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A Disulfide Bond Is Required for the Transmission of Forces through
SUN-KASH Complexes
Zeinab Jahed,1 Hengameh Shams,1 and Mohammad R. K. Mofrad1,2,*
1Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley,
Berkeley, California; and 2Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
ABSTRACT Numerous biological functions of a cell, including polarization, differentiation, division, and migration, rely on its
ability to endure mechanical forces generated by the cytoskeleton on the nucleus. Coupling of the cytoskeleton and nucleoske-
leton is ultimately mediated by LINC complexes that are formed via a strong interaction between SUN- and KASH-domain-con-
taining proteins in the nuclear envelope. These complexes are mechanosensitive and essential for the transmission of forces
between the cytoskeleton and nucleoskeleton, and the progression of cellular mechanotransduction. Herein, using molecular
dynamics, we examine the effect of tension on the human SUN2-KASH2 complex and show that it is remarkably stable under
physiologically relevant tensile forces and large strains. However, a covalent disulfide bond between two highly conserved
cysteine residues of SUN2 and KASH2 is crucial for the stability of this interaction and the transmission of forces through the
complex.
INTRODUCTION
Mechanical linker of nucleoskeleton and cytoskeleton
(LINC) complexes play a central role in cellular mechano-
transduction (1) by providing a physical linkage between
the interior of the nucleus and the cytoplasm. Tethering of
the extracellular matrix (ECM), the cytoskeleton, and the
nucleoskeleton mediated by these complexes allows for a
direct transmission of forces to the nucleus. Transmission
of forces through LINC complexes is essential for several
biological functions of the cell, including polarization, dif-
ferentiation, division, and migration, which are dependent
on nuclear deformation and positioning (2–4). Furthermore,
LINC complexes are directly connected to focal adhesions
through filamentous actin bundles, resulting in ultrafast me-
chanotransduction (4–6). The distribution of nuclear pore
complexes on the surface of the nucleus (7,8) has also
been attributed to elements of the LINC complex. Addition-
ally, components of LINC complexes have been implicated
in several human diseases, including laminopathies and
muscular disorders such as Emery-Dreifuss muscular
dystrophy and dilated cardiomyopathy (9–15), and hearing
loss (16).

LINC complexes are formed by the interaction of SUN
(Sad-1 and Unc) and KASH (Klarsicht, ANC-1, Syne
Homology)-domain-containing proteins in the perinuclear
space (PNS) (17) (Fig. 1). In mammalian cells, widely ex-
pressed SUN-domain-containing proteins include SUN1
and SUN2, which interact with various members of
KASH-domain proteins including NESPRIN1–4 (Nuclear
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Envelope Spectrin repeat proteins 1–4). These complexes
are structural and load-bearing elements in the cell and
experience both extracellular and intracellular mechanical
forces through their linkage to various elements of the cyto-
skeleton by NESPRIN proteins (Fig. 1 A). Furthermore, they
couple the cytoskeleton to the nucleoskeleton through their
interaction with nuclear lamina in the nucleoplasm (Fig. 1
A). The increased gap between the inner nuclear membrane
(INM) and outer nuclear membrane (ONM) in SUN1 and
SUN2 mutated cells (18) suggests that SUN proteins are
subject to tensile forces maintaining the gap between the
INM and ONM. Moreover, recent studies showed the initi-
ation of mechanotransduction events (e.g., emerin phos-
phorylation) through the direct application of forces on
SUN-KASH complexes in isolated nuclei (19) (Fig. 1).

