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Generative Machine Learning for Detector Response
Modeling with a Conditional Normalizing Flow
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Abstract: In this paper, we explore the potential of generative machine learning models as an alter-
native to the computationally expensive Monte Carlo (MC) simulations commonly used by the Large
Hadron Collider (LHC) experiments. Our objective is to develop a generative model capable of effi-
ciently simulating detector responses for specific particle observables, focusing on the correlations
between detector responses of different particles in the same event and accommodating asymmetric
detector responses. We present a conditional normalizing flow model (CNF ) based on a chain
of Masked Autoregressive Flows, which effectively incorporates conditional variables and models
high-dimensional density distributions. We assess the performance of the CNF model using a sim-
ulated sample of Higgs boson decaying to diphoton events at the LHC. We create reconstruction-level
observables using a smearing technique. We show that conditional normalizing flows can accurately
model complex detector responses and their correlation. This method can potentially reduce the
computational burden associated with generating large numbers of simulated events while ensuring
that the generated events meet the requirements for data analyses. We make our code available at
https://github.com/allixu/normalizing_flow_for_detector_response
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1 Introduction

The Monte Carlo (MC) simulation frameworks utilized by the Large Hadron Collider (LHC) exper-
iments [1–3] play a crucial role in the success of its physics program, which probes physics beyond
the Standard Model through precision measurements and direct searches. These MC simulation
frameworks have been extensively tuned to model particle collisions and detector effects. In general,
a simulation framework used by an LHC experiment is a chain of multiple components, including
event generation, detector simulation, and event reconstruction. Each of these components may
be further factorized into more focused tasks, which are primarily first-principle based, simulating
the physics process or detector response according to our best theoretical and phenomenological
knowledge of the collision process and detector material, respectively. However, the simulation of
MC samples, especially the modeling of detector response, is computationally expensive. As the
LHC continues to operate successfully, particularly with its upcoming high luminosity program,
existing simulation schemes face difficulties in meeting the computational demands that come with
the significant increase in integrated luminosity.

The application of generative machine learning as a surrogate for certain aspects or the entirety
of the Monte Carlo (MC) simulation utilized at the LHC is a promising solution actively being
investigated by the high energy physics community. A significant area of development is the use of
generative machine learning to model particle shower development in detectors [4–11]. Recently,
the ATLAS experiment at the LHC has incorporated a Generative Adversarial Networks (GAN)
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based fast calorimeter shower simulation into its fast detector simulation framework [12]. Another
active area of investigation is the use of generative machine learning to model the collision, parton
showering, hadronization, and jet formation processes [13–19]. In terms of choice of machine
learning architecture, Ref.s [4, 5, 12, 13, 16, 17, 19, 20] utilized Generative Adversarial Networks
(GAN), Ref.s [7, 8] adopted autoencoders, Ref.s [9, 10, 18, 21, 22] exploited normalizing flows,
and Ref. [11] explored diffusion models. More detailed reviews of the state of the art of generative
machine learning for particle physics can be found in Ref.s [23, 24].

In this paper, we target a different use case of generative machine learning. Many data analyses,
targeting specific signatures, often do not need the detailed information of the collision final state
produced from the full simulation framework. For example, in ATLAS 𝐻 → 𝛾𝛾 and 𝐻 → 𝜇𝜇

measurements, high-statistics background samples are generated for background modeling, and the
equivalent integrated luminosity of these samples can be as large as 30 ab−1 [25, 26]. In addition, as
the Higgs boson measurements enter a precision phase, many analyses would require the simulation
of a large number of signal samples with alternative physics parameters such as those defined in the
Standard Model effective field theory, which is used in interpreting the observed results. Deploying
the full simulation chain that uses GEANT4 package [27] to simulate detailed interactions between
particles and detector materials is often unnecessarily inefficient and in some cases unrealistic, for
such tasks.

