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Precipitation is a vital component of the water-energy-food nexus and a deadly force of nature 

responsible for natural hazards like flooding and debris flows. Because of its profound impact to 

society at large, it is an extremely important variable to measure and predict. Fittingly, the highly 

variable and chaotic nature of the precipitation field makes quantifying and forecasting arduous. One 

tool useful for precipitation measurements are satellites, which are capable of measuring 

precipitation quasi-globally over land and oceans. Given the rapid advancement of remotely sensed 

observational techniques over the past few decades and the satellite record’s recent emergence into 

climate time scales, new kilometer-scale, sub-daily records of precipitation have been produced 

capable of high-spatiotemporal insights into some of the most extreme hydroclimate events. With 

climate change’s influence becoming more profound through the passage of time, this dissertation 

seeks to examine how atmospheric rivers (ARs) and tropical cyclones (TCs) have evolved since the 

beginning of the satellite age using high resolution climate data records of precipitation (HRPCDRs) 

and testing for the influence of anthropogenic warming.  

In the first half of the dissertation, we adapt the CONNected-objECT (CONNECT) algorithm for 

the tracking of global mid-latitude AR lifecycles and associated precipitation by implementing a 
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seeded region growing segmentation algorithm, creating the AR-CONNECT algorithm. One of AR-

CONNECT’s goals is to track atmospheric water vapor anomalies before evolving into AR 

geometries, effectively tracking AR genesis farther back than other studies. To accomplish this, AR-

CONNECT is without hard-coded geometric criteria yet is still proven to extract synoptic-scale 

elongated objects >99.99% of the time. With the aid of sub-daily satellite-derived rain data, we 

investigate the climatology, trends, and patterns of AR lifecycles from 1983-2016 and compare with 

other AR tracking studies. We find that AR frequency, genesis, and terminus locations are in 

generally good agreement with other AR tracking methodologies and that AR frequencies in each 

hemisphere are proportional to the number of AR hotspots. In terms of precipitation, mid-latitude 

precipitation uncovered by AR-CONNECT shows contributions up to 50% over land and 65% 

over the ocean. We show that annual values of total rainfall volume, mean size, and mean duration 

of ARs have increased, conceivably because of greater atmospheric water vapor concentrations from 

anthropogenic warming. Spatial trend analysis of AR precipitation show increase in precipitation 

associated with Southern Hemisphere and northern African ARs, among others, but is determined 

not to be a driver of changes in global precipitation. 

In the latter half of the dissertation, we investigate precipitation trends in global TCs. Increases in 

precipitation rates and volumes from TCs caused by anthropogenic warming are predicted by 

climate modeling studies and have been identified in several high intensity storms occurring over the 

last half decade. However, it has been difficult to detect historical trends in TC precipitation at time 

scales long enough to overcome natural climate variability because of limitations in existing 

precipitation observations. We introduce an experimental global high-resolution climate data record 

of precipitation produced using infrared satellite imagery and corrected at the monthly scale by a 

gauge-derived product that shows generally good performance during two hurricane case studies but 

estimates higher mean precipitation rates in the tropics than the evaluation datasets. General 
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increases in mean and extreme rainfall rates during the study period of 1980-2019 are identified, 

culminating in a 12-18%/40-year increase in global rainfall rates. Overall, all basins have experienced 

intensification in precipitation rates. Increases in rainfall rates have boosted the mean precipitation 

volume of global TCs by 7-15%/year, with the starkest rises seen in the North Atlantic, South 

Indian, and South Pacific basins (maximum 59-64% over 40 years). In terms of inland rainfall totals, 

year-by-year trends are generally positive due to increasing TC frequency, slower decay over land, 

and more intense rainfall, with an alarming increase of 81-85% seen from the strongest global TCs. 

As the global trend in precipitation rates follows expectations from warming sea surface 

temperatures (11.1%/°C), we hypothesize that the observed trends could be a result of 

anthropogenic warming creating greater concentrations of water vapor in the atmosphere, though 

retrospective studies of TC dynamics over the period are needed to confirm. 
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Chapter 1 - Introduction 

1.1. Satellite Remote Sensing of Precipitation 

Water resources engineering is a field that is perpetually advancing to meet the water, energy, and food 

needs of a rapidly changing world. Among the components of the water cycle, precipitation is arguable 

the most important. Fittingly, it is also very challenging to estimate accurately, especially at high detail 

and over large domains. This is because two of the most-used tools in measuring precipitation, rain 

gauges and radar, have significant short-comings in their utility and distribution. Concretely, rain 

gauges provide localized point measurements that must be extrapolated to provide gridded 

measurements over larger domains. In the most developed regions of the world, gauge networks are 

dense enough to represent the “true” rainfall field with a high degree of accuracy. The most notable 

issues with rain gauges are their limited distributions in remote regions of the world (Sahara Desert, 

the African and South American rain forest, and the polar regions) and lack of coverage over the 

oceans and other large bodies of water. Likewise, though ground-based radar can measure the spatial 

distribution and intensity of rainfall with great accuracy at scales of hundreds of kilometers, blockage 

by orography makes it a limited tool for use in topographically complex regions like the western U.S. 

Like rain gauges, ground-based radar stations are limited in their distribution, especially over remote 

regions of the world, and there are no ground-based radar systems available over the oceans.  

Remote sensing of precipitation, done by space-based sensors aboard geostationary and low Earth 

orbiting (GEO and LEO) satellites, has been shown to be a promising supplement to traditional 

precipitation measuring techniques and is often the only source of rainfall information for regions of 

the world without radar and gauge coverage. Satellite remote sensing in general (depending on the 

product) feeds measurements of visible and infrared light from GEO satellites and naturally emitted 
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microwave energy from LEO satellites to empirical or black-box precipitation-estimating models. 

Satellite remote sensing is a newly developing field seeing rapidly improvements thanks to advances 

in data-driven tools from the field of computer science, like machine learning and deep learning, which 

help detangle highly chaotic systems like the hydroclimate (Akbari Asanjan et al. 2018; Pan et al. 2019; 

Hayatbini et al. 2019; Gorooh et al. 2020). Such advances have made satellite remote sensing a vital 

tool for a wide array of applications across the field of water resources engineering. 

Satellite remote sensing products come in many shapes and flavors: some products aim to use all tools 

available to provide the best measurement of precipitation at a given snippet of time. These include 

Precipitation Estimates from Remotely Sensing Information using Artificial Neural Networks 

(PERSIANN; Hsu et al. 1997; Sorooshian et al. 2000), Integrated Multi-satellitE Retrievals for GPM 

(IMERG), among others. Other products forego the low-resolution passive microwave (PMW) 

measurements in order to preserve high resolution and short latency periods, for example the 

PERSIANN-Cloud Classification System (PERSIANN-CCS; Hong et al. 2004) and the PERSIANN 

Dynamic Infrared Rain rate-Now (PDIR-Now; Nguyen et al. 2020a,b) products provide 

measurements of precipitation at 0.04° and hourly spatiotemporal resolution with a latency period of 

15 minutes to an hour. These products are good for near real-time estimates of precipitation that are 

required for rapid hazard response and flood forecasting. Lastly, products with a sufficient period of 

data (generally, at least 30 years) can use well-maintained gauge records or gauge-derived products to 

correct temporal and spatial inhomogeneity and produce climate data records (CDRs) of precipitation 

useful for long-term trend analysis.  

1.2. Climate Change Impacts on Precipitation 

Within the scientific community and beyond, there is little scientifically rigorous dispute to the 

assertion that anthropogenic increases in atmospheric concentrations of greenhouse gases have 
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created detectable shifts in the climatology of global air and sea temperature. These changes in turn 

affect related Earth system variables: an increase in air and ocean temperatures causes melting glaciers 

which raise sea level height while ocean acidification is occurring because of greater carbon dioxide 

(CO2) storage by the ocean, supplied by the atmosphere. 

It is expected that anthropogenic warming should create changes in the intensity and dynamics of the 

global rain fall field (Nguyen et al. 2018b). For instance, greater sea surface temperature (SST) values 

increase atmospheric evaporation rates. When coupled with increases in the water-holding capacity of 

air from increased temperatures—governed by the Clausius–Clapeyron relation at a rate of 

~7%/°C—produces greater potential for wetter and more frequent extreme events as regions shift 

from a water-limited to energy-limited precipitation regime. Likewise, changes in atmospheric 

circulations caused by anthropogenic climate change—for instance, storm tracks (Trenberth 2011)—

can shift the distribution of rainfall climatology and cause desertification and similar regional climate 

classification changes. 

Presently, there are two prominent hypotheses for how global rainfall may change in an 

anthropogenically warmed climate: 1) region-specific intensification (i.e. dry getting drier and wet 

getting wetter), and 2) increases in global hydroclimate extremes. There exists little evidence for the 

former conclusion; in Greve et al. (2014), the authors find that only 10% of global land coverage by 

area has seen changes fitting the “dry getting drier, wet getting wetter” pattern. However, there is 

considerable evidence that climate change has influenced the record-breaking rainfall totals of some 

of the most prolific extreme events since the new millennium, namely Hurricanes Katrina, Harvey, 

Irma, Maria, and Florence, among others. Still, global attempts at retrospective trend analysis of 

hydroclimate extremes at the climate scale have been difficult owing to shortcomings in the historical 

observation period, beginning at the turn of the satellite age in the last 1970s. As mentioned in Section 



 

4 
 

1.1, ongoing research has increased the utility of these measurements. This, combined with the passage 

of time, has begun to allow for the first multi-decadal analyses of hydroclimate extremes and their 

precipitation.  

1.3. Research Motivation 

As anthropogenically driven warming of the climate increases atmospheric moisture concentrations, 

there is evidence that similar increases in extreme precipitation of hydroclimate extremes like 

atmospheric rivers (ARs) and tropical cyclones (TCs) will be observed (Wuebbles et al. 2017; Espinoza 

et al. 2018; Walsh et al. 2019). With the aid of multi-decadal, high-resolution, and high-quality CDRs 

of precipitation, we retrospectively observe precipitation trends in the lifecycles of hydroclimate 

extremes. Concretely, for this dissertation, we overview two scientific reports published in academic 

journals that overview the development of catalogs of 1) global mid-latitude ARs from 1983-2016 

using NASA Modern-Era Retrospective analysis for Research and Applications v.2 (MERRA-2) 

integrated water vapor transport (IVT) data with PERSIANN-CDR precipitation data and 2) global 

TCs from 1980-2019 using experimental high-resolution PDIR-Now bias corrected by Global 

Precipitation Climatology Project (GPCP) v2.3 monthly gauge data are showcased. The climate-scale 

trends of storm lifecycle characteristics data-mined from these catalogs are examined using the object-

oriented analysis technique to determine if and how these hydroclimate extremes are intensifying over 

time scales of sufficient length to suggest a changing climate.  

As the field of AR tracking is relatively new, the development of our AR tracking methodology 

includes analysis into trends in the size, frequency, and lifecycle duration, along with a comparison of 

AR-CONNECT to other AR tracking methodologies. Essentially, precipitation is not the sole focus 

of the former study. The latter, however, is exclusively focused on TC precipitation trends. 
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A concise introduction in Chapter 2 provides an overview of hydroclimate extremes and the satellite 

precipitation products and statistical tools utilized to conduct the scientific inquiries included in this 

dissertation. The projects themselves are introduced in Chapters 3 and 4, based on the articles 1) 

“Examination of Global Midlatitude Atmospheric River Lifecycles Using an Object-Oriented 

Methodology” (Shearer et al. 2020) published in the Journal of Geophysical Research – Atmospheres 

from the American Geophysical Union publishing company and 2) “Unveiling Four Decades of 

Intensifying Precipitation from Tropical Cyclones Using Satellite Measurements” (Shearer et al. 2022) 

in production in Scientific Reports from the Springer Nature publishing company. Lastly, dissertation-

wide conclusions are provided in Chapter 5, along with musing on feasible future directions for related 

studies given the current state of the field.  