The crystal structure of human SUN2 in complex with the
KASH2 peptide of NESPRIN2 revealed a trimeric SUN2
structure, where three SUN2 protomers interact with three
independent ~22 aa KASH2 peptides and form an overall
hexameric structure (20,21) (Figs. 1 B and 2, A and B).
Each SUN2 protomer consists of a SUN domain
(SUN2540–717) and a minimal helical coiled-coil region
(SUN2525–540), which are necessary for SUN2 trimerization
and KASH binding (20) (Figs. 1 B and 2 A). The SUN
domain consists of a b-sandwich core and an ~20 aa
b-hairpin extending from this domain, forming the KASH
lid (SUN2567–587) (Fig. 2 C) (20). Each KASH2 peptide
interacts with the KASH lid of one SUN2 protomer
(KASH6884–6872) and the b-sandwich core of the neigh-
boring SUN2 protomers (KASH6872–6862) (Fig. 1 B). A
unique feature of this complex is the perfect alignment of
two highly conserved cysteine residues, CYS563 of SUN2
http://dx.doi.org/10.1016/j.bpj.2015.06.057
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FIGURE 1 (A) Schematic representation of the SUN1/2-KASH1/2

complex, which acts as a bridge between the cytoskeleton and nucleoskele-

ton. SUN domains of SUN1/2 interact with three KASH peptides of

NESPRIN1/2 in the PNS. The nucleoplasmic domains of SUN1/2 interact

with nuclear lamina and telomeres. In the cytoplasm, NESPRIN1/2 proteins

interact with various cytoskeletal components, including actin filaments,

through their actin-binding domains, and microtubules through motor pro-

teins, namely, kinesin and dynein. Cytoskeletal forces are transmitted

through SUN-KASH complexes and result in mechanotransduction events

such as Emerin phosphorylation. The crystal structure of a segment of the

SUN2-KASH2 complex has been resolved. (B) Schematic representation

of SUN2-KASH2 interactions. Each KASH peptide (orange) interacts

with the KASH lid of one SUN2 protomer and the b-sandwich core of

the neighboring SUN2 protomer (green). To see this figure in color, go

online.

Biophysical Journal 109(3) 501–509

502 Jahed et al.
and CYS6862 of KASH2 (22), resulting in the formation
of a disulfide bond (SS bond) between the two proteins
and highly stabilizing the SUN2-KASH2 interaction (Figs.
1 B and 2 C). Although this bond has been shown to be
dispensable for SUN-KASH binding in vitro (20), the
high conservation of both cysteine residues suggests
their physiological importance. Herein, we show that
under physiologically relevant forces, the stability of the
SUN2-KASH2 interaction depends on the intermolecular
SS bond between SUN2 and KASH2. Furthermore, the
transmission of forces through these complexes is disrupted
upon disruption of this bond.
MATERIALS AND METHODS

Modeled system

The crystal structure of the SUN2-KASH2 complex was obtained from the

Protein Data Bank (PDB ID: 4DXS (20)) and visualized using VMD soft-

ware. The structure was trimerized using MakeMultimer.py online soft-

ware. The system was solvated in water, neutralized with counterions,

and subsequently ionized with an ion concentration of 150 mM of KCl

and 50 mM of CaCl2. The concentration of Ca2þ in the nuclear envelope

is estimated to be similar to that of the endoplasmic reticulum lumen, which

is known to be in the micromolar range (23–25).
Steered molecular-dynamics simulations

We conducted steered molecular-dynamics (SMD) simulations using

NAMD scalable MD (26) with the CHARMM27 force field. To simulate

tensile cytoskeletal forces applied on KASH-domain-containing proteins,

we applied a constant 25 pN force directly to the end residue of each

KASH2 peptide (CYS6862) in the direction parallel to the central symme-

try axis of the SUN2 trimer (perpendicular to the INM and ONM; see

Fig. 3). The 25 pN direct tensile forces on groups of SUN-KASH complexes

resulted in stiffening of the nuclei (19). To observe changes using SMD

simulations on nanosecond timescales, we applied the same 25 pN force

to a single SUN2-KASH2 complex. Furthermore, the Ca carbons of

GLY522 on the helical coiled coil of the SUN2 trimer were fixed in all sim-

ulations (see Fig. 3). This was rationalized by the fact that the SUN2 protein

interacts with KASH-domain-containing proteins at its C-terminus, it is

tethered to INM through its transmembrane domain, and it interacts with

nuclear lamins and chromatin in the nucleus at its N-terminus (18,27,28).