A generative machine learning model that inputs generator-level particle variables and generates
the detector responses for specified particle observables is all we need for this kind of analysis
use case. We identified the following design objectives: the model should learn the detector
response to a given observable as a function of conditional variables; the model should learn the
correlation between detector responses of different particles in the same event; and the model
should learn asymmetric detector response, which is commonplace in particle detection. Some
recent works [28] explored similar objectives using generative models incorporating novel attention
mechanisms. In our work, we designed a conditional normalizing flow model (CNF ) to achieve
these objectives. The CNF model is based on a chain of Masked Autoregressive Flows [29],
which combines the advantages from the normalizing flow [30] and the autoregressive density
estimation [31]. The CNF model can naturally include conditional variables and model high
dimensional density distributions. This work parallels that of Ref. [22] in utilizing an invertible
normalizing flow architecture; however, our objectives differ. While this study focuses on generating
detector responses, Ref. [22] aims to unfold detector-level observables back to the parton-level
scattering amplitude. Compared to fast simulation approaches based on smearing techniques, such
as those used in DELPHES [32], the generative machine learning approach offers a straightforward
method for modeling complex detector responses. This is particularly useful when the response
shapes cannot be easily described by analytical functions or when there are correlations between
detector responses.

We characterized the performance of the CNF model using a simulated sample of Higgs
boson decaying to diphoton (𝐻 → 𝛾𝛾) events at the LHC. For this sample, we engineered various
physics-motivated detector response scenarios and created reconstruction-level observables using a
smearing technique similar to that adopted by the fast detector simulation package DELPHES [32].
This paper is organized as follows: Section 2 reviews conditional normalizing flows; Section 3
describes the event generation and the smearing technique used to introduce experimental effects;
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Section 4 presents the architecture and training configuration of our conditional normalizing flows
model in more detail, and Section 5 shows the performance of the CNF tool in various scenarios;
Section 6 summarizes the findings and discusses potential applications and extensions of this tool
as well as interesting future directions. Section 7 concludes the paper.

2 Conditional Normalizing Flows

A normalizing flow is a technique that transforms a simple base density distribution 𝜋(®𝑧) to a
more complex target density distribution 𝑝(®𝑥) using a bĳective, differentiable function known as
a bĳection ®𝑥 = 𝑓 (®𝑧). In an application of the normalizing flow, the ®𝑥 would be features to learn
and generate, while ®𝑧 are random variables generated by a base density distribution. A normalizing
flow often uses a chain of bĳections to construct the final bĳection, which allows the modeling
of complex target distributions. To make the normalizing flow learnable and computationally
efficient, a bĳection is often chosen to be a simple function and the coefficients of the function
are parameterized by neural networks, often by the MultiLayer Perceptrons (MLPs). Applying the
change of variables method, as described in Equation 2 , a normalizing flow can estimate the target
density distribution with the input vector ®𝑥. The learnable weights in the neural network ®𝑤 are
then optimized by minimizing the negative log-likelihood function L( ®𝑤 | ®𝑥) = −E𝑥 [log 𝑝𝑤 (®𝑥)]. A
normalizing flow can be extended to a conditional normalizing flow by concatenating the conditional
vector ®𝑐 with the input vector ®𝑥 and using the combined vector to estimate the target density
distribution.

𝑝(®𝑥) = 𝜋(®𝑧) | det 𝐽 𝑓 (®𝑧) |−1 = 𝜋( 𝑓 −1(®𝑥)) | det 𝐽 𝑓 −1 (®𝑥) | (2.1)
where 𝐽 𝑓 (®𝑧) is the Jacobian matrix of the function 𝑓 with respect to ®𝑧

Our CNF implementation was based on a type of normalizing flows, known as the Masked
Autoregressive Flows (MAF). In MAF, the bĳection transforms the base density distribution by
sequentially transforming each dimension based on the previously transformed dimensions. This
autoregressive feature transforms depending on the ordering of the input vector and is slow for
sampling. To minimize the ordering effect, we added a permutation bĳection to each MAF.

In this work, we achieve the generation of detector responses that vary as functions of particle
kinematics and event conditions with a conditional normalizing flow model. The target density
distribution 𝑝(®𝑥) is a multidimensional distribution that describes the detector responses of particle
kinematic observables 𝑋 and their correlation. The conditional vector comprises particle kinematics
and event variables on which target detector responses depend.

