weight of the table, plus the weight of the model, is supported by differential air
pressure during operation, thus relieving the vertical actuators of any static load-carrying
function. The table is displacement controlled. A digitized record of a particular earthquake
history is converted to analogue form, using a digital to analogue converter, and integrated
twice, using an analogue integrator. The amplitude scaling of the displacement record during
a test is controlled by a span setting. A horizontal span of 1000 will generate a displacement
time history with the maximum displacement of 5 in. (12.7 cm), while lower span numbers

reduce the maximum table displacement in proportion.

Data Acquisition

The data acquisition system, centered around a NOVA 1200 minicomputer equipped
with a Daiblo 31 magnetic disc unit, is capable of discretely sampling up to 128 channels at
rates of up to 100 samples/sec./channel. Transducer signals, in analog form, pass through a
NEFF system 620 analog-digital processor. The digitized data are them temporarily stored on

a magnetic disc before being transferred to a magnetic tape for permanent storage.

4.2 Harmonic Tests

Among a large number of different types of dynamic test, one test series involved steady
state harmonic tests at fixed shaking table displacement over a range of frequency from 0.2
Hz to 2.8 Hz. The bridge deck at these frequencies acts as a rigid mass and the total system
can be idealized as a single-degree-of-freedom system if the torsional and lateral vibrations are
not significantly excited.

In these steady state harmonic tests, the table displacement was set at 0.35 inch. and the

table frequency varied in steps from 0.2 Hz to 2.8 Hz. The relative displacement of the

model with respect to table was measured after a steady state had been achieved. The
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amplification factor defined as peak relative displacement of model divided by peak displace-

ment of table is the quantity of most interest and the results are shown in Table 4.1.

4.2.1 Amplification Factor for Various Mathematical Models (Linear)

It can be derived from Eq. (3.1) that the amplification factor (4) for a fractional oscilla-

tor system (or fractional derivative model) is given by

-

4 - B 4.1)
[(1-87+2¢6% cos L Y + (2467 sin L 2]/2
where
8= is the frequency ratio ;
g
I . . .
in which

w 15 the forcing frequency of input motion (rad./s) and

wo = Vk/m is the undamped natural frequency of the system.

When ¢ = 1, Eq. (4.1) reduces to

_ g2
A= TO-FF+ 2" “42)

for a conventional SDOF oscillator.

If we use hysteretic damping in place of viscous damping by substituting (k + ic) for
(k +icw) in frequency domain representation of the model, the amplification factor for the

hysteretic model is then given by

_ g’
A= T0—F7 + (" “-3)

where ¢ = —Z—C’—n-

4.2.2 Correlation of Experimental Results with Mathematical Models

To fit the experimental data for amplification factor shown in Table 4.1, the abovemen-

" tioned three models, namely, the fractional derivative model, the linear viscous model and



28

the hysteretic model are considered here. Since the damping of the rubber bearing (lightly
filled only) for the test is small, the peak of the amplification factor curve would occur
approximately at the undamped natural frequency. Hence wy is chosen to be 1.4x rad./s (0.7
Hz), thereby reducing the number of parameters to be determined in each of the models by

one. The parameters obtained for the best fit in least-square sense are as follows:
(1)t =5.78%, g = 0.7 for fractional derivative model;
(2) £ = 5.84% for linear viscous model;
(3) £ = 5.85% for hysteretic model.

The least-square curves in these three cases are compared with the experimental data in
Figs. 4.4, 4.5 and 4.6, respectively. It is clear by comparing these figures that the FDM gives
a much better fit than the other two models, which give least-square curves very similar to
each other. It should be noted that though the rubber used is lightly filled, it still has some
significant nonlinearity; in particular, the stiffness is strain-dependent. Thus, while the FDM
can accommodate the peculiar frequency sensitivity of rubber, it cannot, being linear in the

context, account for nonlinearity in the shear modulus of rubber and therefore the stiffness of

the system.

4.3 Earthquake Simulator Tests

Another shaking table test series involved the study of seismic response of the base-
isolated bridge deck. The following six earthquake records with indicated span setting (H)

were used as the input signals to shaking table:

(1) El Centro 1940 SOOE component (H = 100" , 200" , 400" , 750) ;
(2) Taft 1952 S69E component (H = 750) ;

(3) Parkfield 1966 N65E component (H = 150° , 750) ;

(4) Pacoima Dam 1971 S14W component (H = 750) ;

(5) Cal Tech A artificial record (H = 750) ;
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(6) Caltrans artificial record (H = 300" , 400%) .