We simulated the covalent disulfide bond between CYS6862 and

CYS563 using a patch command in NAMD. To study the role of this

bond in force transmission and endurance, we mutated CYS563 of SUN2

to alanine (this structure is referred to as C563A in the text). Additionally,

to isolate and study the role of the disulfide bond without any potential local

changes in the complex due to the alanine substitution, we conducted SMD

on a model in which the patch between the two cysteines was not created

(i.e., CYS563 and CYS6862 were included, but not covalently bound

with an SS bond). We conducted a total of three SMD simulation runs on

the wild-type (WT) structure (referred to in the text as WT simulations).

Each simulation contained three KASH peptides interacting with three

SUN protomers, resulting in a total of nine interacting pairs. Similarly,

four simulation runs were performed for both the mutated structure

(C563A) and the structure with a disrupted SS bond (denoted as SS�), re-
sulting in 12 SUN-KASH interacting pairs in each case. An independent

equilibration run was performed for each simulation run. The system was

minimized at 5000 steps and equilibrated for ~2 ns with a time step of

2 fs. The temperature and pressure of the system were held constant at

1 atm and 310 K using Langevin’s piston and Hoover’s method during



FIGURE 2 Crystal structure of the wild-type hu-

man SUN2-KASH2 hexamer (PDB ID: 4DXS).

(A) Side view of a SUN2 trimer (green) containing

a SUN domain and a helical coiled-coil region in

complex with three KASH2 peptides (orange).

(B) Top view of a SUN2-KASH2 hexamer. (C)

The SUN2-KASH2 interactions, including several

nonbonded interactions, terminated with an inter-

action between CYS563 of SUN2 and CYS6862

of KASH2, which form a disulfide bond (SS

bond) (yellow). Each KASH peptide (orange) in-

teracts with the KASH lid of one SUN2 protomer

and the b-sandwich core of the neighboring

SUN2 protomer (green). SMD simulations were

carried out by applying 25 pN tensile forces on

CYS6862 of each KASH2 peptide in the SUN2-

KASH2 hexamer (the site of force application is

represented as a pink triangle). To see this figure

in color, go online.
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minimization and equilibration (26). A time step of 2 fs was used and the

cutoff distance for nonbonded interactions was 1.2 nm. Periodic boundary

conditions were applied in all three directions. SUN2 mutations were

modeled using VMD.
Root mean-square fluctuation and dynamic
cross-correlation calculations

The Bio3D R package was used for root mean-square fluctuation (RMSF)

and dynamic cross-correlation analyses (29). In both cases, the calculations

were averaged over the three SUN2 protomers that formed the SUN2 trimer

in each simulation run, after 100% elongation of the complexes. In total,

nine data sets were averaged in the WT structure, and 12 sets were averaged

in the C563A and SS� simulations.
Interaction energy calculations

The interaction energies were calculated between each SUN protomer and

KASH peptide independently. Each KASH peptide interacted distinctly

with only two neighboring SUN protomers and these interaction energies

were reported separately. Only the SUN domain of each SUN2 protomer

(residues 545–618) was used in the energy calculations, as the helical coiled

coil did not interact with the KASH peptide.
Sequence alignment

Sequences of human and mouse SUN and NESPRIN proteins were aligned

using UniProt (30).
RESULTS

The disulfide bond between CYS563 of SUN2 and
CYS6862 of KASH2 is required for the
transmission of forces through the SUN-KASH
complex

