
GPU Multisplit

Saman Ashkiani
University of California, Davis

sashkiani@ucdavis.edu

Andrew Davidson∗

University of California, Davis
aaldavidson@ucdavis.edu

Ulrich Meyer
Goethe-Universität Frankfurt am Main

umeyer@cs.uni-frankfurt.de

John D. Owens
University of California, Davis

jowens@ece.ucdavis.edu

Abstract
Multisplit is a broadly useful parallel primitive that permutes its
input data into contiguous buckets or bins, where the function that
categorizes an element into a bucket is provided by the programmer.
Due to the lack of an efficient multisplit on GPUs, programmers
often choose to implement multisplit with a sort. However, sort
does more work than necessary to implement multisplit, and is thus
inefficient. In this work, we provide a parallel model and multiple
implementations for the multisplit problem. Our principal focus is
multisplit for a small number of buckets. In our implementations,
we exploit the computational hierarchy of the GPU to perform most
of the work locally, with minimal usage of global operations. We
also use warp-synchronous programming models to avoid branch
divergence and reduce memory usage, as well as hierarchical
reordering of input elements to achieve better coalescing of global
memory accesses. On an NVIDIA K40c GPU, for key-only (key-
value) multisplit, we demonstrate a 3.0–6.7x (4.4–8.0x) speedup
over radix sort, and achieve a peak throughput of 10.0 G keys/s.

1. Introduction
This paper studies the multisplit primitive for GPUs. Multisplit
divides a set of items (keys or key-value pairs) into contiguous
buckets, where each bucket contains items whose keys satisfy a
programmer-specified criterion (such as falling into a particular
range). Multisplit is broadly useful in a wide range of applications,
some of which we will cite later in this introduction. But we begin
our story by focusing on one particular example, the delta-stepping
formulation of single-source shortest path (SSSP).

The traditional (and work-efficient) serial approach to SSSP is
Dijkstra’s algorithm [12], which considers one vertex per iteration—
the vertex with the lowest weight. The traditional parallel approach
(Bellman-Ford-Moore [5]) considers all vertices on each iteration,
but as a result incurs more work than the serial approach. On the
GPU, the recent SSSP work of Davidson et al. [7] instead built upon

∗Currently an employee at Google.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851169

the delta-stepping work of Meyer and Sanders [20], which on each
iteration classifies candidate vertices into buckets or bins by their
weights and then processes the bucket that contains the vertices with
the lowest weights. Items within a bucket are unordered and can be
processed in any order.

Delta-stepping is a good fit for GPUs. It avoids the inherent serial-
ization of Dijkstra’s approach and the extra work of the fully parallel
Bellman-Ford-Moore approach. At a high level, delta-stepping di-
vides up a large amount of work into multiple buckets and then
processes all items within one bucket in parallel at the same time.
How many buckets? Meyer and Sanders describe how to choose a
bucket size that is “large enough to allow for sufficient parallelism
and small enough to keep the algorithm work-efficient” [20]. David-
son et al. found that 10 buckets was an appropriate bucket count
across their range of datasets. More broadly, for modern parallel
architectures, this design pattern is a powerful one: expose just
enough parallelism to fill the machine with work, then choose the
most efficient algorithm to process that work. (For instance, Hou et
al. use this strategy in efficient GPU-based tree traversal [15].)

Once we’ve decided the bucket count, how do we efficiently
classify vertices into buckets? Davidson et al. called the necessary
primitive multisplit. Beyond SSSP, multisplit has significant utility
across a range of GPU applications. Bucketing is a key primitive
in reorganizing rays into 8 direction-based buckets for better co-
herence in a GPU-based ray tracer [30]; as the first step in build-
ing a GPU hash table [3]; in hash-join for relational databases to
group low-bit keys [11]; in string sort for singleton compaction and
elimination [10]; in suffix array construction to organize the lexico-
graphical rank of characters [9]; in a graphics voxelization pipeline
for splitting tiles based on their descriptor (dominant axis) [26]; in
the shallow stages of k-d tree construction [29]; in Ashari et al.’s
sparse-matrix dense-vector multiplication work, which bins rows by
length [4]; and in probabilistic top-k selection, whose core multisplit
operation is three bins around two pivots [22]. And while multisplit
is a crucial part of each of these and many other GPU applications,
it has received little attention to date in the literature; the work we
present here remedies this with a comprehensive look at efficiently
implementing multisplit as a general-purpose parallel primitive.