The symbol * indicates that the signal is in real time (unscaled), whereas the signals
without * are in scaled time (compressed by v2). The model is treated as full scale in the
former case and half scale in the latter case. The acceleration time histories of some of these

records and their Fourier spectra are shown in Figs. 4.7-4.10.

4.3.1 Description of Earthquake Inputs

The El Centro 1940 record is a moderately long, extremely irregular motion. The peak
acceleration (0.33g) occurred very near the start of the earthquake and other fairly large
accelerations occur later in the record after around 12 seconds and 26 seconds. The Taft
1952 record is also moderately long , around 20 seconds, has low peak acceleration and is
very characteristic of California earthquakes. The Parkfield 1966 signal comes from a rela-
tively small earthquake. The peak acceleration was above 0.5g but the strong motion lasted
only 1.5 seconds. The Pacoima Dam signal differs from the others by having a few high-

frequency peak acceleration pulses in the record.

The artificial records used in the tests were the Cal Tech A and Caltrans signals. Cal
Tech signal is a long duration record with large displacements and low accelerations but a
wide frequency range. Caltrans signal is an accelerogram modified from the El Centro 1940

earthquake signal to be compatible with the Caltrans design spectrum.3’

4.3.2 Linear Models

First, the linear fractional derivative and linear viscous SDOF models with the parame-
ters determined in Section 4.2.2 are used. The relative displacements of these models can be
computed using the numerical L1-algorithm discussed in Chapter 3. (4 = 0.05 sec.; N = 40
and 2 for fractional derivative and viscous models, respectively.) The computed responses for
both models when subjected to the El Centro earthquake (H=100) are compared with the
experimental response in Figs. 4.11 and 4.12. It can be seen that both models can fit the data

very well. Nevertheless, the linear FDM gives a better fit than the linear viscous model. The
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errors in the maximum positive and maximum negative peaks for the linear FDM are only
0.9% and 0.8% respectively, whereas they are 4.7% and 5.7% for the linear viscous model.
For the other five tests, however, both of these linear models do not correlate well with the
experimental results. See for example Figs. 4.13 and 4.14 in the case of El Centro earth-
quake, H=400. This is because the shear displacement of the rubber bearing has exceeded 2
in. and in such cases the nonlinearity, namely the strain-dependency of the shear stiffness of
rubber, becomes important. To account for this nonlinear behavior of rubber, it is necessary

to develop a nonlinear model and this is discussed in the next section.

4.3.3 Nonlinear Models

It has been found by many researchers that the stiffness of rubber, especially of filled
compounds, is strain dependent. Specifically, the shear modulus of rubber is found to often
decay exponentially with the strain amplitude. See for examples Ref. 38-40. This is known
as the strain effect or amplitude effect of stiffness. In the nonlinear model accounting for such

phenomenon, the following empirical stiffness-strain relation is assumed:
k=a-bln(]v,1) (4.4)

where v, is the peak strain, a and b are coefficients to be determined. Note that the stiffness-
strain relations found in the literature are usually determined from steady state harmonic
tests. In which case the peak strain is simply the magnitude of the harmonic strain. For
seismic excitation, there are often many peaks of different magnitudes in the response. It is
then not clear how the stiffness of rubber depends on the strain in this transient problem. In

search of a simple and yet realistic relation, the following two hypotheses are considered:
(1) v, in Eq. (4.4) is the maximum peak strain in the response history.
(2) v, 1s the most recent peak strain.

These two hypotheses are respectively incorporated in the numerical algorithms and
tested against the shaking table test results. It is found that the first hypothesis does not lead

to good correlation between the experimental and theoretical results, whereas the second
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hypothesis does. In both cases, the coefficients are not determined from the harmonic test
results. The reason is that the amplification factor is sensitive to slight changes in frequency
near resonance where the data points are insufficient for a nonlinear fit and the resolution of
frequency is probably not better than 0.02 Hz at these low frequencies. Instead, the
coefficients are determined by fitting the overall response time history in two tests (El Centro
H=100 and H=400), with ¢ and g assumed to be the same as before. The coefficients found
in this way are a = 0.81 and = 0.22 . The nonlinear model with the second hypotheses is
found to be in good agreement with the experimental results in general. The comparisons of
response time histories for all the eleven runs are presented in Figs. 4.15-4.25. The differences
between the experimental and theoretical peak responses range from 0.1% to 15.9% and aver-

age about 7.3%. (See Table 2.)