Conformational changes induced by 25 pN tensile forces on
the end residue (CYS6862) of each KASH peptide in the
WT and C563A complex are shown in Fig. 3 A. Distinct
deformation behaviors were observed in the two com-
plexes. The single C563A mutation constrained the defor-
mation of the SUN-KASH complex to the SUN domain,
and forces on the KASH peptide were no longer able to
transmit to the helical coiled-coil region, as is evident
from the elongated structures in Fig. 3 A. The deforma-
tion mechanisms of the WT and C563A complexes are
compared in Fig. 3, where the complex is extended up to
100% of its initial length in both cases. The average RMSFs
of all SUN2 residues (SUN2525–718) are shown in Fig. 3 B.
In the WT structure, the helical coiled-coil region of SUN2
comprising residues SUN2525-540 experiences the highest
fluctuations. On the contrary, in the C563A structure, the
fluctuations peak in the KASH lid region (SUN2567–587),
and minimal fluctuations are observed in the helical
coiled-coil region.
Biophysical Journal 109(3) 501–509



FIGURE 3 Extension of the SUN2-KASH2 complex (green, WT; blue, C563A) to 100% of their initial lengths under 25 pN forces. (A) CYS6862 of each

KASH2 peptide (orange) was pulled with a constant force of 25 pN in both cases using SMD, resulting in an ~100% increase in the length of both structures.

Distinct conformational changeswere observed in theWTandC563A structures. In theWT complex (right, green), forces on theKASH2peptide are translated

directly to the helical coiled-coil region of SUN2, resulting in conformational changes in this region, whereas the SUN domain remains intact. Conversely, the

C563A mutated structure experiences minimal conformational changes in its coiled-coil region. Pink spheres and triangles represent constraints at the C-ter-

minal ends and the sites of force application, respectively. (B) RMSFof all SUN2protomer residues (SUN2525–717) averaged over all simulation runs (with three

protomers in each simulation run) for 100%elongation of the complex. TheRMSF is highest in the helical CC (SUN2525–540) region of theWTSUN2, but peaks

in the KASH lid (SUN2567–587) region of the C563A structure. (C) Comparison of the dynamic cross correlations of all SUN2 protomer residues averaged over

all simulation runs (with three protomers in each simulation run), showing that (i) the negative correlation between the helical CC (SUN2525–540) andKASH lid

(SUN2567–587) is reducedwith the C563Amutation, (ii) the dynamic cross correlation of the KASH lid with other SUN2 residues is reduced and changes from a

positive correlation to a negative correlation as a result of the C563A mutation, and (iii) the negative dynamic cross correlation of the helical CC region with

other SUN2 residues in the C563A structure is significantly reduced. To see this figure in color, go online.
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To determine how the C563A mutation affects the overall
dynamics of SUN2 structure, we evaluated residue-to-
residue dynamic cross-correlations for the three SUN2 pro-
tomers that formed each SUN2 trimer, and averaged them
over all simulation runs (Fig. 3 C). A comparison of the
dynamic cross-correlation plots for the WT and C563A
structures clearly shows that the overall correlations of
SUN2 residues are significantly reduced for C563A.
Furthermore, the correlation between the KASH lids and
the SUN2 helical coiled-coil region are notably reduced in
the C563A structure (Fig. 3 C, i). Note that the main
SUN-KASH interactions occur in this region, namely, the
KASH lid of SUN2. Another significant difference in the
plots is the change in the cross-correlation values of residues
in the KASH lid region from a positive correlation with all
other SUN2 residues in WT SUN2 to a negative correlation
Biophysical Journal 109(3) 501–509
in the C563A structure (Fig. 3 C, ii). Negative cross corre-
lations correspond to movement of the residues in opposite
directions (29). Finally, the negative cross correlations
between the helical coiled-coil region and all other SUN2
residues were remarkably lower in the C563A structure,
suggesting a decoupling between the coiled-coil region
and the SUN domain.

To further expand on this decoupling, we compared the
conformational changes in the helical coiled-coil region
between the WT and C563A structures. In the WT SUN2-
KASH2 complex, the percent elongation of the helical
coiled-coil region was linearly correlated with the percent
elongation of the entire SUN2-KASH2 complex (Fig. 4),
where ~100% elongation resulted in ~176% elongation of
the coiled-coil region. On the other hand, the SUN domain
remained entirely intact throughout the SMD simulation.