Chapter 2 – Background 

2.1. High-resolution Climate Data Records of Precipitation 

During the last decade, consistent remote sensing measurements useful for precipitation estimation 

crossed a major milestone and became useful for climate-scale studies (according to the 30-year 

standard observed by many climatologists). With cutting-edge research rapidly improving the skill of 

satellite quantitative precipitation estimation (QPE), satellite QPE techniques increasingly entered the 

realm of practical applications (especially non-real time measurements that can be bias corrected by 

additional satellite, radar, and in situ measurements). The production of high-quality, quasi-global 

CDRs of precipitation measurements with high spatiotemporal resolution soon followed. Based on 

the architecture of the PERSIANN algorithm while incorporating high-quality gridded monthly gauge 

data, the PERSIANN-CDR data set was produced (Ashouri et al. 2015), spanning from 1983 to the 

present day at a temporal resolution of daily and a spatial resolution of 0.25°x0.25° (approximately 25 
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km) from 60°S-60°N. Years later, in the pursuit of producing high-resolution precipitation CDRs 

(HRPCDRs), the high-resolution PERSIANN-CCS and PDIR-Now models were fed IR data back to 

the beginning of the satellite age and bias corrected by monthly gauge data, making them available 

from the early 1980s to the current day at a gridded resolution of 0.04°x0.04° and sub-daily temporal 

resolution, producing the PERSIANN-CCS-CDR and PDIR-CDR data sets. HRPCDRs, although 

considerably less accurate than PERSIANN-CDR owing to their greater spatiotemporal resolution, 

and therefore their higher propensity to being plagued by measurement noise, are still shown to be 

superior in calculating extreme precipitation (Sadeghi et al. 2021b), making them especially useful for 

small and extreme storms like mesoscale convective systems and TCs. 

2.2. Big Data 

In this modern age, scientists have access to unprecedented volumes of Earth science data thanks to 

the rise and commercialization of the satellite age; exponential increases in computing power driving 

constant development of new-and-improved micro- to global-scale models of weather, climate, 

oceans, land surface, etc.; increased gridding of vital in situ measurement networks; among other 

sources. Thanks to cloud storage and cloud computing, there has never been more opportunities for 

investigators to access the wealth of data that currently exists. The sheer volume of data and its 

projected rapid growth have brought Earth science research into the age of “Big Data” (Hey et al. 

2009). Advancements in the age of big data are characterized by problem solving not through 

revolutionary methods or extraordinary insight, but through uncovering hidden patterns using data 

mining techniques in massive volumes of data. For example, researchers at CERN analyzed data 

recorded from 800 trillion particle collisions to uncover the existence of the Higgs Boson. More 

relevantly, big data in hydrology is being explored to improve hydrologic modeling of streamflow, 

evapotranspiration, etc. (Chen and Wang 2018). 
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Due to the high level of detail and long temporal extents of HRPCDRs like PERSIANN-CCS-CDR 

and PDIR-CDR, their data records encompass terabytes of memory and can make processing a 

challenging endeavor. We classify these projects as big data and must employee tools from the field 

of data science to data mine relevant information, like machine learning, deep learning, and object-

oriented analysis. 

2.3. Object-oriented Analysis 

Though a prominent tool used in many modern Earth science studies, machine learning is far from 

the only effective tool in the age of big data. Introduced in Sellars et al. (2013), the authors utilize a 

technique known as object-oriented analysis. Object-oriented analysis is a technique where 

populations of “objects”, which are identified items, events, etc. that can be identified and segmented 

from large volumes of data are described and statistically analyzed by their attributes (Figure 3.1). For 

example, a collection of hydroclimate extremes can be analyzed by the distribution of their sizes, 

locations, durations, etc. Object-oriented analysis has noteworthy benefits for hydroclimate studies: 

events are discretely counted and recorded, meaning they can be examined individually, or their 

population considered statistically, from techniques as simple as calculating averages and percentiles 

to distribution tests and cluster analysis. 

2.4. The CONNected-objECT (CONNECT) Algorithm 

The CONNected-objECT (CONNECT) algorithm is a big data algorithm that uses connectivity 

(overlap) to segment, group, and track elevated or anomalous data signatures in large volumes of data 

using a flood-filling algorithm (Pavlidis 1979; Figure 3.1). It was developed to study hydroclimate 

extremes, but the simplicity of its design means its utility exists across disciplines in the Earth sciences. 
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CONNECT uses three-dimensional (x,y,t) voxels of a target variable (e.g. rainfall) to construct objects 

where voxels with intensities above a user-defined threshold are contiguous over space and time. As 

grouping voxels across the time axis captures the evolution of an object from genesis to terminus, 

CONNECT performs well as a tracking algorithm, meaning objects segmented by CONNECT are 

the lifecycles of weather phenomena. CONNECT auto-calculates object characteristics, such as 

spatiotemporal properties like volume, speed, duration, etc. and outputs it into a table for 

statistical/object-oriented analysis. 

The CONNECT methodology was first developed for segmenting extreme rainfall events using the 

PERSIANN rainfall dataset (Sellars et al. 2013, 2015; Sadeghi et al. 2021a). Subsequent work with 

CONNECT used the IVT variable to track atmospheric rivers (ARs): long, transient corridors of 

enhanced water vapor fluxes that frequently produce heavy orographic precipitation in the mid-

latitudes (Dettinger 2011). However, using IVT to track ARs with CONNECT was limited by 

difficulties. First, as IVT values at lower levels (<500 kg/m/s) exist in the atmosphere for prolonged 

periods in the tropics, which results in multiple events of enhanced IVT being combined into a single 

“conglomerate” object—not ideal for the extraction of singular AR lifecycles—the study had to be 

done with a more extreme IVT threshold of 750 kg/m/s. Moreover, IVT-CONNECT extracts a 

multitude of tropical and non-AR activity. Due to these shortcomings, the study in (Sellars et al. 2017) 

was simplified to only look at extreme IVT objects and was explicitly stated to not be an AR-specific 

methodology. However, the need to adapt CONNECT for ARs still existed, especially as the field of 

AR tracking emerged. 

2.5. Atmospheric Rivers 

The distribution and transport of atmospheric water vapor is a critical component of California’s water 

cycle. ARs are one of the most important hydrometeorological phenomenon and a prime source of 
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water in the region. ARs are the transient and narrow atmospheric pathways that transport water that 

has evaporated from the ocean (Ralph and Dettinger 2011) with flux magnitudes that can be greater 

than the output of the Amazon River. ARs frequently produce heavy precipitation over the U.S. west 

coast, especially where they are forced upward by orography (e.g., Sierra Nevada Mountains in 

California; Ralph et al. 2004). Partially owing to its complex topography, scientists estimate that AR 

events contribute to ~30-50% of coastal Southern California’s precipitation (Dettinger 2013), and are 

agents of extraordinarily favorable and extremely unfavorable phenomena in the region. On the one 

hand, ARs have been found to replenish reservoirs and end droughts (Dettinger 2011, 2013; Guan et 

al. 2010) such as the recent (2013-2016) California drought (with 50% of the state in exceptional 

drought status) that caused substantial stress to the vital irrigation and water supply infrastructure of 

the state. On the other hand, high amplitude AR events can also cause devastating floods and debris 

flows  (Neiman et al. 2013; Ralph and Dettinger 2011; Dettinger 2011; among others), similar to the 

deadly mudslides in Montecito in January, 2018, that resulted in 21 fatalities and hundreds of millions 

in damages. Concretely, Ralph et al. (2006) found that in the Russian River basin in Northern 

California, all seven recorded major flooding events that occurred were associated with AR events.  

While ARs and their impacts, which range from very beneficial to very detrimental, have traditionally 

been studied as a western U.S. phenomenon (Rutz et al. 2014), it has become apparent that ARs affect 

many low-, middle-, and high-latitude regions of the world with similar affects to those observed in 

California (Dezfuli 2020; Wille et al. 2019; Gorodetskaya et al. 2014; Ramos et al. 2015; Thapa et al. 

2018; Viale et al. 2018; Zhou et al. 2018; Esfandiari and Lashkari 2021; to name a few). 

2.6. Tropical Cyclones 

TCs are among the most devastating and deadly climate phenomena observable globally (Rappaport 

2014; Bakkensen and Mendelsohn 2019). Extreme precipitation produced by TCs, especially when 
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coupled with wind-enhanced storm surge, culminate to produce some of the most significant flooding 

damages every year (Dube et al. 2009; WorldBank 2010; IPCC 2012; Mendelsohn et al. 2012; Weinkle 

et al. 2012). For example, Hurricane Harvey dropped an unprecedented 1.5 meters of rainfall over the 

greater Houston metropolitan region (van Oldenborgh et al. 2017; Domingues et al. 2021) while 

Typhoon Haiyan caused a catastrophic emergency in the Philippines due to the combination of high 

storm surge and extreme rainfall totals (Nguyen et al. 2014). 

Future climate projections ubiquitously predict increased TC precipitation into the year 2100 

(Wuebbles et al. 2014, 2017; Seneviratne et al. 2012; Musser et al. 2017; Easterling et al. 2017; Lin et 

al. 2015; Villarini et al. 2014; Patricola and Wehner 2018; Knutson et al. 2020; IPCC 2021). The 

intensification of precipitation by anthropogenic warming has been observed in some of the most 

intense and recent TCs in the North Atlantic basin, namely Hurricane Katrina, Irma, Maria (Patricola 

and Wehner 2018), Harvey (Risser and Wehner 2017; van Oldenborgh et al. 2017), and Florence (Reed 

et al. 2020). Regional increases in TC activity have been detected in North America (Maxwell et al. 

2021; Paerl et al. 2019; Touma et al. 2019), South and Southeast Asia (Gao et al. 2021; Liu and Wang 

2020; Chang et al. 2013), and Australia (Balaji et al. 2018). However, (1) despite the apparent 

intensification of TCs in the last few years, (2) the consistent projection of increased TC precipitation 

by global and regional climate models, and (3) the proven anthropogenic influence on TC precipitation 

in select regions and case studies, the hypothesis that there has been a historical change in global TC 

precipitation activity has not reached a consensus in the global community owing to the large natural 

variability characteristic of TC events (Kossin 2018; Landsea et al. 2010; Knutson et al. 2010; Peterson 

et al. 2013) and imitated observations in the early satellite age. 
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Chapter 3 – Detection and Trend Analysis of 

Atmospheric River Lifecycles 

3.1. Introduction 

A recent report by the U.S. Global Change Research Program highlights that the frequency and 

severity of landfalling ARs will likely increase as a result of increased evaporation and higher 

atmospheric water vapor content caused by increasing global temperatures (Wuebbles et al. 2017). As 

previously discussed, the negative impacts of ARs are frequently quite extreme. Hence, it would be 

beneficial to decision makers to have as much forewarning as possible to prepare for mitigation efforts 

against the extreme winds and rainfall during strong AR activity. Improving our confidence in 

understanding AR environments and how they are likely to change going into the future is of vital 

importance. Thus, advancing the tools to observe and study these events is vital for mitigating losses 

and maintaining water security. 

As ARs have emerged in the scientific consciousness as a global phenomenon, the need to classify 

ARs globally has birthed a multitude of definitions and methodologies that attempt to unify the 

definition of ARs (Shields et al. 2018; Rutz et al. 2019; O’Brien et al. 2022; Collow et al. 2022). From 

an impacts point of view, the differing geography and climate patterns across AR-affected regions 

make direct comparisons of AR intensity-impact relationships variable, creating difficulty in 

determining a one-size-fits-all threshold of IVT for global AR segmentation. Difficult as it may be, 

numerous studies have attempted to unify a definition of ARs using an absolute IVT definition 

(Rhoades et al. 2020; Rutz et al. 2014; Sellars et al. 2017) or relative definition, such as latitude-

dependent (Lavers and Villarini 2015) or pixel-based (Brands et al. 2017; Guan and Waliser 2015). 
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ARs exist on synoptic time scales and travel distances of thousands of kilometers, requiring the 

development of tracking algorithms to study ARs from genesis to terminus (lifecycles.) One such 

methodology is the CONNECT algorithm, which extracts hydroclimate features where they are 

contiguous over space and time. While not AR-specific, CONNECT run on IVT was invaluable for 

studies by the Atmospheric River Tracking Method Intercomparison Project (ARTMIP; Shields et al. 

2018; Rutz et al. 2019; O’Brien et al. 2022; Collow et al. 2022). Other AR lifecycle methodologies 

include (Payne and Magnusdottir (2014), Zhou et al. (2018), and Guan and Waliser (2019), all of which 

are either based on a relative IVT threshold and/or are North American-centric. 

In this study, the framework of CONNECT is altered to better extract ARs (hereafter, AR-

CONNECT). A seeded region growing segmentation methodology with static IVT thresholds is 

introduced to segment single AR lifecycles, offering an alternative to the methodologies introduced in 

Zhou et al. (2018) and Guan and Waliser (2019) to handle combination and separation in AR tracking. 