The approach of Davidson et al. to implementing multisplit
reveals the need for this focus. If the number of buckets is 2, then
a scan-based “split” primitive [13] is highly efficient on GPUs.
Davidson et al. built both a 2-bucket (“Near-Far”) and 10-bucket
implementation. Because they lacked an efficient multisplit, they
were forced to recommend their theoretically-less-efficient 2-bucket
implementation:

The missing primitive on GPUs is a high-performance multi-
split that separates primitives based on key value (bucket id);
in our implementation, we instead use a sort; in the absence
of a more efficient multisplit, we recommend utilizing our
Near-Far work-saving strategy for most graphs. [7, Section 7]

Like Davidson et al., we could implement multisplit on GPUs
with a sort. Recent GPU sorting implementations [17] deliver high
throughput, but are overkill for the multisplit problem: unlike sort,
multisplit has no need to order items within a bucket. In short, sort
does more work than necessary. For Davidson et al., reorganizing
items into buckets after each iteration with a sort is too expensive:
“the overhead of this reorganization is significant: on average, with
our bucketing implementation, the reorganizational overhead takes
82% of the runtime.” [7, Section 7]

An efficient multisplit would have enabled a significant per-
formance improvement for Davidson et al.1, as well as the other
applications cited above. In this paper we design, implement, and
analyze numerous approaches to multisplit, and make the following
contributions:

• On modern GPUs, “global” operations (that require global com-
munication across the whole GPU) are more expensive than
“local” operations that can exploit faster, local GPU communica-
tion mechanisms. Straightforward implementations of multisplit
primarily use global operations. Instead, we propose a parallel
model under which the multisplit problem can be factored into a
sequence of local, global, and local operations better suited for
the GPU’s memory and computational hierarchies.

• We show that reducing the cost of global operations, even by
significantly increasing the cost of local operations, is critical
for achieving the best performance.

• We implement local operations efficiently by using warp-
synchronous schemes to avoid branch divergence, reduce shared
memory usage, leverage warp-wide instructions, and minimize
intra-warp communication.

• We locally reorder input elements before global operations, trad-
ing more work (the reordering) for better memory performance
(greater coalescing) for an overall improvement in performance.

2. Related Work and Background
Many multisplit implementations, including ours, depend heavily on
knowledge of the total number of elements within each bucket, i.e.,
histogram computation. Previous GPU histogram implementations
generally take one of two approaches: 1) using atomic operations (or
designed software alternatives) to count items within each bucket
(e.g., Shams and Kennedy [28]), and 2) per-thread sequential his-
togram computations that combine their results via global reduction
(e.g., Nugteren et al. [24]). The former is suitable when the number
of buckets is large; otherwise atomic contention is the bottleneck.
The latter avoids such conflicts by using more memory (assigning

1 Davidson et al. reported that their Near-Far approach was 1.7x faster than
their radix-sort-based SSSP bucketing method. We added our own 2-bucket
multisplit algorithm (described in Section 5) as a new SSSP bucketing
method, resulting in a speedup of the entire application of 1.3x over the Near-
Far approach and a 2.1x speedup over the radix-sort-based implementation.
These speedups are a geometric mean across 4 datasets: flickr with 10M
edges [8], yahoo-social with 4M edges [2], rmat with 20M edges [1], and
a sparse low-diameter synthetic graph with 15.5M edges having similar
characteristics to the GBF (n, r) class defined by Meyer [19]. We expect
that by using our multisplit methods we could implement a new SSSP
algorithm with a more optimal number of buckets (e.g., 10 as suggested
by Davidson et al.) featuring even more significant speedups, but such an
implementation is beyond the scope of this paper.

exclusive memory units per-bucket and per-thread), then perform-
ing device-wide reductions to compute the global histogram. Either
method benefits from careful optimizations that make the best use
of the GPU [6], including loop unrolling, thread coarsening, and
subword parallelism, as well as others.

Only a handful of papers have explored multisplit as a standalone
primitive. He et al. [14] implemented multisplit by reading multiple
elements with each thread, sequentially computing their histogram
and orders, and then storing all results into memory. Next, they per-
formed a device-wide scan operation over these results and scattered
each item into its final position. Their main bottlenecks were the
limited size of shared memory, an expensive global scan operation,
and random non-coalesced memory accesses2. Patidar [27] pro-
posed two methods with particular concentration on a large number
of buckets (more than 4k): one based on heavy usage of shared-
memory atomic operations (to compute block level histogram and
intra-bucket orders), and the other by iterative usage of basic binary
split for each bucket (or groups of buckets). Patidar used a combina-
tion of these methods in a hierarchical way to get his best results3.
Both of these multisplit papers focus only on key-only scenarios,
while data movements become more challenging with key-value
pairs.