In terms of overall time history of response, this nonlinear model is excellent. In terms
of peak response, this model may need improvement, for instance, in the stiffness-strain rela-
tion in Eq. (4.4). We should bear in mind that the values of ¢ and g were taken to be the
same as those found in the harmonic test in order to redugg the number of parameters in the
fitting procedure. It is possible that a better fit could have been obtained by adjusting these
two parameters, especially in view of the fact that the peak response is sensitive to ¢ for low
damping. A more rational way (which unfortunately was not done in the experiments) would
be to conduct many series of harmonic tests, in each series the relative displacement being
controlled at a fixed quantity so as to identify the strain effect independently. It should also
be noted that there were inevitably some experimental errors (e.g. measurement and calibra-
tion errors), which could also have contributed to the discrepancy between experimental and

theoretical results.



CHAPTER 5
DYNAMIC ANALYSIS OF BASE ISOLATED MDOF-STRUCTURE

5.1 Response of 2-DOF System

We first consider a 2 degree-of-freedom (DOF) system, consisting of a single-story shear
building mounted on a base deck that is supported by an elastomeric isolation system. The
structure is idealized as a SDOF oscillator and the base deck with isolation system as a SDOF
fractional oscillator (i.e. g-th derivative model). As shown in Fig. 5.1 , the two degrees of

freedom are:
vo = displacement of base deck (lumped mass m) relative to ground;
v, = displacement of structure (lumped mass m ) relative to base deck.

The equations of motion are

m, Vo(t) + myV(t) + coDIvo(t) + kovo(t) = — m, U (t) (5.1)
myo(t) + myVi(t) + ¢ vi(t) + kyvi(t) = - my k(1) (5.2)

where
m, = total mass of base deck and structure (mo+n,);
co = damping constant of base isolation system;

ko

stiffness constant of base isolation system;

fl

¢, = damping constant of structure;

stiffness constant of structure.

ki

Alternatively ,

(D2+60Dq +EQ)V0+‘Y]D2V1 = —-il'g (5.3)
D¥vy + (D? + 2w, D +wl)vy = - i (5.4)
where
ko = ko/m, s w = Vky/mp
Co = Co/ My ; & =c¢/Qmywy)
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i =my/m
These equations can be solved numerically by employing L1-algorithms for D9y, term and

central difference scheme for D? and D terms.

Numerical Example
As an illustrative example , we consider the following parameters:
g=013;kog=10;C0=3;w, =2Hz ;¢ =1%;~, =0.7.
The excitation is El Centro 1940 earthquake, NS component. The results are plotted in Figs.
5.2 and 5.3 . We can see that the agreement between the LI-solutions and the FFT solutions

is very good.

5.2 Response of (N+1)-DOF System

The solution procedure discussed so far can certainly be extended to the analysis of a
multi-degree-of-freedom (MDOF) system. However, the solution would be more efficient if we
assume that the structure has a proportional damping matrix (e.g. Rayleigh damping
matrix).4! This assumption does not severely affect the accuracy of the solution since the
structural damping ratios are small, as compared to the damping in the base isolation system.
We can then use mode superposition technique to reduce the number of degrees of freedom

as long as the structure is assumed to remain in the linearly elastic range.

Fixed-base Structure

Consider a N-story shear building, having lumped mass m; , stiffness k£, and damping
constant ¢; at the i-th floor (Fig. 5.4) . Let us first assume that the structure is fixed-base .
Due to an earthquake ground motion, the displacement of i-th floor relative to the ground is

v; and the equations of motion can be written as
MV + Cv + Kv = -Mrij, (5.5)
where M is the mass matrix, defined as

M = diag{m,,m;, -+ ,my] (5.6)
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C is the damping matrix, defined as

itz -0 zeros
=Cy C2+C3 —C3
C-= -C3 5.7)
zeros -CN
~CN Cn

K is the stiffness matrix, defined as

kitky -k, zeros
"'kz k2+k3 *k3
K= -k; (5.8)
zeros ~ky
"kN kN

r is the displacement influence vector, defined as
r=[11--- 1] (5.9
v is the relative displacement vector, defined as
v=[vy vy - w7 (5.10)
Consider the eigenvalue problem of the undamped system:
MvV+Kv=0 (5.11)

for which the mode shape (eigenvector) is ¢; corresponding to the i-th natural frequency w; .