In this paper, we introduce the AR-CONNECT methodology and investigate the climatology, trends, 

and patterns of global midlatitude AR lifecycles and associated rainfall. 

3.2. Data  

3.2.1. MERRA-2 Integrated Water Vapor Transport 

IVT is a vector that describes the movement of atmospheric water vapor. The IVT measurements 

used to produce this data set were derived from the NASA Modern-Era Retrospective Analysis for 

Research and Applications-version 2 (MERRA-2) data (Gelaro et al. 2017), calculated from the 

following formula and used in the Tier 1 ARTMIP analysis—data ranges from January 1980–June 

2017: 

𝐼𝑉𝑇⃗⃗⃗⃗⃗⃗  ⃗ = −
1
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where p is pressure (hPa), p200 is the pressure at the 200 hPa level, psfc is pressure at the Earth's surface, 

q is specific humidity at height p, �⃗�  is wind velocity (m/s), and g is gravitational acceleration. MERRA-

2's high spatiotemporal resolution, proven accuracy, and emphasis on the hydrologic cycle (Rienecker 

et al. 2011) make it an invaluable tool for AR research. Moreover, MERRA-2's utility in producing the 

analysis done in Sellars et al. (2017) and proven skill for AR detection (Jackson et al. 2016; Martin 

Ralph et al. 2019; Guan and Waliser 2019) further cement its benefits for AR research. 

3.2.2. PERSIANN-CDR Precipitation 

PERSIANN-CDR is a multi-decade climate data record (1983 to present) of global precipitation that 

spans 60°N to 60°S with a spatiotemporal resolution of 0.25° and daily, derived from the PERSIANN 

algorithm and bias-adjusted using the GPCP monthly product. The quality of PERSIANN-CDR has 

been continuously evaluated by external researchers and compares very favorably to the ground truth 

and other global satellite products (Guo et al. 2016; Miao et al. 2015; Ombadi et al. 2018). PERSIANN-

CDR's performance and quasi-global extent give the researchers in this study an opportunity to probe 

into the patterns and trends of global AR precipitation. PERSIANN-CDR is available from the CHRS 

Data Portal (Nguyen et al. 2019). 

Given that MERRA-2 has a temporal resolution of three-hourly, we opted to use three-hourly 

PERSIANN-CDR data for rainfall mapping. Three-hourly PERSIANN-CDR (PERSIANN-CDR) 

should be considered experimental, as it's primarily used to produce publicly available PERSIANN-

CDR data through daily averaging. As the time resolution is higher, there are issues with missing 

coverage. Therefore, for the rain trends plotted for section 4.3, only areas where there is coverage for 

at least 90% of the time steps are considered. Given three-hourly PERSIANN-CDR’s sub-daily 

resolution, it can be considered an HRPCDR like PERSIANN-CCS-CDR and PDIR-CDR, though 

its spatial resolution is much coarser. 
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Analysis in this chapter is done during the period where the MERRA-2 and PERSIANN-CDR data 

overlap to the last year of complete coverage: 1983–2016. Both variables are measured over 

simultaneous time windows, from 00z to 03z, 03z to 06z, etc. It should be noted that PERSIANN-

CDR is an accumulative quantity, while IVT from MERRA-2 is a temporal average. 

3.3. Methods 

For this study, the CONNECT methodology was adapted to study the lifecycles of ARs at three-

hourly time steps (data resolution of the IVT variable from MERRA-2). The following criteria were 

introduced to and adapted from CONNECT to create the AR-CONNECT framework: 

• To overcome the challenges of conglomerate objects and henceforth isolate singular AR events, a 

seeded region growing segmentation technique (Adams and Bischof 1994)was introduced.  

• To filter out tropical moisture features such as tropical cyclones and monsoons, objects with 

centroids inside of the tropical latitudes of 23.25°N–23.25°S are filtered out. This means that an 

AR’s genesis can be tropical, but the bulk of its volume should be primarily in the mid-to-upper 

latitudes.   

• Sellars et al. (2017)’s minimum duration criteria of 24 hours is included in the AR-CONNECT 

methodology. 

• To quantify rainfall totals, experimental three-hourly PERSIANN-CDR data are mapped to AR-

CONNECT objects. 
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Figure 3-1. Schematic of the AR-CONNECT algorithm’s atmospheric river (AR) tracking method, with 
graphics for important processing steps. Purple indicates data inputs, blue demarcates processing steps, and red 
represents the output products of AR-CONNECT. Processing steps can be summarized thusly: integrated 
water vapor transport (IVT) data is thresholded at two levels, IVT=300 (AR body) or the IVT=700 (AR core). 
Flood-filling involves finding all regions where IVT values at core levels are contiguous over time and space. 
This is the tracking portion of the AR-CONNECT methodology. Object-labeling involves giving each AR core 
object a unique identification number. Region-growing segmentation is the process of growing the cores of an 
AR body, separating the AR body into individual AR lifecycles (labeled by the cores’ object labels) at the 
IVT=300 level. Rain data mapping is the process of mapping 3-hourly PERSIANN-CDR to AR-CONNECT 
objects. Lastly, AR-CONNECT auto-calculates lifecycle characteristics like duration, speed, extent, rainfall 
volume, and many more. 
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3.3.1. Region Growing Segmentation and Thresholding 

Region growing segmentation assumes that ARs have a core of enhanced IVT magnitude and uses 

this core to track and segment regions of enhanced IVT, similar to the methodology of (Mundhenk 

et al. 2016). However, AR-CONNECT differentiates itself from other methodologies because it 

tracks where cores are contiguous over time and space before thresholding, meaning AR cores and 

bodies can be disconnected during one timestep prior to later combination. At the same time, a 

region of enhanced IVT can be divided into several AR bodies equal to the number of cores within 

the boundary.  

The thresholds utilized for the region growing technique are 700 and 300 kg m-1 s-1 for the AR core 

(seed) and the AR boundary (body), respectively. The threshold of 700 kg m-1 s-1 was adapted from 

the IVT-CONNECT700 catalog in Shields et al., (2018), which was found to capture the high-intensity 

cores of strong ARs and suffers very little from the conglomerate object problem thanks to its 

increased threshold. The 300 kg m-1 s-1 threshold for the AR boundary is a rough average of the 

thresholds from Rutz et al. (2014; 250 kg m-1 s-1), Ramos et al. (2018; 346–373 kg m-1 s-1), and the range 

of thresholds calculated in Guan and Waliser (2015; 100–500 kg m-1 s-1). The slightly elevated threshold 

of 300 kg m-1 s-1 means AR-CONNECT’s utility is best in the mid-latitudes, rather than at the poles. 
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Figure 3-2. Atmospheric river (AR) lifecycle durations depending on methodology. In the legend, the number 
indicates the integrated water vapor transport (IVT) threshold used (300 kg m−1 s−1 for AR-CONNECT), and 
“NT” indicates the filtering of the parent algorithm's tropical objects (included in the AR-CONNECT 
framework). Numbers with arrows indicate the count of objects greater than 4 weeks in duration. Atmospheric 
dynamics implies that objects greater than a few weeks shouldn't be considered singular AR events and are 
considered conglomerate objects. This is reflected by the choice to use 2 weeks as the maximum duration for 
AR objects. 

 

3.3.2. AR-CONNECT as an Atmospheric River Detection Technique 

AR-CONNECT is developed to be a permissive algorithm, i.e., a methodology that more frequently 

categorizes IVT fluxes as an AR, as its design was implemented, in part, to study global rainfall—a 

more restrictive design would cause significant underestimates to global rainfall totals. Moreover, AR-

CONNECT aims to determine the genesis of ARs before growing to the geometric size or shape 

criteria commonly used in AR studies, i.e., length >2,000 km, width <1,000 km (Wick et al., 2013). 

Because AR-CONNECT has no requirements for length, width, or shape, one may suspect that AR-

CONNECT is a misnomer—not properly designed to track ARs, which are officially defined as “long, 

narrow” (Ralph et al. 2018), but rather a methodology to study regions of enhanced IVT. However, 

analysis shows that 99.99% are >2,000 km in length for at least one timestep in its lifecycle and 89% 
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of the AR-CONNECT objects have a length-to-width ratio of >2 and 97% have a ratio of >1.5. 

Lastly, we consider the shape index (AghaKouchak et al. 2011), a metric used to calculate the geometry 

of objects, at the object’s greatest length. To be considered appropriately elongated, we set a minimum 

threshold of <0.75 based on Figure 7b from AghaKouchak et al., (2011), which shows an elongated 

object reminiscent of AR geometry. At this threshold, >99.99% of objects have a lower shape index. 

Furthermore, 97% of objects are lower than a more extreme shape index threshold of 0.60 and 88% 

are <0.50. With all these metrics considered as a whole, we conclude that objects segmented by AR-

CONNECT show strong evidence of being both long and thin, circumventing the need to hard-code 

strict geometric criteria.  
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Figure 3-3. AR-CONNECT objects on 14 February 2016 at 21:00z. The lifecycles of four atmospheric rivers 
(ARs), with pathways over the northern Pacific Ocean, the northern Atlantic Ocean, the southern Atlantic 
Ocean, and the Indian Ocean, are plotted to showcase their evolution and movement over their lifecycles. Of 
particular note is the AR over South Africa, which begins as a circular blob of IVT rather than an elongated 
shape more associated with ARs, subsequently evolves into longer and more elongated shapes over its 
lifecycle. This demonstrates one of the goals of AR-CONNECT: to identify ARs' origins before they 
resemble AR shapes. 
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3.3.3. Comparison to other Atmospheric River Tracking Methods 

To showcase AR-CONNET’s utility in the emerging field of AR tracking, we compare it to three 

pioneering methodologies: Payne and Magnusdottir (2014), Zhou et al., (2018), and Guan and Waliser 

(2019). The tracking methodology of Payne and Magnusdottir (2014) was developed to track large-

scale ARs that made landfall on the West Coast of North America. The requirements for the algorithm, 

a discrete minimum areal size of 21,000 km2 and a static IVT threshold of 350 kg m-1 s-1 are too 

restrictive to capture the geneses of lifecycle ARs, making AR-CONNECT’s ability to capture 

locations of AR genesis and its quasi-global extent a notable improvement over this methodology. 

Zhou et al. (2018) uses a relative IVT threshold based on the 85th percentile of IVT per geographic 

location and season. Like Payne and Magnusdottir, Zhou’s methodology is North American-centric. 

The AR tracking algorithm from Guan and Waliser (2019), named tARget (v.3), utilizes a relative 

threshold >85th percentile like Zhou et al. (2018). Climatological-based methodologies continually 

demonstrate great utility, but their thresholds are not linked to impacts. Therefore, AR-CONNECT’s 

usefulness exists in its threshold at levels where AR impacts are observable. 

The biggest difference between AR-CONNECT, tARget, Zhou’s methodology, and the IVT-

CONNECT methodology from Sellars et al. (2017) is its treatment of separation, combination, and 

deformation, the background of which is explained in depth in Guan and Waliser (2019). Succinctly, 

IVT-CONNECT treats the combination of all IVT objects as a singular object, not treating the 

combination, division, or deformation of an AR as an AR genesis or terminus. Zhou and tARget both 

consider combination, division, and deformation in determining the genesis/terminus of ARs, but 

while Zhou considers each division or combination the start of a new AR, tARget aims to distinguish 

which AR is most similar from the previous step and assigns it to the next. For example, during a 

combination (2 ARs combining into 1; 2→1), tARget determines which AR from the previous step is 

most like the newly combined AR, and assigns them the same identification number, while the other 
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AR is considered terminating. Alternatively, during a separation (1 ARs dividing into 2; 1→2), 

whichever AR is most like the AR from the previous step is considered a continuation, while the other 

is considered a genesis. AR-CONNECT, like IVT-CONNECT, elects to not consider combination, 

division, or deformation in AR tracking, preferring to segment based on AR cores. The advantage of 

this can be seen in Figure 3.4, where an idealized scenario of two ARs with distinct cores going through 

separation then combination is only successfully labeled according to their cores by the AR-

CONNECT methodology. 