FIGURE 4 The SS bond between CYS563 of SUN2 and CYS6862 of KASH2 is required for transmission of forces through the SUN2-KASH2 complex.

(A) Elongation of the minimal helical coiled-coil region of SUN2 in response to tensile forces on the KASH2 peptide in the WT (green) and mutated (C563A,

blue) structures as a function of the % elongation in the entire SUN2-KASH2 complex. With the C563A mutation, no forces are transmitted to the helical

coiled-coil region of SUN2, resulting in no elongation in this region, whereas the coiled-coil region of SUN2 is elongated to>150% of its initial length in the

presence of the SS bond. (B) Ramachandran plot of residues in the helical coiled-coil region before (left) and after (right) elongation of the SUN2-KASH2

complex. Changes in theJ versus F angles for these residues indicate conformational changes in the helical coiled-coil region of WT SUN2 upon the appli-

cation of tensile forces to the KASH2 peptide. No such changes are seen in the mutated structure (C563A, bottom). To see this figure in color, go online.
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However, with the C563A mutation, the transmission of
forces to the helical coiled-coil region was interrupted and
the coiled-coil region remained unstretched upon 100%
extension of the complex (Fig. 4 B). Furthermore, deforma-
tion was confined to the SUN domain, where the most prom-
inent changes were seen in the KASH lids (Fig. 3, A and B).
This is further exemplified by the changes in the backbone
rotational angles of residues in the coiled-coil region of
WT SUN2 (SUN2525–540), as shown in the Ramachandran
plots in Fig. 4 B (31). The j-f angles of residues in the he-
lical coiled-coil region significantly changed after 100%
elongation of the molecule (Fig. 4 B). In contrast, this
conformational change was not observed in the C563A
structure.

We next explored whether the changes seen in the C563A
mutated structure were mainly due to the inhibition of SS
bond formation between C563 and C6862. We conducted
similar SMD simulations on the WT structure, but with
the SS bond between C563A and C6862 inhibited (SS�

structure). We found that the simulations on the SS� struc-
tures yielded results similar to those obtained with the
C563A mutation (Figs. S1 and S2 in the Supporting Mate-
rial), suggesting that the main contribution of this mutation
is disulfide inhibition. Force transmission to the helical
coiled-coil region was inhibited and changes were mainly
limited to the KASH lids in the absence of the SS
bond, as is evident from the deformed crystal structures
(Fig. S1 B) as well as the RMSF values in the SS� versus
WT structures (Fig. S1 B).
The stability of the SUN2-KASH2 interaction is
highly maintained under tensile forces

Next, we examined the effect of tensile forces on other
nonbonded interactions of SUN2 and KASH2 in the
WT, C563A, and SS� structures. As noted above, each
KASH2 peptide interacts with the KASH lid of one
SUN2 protomer and the b-sandwich core of the neighboring
protomer (Figs. 1 B and 2 C). The average total nonbonded
(electrostatic and van der Waals) interaction energies
between a KASH peptide and each of the two WT SUN
protomers with which it interacts were evaluated during
the application of 25 pN tensile forces to the terminal res-
idue of each KASH peptide. The results showed minimal
fluctuations in the total nonbonded energies, indicating
that the stability of the interactions was preserved even
with an elongation of the complex to 100% of its original
length (Fig. 5, A and B). The KASH peptide maintained
a strong ~�145 kcal/mol average nonbonded interac-
tion with the SUN2 KASH lid, as shown in Fig. 5 B.
The KASH peptide also interacted with the SUN b-sand-
wich core at �122 kcal/mol (Fig. 5 A). The WT SUN-
KASH complex elongated to 100% of its original length
after 28.6 ns of SMD simulations; the elongated structure
Biophysical Journal 109(3) 501–509



