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1 Introduction

“Assurance is confidence that an entity meets its requirements, based on specific evidence provided
by the application of assurance techniques” [1]. Security assurance is confidence that an entity meets
its security requirements. Software assurance is confidence that software meets its requirements,
including both functional, security, and otherwise.

Confidence is, of course, a spectrum, not a binary property, and therefore, assurance is a
spectrum as well. There are many paths to achieving degrees of assurance, and the elements of
those paths take place throughout the software development life cycle (SDLC), including during
requirements specification, design, implementation, operation, and maintenance. Ideally software
assurance will in fact involve all of these elements, and there will be continuous cycles and feed-
back loops between each one. Of course, this process often does not always happen, as software
development has often shifted into Agile Software Development or DevOps, which can sometimes,
though not always, be seen as “write now, fix later.”

Regardless of the approach used, software tools can often assist in assurance. For example,
software analysis tools can help to identify implementation bugs that might lead to crashes, incorrect
results, and exploitable vulnerabilities. Tools cannot find every security problem in software, but
they can help increase the security assurance of software.

Tools come in a variety of forms, and operate on different things and in different ways. For
example, some tools operate on source code, others operate on binaries, and others operate during
execution. Still others don’t operate directly on source code at all but rather operate on mathe-
matical logic during the specification phase.

In this document, we examine numerous different categories of these tools and discuss what
they do, give examples of the most popular tools in each category, and, in some cases their users.
We also discuss what their their various benefits and drawbacks are. We conclude with an analysis
and summary of the strengths, weakesses, opportunities, and threats for tool-based approaches to
software assurance.

2 Dependency Analysis

Dependency analysis tools identify which libraries, packages, or modules are used by a program
and then looks up in databases (such as the National Vulnerability Database) to see if there are
previously disclosed vulnerabilities in the versions of the libraries, packages, or modules used by
the code. In the current parlance of discussions about supply chain security issues, this list of
dependencies can be thought of as a software bill of materials (SBoM). Dependency tools have
the simplest output of any of the tools that this document discusses: just a list of dependencies
that contain concerns identified in the databases that are looked up. The easiest dependency
analysis tools to use are typically integrated with the code repository as they are run automatically.
Dependabot, integrated with GitHub, is one such example. It is very commonly used throughout
software development community, and is often seen as being as effective as separately-purchased
commercial tools.

3 Static Code Analysis

Static analysis tools (often called “SAST”) scan a program’s source, byte, or binary code in the
search of stylistic problems or mistakes that might be weaknesses. Static analysis tools can include
hundreds of different kinds of reports, often with quite technical descriptions, so can be intimidating
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on first use. One of the biggest complaints about static code analysis tools is that they generate
false positives. Since no widely used tool is currently sound, the reports produced by any tool,
open source or commercial, can be an over approximation of the actual problems to be found.
Such “noise” in the results can frustrate programmers on their initial use of a tool, especially on
code bases where no tool has been previously used. Static code analysis is widely run throughout
software development processes.

Static Stylist Analysis Tools can help enforce an organization’s coding standard to make coding
more understandable, avoid error prone practices, and to give the code a more uniform look.

Static Code Analysis Tools can help detect a wide variety of weaknesses. These weaknesses
found by such a tool include buffer overruns, injections, cross site scripting, cross site request
forgery, memory leaks, improper input validation, path traversal errors, hard coded credentials,
serialization errors, and many others. Such tools cannot detect all occurrences of weaknesses, but
they can find many would otherwise go unnoticed by the programmer. These tools typically require
that the code compiles but not necessarily executes. As these tools report potential problems by
looking at the code, they are subject to false positives.