3.4. Results 

The AR-CONNECT catalog currently consists of AR lifecycle objects described by a multitude of 

characteristics including hydroclimate variables such as the average, maximum, median, sum, and 

standard deviation of the IVT field and the precipitation field; spatiotemporal variables such as each 

object’s average areal extent, speed, duration (number of timesteps from genesis to terminus multiplied 

by its three-hour temporal resolution), lifecycle centroid (weighted centroid of IVT over the event’s 

lifecycle), genesis and terminus location, and genesis to terminus extent; and the states of 40 climate 

oscillation time series, including the Arctic Oscillation (AO), El Niño Southern Oscillation (ENSO) 

time series such as the Multivariate ENSO Index (MEI), North American Oscillation (NAO), and 

many more. 
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Figure 3-4. A comparison of how four different atmospheric river (AR) tracking methodologies handle a 
scenario where two AR bodies go through combination then separation over three time steps (t). The colored 
shape outlines, labeled as AR1–5 and color-coded, represents the body of the AR over each step of its lifecycle, 
while the filled color-coded dots, identified as ARcore1–2, represent the core of the AR (in this scenario, these 
cores are spatiotemporally contiguous per the requirements of AR-CONNECT.) Of each methodology, AR-
CONNECT segments the lifecycle of ARs equal to the number of AR cores, while IVT-CONNECT combines 
all AR bodies into one lifecycle, Zhou et al. (2018) produce new ARs at every time step for a total of five, and 
tARget v.3, while showing skill in tracking ARs across the complicated scenarios inherent to AR tracking, does 
not track consistently with the AR core identities, falsely identifying the region surround ARcore2 as AR1. 
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3.4.1. Climatology 

Table 3-1. The mean, minimum, maximum, and standard deviation of the annual frequency of atmospheric 
rivers (ARs) per year and the annual averages of three important characteristics of AR lifecycles: average discrete 
area, duration, and distance from the equator. Values belonging to global ARs are in black, while values of ARs 
that inhabit the Northern and Southern Hemisphere are identified in red and blue, respectively. 

 Mean Minimum Maximum Std. Dev. 

Frequency of ARs 

764 

312 

452 

724 

286 

407 

812 

339 

494 

19.4 

10.6 

16.9 

Average discrete area (km2) 

3.09×106 

2.92×106 

3.21×106 

2.98×106 

2.77×106 

3.04×106 

3.24×106 

3.18×106 

3.42×106 

6.34×104 

8.59×104 

8.22×104 

Duration (days) 

3.12 

3.25 

3.04 

2.99 

3.07 

2.88 

3.28 

3.41 

3.22 

7.07×10-2 

8.96×10-2 

8.75×10-2 

Distance from the equator (°) 

39.8 

39.4 

40.0 

39.0 

38.3 

39.4 

40.6 

40.3 

41.0 

0.389 

0.557 

0.471 

 

When considering global ARs, we see an average of 764 ARs per year, each with an average discrete 

size of 3.09 million km2, lasting for an average of 3.12 days with a center of mass at 39.8 degrees from 

the equator. When looking at hemispheres, we see that there are a smaller number of Northern 

Hemisphere ARs, which are smaller in volume but greater in duration and closer to the equator than 

southern hemisphere ARs. The ratio of AR counts per year between the Northern and Southern 

Hemisphere follow a ratio of approximately 2:3, which is equivalent to the number of AR hotspots 

observed in Figure 3.5a and found in Sellars et al. (2017) and Guan and Waliser (2019). Furthermore, 

we see that AR activity is minutely more stable in the Northern Hemisphere than in the Southern 

Hemisphere, where the standard deviation of annual AR counts is only 3.2% of the annual mean, 

compared to 3.7%. This is the only variable where the standard deviation is smaller in the Northern 

Hemisphere than the Southern Hemisphere, which in general have more consistency in the 

spatiotemporal characteristics studied. This is likely due to the disconnected nature of Northern 
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Hemisphere AR tracks, creating distinct flavors of ARs between those over the Pacific and those over 

the Atlantic—notice the difference in track orientation, extent, and the more poleward extent of North 

Atlantic AR terminus locations—and is in stark contrast to the continuous AR track hotspots of the 

Southern Hemisphere (Figure 3.5a). 

Next, we examine the average decadal location of AR frequency, genesis, each averaged over a 5°-by-

5° grid (Figure 3.5a-c). We note AR hotspots over 1) the Northern Pacific, which consist of AR counts 

between 800-900 per decade, with genesis hotspots over southeast China and the northwest Pacific 

and terminus points over the Pacific coastline from California to the Aleutian Islands; 2) the northern 

Atlantic, with the greatest number of decadal ARs—greater than 1,000—with genesis over the Eastern 

U.S. and Northwestern Atlantic and terminus over Northern and Western Europe along with the 

adjacent parts of the Atlantic; and 3) Southern Hemisphere ARs, which exist continuously across the 

pathway of the Southern Jet Stream, but show hotspots on both sides of South Africa and west of 

Chile. Notable genesis hotpots for these ARs include the region of the South American Low-Level Jet 

(Montini et al. 2019) and southeast of South Africa, with as many as 50 geneses per decade, while 

there are notable terminus hotpots south of South Africa, in the southern Indian Ocean, and offshore 

of Chile.  
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Figure 3-5. (a) The annual climatology of atmospheric river (AR) objects, and the decadal climatologies of (b) 
AR genesis and (c) AR terminus locations, resampled to a 5°-by-5° grid. Note the clear relationships between 
the three plots, demonstrating five notable hotspots: two in the Northern Hemisphere and three in the Southern 
Hemisphere, the latter of which are notably less distinguishable from each other. 
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3.4.2. Trend Analysis 

To understand how AR lifecycles have changed over our 34-year (1983–2016) catalog, we analyze the 

trends in the timeseries of lifecycle characteristics using slope/pValue (short for “probability value”, 

a term that describes statistical significance) charts. As the sensitivity of these trends during different 

periods of observation is high owing to the shorter-term domain of the catalog, we examine the trends 

across every multi-year period possible during the study duration, for a total of 561 trend analyses per 

variable (Figure 3.6). In this way, clusters of high values are clearly visible and periods of enhancing 

or decreasing activity can be intuitively digested. Each slope/pValue plot is divided into two halves: 

1) the slope of the trend and (bottom-right) 2) the pValue of the trend (top-left). Statistical significance 

is examined at pValue = 0.10, 0.05, and 0.01. 
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Figure 3-6. Left: Annual averages of atmospheric river (AR) (a) frequency, (b) size (average discrete area), (c) 
and duration over the study period. Trends are presented as colored lines and correspond to the colored circles 
signifying slope and significance on the right-hand subfigure. Right: Trends in AR characteristics presented by 
slope and significance level (pValue) of the trend. Points of trendline slope and pValue for identical time-
periods are mirrored across the diagonal line of white grid-points. The greatest duration (1983–2016) 
subperiods can be observed in the top-left and bottom-right corners of the boxes for the pValue and slope, 
respectively. Each step left (right) of this point is a 1-year decrease in the ending year for the slope (pValue) 
time series, and each step up (down) of this point is a 1-year increase in the starting year for the slope (pValue) 
time series. 

 

The frequency (Figure 3.6a) of ARs per year shows a cluster of increasing AR values of slope between 

2-4 ARs/year occurring between approximately 1985 and 2000 to approximately between 2005 and 
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2016. Another cluster of negatively trending values at a rate between 3-4 ARs/year exists between 

1983 and 1989 to between 1991 and 1997. This suggests the possibility of a multi-decadal oscillation 

in the number of AR appearances per year. When collectively considering the trend between 1984 to 

2000 (green) followed by the trend from 2000 to 2015 (purple), we see a near-perfect oscillation: -2 

ARs/year in the falling limb followed by a 2 AR/year increase in the rising limb, both significant at a 

pValue=0.05. The trend of average area (Figure 3.6b) shows a patch of statically significant and 

strongly increasing trends over longer (10-year+) time periods that end in the last 6-8 years of the 

record. Such a pattern indicates a strong positive signature in the IVT field, which is the result of 

anthropogenic heating creating a greater water vapor background climatology, translating into larger 

plumes of IVT above the 300 kg m-1 s-1 threshold (Espinoza et al. 2018). For the duration time series 

(Figures 3.6c), only trends that end over the last two years of the study period show robustness when 

changing the beginning year. Even when considering the strongest trends, a total increase of only 

<0.20 days is observed, which is approximately equivalent to 4.5 hours. Overall, the multi-subperiod 

analysis presented in this study effectively makes diagnosing long-term trends from noise or decadal-

scale oscillations visually intuitive. Due to the shorter period of the analysis, there are still considerable 

questions regarding long-term trends, especially those influenced by anthropogenic climate change. 

Extending the time series into the past and future via longer duration time series and model projections 

would give further insight into the trends of annual AR frequency, duration, and size and is a promising 

direction for AR lifecycle research. 

3.4.3. Rainfall 

We plot the pattern of quasi-global (60°N–60°S) annual AR rainfall climatology in Figure 3.7 and 

confirm the presence of sizable amounts of rainfall from landfalling ARs over regions frequently 

associated with AR activity such as the Western U.S.; Chile; Europe, especially the British Isles; and 

Oceania. Furthermore, it is shown that regions associated with AR genesis, e.g. central South America, 
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the eastern U.S., and eastern Asia, have a sizable portion of their rainfall climatologies from AR rainfall, 

with values up to 50%, though these totals (especially over the eastern United States) are likely 

exaggerated owing to the higher background moisture fields in these regions, which makes inadvertent 

capturing of convective systems in AR-CONNECT object boundaries likely.  

In terms of validation, we examine that the precipitation fractions over the U.S. West Coast generally 

fall between 5–30% (Figure 3.7b), which is on the lower end to less than the 18–50% number given 

by Dettinger (2011), Rutz et al. (2014), and Guan and Waliser (2015). This is expected, as the IVT 

threshold used in this analysis is greater than the 250 kg m-1 s-1 threshold typically used over the U.S. 

West Coast. Furthermore, these studies were done using daily precipitation products, while AR-

CONNECT only accumulates precipitation totals during 3-hour increments of AR activity, a more 

conservative approach. Lastly, the numbers from Dettinger and Rutz are only calculated for the cool 

season.  
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Figure 3-7. Global AR rainfall patterns and trends uncovered by AR-CONNECT and PERSIANN-CDR. Areas 
in gray are regions where data availability of three-hourly PERSIANN-CDR is <90% of time steps. (a) Average 
annual AR rainfall measured by PERSIANN-CDR. (b) Average annual AR precipitation (a) divided by annual 
rainfall climatology measured by PERSIANN-CDR. (c) Results of the Mann-Kendall test done at a significance 

level α = 0.05. Values of Kendall's rank correlation coefficient (tau) are visualized by the red-white-blue color 
map, with regions of statistical significance indicated with a black outline. 
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Based on these results, we determine that the AR-CONNECT method shows suitability for 

identifying regions of frequent AR activity and getting approximate AR rainfall totals and 

contributions to regional and global rainfall climatologies. For example, AR rainfall totals over Europe 

show contributions as great as 35% over coastal Ireland and contributions of at least 5% as far 

northeast as Russia and southeast as Iran. However, it is known that satellite measurements are less 

accurate than those from radar and rain gauges. Therefore, AR rainfall fractions presented in this study 

outside of well-studied regions like the west coast of North America need to be reinforced by other 

global and regional studies.  

In terms of AR rainfall trends, trends in annual pixel rainfall totals are analyzed through the Mann-

Kendall test at a significance level of α=0.05 and the Kendall rank correlation coefficient (Figure 3.7c). 

We choose to use Kendall rank correlation, a trend analysis method closely related to the Mann-

Kendall test, because it is not affected by missing data, which is an issue with the incomplete coverage 

of the satellite record back to 1983. Kendall rank correlation (𝛕) is calculated thusly: 

𝜏 =
∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

 𝑛
𝑗=𝑖+1

 𝑛−1
𝑖=1

𝑛(𝑛 − 1)
2

 

where x is a single value from a vector of annual point rainfall values x and n is the population size of 

x. In essence, τ is the number of concordant pairs subtracted by the number of discordant pairs divided 

by the total number of pairwise comparisons, with [1 -1] being the bounds of a perfectly 

increasing/decreasing time series.  