FIGURE 5 The disulfide bond between CYS563 of SUN2 and CYS6862

of KASH2 is required for the stability of the SUN2-KASH2 complex under

tensile forces. Average nonbonded interaction energies (electrostatic and

van der Waals) are shown for KASH peptides with the two neighboring

SUN protomers it interacts with (inset) in the mutated (C563A, blue) and

WT (green) structures. (A and B) KASH peptides interact with the KASH

lid (A) and b-sandwich core (B) of two neighboring SUN protomers. The

point at which the SUN2-KASH2 complex experiences a 100% elongation

is also shown for the WT and C563A structures (stars). The absence of the

SS bond results in a 100% elongation of the complex in less than ~3.2 ns of

pulling, and a complete dissociated of the KASH2 peptide with the KASH

lid (A) and b-sandwich core (B) in the first 10 ns. To see this figure in color,

go online.
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is shown in Fig. 2 A. The head domain of SUN2 remained
entirely intact throughout this force-induced elongation of
the complex to 100% of its original length, maintaining a
stable SUN2-KASH2 interaction.
The disulfide bond between CYS563 of SUN2 and
CYS6862 of KASH2 is required for the stability of
the SUN2-KASH2 interaction under tensile forces

The C563A mutation and the disruption of the SS bond
between two interacting cysteine residues of SUN2 and
KASH2 inMDsimulations both resulted in a full dissociation
of theKASH2peptide from the SUN2 trimer (Figs. 5 and S3).
The average total nonbonded interaction energies between
the KASH peptides and the b-sandwich core of the SUN
trimers were reduced abruptly after the application of
Biophysical Journal 109(3) 501–509
25 pN tensile forces (Figs. 5 and S3). The KASH peptides
initially interacted strongly with the b-sandwich core at
~�177 kCal/mol (Fig. 5B); however, this interaction showed
high instability under forces in the C563A (Fig. 5 A) and SS�

structures (Fig. S3 A). A full dissociation of KASH with the
b-sandwich core was observed after ~3 ns, with a 0 kcal/mol
interaction energy after this detachment (Fig. 5 A). The
KASH peptide remained in contact with the KASH lid a
few nanoseconds longer (Fig. 4 B), with an initial ~�171
kCal/mol interaction, a linear decrease in interaction energy,
and a full dissociation after ~10 ns of SMD simulations.
DISCUSSION

LINC complexes are anchored to several elements of the
cytoskeleton through their KASH-domain-containing pro-
teins. For example, NESPRIN1 and NESPRIN2 contain
actin-binding domains that directly bind to the actin cyto-
skeleton (32) and have also been observed to interact and
colocalize with dynein and kinesin complexes (33), con-
necting the nucleoplasm to actin filaments as well as micro-
tubules (Fig. 1 A). Through focal adhesion proteins, the
actin cytoskeleton is also linked to the ECM (17,34).
SUN1 and SUN2 proteins interact with type A and B lamins
at their nucleoplasmic N-terminal domain (13,18,27), and
several members of the NESPRIN protein family at their
C-terminus in the PNS. In this way, the nucleoskeleton is
coupled with the ECM and extracellular forces can be trans-
lated to the nucleus directly through the SUN-KASH com-
plexes. Furthermore, all intracellular actomyosin generates
contractile forces, and forces generated by other motor pro-
teins (i.e., dynein and kinesin) are also translated to the nu-
cleus through these complexes, underscoring their potential
role in mechanotransduction through the nuclear envelope.