3 Data Samples

3.1 Event Generation

This study simulated the Higgs boson production in 𝑝𝑝 collisions at
√
𝑠 = 13 TeV. The Higgs boson

subsequently decays into a pair of photons. The events were generated by the Madgraph@NLO
(v2.3.7) [33] at next-to-leading order (NLO) accuracy in QCD. The Higgs boson decay, and the
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parton showering and hadronization processes, were implemented by Pythia 8.235 [34] with the
CTEQ6L1 parton distribution function set [35]. A total of seven million events were generated. For
the study, events were required to have at least two photons, each of which should have a transverse
energy (𝐸T) greater than 20 GeV and an absolute value of pseudorapidity (𝜂) of less than 2.5.

3.2 Detector Response

For a collider observable 𝑋 , we express its reconstructed value, 𝑋reco, as the sum of its true
value, 𝑋true, and a term, Δ𝑋, resulting from the experimental effects in the particle detection and
reconstruction: 𝑋reco = 𝑋true + Δ𝑋. In this study, we define Δ𝑋 as a random variable representing
the detector response of observable 𝑋 . For an ensemble of 𝑋 measurements, the distribution of
its detector response Δ𝑋 can be modeled by a location-scale family probability density function,
𝑓 (Δ𝑋, 𝜇(𝜃), 𝜎(𝜃)), where 𝜇 and 𝜎 are the location and scale of the function and 𝜃 denotes the
dependencies of 𝜇 and 𝜎.

In lieu of a detector simulation, we can create a proxy of 𝑋reco for a given 𝑋true by randomly
sampling the detector response function 𝑓 (Δ𝑋, 𝜇, 𝜎) and deriving 𝑋reco from 𝑋true + Δ𝑋. We used
this technique to create detector response and reconstruction-level observables that are considered
as targets for the CNF model.

3.3 Experimental Effects in Photon Detection and Reconstruction

Collider experiments measure photons with an electromagnetic calorimeter (ECAL). For example,
the ECAL at the ATLAS experiment is a LAr sampling calorimeter that uses lead/stainless steel
as absorbing material and liquid Argon as sampling material [36]; the CMS experiment has a
homogeneous ECAL constructed with Lead-Tungstate crystals [37]. The two experiments, adopt-
ing complementary calorimeter technologies, achieve similar photon detection and reconstruction
performances. Both used the Crystal Ball or double-sided Crystal Ball functions to model the
detector response of photon energy measurements [38, 39]. Such functions include a Gaussian
function to model the core part of the detector response distribution, and power-law functions to
model the tails. Various instrumentation effects, such as photon conversions in materials upstream
of the calorimeter, the presence of inactive materials in the calorimeter, energy leakage, etc., can
introduce a small low energy tail in the energy detector response distribution. For other observables
such as the pseudo rapidity 𝜂 and azimuthal angle 𝜙, the detector response may be modeled by a
Gaussian function.

At the LHC experiments, multiple proton collisions occur during the same bunch crossing,
and this phenomenon is known as pile up. The extent of pile up is quantified by the average
number of proton interactions per bunch crossing, 𝜇, which has a mean value greater than 30 for
the 2017-2018 data-taking periods of ATLAS and CMS experiments [40, 41]. Contributions from
pile-up collisions deteriorate the measurements of particles arising from the primary collision. As
a result, the detector response also depends on 𝜇.

The correlation between measurements of various particles within the same collision event also
needs to be considered. For instance, when determining the photon pseudo-rapidity, the collision
event primary vertex is used as the photon origin, leading to correlations in the pseudo-rapidity
measurements of photons in the same event. The use of pile-up suppression techniques in collider
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experiments also results in correlations between measurements of different photons, because both
measurements receive corrections related to the global energy density of the same collision event.

For an LHC experiment, the reconstruction efficiency of an electromagnetic shower is typically
beyond 99% [42]. In data analysis, additional requirements such as photon identification and
isolation criteria may be further introduced. The selection efficiency of photons is dependent on
its transverse energy and pseudorapidity. As a proof of principle, we do not consider the photon
selection efficiency as part of the detector response model. Nonetheless, one could extend the study
to incorporate effects of photon identification and isolation criteria.