Overall, when considering regions where there is satellite coverage ≥90% of the PERSIANN-CDR 

data files, annual AR-related rainfall is increasing over 74% of the world’s surface, with 17% showing 

a significant trend. Regions of significantly enhanced rainfall include along the Southern Jet Stream, 

east of the Andes, and southern Europe to western Asia. The Sahara Desert also shows a significant 
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positive trend. However, this region is one of the most problematic for remotely sensed quantitative 

precipitation estimation (Kelley 2014) and should be considered with great scrutiny. Inversely, 23% 

of the world is seeing a decrease in AR rainfall, though <1% is statistically significant. Regions, where 

AR rainfall is decreasing significantly include northern Mexico/the American Southwest, New 

Zealand, and northeastern Argentina, the most latter of which is the hottest spot of AR genesis (Figure 

3.5b). Globally, there is a detected positive trend in precipitation volume from ARs significant at 

α=0.01, contributing 17% of total global rainfall in 1992 to 21% in 2016. 

 

Figure 3-8. Trendlines of precipitation volume by volume (black) and fraction of total quasi-global (60°N-60°S) 
rainfall (orange). Both trends are significantly increasing at α=0.01 when tested with the Mann-Kendall test. 
Fraction time series starts in 1992 as holes in the satellite record artificially inflate values before this year. 

 

3.5. Conclusions 

In this study, the CONNECT algorithm is adapted to track the lifecycles of global mid-latitude ARs 

and associated precipitation. This is done by tracking AR “cores”, which is shown to be an effective 

way of extracting singular ARs lifecycles by reducing the existence of conglomerate objects. 

Furthermore, the new methodology allows AR-CONNECT to track AR geneses back to before they 



 

33 
 

obtain AR geometries. Despite not having hard-coded geometric requirements to classify an IVT 

patch as an AR, analysis into the lengths and shape of AR-CONNECT objects show that in general, 

objects show suitable elongation during their lifecycles to be considered ARs. 

Through the AR-CONNECT methodology, we investigate the climatology and trends of AR 

characteristics such as frequency, size, duration, and centroid location. Generally, the number of ARs 

lifecycles exists in a 2:3 ratio of Northern Hemisphere to Southern Hemisphere ARs, which is identical 

to the ratio of AR track hotspots in each hemisphere. Trend analysis indicates that there is a large 

statistically significant increase in the size and duration of ARs, while there is evidence of an oscillating 

nature in annual AR numbers coupled with a small increasing trend. The Mann-Kendall test located 

areas of significantly changing AR rainfall and found that 17% of the world between 60°N–60°S is 

experiencing a statistically significant increase. 
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Chapter 4 – Four Decades of Intensifying Precipitation 

from Tropical Cyclones 

4.1. Introduction 

One of the barriers to making a conclusive assessment of historic TC precipitation is the lack of high-

resolution and global precipitation data available for durations long enough to overcome natural 

climate variability. Thanks to the rapid advancement of satellite precipitation estimating algorithms, 

the first HRPCDRs are being produced, making precipitation measurements at 0.04° (~4 km) and 

sub-daily spatiotemporal resolution available back to 1980. Available at higher resolutions than other 

long duration records of precipitation like PERSIANN-CDR and Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS), HRPCDRs are shown to better capture the pattern and 

intensity of the most intense precipitation rates (Sadeghi et al. 2021b)—an invaluable improvement to 

accurately assess TC precipitation. 

In this study, a statistical analysis technique known as object-oriented analysis is used to data mine TC 

precipitation from an HRPCDR produced from the PDIR model over the 1980-2019 period. 

Precipitation measurements within 500 km of TC track data are captured and used to calculate 

characteristics that describe the event’s hydrometeorological characteristics, namely the mean, 90th, 

and 99th percentile of precipitation rates, along with the total volume of precipitation and its 

component over land. The method of using characteristics to describe an event or “object” is known 

as object-oriented analysis. Characteristics are considered at an annual basis (calendar year) and are 

calculated per TC basin determined by genesis location: East Pacific (EP), North Atlantic (NA), North 

Indian (NI), South Indian (SI), South Pacific (SP), and West Pacific (WP), and together as a global 

aggregate. Trends are further divided into intensity categories based on their peak windfall 
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measurements according to the Saffir-Simpson scale (Knapp et al. 2010): “All TCs” constitute all 

events, “Weak TCs” are all sub-hurricane strength storms, “Strong TCs” include category 1-2 

hurricanes, and “Very Strong TCs” indicate any storm at or above category 3 (Figure 4.3). These 

results paint a varied history in the last 40 years of TC activity, with notable increases in TC 

precipitation rates across basins and mixed but generally positive changes in total and inland 

precipitation volumes between basins. 

4.2. Materials and Methods 

4.2.1. PDIR-CDR Precipitation Data 

Upon the development of the first HRPCDR, PERSIANN-CCS-CDR (Sadeghi et al., 2021b), it was 

shown that one of its distinct advantages over PERSIANN-CDR is in recording extreme precipitation. 

Given the intensity of rainfall and smaller scale of TCs, especially the sharp gradients of the rainfall 

field found from the core to the outer extent of a TC, it was shown that an HRPCDR could be a more 

effective tool for producing a climate-scale catalog of TC precipitation than PERSIANN-CDR. For 

example, PERSIANN-CCS-CDR outperforms PERSIANN-CDR as a QPE method for recording 

the rainfall of Hurricane Harvey.  

For this study, we produce an HRPCDR based on the PDIR satellite precipitation measurement 

algorithm (Nguyen et al. 2020a,b), hereafter referred to as “PDIR-CDR”. PDIR-CDR uses three-

hourly and 0.04° spatiotemporal resolution measurements of IR-derived cloud-top temperature from 

the GridSat-B1 archive, which is a consistent and homogenous remotely sensed data set available near-

continuously since 1980. PDIR-CDR’s domain, like many other QPE products, is limited to sub-polar 

regions (60°S-60°N.) In the instance of missing coverage—mostly occurring in the 1980-1982 period 

and in the Eastern hemisphere—precipitation estimates from the NASA MERRA-2 (Gelaro et al. 

2017) reanalysis project is downscaled from its native 0.625° x 0.5° spatial resolution and used to fill 
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in the gaps. As the spatial resolution of MERRA is coarser than GridSat-B1, some of the finer spatial 

patterns in the rain field are lost in the final product, but the inclusion of these years was determined 

to not seriously change the results of this study. Afterwards, the monthly accumulations of 

precipitation estimates are bias corrected at the monthly scale using GPCP v2.3 monthly gridded gauge 

data (Adler et al. 2018), following the homogeneity-focused methodology of other PERSIANN-based 

CDRs. Though experimental in nature, continued evaluation of PDIR-Now shows generally skillful 

performance across temporal and spatial scales (Saemian et al. 2021; Huang et al. 2021). 

One of the most prominent concerns when producing and utilizing high-resolution data sets of 

precipitation is their uncertainty. Uncertainty is an unavoidable issue when dealing with satellite remote 

sensing of precipitation at all scales, or any other hydrological variables for that matter. Even the best 

multi-input and gauge corrected data sets have considerable issues with accuracy when compared to 

quality-controlled radar and gauge products (Nguyen et al. 2018a, 2019). This issue is complicated by 

the fact that there is no perfect ‘ground truth’ data set to compare most products to as the climate is 

not regularly and directly measured except at a handful of in situ sites (Daly 2006). This is especially 

true in remote regions or over large bodies of water, where satellite and reanalysis are the only options. 

To address PDIR-CDR’s uncertainty for measuring TC-linked precipitation, we evaluate PDIR-CDR 

against GPCP v2.3 in the tropics (30°N to 30°S), which shows PDIR-CDR’s strong correlation with 

GPCP (CORR=0.67), though not without notable overestimation bias (Figure 4.1). Though with 

notable bias and periods of disagreement with GPCP, primarily in the early record (1980-1984), PDIR-

CDR does not show the presence of long-term artificial trends that would indicate inhomogeneity, 

meaning its weaknesses should not dominate trend analysis results as error is distributed quasi-

uniformly across the study period. Moreover, robust regression techniques (summarized later in this 

section) were used to limit the influence of outliers, including periods of disagreement between PDIR-

CDR and GPCP. Overestimation bias is expected from PDIR-CDR because the PDIR algorithm was 
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developed with extreme events in mind, which are frequently underestimated by other QPE 

techniques (Nguyen et al., 2020a,b). PDIR can better capture the upper tail of extreme rainfall at the 

cost of frequent overestimation. Moreover, the difference in native resolutions between GPCP (2.5°, 

monthly) and PDIR-CDR (0.04°, 3-hourly) means that short-duration heavy rain events that are 

captured in PDIR-CDR are smoothed over in GPCP. PDIR-CDR’s high correlation with GPCP is 

far superior to Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis-

3B42 v7 (TMPA-3B42 v7; CORR=0.02), though TRMM shows essentially no bias at the monthly 

scale.  

 

Figure 4-1. Deseasonalized rain anomalies over the tropics (30°N to 30°S) from GPCP v2.3 (black), PDIR-
CDR (magenta), and TRMM TMPA-34BT v7 (cyan), measured at the monthly scale. Each data set is 
described by its mean value and standard deviation over the domain in the colored arrows. Correlations 
between PDIR-CDR and TRMM with GPCP are reported in the bottom right box. 

 

Further analysis of PDIR-CDR performance and uncertainty was done for select case studies to prove 

its effectiveness for the capture of extreme precipitation, especially over land. In Figure 4.2 daily 

rainfall totals from PDIR-CDR over land are evaluated in comparison to NOAA’s Stage IV radar-

gauge product, a high quality QPE product frequently used for evaluation purposes, during two 

noteworthy hurricanes that made landfall over large population centers in the United States during the 

last two decades: Hurricane Katrina (2005) and Hurricane Sandy (2012). By observing the scatter plots 
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of PDIR-CDR and Stage IV comparisons, we see that though there exists a large amount of noise and 

bands of notable overestimation and underestimation by PDIR-CDR for Hurricane Katrina and 

Sandy, respectively, the large cluster of points along the perfect correlation line at the extreme end of 

the chart (>100 mm/day) show that PDIR-CDR’s quality does not decay for large extreme 

precipitation totals, an important requirement for this study. For both evaluations, PDIR-CDR’s 

performance recorded by statistical comparison metrics remained similar: Probability of detection 

(POD) of or greater than 0.90, false alarm ratio (FAR) of less than 0.30, cumulating into a combined 

skill index (CSI) score of ~0.7, an impressive score when considering satellite QPE at the daily scale. 

PDIR-CDR’s multiplicative bias of 0.68 and 0.94 combined with notable root mean squared error 

(RMSE) scores of 12 mm/day and 13.9 mm/day indicate that even with its overestimation at the 

monthly scale, PDIR-CDR still underestimates the heavy precipitation rates of heavily precipitating 

TCs to some degree. FAR scores of 0.20 and 0.29 mean PDIR-CDR occasionally records rainfall 

where there is none. Compare these results to those from Omranian et al. (2018), who found similar 

performances (CSI of ~0.7 and correlation of ~0.6) during Hurricane Harvey using what is widely 

regarded as one of those most accurate satellite remote sensing products, IMERG. Though it’s clear 

that PDIR-CDR is not the perfect dataset, its high CSI score combined with its notable skill for 

capturing extreme precipitation totals means its well suited for this study. 
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Figure 4-2. Evaluation of PDIR-CDR rainfall data against Stage IV (ST4) radar-gauge data for a) Hurricane 
Katrina from Aug-24-2005 to Sep-01-2005 and b) Hurricane Sandy from Oct-24-2012 to Oct-31-2012. Scatter 
plots of daily pixel totals are shown with Probability of Detection (POD), False Alarm Ratio (FAR), Critical 
Success Index (CSI), Pearson Correlation Coefficient (CC), Multiplicative Bias, and Root Mean Squared Error 
(RMSE) scores superimposed. The scatterplot’s color map represents the density of points, with the greatest 
density at the origin point in yellow. c) The spatial domain (solid line) of each scatter plot with the corresponding 
hurricane track (dashed line). Hurricane Sandy is shown in blue while Hurricane Katrina is shown in red. 

 

4.2.2. Tropical Cyclone Segmentation 

We use the International Best Tracks Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010) 

reanalysis data set for TC track data. IBTRaCS is a collaborative effort to produce TC tracks using 

reanalysis techniques from climate monitoring centers across the globe. Data availability is three-
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hourly, corresponding to the resolution of PDIR-CDR. IBTrACS data is used for TC track 

coordinates from 1980 to 2019 across six basins: EP, NA, NI, SI, SP, and WP. Note that the Southern 

Atlantic basin was omitted due to sparse activity and the Australian basin was split between the SI and 

SP basins per IBTrACS convention. Additionally, IBTrACS convention grades TC intensity on the 

Saffir-Simpson scale regardless of basin. 