The mode shapes satisfy the following orthogonality properties:
¢,‘TM¢OJ' =0 y ,‘TK¢J' =0 for l#_] (512)

By mode superposition method, the displacements can be expressed as
N
v= Y Y4 (5.13)
i=l

where Y, is the generalized coordinate associated with the i-th vibration mode. As a result of

the assumption of proportional damping matrix, Eq. (5.5) reduces to the following uncoupled
form:

Y, + 2w, Y, + w?Y, = -L,ii, for i=1,.,N (5.14)




35

where the modal mass, modal frequency, modal damping ratio and modal participation factor

are defined respectively as follows:

M, = /My, (5.15)
¢ITK¢‘
w = (-'74-;—’)”2 (5.16)
¢1TC¢1'
T (5.17)
L - &Mr (5.18)
! MI .

Base-isolated Structure

The structure is now considered to be supported on a base isolation system. The
mathematical model is shown in Fig. 5.5 . The vector v in this case represents the floor dis-

placements relative to the base deck. For this (N +1)-DOF system, the equations of motion

are

m, Vo + coDIvg + kv + (rT M)V = = m, i, (5.19)
Mrig+ MV + Cv + Kv=-Mrij (5.20)

N
where m, = 2 m,
i=1

If we assume that only the first n modes contribute significantly to the response and

higher modes are therefore neglected, the structural response is then approximated by
n
v=2Y ¢ (5.21)
i=1

Premultiplying Eqgs. (5.19) and (5.20) by ¢/ , and making use of Egs. (5.21) and (5.15)

through (5.18) lead to

. .
(DY + EoD? + ko)vo + 2v: DY, = -l (5.22)

f=1

Dvg + (D? + 20§, D + w?)Y, = ~iiy for i=1,..,n (5.23)

where v, = LM,/m, ; Y, = Y,/L, .
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Any nonlinearity of rubber bearings such as the strain effect of shear stiffness can be
easily incorporated into Eq. (5.22). These equations are similar to Egs. (5.3) and (5.4) .
Though the equations are still coupled, the computation effort involved in solving for the
n+1 unknowns is not much increased as compared to the solution of the 2-DOF system dis-
cussed earlier. The reason is that, with the assumption of proportional damping matrix for

the structure, the numerical scheme at each time step reduces to the following form:

Yo by

| )_’1 b
7,( = |6, (5.24)

r
Y, by,

where
Yi=lviv
A = diagla,,a,, - ,a,]

Since the lower right n xn submatrix is diagonal, the solution is readily obtained as follows :

bl ! < {
vo=(bo- Z—1) /(1= 32E) (5.25)
j =] %

n
i=1 i

)7,- =(b;, ~vg)/a for i=1,.,n (5.26)




CHAPTER 6
CONCLUSIONS

The fractional derivative is a convenient mathematical operator for describing the
stress-strain relation of viscoelastic materials. By allowing the order of derivatives in the con-
stitutive relations to be fractional, usually in the range between zero and one, various frac-
tional derivative models can be proposed. Although the fractional derivative is a mathemati-
cal representation in time domain, such models have been found by a number of researchers
to fit the viscoelastic properties very well in the frequency domain. Its appearance in many
fields of physical science suggests that the fractional derivative is not just an abstract or physi-
cally meaningless concept; neither is it totally empirical in its application to viscoelastic
analysis.

The fractional Kelvin model, in particular, is chosen here in conjunction with a mass
term to account for the inertia effect, forming the so called fractional oscillator’. The latter is
used to model the dynamic behaviors of the rubber bearings used in base isolation systems.
This model has the advantages over conventional models that a good fit of material proper-
ties, specifically the storage modulus and the loss factor, is obtained by adjusting the addi-
tional parameter, which is the order of fractional derivative. In contrast to the use of general-
ized Kelvin or generalized Maxwell models, the equation of motion remains a second order

one.