3.4 Parameterization

In this study, we consider the following photon observables: the transverse energy (𝐸T), the energy
projection to the plane perpendicular to the beam axis, the pseudorapidity (𝜂), and the azimuthal
angle (𝜙). Given these observables for each of the two photons in an 𝐻 → 𝛾𝛾 event, we can
reconstruct the four momentum of the diphoton system, which is a proxy for the Higgs boson.

Resolutions of these photon observables vary as a function of its truth-level transverse energy
and pseudo-rapidity and the event pile-up 𝜇. Specifically, for each photon observable, the photon
resolution dependencies are parameterized as follows:

𝑅𝐸T (𝐸T,true, 𝜂true, 𝜇) = 1.5 × 𝑅𝐸T (𝐸T,true) · 𝑅𝐸T (𝜂true) · 𝑅𝐸T (𝜇) (3.1)
𝑅𝜂 (𝐸T,true, 𝜂true, 𝜇) = 0.0005 × 𝑅𝜂 (𝐸T,true) · 𝑅𝜂 (𝜂true) · 𝑅𝜂 (𝜇) (3.2)
𝑅𝜙 (𝐸T,true, 𝜂true, 𝜇) = 0.0003 × 𝑅𝜙 (𝐸T,true) · 𝑅𝜙 (𝜂true) · 𝑅𝜙 (𝜇) (3.3)

where the resolution’s dependencies are modeled separately by fourth-order polynomials 𝑅𝑋 (𝜃)
where 𝑋 represents a photon observable, and 𝜃 are truth-level variables on which photon resolutions
depend. The constants in the resolution functions are roughly corresponding to the best resolution
values in the parameterization, which are chosen to be compatible with numbers published by the
ATLAS experiment [38]. The polynomial parameterization is given in the Appendix. Figure 2
shows the resolution of measurements of photon kinematic observables 𝐸T, 𝜂, and 𝜙, as functions
of true values of photon 𝐸T and 𝜂, as well as pile-up 𝜇.

3.5 Scenarios

We test three different detector response scenarios, which differ in their definitions of the detector
response function and the scheme for correlating detector responses between photons. These
scenarios are detailed as follows:

Baseline The photon detector response function 𝑓𝑋 (Δ𝑋, 𝜇(𝜃), 𝜎(𝜃)) is a normal distribution with
a mean of zero and width of 𝑅𝑋 (𝐸T, 𝜂, 𝜇). The use of a normal distribution to model the detector
response is a simplification in the case of the energy detector response, where a small asymmetry
towards lower energy is present due to various instrumentation effects. For each of the two photons
in the event, its detector response Δ𝑋 was sampled from this normal distribution with true values of
photon 𝐸T, 𝜂, and the event 𝜇 as input. The event 𝜇, shared by two photons, was randomly sampled
from a uniform distribution between 0 and 40. In the baseline scenario, the detector responses are
independent between photons and are normally distributed.
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Correlation We generated detector responses for the two photons in a correlated manner. For a
given observable 𝑋 , we used the procedure described in the baseline scenario to create independent
detector responses for the two photons (denoted as Δ𝑋,1 and Δ𝑋,2 respectively). The ordering of the
photon is not critical, and we choose to order photons by their transverse energies. To introduce a
correlation between the detector responses of two photons, we redefined the detector response for
the second photon as follows:

Δredefined
𝑋,2 = 𝜌2Δ𝑋,1 +

√︃
1 − 𝜌2Δ𝑋,2 (3.4)

where the parameter 𝜌 controls the correlation. This parameterization does not aim to replicate
any physical correlation scenario between the two photon detector responses. Instead, its purpose
is to introduce a controlled correlation in the detector responses, thereby testing the performance
of the normalizing flow method. To validate whether our generative model accurately captured the
correlation, we created two target samples of events, setting the correlation parameter 𝜌 to either
1.0 or 0.5.