 

Figure 4-3. The grading scale used in this paper compared to 1-minute and 10-minute wind speed along with 
regional meteorological offices’ grading categories. 

 

To designate rainfall as linked to a TC event, a 500-kilometer buffer is drawn around each IBTrACS 

centroid location: all rainfall within this buffer is recorded as TC rainfall while all remaining rainfall 

pixels are ignored. The 500-kilometer radius of TC rainfall is based on the physical structure of a fully 

formed TC and contains the entirety of the precipitation fields for 90% of TC events (Prat and Nelson 

2013; Larson et al. 2005; Lau et al. 2008; Jiang and Zipser 2010; Schreck and Molinari 2011). It should 

be stated that assuming a perfect circular threshold with a static threshold is a considerable 

oversimplification of TC structure, which frequently occur in oblong shapes—especially before 

cyclogenesis—at spatial scales that drastically differ between storms with otherwise similar intensities 
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(Chavas and Emanuel 2010). However, without readily available data on the radius of the outermost 

closed isobar, a common way to segment the boundary of a TC—calculated systematically in (Weber 

et al. 2014) but not made publicly available—alternative methods are questionably better than our 

simplified approach. For example, (Skok et al. 2013) uses an object-based approach but fails to detect 

precipitation in 12% of global TC events. Likewise, the outmost radius of 34-kt winds provided by 

IBTrACS, another metrics useful for calculating the TC size is not available for all basins (e.g. NI, EP) 

and is significantly less than true TC size (2009). For these reasons, the simplified approach of the 

500-km buffer is preferred for this study, though will result in overestimation bias in the results due 

to detection of non-TC precipitation signatures (Feldmann et al. 2019). 

 

Figure 4-4. Segmentation technique used to classify precipitation as tropical cyclone related. 
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4.2.3. Trend Analysis Tests 

As the natural variability of TC characteristics and the uncertainty of rainfall estimates in the early data 

period are large, trend analysis was calculated using robust regression. M-estimation, a class of 

extremum estimators, are robust regression techniques that are often used as an alternative to the 

linear-least squares method due to their decreased sensitivity to outliers and independence from 

assuming distribution. Robust regression calculations presented in this paper were performed using 

MATLAB’s “robustfit” function that is based on the iteratively reweighted least squares M-estimation 

method (Dumouchel 1992). Reductions in degrees of freedom caused by five-year smoothing were 

considered during trend analysis calculations. All robust regression calculations were tested against a 

p-value=0.05.  

The Mann-Kendall test is a non-parametric trend analysis test that analyzes data collected over time 

for monotonic (consistently increasing or decreasing) trends. The Mann-Kendall test’s non-parametric 

nature means its suitable for use when data points are missing, making it useful for time series with 

missing data points, e.g. for analysis of basins with years without precipitation. Based on the Mann-

Kendall test, the Kendall rank correlation (𝜏) is a normalized trend analysis metric with bounds [1 -1] 

corresponding to a perfectly increasing/decreasing time series. See Section 3.4.3 for more information. 

4.2.4. Continuous and Categorical Skill Metrics 

The performance of PDIR-CDR was evaluated by the following continuous skill metrics: Pearson 

correlation coefficient (CORR), multiplicative bias (BIAS), and root-mean-square error (RMSE) 
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where Pi  and Oi represent the ith precipitation estimate from the model and observation data sets, 

respectively, and n is the number of data comparisons.  

We use also evaluate PDIR-CDR using categorical skill metrics: Probability of Detection (POD), False 

Alarm Ratio (FAR), and Critical Success Index (CSI)  

𝑃𝑂𝐷 =
𝐻

𝐻 + 𝑀
 

𝐹𝐴𝑅 =
𝐹

𝐹 + 𝐻
  

𝐶𝑆𝐼 =
𝐻

𝐻 + 𝐹 + 𝑀
       

where H (hit) indicates that the model and observation dataset agree on the presence of rainfall, M 

(miss) identifies events detected in observations but missed by the model, and F (false alarm) indicates 

events detected by the model but not confirmed by observation. 

4.3. Results 

Recent evidence has suggested that an increase in global TC precipitation rates is detectable in 

historical rain data archives (Guzman and Jiang 2021), though these studies are limited in 

spatiotemporal extent. To investigate if these trends exist in the climate scale or are rather the result 

of natural variability in sub-climate timescales, the mean and extreme values of TC precipitation are 

considered at a yearly basis over a 40-year period. We ask the question: “When considering the 

distribution of rainfall rate values, do we observe an increase in the mean consistent with expectations 
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of Clausius–Clapeyron to super Clausius-Clapeyron scaling—expected in kilometer- and sub-daily 

scale processes (Fowler et al. 2021)—and do we see an elongation of the tail indicating greater extreme 

values?” To probe this question, the mean (〈𝑅〉), 90th (𝑅90), and 99th (𝑅99) percentile of precipitation 

rates over the life cycle of a TC (rainy grid cells only) were calculated, organized by basin and intensity 

classifications, then averaged annually. To overcome the fundamental variability in TC events, values 

are smoothed over a five-year window and trends were tested using robust linear fitting, which helps 

limit the influence of outliers. The results of this analysis can be seen in Figure 4.5, where trends in 

precipitation rates are reported as annual percent changes (APC) measured by the fitted model, and 

in Figure 4.6 where the vertical intercepts of each model are presented. In general, most regions, 

categories, and precipitation rates are seeing significantly increasing trends over the study period. 

These are reflected by significant increases globally across intensity basins (12-18%/40 years), with 

average APC in 〈𝑅〉, 𝑅90, and 𝑅99 of 0.32±0.03%/year, 0.42±0.04%/year and 0.41±0.04%/year, 

respectively, in the All TCs category and between 0.42-0.70%/year (17-28%/40 years) in Strong and 

Very Strong TCs. However, when considering the “global” category, it is important to note that WP 

basin has >30% of global TC occurrences of all basins (Table 2) and will inevitably influence trends 

greater than other basins—for example the NI basin, which includes less than 10% of TC events per 

year. This influence will also exist in the results presented in Figures 4.7, 4.8, and 4.9.  
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Figure 4-5. Annual precipitation rate changes of mean and upper percentile precipitation rates by intensity 
classifications and basins— East Pacific (EP), North Atlantic (NA), North Indian (NI), South Indian (SI), 
South Pacific (SP), and West Pacific (WP). Rates are calculated from the average year-to-year increase of the 
fitted linear model. Asterisks represent statistical significance at α=0.05. During this period, global mean sea 
surface temperature increased at a rate of 0.13°C/decade. Knutson et al. (2018) identifies warming in the tropics 
occurs at ~75% the rate of global temperatures, translating into a ~0.10°C/decade trend in the tropics. 
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Figure 4-6. The values of the vertical intercepts for the linear models fit in Figure 4.5 for mean rainfall (top), 
the 90th percentile of rainfall (middle), and the 99th percentile of rainfall (bottom). 

 
 
Table 4-1. Tropical cyclone (TC) occurrences from 1980-2019 by basin and intensity. Percentages are per 
intensity classification (i.e. all percentages in the All Tropical Cyclone (ATC) category add to 100%) and the 
numbers in parenthesis are the totals. WTC, STC, and VSTC stand for Weak, Strong, and Very Strong TCs, 
respectively. 

 EP NA NI SI SP WP 

ATC 19% (827) 14% (618) 7% (311) 17% (745) 11% (474) 31% (1,340) 

WTC 18% (433) 14% (356) 10% (249) 17% (427) 12% (287) 29% (712) 

STC 21% (260) 16% (197) 3% (42) 18% (215) 11% (140) 30% (364) 

VSTC 21% (134) 10% (65) 3% (20) 17% (108) 8% (54) 41% (265) 

 

Given the consistent increases in precipitation rates, one may assume that that the mean volume of 

precipitated water per event has also increased. To determine this, TC volume is measured per storm 

and averaged yearly. TC volumes are calculated by multiplying each rainy grid cell by the grid cell area 

(latitude-dependent), then summing over the storm’s lifetime (see the Methods section for specifics 

on grid size and TC extent). The time series of mean annual TC precipitation volumes (〈𝑉〉, hereafter 

referred to as “volume(s)”) are plotted in Figure 4.7, separated by category and basin. Again, five-year 
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smoothing was applied to the time series and trends were tested using robust linear fitting. The time 

series at the top-right of Figure 4.7 provide a summarizing view of global 〈𝑉〉 trends: increasing at a 

rate of 0.28±0.10% per year, though not without a strong oscillation in the time series. Indeed, most 

categories have either seen an increasing trend or no trend, though no basin has seen increasing trends 

across all intensity categories. Of particular interest are the following results: 1) A sharp increase in 

volumes in the SI (1.26±0.05%/yr or 48-52%/40-yr) and NA (1.53±0.06%/yr or 59-64%/40-yr) 

basins driven by Weak and Strong TCs; 2) A modest increase in volumes from Very Strong TCs in 

the SP basin (APC=0.87±0.18%); and 3) A negative trend in the volumes of Strong and Very Strong 

TCs in the WP basin of -0.44±0.16% and -0.42±0.12%, respectively, the latter of which has seemingly 

caused a decrease in global Very Strong TC volumes of 12-20%. Overall, Weak TCs have seen 

increases in four of six basins, Strong TCs have changed in three of six, with two positive trends and 

the other negative, and Very Strong TCs have an increasing and decreasing trend in one basin each. 

This culminates into the All TCs category having increased in three out of six basins.  
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Figure 4-7. Trend analysis of mean TC precipitation volume totals (〈𝑉〉), separated by intensity and basin 
classifications. Gray values with standard error uncertainty bounds indicate annual average values while black 
lines display five-year average timeseries data. Colored lines indicate trend of the fitted linear model and the 
colors red, blue, and green indicate a statistically significant increasing, decreasing, and insignificant trend at 
α=0.05, respectively. Numbers on the top right of each subfigure are the annual percent change (APC) of the 
trend line and the standard error. Time-axis units are the last two digits of the calendar year, from 1980 to 2019. 

 

Trends in 〈𝑉〉 could be interpreted as being a result of increases in TC duration and not necessarily 

precipitation intensity. Increases in global SST values have been linked to slowing of TC translation 

speeds (Kossin 2018) and slower decay following landfall (Li and Chakraborty 2020) both increasing 

TC duration values. We normalize the 〈𝑉〉 quantity by its duration in hours to produce hourly 〈𝑉〉, 

hereafter symbolized as 〈ℎ𝑉〉. The results of this analysis, shown in Figure 4.8, is that across categories 

there have only been increasing or non-significant (no) trends. Only one basin/intensity pair has a no 

trend in 〈ℎ𝑉〉 and a positive trend in 〈𝑉〉, which indicates an increase in volume from an increase in 

duration rather than changes in precipitation. All other time series with positive trends in 〈𝑉〉 (max: 
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1.24%±0.06 per year) have also experienced an increase in 〈ℎ𝑉〉. Simply put, in most cases an increase 

in TC precipitation volume is at least partially a result of increasing precipitation rates and not solely 

duration. Increasing trends in Very Strong TC 〈ℎ𝑉〉 in the global and WP categories hint that the 

corresponding decreasing trends in 〈𝑉〉 are a result of a decrease in event duration. Further analysis 

into TC durations confirms these results, with decreasing trends of -0.56±0.11% and -0.32±0.09% 

for WP and global Very Strong TC duration, respectively. Other notable negative trends in duration 

(Table 2) occur in global Strong TCs (-0.51±0.08%/year) and All TCs in the NI (-0.43±0.16%/year) 

and WP (-0.44±0.12%/year) basins, while increasing trends occur in NA (0.78±0.07%/year) and SI 

(0.53±0.08%/year). These results are calculated solely from track data. In general, these results are in 

line with the analysis done in (Lavender and McBride 2021), who found that 70% of variance in the 

trends of TC precipitation volume during the 1998-2014 period could be explained by changes in TC 

duration.  
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Figure 4-8. Trend analysis of mean hourly TC precipitation volume totals (〈ℎ𝑉〉), separated by intensity and 

basin classifications. The symbology and features are identical to those from Figure 4.7. 

 

Table 4-2. The annual percent change in TC duration over the 1980-2019 period. Bolded numbers indicate 
statistically significant trends at α=0.05. 