Some static analysis tools include both stylistic and code analysis features.
There are huge numbers of popular static analysis tools, including Clang,1 Synopsys’ Coverity,2

CPAchecker,3. Facebook’s Infer [2],4, Google’s Error Prone,5 and even Lint.
Coverity has been used by the software on CERN’s LHC and NASA JPL’s Mars rover Curiosity.
Some static code analysis tools use abstract interpretation to enable soundness (no false nega-

tives) and to generate invariants. Abstract interpretation involves the partial execution of a program
to derive insight about the program’s control flow and data flow. It does this without performing all
calculations, and as a result, produces only an approximation, as some precision is lost. However,
it over-approximates the possible state space as a result. In this way, while abstract interpretation
achieves soundness, it cannot be guaranteed to be correct (it may give false positives).

Examples of static code analysis tools that use abstract interpretation include Inria’s Astrée,6

Inria’s Frama-C [3],7 and MathWorks’ Polyspace.8

All three tools have seen commercial and government use – notably Astrée has been used by
Airbus for the A340 and A380 fly-by-wire system, and also for the automatic docking software of
the European Space Agency’s Jules Vernes Automated Transfer Vehicle (ATV), and Polyspace has
been used by Nissan, Alenia Aermacchi, and Miracor.

Infer [2] is a somewhat special case static code analysis tool in that it combines elements
of separation logic, a theorem prover that leverages inference to guess assumptions (to enable
automation). It also performs continuous reasoning in a way that enables it to analyzes diffs
(differences between source code versions) when a change occurs without having to re-analyze the
entire codebase, thus improving speed dramatically.

Error Prone is a tool for Java that automatically identifies mistakes in the IDE (Integrated
Development Environment) while the developer is typing and also automatically produces suggested
fixes.

1Clang (built into LLVM): https://clang.llvm.org/
2Coverity: http://synopsys.com/software-integrity.html
3CPAchecker: http://cpachecker.sosy-lab.org
4Infer: https://fbinfer.com
5Error Prone: https://errorprone.info
6Astrée: https://www.astree.ens.fr
7Frama-C: https://www.frama-c.com
8Polyspace: https://www.mathworks.com/products/polyspace.html
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4 Symbolic Execution

Symbolic execution [4] is the automated process of following the execution of every conditional
branch of a program by assuming symbolic inputs rather than actual user inputs. In the process,
symbolic checking can also determine which inputs would cause each conditional branch to actually
execute. Symbolic execution has elements of both dynamic static dode analysis but is typically
thought of as distinct. On one hand, it begins with source code and must be able to compile it, but
it also executes the program symbolically. Symbolic execution is currently seen as a middle ground
between actually executing a program and using traditional static analysis by giving both better
coverage and accuracy. However, symbolic execution has a similar problem as model checking with
state space explosion in large programs, and so with large programs, code coverage must either be
limited or constrained with heuristics. Related to this it will under-approximate the set of possible
states.

Concolic testing is a portmanteau of concrete and symbolic and is intended to indicate a hybrid
analysis approach that leverage both concrete and symbolic approaches. The approach was devel-
oped as a way of avoiding the issue of a program making system calls or calling external library
functions.

Abstract interpretation and symbolic execution are related on the surface in that both seek
to abstaractly explore the state space of programs. However, the constraints surrounding their
use, including over-approximation (abstract interpretation) vs. under-approximation (symbolic
execution) and the process of compiling vs. actually executing make their strengths and weaknesses
distinct.

Some commonly used symbolic execution tools include UIUC’s KLEE,9 ForAllSecure’s May-
hem,10 and University of Washington’s Rosette.11

5 Model Checking

Model checking [5] is an automated process that checks whether a certain finite state model of
a system, typically written in temporal logic, adheres to a set of specified safety and liveness
properties associated with the model. Where the properties do not hold, and a violation occurs,
many model checkers produce counterexamples.

The advantage of static analysis over model checking is higher accuracy. However, model
checking carries at least two problems. The first is the state space explosion problem. The second
is the issue of undecidability [6] in that the model checker cannot know if any arbitrary program will
ever terminate. Bounded model checkers can help address the latter issue at the cost of limiting code
coverage. On the flip side, model checking looks at a somewhat idealized version of a formal model
whereas static analysis, where code is involved (rather than a binary) actually requires compilation.
Further, the while the formal model can be augmented with descriptive elements of the surrounding
environment, these are typically simplified in comparison to the raw messiness associated with a
typical computing system [7]. As a result, while model checking should theoretically be both more
sound and more complete than static analysis, this is not always the case.