In this report, a single-degree-of-freedom system is first presented as a simple model for
base isolated structures if the structure is approximated as a rigid body supported on base iso-
lation system. For linear systems, the response can be obtained by Laplace or Fourier
transformation methods in the same way as in the conventional dynamic analyses with linear
viscous or hysteretic damping models. No complication arises due to the use of fractional
derivatives since the Laplace and Fourier transforms of fractional derivatives bear the same
forms as in the case of derivatives of integral order. Between these two methods, the Fourier

approach is preferred for problems with arbitrary excitation because an efficient numerical
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algorithm (FFT) is available. Alternatively, one can carry out the step-by-step analysis in the
time domain. Shifted linear and quadratic L1-algorithms are developed for the step-by-step
integration scheme, which is shown to be consistent and stable under a lenient condition.
The number of operations required is found to be comparable to the FFT method. Numeri-
cal examples show that the L1-solutions are in good agreement with the Laplace and Fourier
solutions. The time domain approach has the advantage that nonlinearity effects can be

easily included if necessary.

In the application of fractional derivative model to the shaking table tests of a base-
isolated bridge deck which can be very well idealized as a SDOF system, the linear model is
first used. To fit the amplification factor curve obtained from the harmonic tests, the linear
FDM is found to give a much better fit than the linear viscous or linear hysteretic models. In
matching the response time histories during the earthquake simulated tests, however, the
linear models are inadequate when the shear strain of rubber is large enough that the strain
effect of shear stiffness is important. For this case, a nonlinear FDM is suggested to take into
account of the strain effect by assuming an empirical relation between the shear stiffness of
rubber bearing and the most recent peak shear strain of rubber. This hypothetical model is

found to correlate very well with the results of the shaking table tests in general.

The solution procedures is extended to the dynamic analysis of a multi-degree-of-
freedom system, and therefore the effect of higher modes on the response can be studied and
included if required. The computation effort can be reduced by making the assumption of a

proportional damping matrix for the superstructure.
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TABLE 1

Amplification Factor of Base-Isolated

Bridge Deck in Harmonic Tests

Frequency (Hz)

Amplification Factor

0.2 0.07
0.4 0.23
0.5 0.48
0.6 1.06
0.6 1.17
0.65 2.86
0.7 7.81
0.7 9.85
0.8 4.03
0.8 4.17
0.9 2.67
1.0 2.35
1.2 1.68
1.4 1.42
1.6 1.29
1.8 1.22
2.0 1.17
2.2 1.13
2.4 1.10
2.6 1.09
2.8 1.07
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TABLE 2

Percentage Differences between

Experimental Response and Nonlinear FDM Response

Simulated Earthquake H Max. Positive Peak | Max. Negative Peak
El Centro 1940 100 1.8 10.8
200 0.1 15.9
400 0.7 5.8
750 11.8 0.5
750 6.0 -5.3
Parkfield 1966 150 10.2 15.2
750 11.8 -12.6
Pacoima Dam 1971 750 9.6 -4.8
Cal Tech A (Artificial) 750 6.0 4.4
Caltrans (Artificial) 300 -6.4 -4.4
400 -10.6 -6.6

Note:

Negative number means that the predicted response by nonlinear FDM is smaller
than the experimental response; conversely for positive number.




APPENDIX A
FOURIER TRANSFORMS OF FRACTIONAL DERIVATIVES

Consider that ¢ is positive and non-integer , and n is the smallest integer larger than q ,

ie.n>¢qg>n-1. Lettinga = -~coand v = l+g-n in Eq. (2.1a) , we obtain
f(T)
DIt , Al
<DF [ (1)) = )dt f(”), (A1)

alternatively , in the form of convolution integral :

D)) = p -7)dr] (A.2)
where ‘l
g() = { /Tt 120 (A3)
Taking the Fourier transforms of Eq. (A.2) gives
F{_DEU() = ()" F{f(1)) F{g(1)) (A.4)
where
Fg) = [ g)exp(-iwt)dr
_ 1 exp(—iwt)
T(1-») {f P
W % cosu . sinu ) _
= I‘(l—-u)! - —i yau ;. u = wt
Since
¥ cosu du = n
l u T 2T cos(vm/2)
Tsinu L
! u C 2T sin(vx/2)
ks
F-»)T0) = sin(vr)