 EP NA NI SI SP WP Global 

ATC 0.28+0.13% 0.78+0.07% -0.43±0.16% 0.53+0.08% 0.12±0.14% -0.44±0.12% -0.00±0.08% 

WTC 0.66±0.08% 0.71±0.07% -0.87±0.19% 0.86±0.04% -0.30±0.19% -0.29±0.16% 0.02±0.08% 

STC 0.30±0.13% 0.21±0.12% 0.03±0.39% -0.32±0.07% -0.79+0.33% -1.23±0.14% -0.51±0.08% 

VSTC 0.07±0.16% 0.46±0.20% -0.03±0.14% -0.46±0.16% 0.60±0.14% -0.56±0.11% -0.32±0.09% 
 

Considering the observed increases in rainfall rates and volumes, we now consider if changes are 

occurring over human population centers, i.e. do we see greater TC precipitation volumes over land? 

To calculate this metric (∑𝑉𝑙𝑎𝑛𝑑, where land indicates the landfalling component of TC volume and 

the summation sign indicates a yearly accumulation rather than an average), precipitation volumes are 

decomposed into their fractions over oceans and land and accumulated annually. As can be seen in 
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Figure 4.9a, increasing trends are the most common of all trends, where they are recorded in 16 out 

of 28 (57%) basins, while only Weak TCs in the WP and Strong TCs in the SP have seen decreasing 

trends. Most positive trends can be seen in the Very Strong TC category, where they’re recorded in 

four out of six basins. Global Very Strong TCs have changed at an alarming rate, with a calculated 

increase of 81-85% over the study period (2.08±0.05%/year). Weak TCs have increased (changed) in 

three (four) out of six basins, most notably in the NA by 104-106% in 40 years (2.63±0.02%/yr). 

Overall, these increases are enough for the global trend to be positive (0.30±0.12%/year). Strong TCs 

are increasing in two basins but aren’t enough to produce a significant trend in the global category. 

Overall, ∑𝑉𝑙𝑎𝑛𝑑 in All TCs has increased globally by 24-32% in 40 years (0.70±0.11%/year) and in 

four out of six basins. 
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Figure 4-9. Trend analysis of landfalling tropical cyclone (TC) precipitation volume variables, separated by 
intensity and basin classifications. Symbology is mostly identical to Figures 4.7 and 4.8, except for gray bars 
indicating one-year accumulations/averages of landfalling TC precipitation. a. Trends in yearly over land 
tropical cyclone precipitation volume accumulations (∑𝑉𝑙𝑎𝑛𝑑). b. Trends in mean hourly landfalling 
precipitation volumes (∑ℎ𝑉𝑙𝑎𝑛𝑑), defined as the amount of precipitation an average TC per category drops over 
land per hour. Note only the All TCs category is shown as values were similar across all intensity categories, 
making their differences insignificant. Plainly, because ∑ℎ𝑉𝑙𝑎𝑛𝑑  from a Weak TC, a Strong TC, and a Very 
Strong TC are similar, trends are sufficiently represented in the All TCs category. 

 

As values of ∑𝑉𝑙𝑎𝑛𝑑 are inevitably linked to the number of landfalling TCs in a year and the duration 

they remain over land, trends in ∑𝑉𝑙𝑎𝑛𝑑 were correlated against those of TC duration over land and 

landfalling frequency (Table 4, 5). Consistent with expectations, most categories correlate with 

landfalling frequency at α=0.05: this is true in 20 out of 28 (71%) of the time series and 100% of the 
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Very Strong TC timeseries. Likewise, ∑𝑉𝑙𝑎𝑛𝑑 correlates with duration over land in 17 of 28 (61%) of 

the time series. Curiously, time series of global All TCs, Weak TCs, and Strong TCs are uncorrelated 

with TC landfalling frequency. 

Table 4-3. Correlation coefficient of ∑𝑉𝑙𝑎𝑛𝑑 and annual frequency of landfalling TCs. Bolded numbers indicate 
statistically significant trends at α=0.05. 

 EP NA NI SI SP WP Global 

ATC 0.50 0.43 0.84 0.71 0.17 0.44 -0.06 

WTC 0.76 0.06 0.90 0.29 0.35 0.67 -0.23 

STC 0.20 0.22 0.67 0.73 0.58 0.38 0.13 

VSTC 0.61 0.87 0.68 0.82 0.48 0.57 0.73 

 

Table 4-4. Correlation coefficient of ∑𝑉𝑙𝑎𝑛𝑑 and TC duration over land. Bolded numbers indicate statistically 
significant trends at α=0.05. 

 EP NA NI SI SP WP Global 

ATC 0.60 0.85 -0.30 0.33 0.46 0.39 0.78 

WTC 0.23 0.67 -0.04 0.46 0.57 0.39 0.70 

STC 0.34 0.78 0.24 0.27 0.43 0.56 0.79 

VSTC 0.21 0.25 0.24 0.23 0.27 0.07 0.74 

        

To investigate how precipitation intensity over land—independent of frequency and duration—has 

changed over time, a new variable was calculated: hourly mean precipitation volume over land 

(〈ℎ𝑉𝑙𝑎𝑛𝑑〉), which in essence is ∑𝑉𝑙𝑎𝑛𝑑 normalized by its temporal and frequency components. Or it 

can also be thought of as the over land component of 〈ℎ𝑉〉. In the simplest terms, it is the average 

precipitation volume a TC drops over land in one hour. As shown in Figure 4.9b, most basins—as 

well as the global category—have seen an increase in 〈ℎ𝑉𝑙𝑎𝑛𝑑〉 over the period, indicating an increase 

in precipitation volumes over land independent of frequency or duration, except for in the SI basin 

where ∑𝑉𝑙𝑎𝑛𝑑 is also stagnant. Increases are significant, with APC of 1.90±0.01%/year, 

1.16±0.12%/year, 1.96±0.02%/year, and 1.01±0.05%/year recorded in the EP, NA, SP, and globally, 

respectively. 
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The trends in ∑𝑉𝑙𝑎𝑛𝑑 presented in Figure 4.9a can be considered concurrently with Figure 4.10, where 

trends in ∑𝑉𝑙𝑎𝑛𝑑 are tested spatially over major river basins using the Kendall rank correlation metric 

(useful for basins for years with no activity; see Materials & Methods for more information)—though 

only for the “All TCs” category. Basins are only considered if over half the years on record include a 

nonzero value of ∑𝑉𝑙𝑎𝑛𝑑, which meant that five-year smoothing could not be used as it was for 

Figures 4.5-4.9. In summary, every major river watershed recording significant changes are located 

within the North American continent and the Indian subcontinent and have witnessed increases in 

∑𝑉𝑙𝑎𝑛𝑑. This helps illustrate the positive trends in ∑𝑉𝑙𝑎𝑛𝑑 uncovered in Figure 4.9a for the NA, EP, 

and NI basins. East Asia and Australia have seen mixed insignificant trends, consistent with the no 

trend results for the WP and SI basin, though at odds with the increasing trend found for the SP basin. 

This can be explained by differences in the trend detection tool. For reference, Figure 4.11a and 4.11b 

shows where TC precipitation is located and its contribution to climatology. Between the insignificant 

trends detected in Figure 4.10a and the lack of appreciable rainfall from TCs shown in Figure 4.11, 

the trends in the Arabian Peninsula, East Africa, South America, and the Maritime Continent basins 

are ignored in this figure and in further discussion. 

 

Figure 4-10. Inland precipitation accumulation trends from 1980-2019 calculated at the major river basin 
scale. Regions of non-significant trends are indicated by gray hatching. Pink circles denote regions where 
inland penetration from TCs have been heightened significantly. 
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Figure 4-11. The distribution of landfalling TC precipitation over 1980-2019. a. TC precipitation climatology 
as a fraction of total precipitation climatology with color-coded lines indicating TC tracks over the 2015-2019 
period. b. TC precipitation climatology in mm. 

The variation in trends of TC precipitation is significant: one cannot extrapolate changes in activity in 

one basin and apply it to another, even for basins close in proximity (example: SI and SP). In order to 

give an overview of what changes in TC activity have occurred within each basin, we use the following 

criteria to grade changes of the 〈𝑅〉, 𝑅90, and 𝑅99, 〈𝑉〉, and ∑𝑉𝑙𝑎𝑛𝑑 variables in Table 4.5: 

• Little to no changes: >50% of the category is not seeing a significant change. 

• Mixed changes: ≥50% of the category is seeing a significant change, but the trends are mixed 

between increasing and decreasing. 

• Significantly increased: ≥50% and <100% of the category is seeing a significant positive change. 
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• Very significantly increased: 100% of the category has seen a significant positive change. 

Percentages are calculated based on the number of intensity categories out of four (All, Weak, Strong, 

and Very Strong) that are seeing a significant trend for each variable. Though not independent of the 

other categories, the All TCs classification is included in the grading to ensure the Strong and Very 

Strong categories are not overrepresented against Weak TCs, which are the most frequent TC grade. 

In most cases, its inclusion does not change results. Note that the 〈ℎ𝑉〉 and 〈ℎ𝑉𝑙𝑎𝑛𝑑〉 variables are not 

considered, as they are closely related to TC precipitation rates.  
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Table 4-5. Summary of TC precipitation trends relating to precipitation rate percentile and volume totals across 
basins and at the global scale. Red text shows trends where at least 2 of 4 intensity classifications have 
experienced statistically significant positive changes in precipitation and bolded red text indicates categories 
with positive changes in precipitation in all intensity classifications. 

 〈𝑹〉 𝑹𝟗𝟎 𝑹𝟗𝟗 〈𝑽〉 𝚺𝑽𝒍𝒂𝒏𝒅 

EP 
Very 

significantly 
increased 

Very 
significantly 

increased 

Very 
significantly 

increased 

Little to no 
changes 

Significantly 
increased 

NA 
Significantly 

increased 
Significantly 

increased 
Significantly 

increased 
Significantly 

increased 
Significantly 

increased 

NI 
Significantly 

increased 
Significantly 

increased 

Very 
significantly 

increased 

Little to no 
changes 

Very 
significantly 

increased 

SI 
Very 

significantly 
increased 

Very 
significantly 

increased 

Very 
significantly 

increased 

Significantly 
increased 

Little to no 
changes 

SP 
Significantly 

increased 
Significantly 

increased 
Significantly 

increased 
Significantly 

increased 
Significantly 

increased 

WP 
Very 

significantly 
increased 

Very 
significantly 

increased 

Very 
significantly 

increased 
Mixed changes Mixed changes 

Global 
Very 

significantly 
increased 

Very 
significantly 

increased 

Very 
significantly 

increased 
Mixed changes 

Significantly 
increased 

 

4.4. Discussion  

In this study, precipitation volumes and rates from TCs were investigated globally using robust 

regression tools, where it was shown that pronounced increases in TC precipitation rates can be 

observed across intensity categories and TC basins. These increases in precipitation rates have created 

increases in precipitation volumes over many basins and intensity categories, though global results are 

mixed. In terms of human impacts, greater precipitation totals over land were seen in all basins across 

categories, many influenced by global increases in TC precipitation along with changes in TC duration 

or landfalling frequency. Spatially, the most pronounced increases are occurring in North America and 

the Indian subcontinent. All basins are experiencing intensifying rainfall from TCs in one form or 

another, indicating changes in the Earth’s hydroclimate over the 1980-2019 period. We hypothesize 

that observed changes are a result of increases in atmospheric water vapor following Clausius–
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Clapeyron scaling, with possible contributions by anthropogenic aerosols (Zhao et al. 2018). However, 

results from Traxl et al. (2021) caution against using solely thermodynamical results to link detected 

changes to anthropogenic warming.  

Global assessment of TC precipitation trends has been limited due to a lack of appropriate data. 