Model checking can be combined with static code analysis by using static analysis to extract a
finite state skeleton from the program and then model checking the result. There can be challenges
to this approach, however, since model checking is fully automatic, due to the ambiguities associated

9KLEE: https://klee.github.io
10Mayhem: https://forallsecure.com
11Rosette: https://emina.github.io/rosette/
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with high-level programming languages (in contrast to temporal logic).
Popular model checking tools include CMU’s CBMC,12 SoSy-Lab’s CPAchecker,13 NASA’s Java

Pathfinder,14 Fondazione Bruno Kessler’s NuSMV,15 P,16 University of Birmingham and Oxford’s
PRISM,17 SPIN,18 Leslie Lamport’s TLA+,19 and Uppsala and Alborg Univerities’ UPPAL.20

Sometimes static analysis and model checking are even combined in the same tool. Examples
of this include CPAchecker (which recognizes C) and Java Pathfinder (Java).

6 Dynamic Analysis

Dynamic analysis tools (often called “DAST”) monitor a program’s execution to detect execution-
time errors. Dynamic code analysis tools test programs while they are running. They typically
instrument a program and then monitor a program’s execution to detect if it has any execution
errors such as an array reference or pointer access out of bounds. These tools require that a program
is able to run and that they have reasonable test inputs. Many such tools are built into compiler
frameworks, including the various memory safety detectors built into LLVM, for example. However,
some might require that the program be built with a special compiler, such as HCL AppScan,21 or
Parasoft Insure++.22

Dynamic testing is a widely performed method for enabling useful unit testing and integration
testing, and also has the benefit of testing not just the source code or the binary but the actual
binary as it interoperates with its environment. As a result, certain details that may not show up
earlier in the process because they are introduced during compilation or through environmental
interaction, such as via dynamic linked libraries, will only show up at runtime. At the same time,
dynamic analysis requires that sufficient test inputs are generated and that as much code is covered
as possible, which may otherwise be limited. Performing static analysis or symbolic execution
prior to dynamic analysis can help identify and guide code coverage to help provide the best of
both worlds. Dynamic analysis tools can also have a downside that they can produce similarly
intimidating reports as static analysis tools. [8]

7 Fuzzing

Fuzz testing or fuzzing is an approach to feeding random inputs to program during execution. The
term fuzz was coined by Barton Miller in 1988 [9] and later elaborated on [10].

Approaches leveraged by fuzz testing tools vary across a number of spectra, including the degree
of involvement of a human tester, the availability of the original source code vs. just a binary, the
degree of code coverage that can be tested, and the degree of advanced automation techniques that
are used for testing (at the cost of time and CPU to perform the tests).

At one end of the spectrum, black box testing uses purely random inputs, involves no guidance
from a human tester, and use take the least time to ron. If a program hangs or crashers, then a

12CMBC: https://www.cprover.org/cbmc/
13CPAchecker: http://cpachecker.sosy-lab.org
14Java Pathfinder: https://github.com/javapathfinder/
15NuSMV: http://nusmv.fbk.eu/
16P: https://p-org.github.io/P/
17PRISM: http://www.prismmodelchecker.org/
18SPIN: http://spinroot.com/
19TLA+: https://lamport.azurewebsites.net/tla/tla.html
20UPPAL: http://www.uppaal.org
21AppScan: https://www.hcltechsw.com/wps/portal/products/appscan
22Insure++: https://www.parasoft.com/products/insure
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bug has been found. On the other hand, black box testers have lower code coverage and typically
provide less insight than other fuzz testing approaches. Examples of classic fuzz testing tools like
this that are still in use include Miller’s fuzz23

A the other end of the spectrum is white box testing that leverages program analysis techniques
such as static analysis or symbolic execution to identify the most important paths to examine to
improve code coverage, to understand the most effective sets of inputs to use for testing. However
the time it takes to perform white box fuzz testing can be very high. Microsoft’s SAGE [11] is an
example of a white box fuzz tester.