Asymmetric detector response Due to instrumentation effects, the detector response distribution
could be asymmetric, e.g., the ATLAS and CMS experiments use Crystal Ball or double-sided
Crystal Ball functions to model their energy detector response. To emulate this behavior in a
simplified approach, we define the detector response function as a linear combination of two normal
distributions. The core of this detector response function is identical to the normal distribution
defined in the baseline scenario.The tail is modeled as a normal distribution with a broader width
and a mean that is shifted downwards relative to the central normal distribution’s mean. Specifically,
the width of the tail distribution is three times that of the central distribution, and its mean is lower
by three standard deviations from the mean of the central distribution. These core and tail normal
distributions are combined with respective weights of 84% and 16%. These asymmetric detector
response functions are shown in Figure 6. The detector responses are drawn independently between
two photons.

4 Model Architecture

In this work, a CNF model is trained to learn the transformation that maps a multi-dimensional
normal base density distribution onto a target vector ®𝑥. This target vector comprises the detector
responses of six photon kinematic variables, namely, the 𝐸T, 𝜂, and 𝜙 for each of the two photons,
making the base density distribution six-dimensional. The conditional vector ®𝑐 provided to the
CNF model includes the pileup condition 𝜇 and the particle-level kinematic variables 𝑋true, where
𝑋 ∈ {𝐸𝛾1

T , 𝐸
𝛾2
T , 𝜂𝛾1, 𝜂𝛾2}. Superscripts 𝛾1 and 𝛾2 denote the two distinct photons. The azimuthal

angle 𝜙 is excluded from the conditional input, as collider detectors like ATLAS and CMS exhibit
symmetry in 𝜙, resulting in uniform performance in that dimension.

In the inference step, the CNF model transforms the six-dimensional base density distribution
into the six-dimensional distribution of the target ®𝑥. The features used as conditional inputs, along
with those constituting the target ®𝑥, are summarized in Table 1.
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Conditional Features Target Features
𝐸
𝛾1
T , 𝐸𝛾2

T Δ
𝐸

𝛾1
T
,Δ

𝐸
𝛾2
T

𝜂𝛾1, 𝜂𝛾2 Δ𝜂𝛾1 ,Δ𝜂𝛾2

pile-up 𝜇 Δ𝜙𝛾1 ,Δ𝜙𝛾2

Table 1. A summary of the conditional features, and input and output features of the model.

The target detector responses of the photon 𝐸T, 𝜂, and 𝜙 are scaled to be within [−1, 1].
Accordingly, a tanh bĳection is added as the last bĳection in the CNF to ensure the output detector
responses are also within [−1, 1]. Events that render an absolute value of the scaled detector
response above one were discarded in the study. The fraction of rejected events is negligible for the
baseline scenario and the correlation scenario, and it is about 8% in the asymmetric detector effect
scenario. The data sample was split into 80% for training, 10% for validation, and 10% for testing.
The validation sample was used to tune the hyperparameters of the model, and the testing sample
was used to study the performance of the CNF model.

The hyperparameters of the CNF are described as follows. First, the base density distribution,
𝜋(®𝑧), is chosen to be a multivariate normal distribution, motivated by the overall similarity between
detector response distributions and normal distributions. Second, the MLPs inside each MAF
module consist of two layers of dense networks with a layer size of 128 and a ReLU activation
function [43]. When we increased the layer size or the number of layers by a factor of two, no
significant improvement was observed. Third, we used ten bĳection blocks as a result of a trade-off
between computational expense and model complexity. Increasing the number of bĳection blocks
to 20 did not result in any performance improvement compared to the nominal setup of ten bĳection
blocks. The model might have gained additional improvement if additional training epochs were
pursued. Fourth, instead of using a constant learning rate, we employed the Adam [44] optimizer
with a learning rate scheduler that decays the learning rate from 10−3 to 10−5 following a power-law
distribution; doing so smoothed the training loss distribution and boosted the performance.

All models were trained with 500 epochs and the best model is chosen for testing. We chose
to use the “Wasserstein Distance” (𝑊𝐷) [45], a measure of the distance between two probability
distributions, to monitor the model performance during the course of training. The 𝑊𝐷 for a
given variable is evaluated between its target and generated distributions. We define the mean
Wasserstein Distance, 𝑊𝐷, as the arithmetic mean of the 𝑊𝐷 values for the six photon detector
response variables. After each epoch, the 𝑊𝐷 is evaluated using the validation sample. Figure 1
shows the𝑊𝐷 for each epoch and the minimum𝑊𝐷 up to that epoch, as evaluated on the validation
sample. The model that yields the minimum 𝑊𝐷 is selected for our study.