Eq. (A.4) becomes
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F{ D/ /()] = (1) ' F(f (1)} " [cos(vn/2) + i sin(va/2)]

where

cos(vr/2) + 1 sin(vx/2) = exp(ive/2) = [exp(in/2)} = i* ,
Therefore ,

FL_D /()] = () F(f(1)) (A.5)

It should be noted that i? is multivalued mathematically . Nevertheless , as seen in this

derivation , only the principal value is considered , i.e. we would take
i7 = cos(qn/2) + isin(gn/2)
If we further assume f(t) = O for ¢t < a , then _ DJ [f(1)] = D7 [f(1)], and hence

F{ DI (D)) = () F{f(1)) (A.6)



APPENDIX B
ERROR BOUND FOR LINEAR L1-ALGORITHM

Consider the subinterval jA <7< (j+1)h and let u =7r-jh , | =n-j (t = nh). By

Taylor series expansion, we obtain
v(it-7)=v({h) -uviph) , I-1<p <l (B.1)

In the linear Li-algorithm, v(¢) is assumed to be piecewise linear in the subinterval . Thus,

V(1 -7) is approximated by (v,_; = v,_;_1)/h .

U+Dh .
. . . . . vl -
Let e, be the absolute error introduced in the numerical integration of f yi-n) dr.
Jh

7

A rather loose bound for e, can be obtained as follows :

U+hh ..
Ik T
U+
max .
jhsrsG+Dh 1V L
j

T — jh
-————-—Tq dr

A

1

N i 1 , L : _ ) N
jhsisgeip |V RIS {5;5[(“1)2 -y - -l—j_—q—[un)‘ ¢ - jl-a1)
< K h?*-9  where K is some constant.

The accumulated truncation error at n -th step is thus bounded at most by

Knh¥ @ =Kth'? =0(h'"?)
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APPENDIX C
QUADRATIC L1-ALGORITHM

Letx, = jh ,x =xy =Nh ,u=y-x,and h(u) = f(x-y).

ho df(x-y)
dy
I = ——— dy;
’ Ul[l)h ye g
o dh
du '
hu)=1: 1, =0 (C.2)
1-¢
R R RUREIEI (€3
B =t 1= 2070 {51 u“~u—1>“1~—-——u’ “-(¢-1'""7]} (C.4)

Exact up to polynomials of second order. the integral /, is evaluated through the following

quadrature formula:

'_Z_IA,,f(xN) (C.5)
The quadrature weights are 4, , = b, +a, . A, = b, - q, ,’AJ'O = -b, in which
a = 310 - G-
b, = 5o L0 = G-I ] - 1 - G- )]

The integral in Eq, (3.12) is simply given by

It=nh) = 31,
J=1
= ;’— 241Gy + A0 () + 4,1/ 0x,0)] (C.6)

Similar to the procedure in Appendix B, the truncation error can be shown to be at most of

order h2°9 |
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APPENDIX D

LAPLACE SOLUTION OF EQ. (3.3) FOR q = %

Forg = 1/2 and f(t) = &(¢), Eq. (3.3) becomes

_ 1
= D.1
vs) mst+cs'?+ k (D-1)

By partial fraction , Eq. (D.1) can be expressed as

4
1
v(s) = = D.2
(s) II] e (D.2)
where a, are constants depending on the values of m , ¢ and k . Alternatively,
() = 3 —C (D.3)
V() = Q) —=—— .
Sivs +q
|
where ¢; = ———— .
" Ite, -a)
J#1
The inverse Laplace transform of —= 1 is l; - a exp(a*tyerfc(avt) where erfc is the
VS + Qa N
complementary error function defined as
2 o
erfc(z) = — fexp(-tz)dt (D.4)
N z
Thus the inverse Laplace transform of Eq. (D.3) leads to
: 1
V“) = 2 ¢ [:”_/;7 -4 exp(a,zt)erfc(a,w )] (D5)

=1
4
It can be easily shown by comparing the coefficients of Eqgs. (D.2) and (D.3) that Zc, = 0.
i=l
Hence ,
4

v(1) = - X a, ¢ expla,’t)erfc(ant) (D.6)

f=1

Similarly the analytical solutions for f(z) = hA(¢) or sin® can be obtained .
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