2.1 The Graphics Processing Unit (GPU)
The GPU of today is a highly parallel, throughput-focused pro-
grammable processor. GPU programs (“kernels”) launch over a grid
of numerous blocks; the GPU hardware maps blocks to available
parallel cores. Each block typically consists of dozens to thousands
of individual threads, which are arranged into 32-wide warps. Warps
run under SIMD control on the GPU hardware. While blocks can-
not directly communicate with each other within a kernel, threads
within a block can, via a user-programmable 48 kB shared-memory,
and threads within a warp additionally have access to numerous
warp-wide instructions. The GPU’s global memory (DRAM), ac-
cessible to all blocks during a computation, achieves its maximum
bandwidth only when neighboring threads access neighboring lo-
cations in the memory; such accesses are termed coalesced. In this
work, when we use the term “global”, we mean an operation of
device-wide scope. Our term “local” refers to an operation limited
to smaller scope (e.g., within a thread, a warp, a block, etc.), which
we will specify accordingly. The major difference between the two
is the cost of communication: global operations must communicate
through global DRAM, whereas local operations can communicate
through lower-latency, higher-bandwidth mechanisms like shared
memory or warp-wide intrinsics. Lindholm et al. [16] and Nickolls
et al. [23] provide more details on GPU hardware and the GPU
programming model, respectively.

We use NVIDIA’s CUDA as our programming language in this
work [25]. CUDA provides several warp-wide voting and shuffling
instructions for intra-warp communication of threads. All threads
within a warp can know about a certain predicate as a bitmap vari-
able returned by ballot(predicate) [25, Ch. B13]. Any set bit
in this bitmap denotes the predicate being non-zero for the corre-
sponding thread. Each thread can also access a certain register from
other threads of the same warp by using shfl(register name,
source thread) [25, Ch. B14]. Other shuffling functions such as
shfl up() or shfl down() use relative addresses to specify

the source thread. In CUDA, threads also have access to some effi-

2 On an NVIDIA 8800 GTX GPU, for 64 buckets, He et al. reported
134 Mkeys/sec. As a very rough comparison, our GPU has 3.3x the memory
bandwidth, and our best 64-bucket implementation runs 22.4 times faster.
3 On an NVIDIA GTX280 GPU, for 32 buckets, Patidar reported
762 Mkeys/sec. As a very rough comparison, our GPU has 2x the memory
bandwidth, and our best 32-bucket implementation runs 5.9 times faster.

cient integer intrinsics, e.g., popc() for counting the number of
set bits in a register.

2.2 Parallel primitive background
In this paper we leverage numerous standard parallel primitives,
which we briefly describe here. A reduction inputs a vector of
elements and applies a binary associative operator (such as addition)
to reduce them to a single element; for instance, sum-reduction
simply adds up its input vector. The scan operator takes a vector
of input elements and an associative binary operator, and returns
an output vector of the same size as the input vector. In exclusive
(resp., inclusive) scan, output location i contains the reduction of
input elements 0 to i− 1 (resp., 0 to i). Scan operations with binary
addition as their operator are also known as prefix-sum [13]. Any
reference to a multi- operator (multi-reduction, multi-scan) refers to
running multiple instances of that operator in parallel on separate
inputs. Compaction is an operation that filters a subset of its input
elements into a smaller output array while preserving the order.

3. Multisplit and Initial Approaches
In this section, we first formally define the multisplit as a primitive
algorithm. Next, we describe some initial approaches for performing
the multisplit algorithm, which form a baseline for the comparison
to our own methods, which we then describe in Section 4.

3.1 The multisplit primitive
We informally characterize multisplit as follows:

• Input: An unordered set of keys or key-value pairs. “Values” that
are larger than the size of a pointer use a pointer to the value in
place of the actual value.

• Input: A function, specified by the programmer, that inputs a key
and outputs the bucket corresponding to that key. For example,
this function might classify a key into a particular numerical
range, or divide keys into prime or composite buckets.

• Output: Keys or key-value pairs separated into m buckets. Items
within each output bucket must be contiguous but are otherwise
unordered. Some applications may prefer output order within
a bucket that preserves input order; we call these multisplit
implementations “stable”.

• m, the number of buckets: a modest number, say more than 2 but
less than or equal to 64. For two buckets, split is traditionally the
best solution, and as the number of buckets grows, the multisplit
problem converges to a full sort.