5 Results

For each scenario outlined in Sec. 3.5, we trained a separate CNF model. We then applied
the trained model to the test samples and computed reconstruction-level photon kinematic vari-
ables using generated detector responses. The sample where the reconstruction-level variables are
created from the smearing technique is referred to as the target sample, and the sample where the
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Figure 1. The mean Wasserstein Distance (orange) and the minimum Wasserstein distance (blue) as a
function of the training epochs for the baseline scenario. These quantities were evaluated on the validation
sample.

reconstruction-level variables are calculated from the CNF generated detector responses is referred
to as the CNF sample.

Baseline scenario To quantify the extent in which the CNF learns the detector response accu-
rately, we calculated the detector resolutions of photons as a function of photon four momenta at the
particle level. The detector resolution is defined as the width of the core of the detector response
distribution, Δ𝑋. Figure 2 shows a good agreement between the target detector resolutions and the
CNF learned ones as functions of photon 𝐸T and 𝜂 and event 𝜇. The largest discrepancy is less
than 5%. Figure 3 shows the comparison of the target and learned distributions for photon 𝐸T, 𝜂,
and 𝜙 at the detector level. A good agreement is observed in all distributions. In regions where the
statistics of simulated events are low, such as the high 𝐸T region, the performance of CNF would
benefit from more simulation events in future studies.

We also calculated the invariant mass and transverse momentum of the diphoton system using
the target sample and the CNF sample. Figure 4 shows the comparison of their distributions.
The mean and standard deviation values in the diphoton invariant mass distribution from the CNF
sample are in agreement with those from the target sample within the statistical precision. For
the diphoton transverse momentum distribution, an agreement between the target and the CNF
samples is seen across the full range.
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Figure 2. Target and generated photon resolutions 𝜎 for photon kinematic variables 𝐸T, 𝜂, and 𝜙. The
resolutions are shown as functions of the true values of photon 𝐸T and 𝜂, and the event pile-up 𝜇. The
blue (orange) entries represent the target (generated) quantities. The target resolutions corresponding to the
baseline parameterization presented in Section 3.4.
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Figure 3. Normalized distributions of photon kinematic variables for the target (blue) and generated (orange)
samples. The last bin in the 𝐸T distribution contains the overflow entries.
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Figure 4. Comparison of the detector-level invariant mass, 𝑚𝛾𝛾 , and transverse momentum of the diphoton
system between the target distribution and the CNF -generated distribution. The two spikes at the edges
of the diphoton invariant mass distribution arise from the inclusion of overflow and underflow entries. The
mean and the standard deviation (SD) of the invariant mass distribution are calculated in the mass range of
[120, 130] GeV.

Correlation scenario Two sets of target samples were generated, with the correlation parameter
𝜌 set to 0.5 and 1.0. The CNF model was trained separately for these two samples. Detector
responses were generated for the six measurements in the event. Their correlation matrix is shown
in Figure 5 using 𝜌 = 0.5 sample. The built-in correlation of 𝜌 = 0.5 was accurately reproduced.
The same performance was also achieved in the case of 𝜌 = 1.0. These tests indicate that the CNF
model can accurately reproduce the correlations between the two photons that were built into the
measurements.
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Figure 5. Correlation map of the kinematic resolution of the leading and sub-leading photons for a correlation
coefficient of 𝜌 = 0.5. Similar performance is observed for the 𝜌 = 1.0. In the target correlation map, all
off-diagonal entries except those designed to be 50% correlated are zeros.
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Figure 6. Distributions of detector responses for photon kinematic variables 𝐸T, 𝜂, and 𝜙 are shown for the
target sample (blue) and the generated sample (orange), in the asymmetric detector effect scenario.

Asymmetric detector responses scenario Figure 6 shows the target and generated detector re-
sponse distributions. The asymmetric tails in various detector response distributions are reproduced
by the CNF model.