In the middle is of course grey box testing. Rather than program analysis, grey box testers use
lightweight program instrumentation of either the source code or the binary to obtain information
about a program’s basic block transitions while a program is executing. Grey box testers have lower
performance overhead than white box testers and increased code coverage than black box testers.
They are, based on current computational power, often seen as an efficient middle ground between
the two extremes for detecting vulnerabilities and other bugs. The most common examples of grey
box testing tools include American Fuzzy Lop plus plus (AFL++),24 Honggfuzz,25 and libFuzzer.26

Code Intelligence’s Jazzer27 is also targeted at fuzzing Java programs.
Grey box fuzzing tools are widely used in software development. Apple fuzz tests all of its

products. Google’s OSS-Fuzz,28 developed in 2016, is widely used for continuous fuzzing of several
security-critical open-source projects and is also used extensively for internal testing at Google. It
is the backend for Google’s ClusterFuzz,29 which is a cloud-based fuzzing infrastructure used to
test all of Google’s products. Microsoft’s OneFuzz is a self-hosted fuzzing service platform and is
also used by Microsoft itself on all its products.30

Grey box testing has also had numerous noteworthy successes, as well. AFL detected the
Shellshock bug in the UNIX Bash shell in 2014, and also the Heartbleed bug in 2015. ForAllSecure’s
Mayhem31 — mentioned earlier under symbolic execution, because it is a fuzzer that leverages
symbolic execution to enhance code coverage — famously won the DARPA Cyber Grand Challenge
in 2016.32 It is also becoming widely adopted as a commercial tool in industry.

There is no “right answer” for fuzz testing except that it is generally seen as valuable. In many
cases, black box testing may well be “enough.” [12] On the other hand, where time is available,
as demonstrated by the widespread use throughout the commercial software development industry,
grey box testing has significant advantages.

Fuzz testing tools are an active area of research and numerous other lists of academic tools in
development exist.33

8 Theorem Proving and Proof Assistants

Theorem proving is the process of developing a mathematical proof that a program that has been
developed adheres to a specification [13]. Theorem proving has the advantage over other techniques

23fuzz: http://pages.cs.wisc.edu/~bart/fuzz/
24AFL++: https://github.com/AFLplusplus/AFLplusplus
25Honggfuzz: https://github.com/google/honggfuzz
26libFuzzer: https://llvm.org/docs/LibFuzzer.html
27Jazzer: https://github.com/CodeIntelligenceTesting/jazzer
28OSS-Fuzz: https://google.github.io/oss-fuzz/
29Clusterfuzz: https://github.com/google/clusterfuzz
30OneFuzz: https://www.microsoft.com/en-us/research/project/project-onefuzz/
31Mayhem: https://forallsecure.com/mayhem-for-api
32Cyber Grand Challenge: https://www.darpa.mil/about-us/timeline/cyber-grand-challenge
33Academic Tool List: https://github.com/cpuu/awesome-fuzzing
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in that it is proving program correctness rather than lightweight formal methods like model checking
that look for safety or liveness properties, or the presence of specific stylistic errors or bugs, like
static code analysis [14].

Why does Amazon use proof assistants for formal verification?

Byron Cook: “If someone comes along and says, ‘for very cheaply, I can tell you this
thing does not happen,’ [they say], ‘you have me.’ But, if you just say, ‘we’re going to
find 30% more bugs,’ [they say], ‘[great], we should find more bugs. But now I’ve found
30% more bugs. Do I know anything more?’ Not really, from a leader’s perspective,
and they are the ones that pay the bills.”

Zhendong Su: “But making such a statement that you can say something is 100%
true is very, very difficult.”