More formally, let u and v be vectors of n key and value elements,
respectively. Altogether m buckets B0, B1, . . . , Bm−1 partition the
entire key domain such that each key element uniquely belongs
to one and only one bucket. For any input key vector, we define
multisplit as a permutation of that input vector into a output vector.
The output vector is densely packed and has two properties: (1) All
output elements within the same bucket are stored contiguously in
the output vector, and (2) All output elements are stored contiguously
in a vector in ascending order by their bucket IDs. Optionally, the
beginning index of each bucket in the output vector can also be
stored in an array of size m.

This multisplit definition allows for a variety of implementations.
It places no restrictions on the order of elements within each bucket
before and after the multisplit (intra-bucket orders); buckets with
larger indices do not necessarily have larger elements. In fact, key
elements may not even be comparable entities, e.g., keys can be
strings of names with buckets assigned to male names, female names,
etc. We do require that buckets are assigned to consecutive IDs and

31
3

17
82

59
46

6

31 3 17 8259 46 6

B0 = {i 20}

B1 = {20 < i 48}

B2 = {i > 48}

31

24

3 17 8259466

313 17 8259466

In
it

ia
l
ke

y
s

Sort

Stable Multisplit

Stable Multisplit

(1)

(2)

(3)

Sort-based Multisplit

B1 = composite

B0 = prime

25

25

25

25

Figure 1: Multisplit examples. (1) Stable multisplit over two buckets.
(2) Stable multisplit over three range-based buckets. (3) Sort can
implement multisplit over ordered buckets; note that this multisplit
implementation is not stable.

will produce buckets ordered in this way. Figure 1 illustrates some
multisplit examples.

Throughout this paper, we focus on multisplit problems with non-
trivial bucket identifications. For example, if all buckets have identity
IDs (i.e., Bi = {i} and all keys are in {0, 1, . . . ,m− 1}), then we
can use any current stable sorting method and get an efficient stable
multisplit. In Section 6 we refer to this case as identity buckets. Next,
we consider some common approaches for dealing with non-trivial
multisplit problems.

3.2 Recursive scan-based split
The first approach is based on binary split. Suppose we have two
buckets. We identify buckets in a binary flag vector, and then
compact keys (or key-value pairs) based on the flags. We also
compact the complemented binary flags from right to left, and store
the results. Compaction can be efficiently implemented by a scan
operation, and in practice we can concurrently do both left-to-right
and right-to-left compaction with a single scan operation. With more
buckets, we can recursively perform binary splits; on each round
we split key elements into two groups of buckets. We continue
this process for at most dlogme rounds and in the end we will
have a stable multisplit. Recursive scan-based split requires multiple
global operations (e.g., scan) over all elements, and may also have
load-balancing issues if the distribution of keys is non-uniform.

3.3 Radix sort
Radix sort gradually sorts key elements based on selected groups of
bits in keys. The process either starts from the least significant bits
(LSB sort), or from the most significant bits (MSB sort). MSB
sort is more common because, compared to LSB sort, it does
less intermediate data movement when distribution of keys is not
uniform. (If the distribution of keys is uniform, they should perform
the same.) Today’s most efficient radix sort implementations process
a group of bits on each round to gain more efficiency. As an extreme
example, if in each round a single bit is processed, then radix sort
is equivalent to multiple scan-based splits (in each round, splitting
based on a binary bit).

In general, sorting key-value pairs does not always represent a
stable multisplit. However, depending on our problem, if our buckets
are defined such that buckets with larger IDs have larger elements
(e.g., all elements in B0 are less than all elements in B1, and so
on), sorting our key vector implements a multisplit (Fig. 1). Radix
sorts are highly efficient in modern GPUs, and hence sorting is
certainly a viable option. However, radix sort performs more work
than multisplit requires by not only splitting items from different
buckets but also ordering elements within a bucket.

3.4 Reduced-bit sort
Because sorting is an efficient primitive on GPUs, we modify it to be
specific to multisplit: here we introduce our reduced-bit sort method,
which is based on sorting bucket IDs and permuting the original
key-value pairs afterward. For multisplit, this method is superior
to a full radix sort because we expect the number of significant
bits across all bucket IDs is less than the number of significant bits
across all keys.

Key-only In this scenario, we first make a label vector containing
each key’s bucket ID. Then we sort (label, key) pairs based on label
values. Since labels are all less than m, we can limit the number of
bits in the radix sort to be dlogme.