6 Discussion

The studies presented here demonstrate the potential of using normalizing flow-based generative
machine learning to model detector responses. In the baseline scenario, we have shown that
complex dependencies of detector response on multiple variables can be effectively learned by the
CNF model. The correlation and asymmetric detector response scenarios further illustrate the
relative advantages of the generative approach compared to smearing-based techniques. Existing
smearing-based techniques tend to fall short when dependencies of the detector response on other
variables cannot be parameterized analytically or when such parameterization is not straightforward.
Moreover, the smearing approach becomes more complex when modeling asymmetric or other
irregular detector responses.

For future work, it would be interesting to explore how the performance of the CNF model
depends on the implementation of normalizing flows, the choice of base density function, and
the model’s hyperparameters. For instance, starting with a base density distribution inspired by
a known simulation sample, where the detector response already bears some similarities to the
target response, might expedite the training process and potentially enhance the CNF model’s
performance.

The CNF model can be extended to cover other types of detector responses. For instance,
in this work, we did not account for the selection efficiency of photons, which is influenced by the
application of identification and isolation criteria. These criteria are dependent on the photon’s
transverse energy, pseudo-rapidity, and event pile-up (𝜇). The outcome of the photon identification
and isolation selection process can be modeled as a binary random variable with values of 0 and 1,
where the mean corresponds to the selection efficiency.

Generally, collision events comprise various particle types, each with distinct detector re-
sponses, and their multiplicities can also differ between events. Our model is versatile and can be
adapted to create detector responses for events containing a larger number and diversity of particles.
For instance, one can expand the model’s output to produce detector responses for more than two
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particles simultaneously or apply this model to generate detector responses for a single particle,
then sequentially apply it to particle types within the same event.

Given that one of the goals of the generative machine learning method for detector response
modeling is to expedite the simulation process, a comparison with other solutions featuring dif-
ferent technical implementations, such as the one in Ref. [28], would be beneficial. Additionally,
examining various types of detector responses and different correlation scenarios between particles
in the final state could provide insight into the strengths and weaknesses of different architectures.

7 Conclusions

In this study, we have explored the use of generative machine learning, specifically a conditional
normalizing flow model (CNF ), as a viable alternative to traditional Monte Carlo simulations
for modeling detector responses in LHC experiments. Our CNF model, leveraging the Masked
Autoregressive Flows, has demonstrated its effectiveness in capturing complex dependencies and
correlations in detector responses, as well as managing asymmetric response scenarios.

Our results indicate that the CNF model can accurately simulate detector responses for various
particle observables, significantly reducing the computational load compared to conventional simu-
lation techniques. This is particularly noteworthy in scenarios where traditional smearing techniques
are inadequate, such as in situations with complex dependencies or asymmetric responses.

Appendix

The variation of the resolution is parameterized as 𝑅𝑋 (𝑥) =
∑

𝑖 𝑝𝑖 𝑥
𝑖

C , where 𝑋 is the measured
quantity, 𝑥 is the variable on which the resolution depends, 𝑝𝑖 is the coefficient of the polynomial,
and C is a normalization constant. These parameter values are given in Table 2.

Table 2. Values of 𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, C .
𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 C

R𝐸T (𝐸T) 1.81 -0.56 0.28 -0.044 0.0024 1.46
R𝐸T (𝜂) 1.74 1.04 -0.59 0.10 -0.0057 1.64
R𝐸T (𝜇) 1.74 0.058 0.0041 -0.0031 0.00031 1.74
R𝜂 (𝐸T) 0.00048 -6.7e-5 1.5e-5 -1.7e-6 7.8e-8 0.00032
R𝜂 (𝜂) 0.00066 -0.00023 5.5e-5 -6.3e-6 3.3e-7 0.00030
R𝜂 (𝜇) 0.00033 2.5e-5 -9.7e-6 2.0e-6 -1.5e-7 0.00033

R𝜙 (𝐸T) 0.0014 -0.00021 1.0e-5 1.6e-6 -1.6e-7 0.00054
R𝜙 (𝜂) 0.00091 0.00025 -0.00016 3.0e-5 -1.6e-6 0.00078
R𝜙 (𝜇) 0.00076 -9.2e-6 2.1e-5 -3.6e-6 1.9e-7 0.00076
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