Byron Cook: “Yes, oh yes, but that’s why we get the big money. I hear that from
time to time people say, ‘but it’s so hard to be sound,’ I say, ‘go do testing. There are
plenty of people doing testing.’ But if you want to fly under the automated reasoning
proof flag, then strap in, here we go.” [15]

Examples of tools that have been formally verified using proof assistants include the seL4
separation kernel, [16, 17] the CompCert C compiler [18], and Cogent [19].

The use of theorem provers in software development is still rare. However, Amazon has recently
particularly dramatically increased its use. While Amazon originally used TLA+ [20, 21] for model
checking, it has now expanded its use of formal methods to include tools across the spectrum up
to and including theorem provers:

Tools that asist with theorem proving generally fall into categories of being fully automated or
semi-automated (or interactive) [22, 23]. Semi-automated approches typically require substantially
more expertise in understanding and writing logical, mathematical proofs, but at the same time,
can offer the increased power that comes with not having to rely on automation to fully understand
everything. The additional expertise provided by a human can enable a semi-automated proof
assistant to potentially prove a wider range of specifications correct.

In either case, theorem proving first requires developing a mathematical specification. In some
cases, such as using Galois’s SAW, discussed earlier, it can be possible to derive a specification from
source code. However, this has at least two downsides. The first is that high-level programming
languages can be ambiguous and so need to be made unambiguous. The second is that in doing
so, one would really only be proving that a program does what it does rather than independently
comparing a specification to a program.

Amazon Web Service’s Byron Cook has indicated:

“External tools that we use include Boogie, Coq, CBMC, CVC4, Dafny, HOL-light,
Infer, OpenJML, SAW, SMACK, Souffle, TLA+, VCC, and Z3.” [24]

Fully automated solvers include Alt-Ergo,34 University of Manchester’s Vampire,35 Microsoft’s
Z3.36 These tools can be extremely valuable but can have more limited use than interactive proof
assistants due to the limits of fully automated reasoning.

34Alt-Ergo: https://alt-ergo.ocamlpro.com
35Vampire: http://vprover.github.io/
36Z3: https://github.com/Z3Prover
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Commonly used interactive proof assistants include Boyer, Moore, and Kaufmann’s ACL2,37

Chalmers and Gothenburg Universities’ Agda,38 Inria’s Coq,39 CVC4,40 John Harrison’s HOL
Light,41 Cambridge and TUM’s Isabelle,42 Microsoft’s Lean,43

A number of approaches exist to make formal verification easier than writing in specialized
higher-order logic (see Section 8) by leveraging limited languages or other specialized approaches
to translate source code into formal models that can be formally verified. For example, Boogie44 is
programming language and also a tool that takes a model written in the Boogie language as input
and generates conditions to pass to an SMT solver to verify. Systems that can support inputs
into the Boogie tool other than the Boogie language itself include Dafny,45 Microsoft’s VCC.46 and
SMACK,47 which can also translate from the LLVM’s intermediate representation to the Boogie
intermediate language.

In addition, the Software Analysis Workbench (SAW)48 enables formal verification of proper-
ties C, Java, and Cryptol source code using automated SAT and SMT solvers. The Frama-C WP
(“Weakest Precondition”) plugin49 enables allows proving that ACSL annotations in C programs.
OpenJML50 is a verification tool for Java that to verify annotations of specifications of Java pro-
grams. Oracle’s Systematic, Ontological, Undiscovered Fact Finding Logic Engine (Soufflé)51 is a
programming language that enables static analysis of source code written in Java. Liquid Haskell52

is enables reasoning and verification of Haskell programs.
Certified Abstraction Layers,53 RefinedC,54 and the Verified Software Toolchain (VST),55 are

all tools that provide support for verifying C programs with Coq specifications. BedRock Systems’
BriCk56 is a tool for extracting C++ programs for verification with Coq. hs-to-coq57 [25] provides
similar functionality for Haskell.