Concretely, the 2021 IPCC Working Group 1 summary (IPCC 2021; Section 8.3.2.5) reports a “low 

confidence” that there has been an increase in global TC precipitation, citing limitations in historical 

observations. Though not without uncertainty, the HRPCDRs methodology explored in this study 

translates historic satellite observations into data with global (land and water) coverage, a long and 

homogeneous temporal extent, and high-spatiotemporal resolution. This contrasts with studies that 

rely on gauge or radar-gauge data (Chang et al. 2013; Dhakal and Tharu 2018; Kunkel et al. 2010) that 

are the highest-quality measurements readily available for precipitation-oriented research but are 

limited by a lack of coverage over the oceans and in sparsely populated regions. Likewise, many studies 

that rely on satellite measurements are too limited in duration to overcome decade-scale climate 

oscillations that affect TC activity (Guzman and Jiang 2021; Skok et al. 2013). Moreover, high-

resolution precipitation data sets like TMPA-3B42 (pre-version 7) and IMERG are also not developed 

to be homogeneous in extended time ranges. Current homogeneous satellite-based CDRs and 

reanalysis products available for long durations like PERSIANN-CDR or CHIRPS are available at 

spatiotemporal resolutions too coarse to resolve the topographically complex patterns of the TC cloud 

shield and movement of the mesoscale phenomenon. At the same time, this study is limited by using 

a static shape and size threshold to truncate TCs and by its reliance on a new and largely untested 

dataset that is still coarser in temporal resolution than the scale of TC dynamics. 

Recently, a comparable study by Guzman & Jiang (2021) that was conducted using similar methods 

to this study and TMPA rainfall data uncovered an increasing trend of 1.3% a year in mean TC 
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precipitation rates and attributed it to increases in global mean temperature. This is significantly higher 

than the results from Figure 4.5, where global TC precipitation rates are shown to be increasing at a 

rate of 0.32±0.04% a year. Guzman & Jiang’s results suggests a 21% increase in precipitation rates 

have occurred between 1998-2016. Using global mean SST data from NOAA NCEI’s Climate at a 

Glance data portal (https://ww.ncdc.noaa.gov/cag/), an increase in global ocean SST of 0.28°C was 

recorded (note that Guzman & Jiang record this temperature as 0.21°C using SST measurements 

localized to TC tracks— Knutson et al. (2020) reports that tropical SST warms at a rate ~75% of 

global SST, so these numbers are consistent with each other). Guzman & Jiang’s rate of 75%/°C is 

considerably higher than modeling studies’ suggestion that an increase of 7% to ~14% (super Clausius-

Clapeyron scaling) should occur per 1°C of global SST warming (Knutson et al. 2020). Over the same 

period (1998-2016), our methodology estimates a 2.1±1.3% (7.6%/°C) increase in precipitation rates 

(Figure 4.12), more in line with modeling projections than the quantities given in the comparative 

study. Our study suggests that over the last thirty years, an increase of 5.0±1.4% occurred during a 

warming of 0.45°C (11.1%/°C), again closer in line with modeling studies. The differences between 

studies are evident when considering mean precipitation values from each study over this period: the 

range of recorded yearly average precipitation rates from 1998-2016 measured by PDIR-CDR was 

2.45–2.55 mm/hr, much larger and in a much smaller range than those recorded by TMPA-3B42 v7 

using the 500 km truncation method (~1.7–2.4 mm/hr). Over the entire 40-year period, precipitation 

averages recorded by PDIR-CDR range from 1.82–2.55 mm/hr. Clearly, the choice of precipitation 

data set plays a very significant role in the results recorded between studies. 
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Figure 4-12. Mean precipitation rate values from All TCs (no smoothing) measured by PDIR-CDR during the 
1990-2019 period (magenta) compared to sea surface temperature anomaly measurements (blue) from NOAA 
NCEI’s Climate at a Glance data portal. Two trends are analyzed: 30-year (1990-2019) and TRMM-era (1998-
2016), which show an increase in precipitation rates of 11.1%/C and 7.6%/C, respectively. 

 

Continued improvement of HRPCDRs like PDIR-CDR and the passage of time will shed further light 

on how precipitation in historic TCs has evolved because of anthropogenic influence. At this time, 

further analysis into how climate oscillations influence the variability in TC precipitation properties, 

identifying when anthropogenic warming began to affect TC characteristics in longer duration historic 

data sets, and merging observed historical trends with projected future trends are vital to further 

understanding the past, present, and future of TC precipitation. As TC-linked disasters are becoming 

more commonplace, our continued understanding of their nature is vital to ensure global security of 

our coastlines, population centers, and vital infrastructure. 
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Chapter 5 - Summary and Conclusions 

5.1. Dissertation Summary and Conclusions 

The emergence of HRPCDRs has made retrospective analysis of climate change signals in the 

hydroclimate more detectable with greater accuracy and longer evaluation periods than have been 

possible in the past. Paired with innovative data mining tools and robust statistical analysis, ARs and 

TCs were studied over time periods long enough to uncover trends with uncertainty levels sufficiently 

reduced as to overcome the influence of decades-scale climate oscillations that add significant noise 

to the system. These two topics were the subjects of two publication-style scientific reports produced 

by the dissertation author, of which one was published (Shearer et al. 2020) while the other currently 

sits in production (Shearer et al. 2022). Concretely, the first article (Chapter 3) overviews the creation 

of an object-oriented AR tracking method that was developed to study the evolution of ARs and their 

precipitation. Results from this study showed robust intensification signals in the intensity, duration, 

and size of ARs over the 1983-2016 study period, all linked to increases in the concentration of 

atmospheric water vapor robustly observed over the period. In the second study (Chapter 4), the 

dissertation author worked closely with the developer of the PDIR algorithm to produce a high-fidelity 

and spatiotemporally homogeneous data record of precipitation spanning 40 years and corrected at 

the monthly scale by a gauge-derived product. This dataset, named PDIR-CDR, was used to measure 

the evolution of TC precipitation globally and across basins during the study period of 1980-2019. 

This study found that precipitation rates have occurred globally and over every basin studied. 

Furthermore, TC precipitation volumes and their contributions to yearly precipitation totals over 

population centers have intensified in many basins, which have also produced a global signal. It was 

shown that these increases in precipitation are likely linked to anthropogenic warming, as the rate they 

have increased matches expectations outlined by the Clausius-Clapeyron relationship.  
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At a high level, the main contributions of this dissertation to the scientific domain are as follows: 

• Developed the first global AR tracking methodology that uses an IVT threshold tied 

to precipitation. This AR tracking methodology was able to capture the climatological 

signature of AR tracks uncovered by other methodologies without using geometric 

constraints; instead, it was found that tracking ARs by their higher intensity cores and 

using region growing segmentation to assign AR bodies to cores was a sufficient 

mechanism to extract AR lifecycles, with a 99.99% success rate. 

• Found that the global frequency of AR lifecycles over the 1983-2016 period was cyclical 

in nature, while the time-series of precipitation, duration, and size show robust 

increasing signatures. Specifically, from 1992 to 2016, AR contributions to global 

precipitation climatology rose from 17% to 21%.  

• Discovered that the frequency of ARs between the Northern and Southern hemisphere 

followed the proportion of AR hot spots (2:3) discovered in Sellars et al. (2017) and 

other studies suggesting symmetry in AR formation rates. 

• Proved the newly developed PDIR-CDR’s temporal homogeneity in the tropics and its 

utility as a high-resolution climate data record of precipitation. 

• Uncovered a 40-year global signal of intensifying precipitation from tropical cyclones, 

the longest duration study done for global tropical cyclone rainfall yet.  

• Though not the first study to identify historic increases in tropical cyclone 

precipitation rates and not the first to attribute it to anthropogenic warming, this is the 

first study to detect observed increases in tropical cyclone precipitation consistent with 

expectations following the Clausius-Clapeyron relationship. 
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• Determined that every major tropical cyclone basin has seen precipitation 

intensification by multiple examined metrics. 

• Found evidence that precipitation from both global ARs and TCs has been influenced 

by anthropogenic climate change. 

5.2. Future Directions 

5.2.1. High Resolution Precipitation Climate Data Records 

HRPCDRs are a new tool in a field seeing rapid advancement as new cutting-edge techniques are 

developed to overcome the inherent uncertainty of satellite remotely sensed precipitation. Continued 

improvements in the temporal homogeneity and accuracy of HRPCDRs will serve to increase the 

accuracy of detected trends. For instance, adapting additional reanalysis datasets into the input of 

PDIR-CDR and other HRPCDRs could help fill gaps in the satellite record and help improve 

precipitation measurements over the upper latitudes, where reanalysis datasets tend to overperform 

satellite products. Likewise, bias correction with gauges using quantile mapping or other techniques 

can improve data accuracy over land.   

Moreover, the passage of time will allow our retrospective analysis of trends in hydroclimate extremes 

to be extended to longer durations. As our satellite records moves into the half-a-century realm this 

decade, we may better pinpoint where the anthropogenic warming has affected our hydroclimate. 

5.2.2. Atmospheric River Tracking 

Though AR-CONNECT significantly improves upon the original CONNECT design for tracking 

ARs, there are several improvements that could feasibly improve AR segmentation and increase its 

utility. First, though AR-CONNECT largely solves the conglomerate object problem defined in 

Chapter 3, there still exist a very small (<1% of the catalog) but non-inconsequential number of 

conglomerate objects that perhaps skew results. In theory, a single conglomerate object can contain 
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many individual AR lifecycles and negating one conglomerate object from our analyses can lead to 

underestimation in the frequency of ARs, along with other AR-related variables (the exact impact that 

negating conglomerate objects has on the results is at this time unknown.) Using a variable threshold 

technique like that described in Skok et al. (2013) that applies several segmentation levels could better 

separate AR lifecycles and therefore improve results. However, attempts to implement such a 

technique in the project overviewed in Chapter 3 were limited by large RAM requirements that 

available computational resources could not accommodate. 

The results of Collow et al. (2022), of which AR-CONNECT is a participating algorithm, show that 

there is considerable variance in the results of any AR detection technique depending on what 

reanalysis data set is chosen to be used as forcing data. The aforementioned study recommends that 

future studies with AR detection techniques should consider using multiple reanalyses to test 

hypotheses to limit data bias from creating artificial results. Therefore, future analysis of precipitation 

using AR-CONNECT would benefit from this approach, where these products could limit uncertainty 

in the segmentation of AR lifecycles. Given that the trend results presented in Chapter 3 largely match 

those presented in Collow et al. (2022), it was determined that re-evaluating Chapter 3’s results using 

multiple reanalyses was not necessary at this time. 

The following project ideas are outside the precipitation-oriented scope of this dissertation but would 

likely be of considerable interest to an investigator focused on the atmospheric dynamics of ARs. They 

are included for the sake of thoroughness: 

The IVT threshold used in AR-CONNECT is tied to AR impacts in the mid-latitudes, especially for 

regions with considerable orographic lift (Rutz et al. 2014). However, during the course of the 

“Application of Remote Sensing Precipitation Data and the CONNECT algorithm to Investigate 

Spatiotemporal Variations of Heavy Precipitation: Case Study of Major Floods Across Iran (Spring 
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2019)” study, it was seen that AR-CONNECT’s ability to detect ARs in regions outside of the coastal 

mid-latitudes like Iran (Sadeghi et al. 2021a), Antarctica (Wille et al. 2019), among others (this 

limitation as discovered during the  In order to produce a truly global AR tracking methodology—at 

the expense of no longer having a method tied to impacts—IVT thresholds used by AR-CONNECT 

could be adapted to a climatological- or latitude-based threshold like tARget or Lavers and Villarini, 

respectively. Concretely, we hypothesize that the seeded region-growing segmentation method used 

in AR-CONNECT could be adapted to fill in AR bodies at the 85th percentile of IVT using seeds 

segmented from the 95th+ percentile of IVT.  

Moreover, positive changes in water vapor concentrations in the atmosphere have emerged from a 

warming climate. As such, the climatology of global IVT has increased, meaning IVT values above 

low-level thresholds are becoming more commonplace. From a dynamics point of view (as opposed 

to impacts), this means detection techniques using static thresholds are detecting ARs more frequently 

than in the past. This can be seen by the robust increasing signal in AR size shown in Figure 3.6. For 

research concerned with AR dynamics, it may be worth considering a temporally varying IVT 

threshold that changes according to how the IVT field evolves, so that detected ARs are similarly 

anomalous events throughout the study period.  

5.2.3. Tropical Cyclone Segmentation 

Though the 500 km radius threshold used in Chapter 4 is a common technique in AR literature for 

segmentation, it is well-established that such a rigid structure can overestimate (underestimate) 

precipitation totals from small (large) TCs. Using a better metric to classify TC size like outmost closed 

isobar would serve to improve TC segmentation and therefore improve calculations of annual TC 

volume, overland precipitation totals, and precipitation rates. At this time, no publicly available 

method to determined outermost closed isobar exists (for more information, see Section 4.2.2).  
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