Our results show that despite a strong ~�801 Kcal/mol
average nonbonded interaction between SUN2 and three
KASH2 peptides, the covalent disulfide bond between
CYS563 of SUN2 and CYS6862 of KASH2 is necessary
for the stability of this interaction under tensile forces.
The SS bond is not required for the SUN2-KASH2 interac-
tion (20); however, our results suggest that after the initial
anchorage of KASH peptides onto SUN proteins through
nonbonded interactions (Fig. 6 A), the SS bond forms
(Fig. 6 B) to allow the initiation of force transmission in
the subsequent linkage of NESPRIN proteins to the cyto-
skeleton (Fig. 6 C). Furthermore, upon potential clustering
of LINC complexes, forces of magnitudes up to hundreds
of piconewtons can conceivably be endured by these com-
plexes and utilized for nuclear positioning and chromosome
organization (Fig. 6 C).

This stable covalent bond between SUN2 and KASH2
suitably positions the KASH peptide to allow for all other
interacting residues to remain aligned during force applica-
tion to the KASH peptide and continue their nonbonded in-
teractions. As a result, the SUN domain and KASH peptide



FIGURE 6 Transmission of forces through LINC complexes. (A) A SUN trimer interacts with three KASH peptides from NESPRIN proteins, forming

several nonbonded interactions. (B) The SUN-KASH complex is subject to cytoskeletal forces through the direct interactions of NESPRIN proteins with

the actin cytoskeleton, and with microtubules through kinesin and dynein. Interprotein SS bonds further stabilize the SUN-KASH interaction under mechan-

ical forces and allow the transmission of cytoskeletal forces to the helical coiled-coil region of SUN proteins. (C) Potential clustering of SUN-KASH com-

plexes into higher-order complexes will allow for the transmission of forces on the order of hundreds of piconewtons, as required for nuclear positioning or

the organization of chromatin. Besides intracellular motor protein-dependent forces, extracellular forces can be transmitted directly to the nucleus through

integrins and focal adhesion proteins that also interact with the actin cytoskeleton, such as talin and vinculin. To see this figure in color, go online.
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complex show minimal fluctuations and conformational
changes, and forces are directly translated to the coiled-
coil region, resulting in conformational changes in this re-
gion (Fig. 3). The full coiled-coil region of a full-length
SUN1/2 protein is predicted to be ~40 nm in length (22)
and serves as a possible structural component in translating
forces between the SUN domain and the nucleoplasm
domain of SUN. Coiled coils are also found in several other
structural and motor proteins, and are known to be load-
bearing structural motifs involved in force transmission be-
tween various protein domains (35). Furthermore, coiled
coils have highly elastic properties (36); for example,
coiled-coil regions in Myosin II have been shown to be truly
elastic structures and to refold against forces up to 30 pN on
short timescales (37). These properties make SUN1 and
SUN2 proteins very suitable elastic load-bearing compo-
nents under the constant application and release of cytoskel-
etal forces on the nuclear envelope.

Among human and mouse SUN proteins, SUN1 and
SUN2 contain the cysteine residue that can form disulfide
bonds with four members of the NESPRIN family
(NESPRIN1–4) (Fig. 7). However, testis-specific SUN3–5
proteins, which are small spermiogenesis-specific proteins
(38–40) and are predicted to have shorter coiled-coil regions
than SUN1/2, lack this cysteine residue. Studies have shown
that shorter coiled coils unfold under lower forces (41),
which may suggest that LINC complexes with shorter coiled
coils are not suitable for bearing and transmitting large
forces, thus explaining the absence of the disulfide bond
in these complexes. Our results suggest that the nature and
Biophysical Journal 109(3) 501–509



FIGURE 7 Sequenceof human andmouseSUN- andKASH-domain-con-

taining proteins. SUN1 and SUN2 contain a cysteine residue that can form an

SS bond with the cysteine of KASH1–4, and assist in load bearing and force

transmission to the nucleus. Testis-specific SUN3–5 lack the cysteine, sug-

gesting a potentially distinct functional role for these SUN proteins. To see

this figure in color, go online.
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strength of the SUN-KASH interaction may determine two
distinct roles for LINC complexes: load bearing and trans-
mission versus mere anchorage of the nucleus.
SUPPORTING MATERIAL

Three figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(15)00668-2.
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