9 Analysis and Summary

9.1 Strengths

Software assurance tooling is improving in many places. For example, dependency analysis is now
built into tools such as GitHub, making automation as part of a commit a trivial step. Grey-
box fuzz testing and symbolic execution (and their combination) have both made amazing strides

37ACL2: http://www.cs.utexas.edu/users/moore/acl2
38Agda: https://wiki.portal.chalmers.se/agda/
39Coq: https://coq.inria.fr/
40CVC5: https://cvc5.github.io
41HOL Light: https://www.cl.cam.ac.uk/~jrh13/hol-light/
42Isabelle: https://leanprover.github.io
43Lean: https://leanprover.github.io
44Boogie: https://github.com/boogie-org/boogie
45Dafny: https://github.com/dafny-lang/dafny
46VCC: https://github.com/microsoft/vcc
47SMACK: https://smackers.github.io
48SAW: https://saw.galois.com
49Frama-C/WP: https://frama-c.com/fc-plugins/wp.html
50OpenJML: https://www.openjml.org
51Souffle: https://souffle-lang.github.io
52Liquid Haskell: https://ucsd-progsys.github.io/liquidhaskell-blog/
53https://flint.cs.yale.edu/flint/publications/dscal.html
54RefinedC: https://plv.mpi-sws.org/refinedc/
55Verified Software Toolchain: https://vst.cs.princeton.edu
56BriCk: https://github.com/bedrocksystems/BRiCk
57hs-to-coq: https://hs-to-coq.readthedocs.io/en/latest/
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forward, both in terms of algorithmic improvements, as well as overall capability improvements
due to processing power and memory. Perhaps most importantly, Rust has emerged as a type and
memory safe language, and thus when used without its “unsafe” abilities provides proven security
properties to developers.

At the most rigorous end of the spectrum, numerous success stories for formal verification
also show its value. Among the systems deployed in practice include AWS LibCrypto (continuous
formal verification of cryptographic primitives), AWS’s s2n-tls (formally verified TLS implemen-
tation), Google’s BoringSSL (formally verified elements of SSL implementation), Google’s Open-
Titan (formally verified cryptographic hardware elements of silicon root of trust), and Microsoft’s
Project Everest (formally verified communication protocols, including the EverCrypt formally ver-
ified cryptographic library and the EverParse generator for verified parsers and serializers). The
demonstrated success of the seL4 formally verified separation kernel in the HACMS competitions
is also reaching near-term planned deployment by Apple, NASA, and Sandia, among others. These
demonstrations are of significant importance to the community: verified SSL/TLS libraries means
never having a “heartbleed” vulnerability again, and in general, verified software means actually
knowing what your software does and doesn’t do. Further, as AWS has demonstrated, formal
verification lowers the cost of maintenance over time.

9.2 Weaknesses

The ideal software assurance tools are sound (no false positives) and complete (no false negatives)
for a rich and expressive set of functional and security properties, with minimal manual additional
work by developers beyond existing development approaches. To this end, in an ideal world,
perhaps software engineers would write specifications and programs in Coq and prove them correct
all in one environment. However, most software engineers will never write functional or security
specifications at all let alone ones in Coq, or do formal proofs. Nor are software engineers typically
even realistically going to program in functional languages that would make proving easier. On
the other hand, this will leave a gap, because the tools that will remain available to software
engineers are unlikely to support developing software – particularly certain low-level software, such
as compilers, drivers, and other operating system elements, that carry with them extremely intricate
requirements relating to memory, typing, interaction with hardware, etc...

Even among the tools providing the lowest level of assurance such as static analyzers, unless
such tools are used from the outset, they will continue to give so many false positives that they will
be seen as a burden rather than an asset.

Thus our current reality is that of having many gaps. If we are to continue to make progress
in software assurance, then surely the future is programming languages that have safety properties
(like type and memory safety) by design; programming languages that make it easier to prove
functional and security correctness, such as contract languages that make sense to programmers
and support automation, even in the face of expressive specifications; and robust tools for those
languages and others that support lifting models from source code as well as extracting code from
higher-order logic back to code. This latter point is key. For example, Rust provides type and
memory safe properties out of the box as long as “unsafe” elements are not used, but on the other
hand very little tooling around verification has been built for Rust, nor verified compilers. In
contrast C, has the downside of being unsafe out of the box, but has a robust set of tooling around
it. Of course, that tooling must be properly used to be effective.
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9.3 Opportunities

In many ways the biggest challenge to software assurance tools isn’t that there is a technical gap
but that there is a social gap in using them at all. This social gap is unsurprising in the event that a
developer first runs such tools after several weeks, months, or years of development work only to see
hundreds or thousands of issues — many of which end up being false positives — flagged. At that
point, the developer just switches off. The right way to use tools is to do so from the beginning. To
help support this, significantly improved integration of these tools in existing development pipelines
is important.

In addition, there is certainly a range of assurance provided by various tools, with, understand-
ably, the lowest level of assurance provided by the tools that are easiest to use. A superb illustration
of the spectrum of tool classes and the strength of guarantee they provide vs. the level of user ef-
fort and scalability required appears in Fisher, Launchbury, and Richards’ article reflecting on the
DARPA HACMS program [26]. As further pointed out by Fisher et al:

“There are a whole range of different kinds of formal methods, as shown in the no-
tional graph ..., including type systems, model checkers, sound static analysers, verified
runtime monitoring, automatic theorem provers and interactive proof assistants. The
horizontal axis of the graph shows how much effort is required to use a particular tool,
with automatic techniques that can scale to as much code as we can write on the left and
labour-intensive tools that require PhD-level expertise and currently scale to programs
on the order of 100K lines on the right. The vertical axis shows the strength of the
guarantees, ranging from simple type safety properties at the bottom to full functional
correctness at the top. Not surprisingly, the most scalable techniques (type systems)
provide the weakest guarantees, and the most labour-intensive techniques provide the
strongest (interactive proof assistants).

...
“There is a continuum of formal-method techniques, however. Tools requiring lower

levels of effort can be useful to a much broader audience. For example, Facebook has
built and deployed INFER, which is a sound static analyser. INFER can process millions
of lines of code and thousands of diffs per day. It requires 4 h to analyse the complete
Facebook Android/iOS code base. More importantly, it takes less than 10 mins to
process a single diff, which allows the tool to be integrated into the standard Facebook
development process. When developers try to check in modifications, INFER runs and
the developers are required to address any issues INFER finds before they can complete
their check-in, which ensures that certain kinds of bugs never enter the production code
base. In exchange for this speed, the properties that INFER proves are relatively weak:
only the absence of null pointer exceptions and resource leaks.” [26]

Fisher et al’s point that if something can be automatically identified before it is checked in, the
chances that it will be fixed increase dramatically. Thankfully languages like Rust and tools like
INFER now exist to provide this technique, and their impact on memory errors by its users are
therefore tremendous. The opportunity is to increase the use of these approaches more broadly,
and to increase their capabilities to minimize other errors.

Deep specification is essential [27] and more is needed [28]. To put it simply:

“Formal methods are the only reliable way to achieve security and privacy in computer
systems. Formal methods, by modeling computer systems and adversaries, can prove
that a system is immune to entire classes of attacks (provided the assumptions of the
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models are satisfied). By ruling out entire classes of potential attacks, formal methods
offer an alternative to the ‘cat and mouse’ game between adversaries and defenders of
computer systems.” [29]

To address the gap in enabling formal verification at scale, we must advance the state of the
art of both low-level proof assistants (libraries, interfaces) to help scale the abilities of developers
of proof libraries.

Adding formal methods to most systems likely will require “bringing formal methods to where
the engineers are.” [30] In the near/medium term, this probably means proving simpler properties
via adding “contract” annotations to imperative languages rather than anything that looks like
writing in higher-order logic.

Or consider the use of safer programming languages:

“When you are programming in Rust you are essentially proving the absence of memory
corruption in a type system (assuming you’re not using ”unsafe” regions)”58

Thus we must help software engineers write specifications more easily and write programs that
are more easily verified. We need easy-to-use languages to for programmers to write annotations
and mechanisms to extract those annotations from existing C/C++/Rust code into formal specifi-
cations usable by proof assistants We need formally verified mechanisms (e.g., Certified Abstraction
Layers, Refined C, SAW, BriCk, and Verified Software Toolchain) to extract existing C++ or Rust
code into models usable by proof assistants. And we need improved support for writing models and
specifications in easy-to-read logical languages (TLA+2, Alloy), domain-specific languages (Cryp-
tol/cryptography, Sail/hardware) and domain-specific modeling languages (Simulink/stateflow), or
C-like languages (PlusCal, Dafny, Frama-C, OpenJML, Bedrock2 [31, 32]) that are easily verified
in a theorem prover.

On the other hand, at the other end of the spectrum, it is essential that we advance the state
of the art of tools and languages that in reality, software engineers will write with that help enable
formal specification and verification at scale. This will likely require focus on imperative languages
— typically “reduced” versions of languages that can be more easily verified, may also leverage
contract annotations (aka design-by-contract) to derive specifications. Of course, there will be
situations where software engineers are not involved in writing specifications at all, and a method
for extracting program logic from existing code and marrying that with specifications written by a
proof engineer are likely also necessary.

To address this, we must help proof engineers prove correctness more easily, or reduce the
need for proof engineers. To achieve this, we need continued enhancement to proof assistant
tooling (beyond CoqIDE, emacs, and limited VSCode support), continued enhancement to proof
automation (e.g., via better annotation and programming language design that enables extraction
of specifications and models), and a substantially enhanced set of proof libraries to improve proving
automation.

At the same time, numerous open research questions exist: How “expressible” do languages
used for formal specifications need to be, with SPARK/Ada on one end, for example, and Coq on
the other? What’s in the middle and how close to one end or the other do many developers need
to be? What are the consequences for formal specification expressibility, execution performance,
TCB complexity/size, and manual proving effort required for translating models from C/Rust
and extracting specifications from annotated C/Rust code vs. re-implementing in Bedrock? How

58AWS Blog: “A gentle introduction to automated reasoning” - https://www.amazon.science/blog/

a-gentle-introduction-to-automated-reasoning
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much easier is formal verification of Rust code than C code since memory issues with pointers
don’t need to be addressed? How can programming languages be designed to make proving easier
by automatically removing large classes of problems like Rust (memory safety), Ada/SPARK, or
OCaml/Haskell (already functional)? What are the UI/UX implications for software engineers of
learning a C-like language built on HOL (Bedrock, PlusCal) vs. (heavily) annotating C/C++/Rust
code? How can we improve tooling to make it more accessible to specify and verify systems spanning
hardware, architecture, and software?

We also have some simple engineering that needs to happen, including C/C++ to Rust con-
version (converts what it can automatically), a “Rust 2.0” that is easier to develop in and doesn’t
include “unsafe” features, a Rust runtime that is rewritten in Rust, and a vastly expanded set of
useful Rust libraries.

We note in passing that software assurance is not the only way to gain safety from software bugs.
Hardware also can have a significant role. Microsoft estimates leveraging CHERI [33, 34, 35] for
spatial and temporal memory safety would have deterministically prevented 70% of bugs submitted
to the MSRC in 2019.59 Trusted execution environments or confidential computing can also provide
software isolation [36, 37, 38].

9.4 Threats

Software assurance tools can make securing software easier but exploit tools make finding exploitable
bugs easier. If we don’t find a better way to develop secure software faster than attackers can develop
tools to find exploits, attackers will continue to have the edge. The threat is that complacency for
developing the right tools and adopting those tools will enable adversaries to have that edge.

The technologies that would protect our computing infrastructure are generally not presentin
that infrastructure. It is a fantasty to think that our existing and incremental approaches will
protect us – they are grounded in unsafe properties. Indeed, existing technologies are hopeless —
they fail to provide adequate security properties and/or are impossible to secure.

We note that over time, the threat of unsafe software to the United States will continue to
grow. In addition to technical development, procurement is an additional area that needs to be
addressed. This could begin on the government side, including requiring type-safe languages and
formal methods.
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