Key-value In this scenario, we similarly make a label vector from
key elements. Then, we would like to permute (key, value) pairs
by sorting labels. One approach is to sort (label, (key, value)) pairs
all together and based on label. To do so, we first pack our original
key-value pairs into a single 64-bit variable and then do the sort. In
the end we unpack these elements to form the final results. Another
way is to sort (label, index) pairs and then manually permute key-
value pairs based on the permuted indices. We tried both approaches
and the former seems to be more efficient. The latter requires non-
coalesced global memory accesses and gets worse as m increases,
while the former reorders for better coalescing internally and scales
better with m.

The main problem with the reduced-bit sort method is its
extra overhead (generating labels, packing original key-value pairs,
unpacking the results), which makes the whole process less efficient.
Today’s sort primitives do not currently provide APIs for user-
specified computations (e.g., bucket identifications) to be integrated
as functors directly into sort’s kernels; while this is an intriguing
area of future work for the designers of sort primitives, we believe
that our reduced-bit sort appears to be the best solution today for
multisplit using current sort primitives.

3.5 Randomized insertion
The last algorithm we consider extends a traditional CPU coarse-
grained multi-threaded PRAM algorithm proposed by Meyer [18].
The basic premise is to create relaxed large buffers for each bucket.
We assign threads to items and then throw randomized darts4 into
buffers to place items. If collisions occur, darts are rethrown, and if
a buffer becomes too full, the empty slots are compacted out and the
buffer is emptied out into a final collection. This is repeated until all
elements are processed.

In order to adapt this type of algorithm to a fine-grained bulk-
synchronous GPU, we must refactor this algorithm to fit the GPU’s
block-based programming model. First, we must estimate the buffer
size for each bucket. We run a pre-processing global histogram
method to calculate the size of each bucket. We then create a relaxed
buffer size that is x times bigger than the histogram size for each
bucket (e.g., for x = 2, we have a 50% chance of a collision near
the end of our insertion phase).

Next, each block creates b buckets with an x-times larger
relaxation buffer in shared memory. Each block then reads its input
and attempts to insert each value into one of these shared memory
buckets, utilizing a hash on a random number. If a collision occurs,
we search for an empty adjacent slot. When a shared-memory bucket
is sufficiently full, threads cooperatively write this bucket (including
empty slots) to global memory. Finally, once all elements have been
inserted and written to main memory, we utilize a compact [13]
primitive to remove empty slots within our buckets.

4 The randomized dart-throwing technique on PRAMs was originally intro-
duced by Miller and Reif [21] in the context of generating random permuta-
tions.

Performance Analysis Though conceptually this method is quite
simple, and allows for a fine-grained parallel implementation of
multisplit, it is slower than even a traditional radix sort. One problem
is memory consumption and bandwidth: we require x times as much
memory as the dataset, and the compact must operate on x times
more data. The larger penalty comes from warp divergence: any
insertion by a thread that results in a collision stalls all other threads
within that warp until that collision is resolved. Thus we have two
competing performance penalties adjustable by one variable, the
relaxation constant x. If we increase x to decrease the number
of collisions, we increase the number of total writes and memory
usage. If we decrease x, we increase the number of collisions and
contention and warps frequently stall.

Initial benchmarking of this PRAM method quickly demon-
strated the inefficiency introduced by these competing perfor-
mance penalties. Contention-based methods on massively parallel
warp-synchronous devices incur too much of a penalty for high-
performance primitives. We found the best performance came from
x = 2; however, even then the performance from such a method
was around 2 times slower than a radix sort. Despite the theoretical
advantages of this approach, it is not likely to be the basis for the
best GPU implementation of multisplit; for the remainder of this
paper, we focus on deterministic approaches.

4. Algorithm Overview
In analyzing the performance of the deterministic methods from the
previous section, we make two observations:

1. Global computations (such as a global scan) are expensive,
and approaches to multisplit that require many rounds, each
with a global computation, are likely to be uncompetitive. Any
reduction in the cost of global computation is desirable.

2. After we derive the permutation, the cost of permuting the
elements with a global scatter is also expensive, primarily
because of the non-coalesced memory accesses associated with
the scatter. Any increase in memory locality associated with the
scatter is also desirable.

The key design insight in this paper is that we can reduce the
cost of both global computation and global scatter at the cost of
doing more local work, and that doing so is beneficial for overall
performance. We begin by describing and analyzing a framework
for the different approaches we study in this paper, then discuss the
generic structure common to all our implementations.

Our parallel model Multisplit cannot be solved by using only
local operations; i.e., we cannot divide a multisplit problem into
two independent subparts and solve each part locally without any
communication between the two parts. We thus assume any viable
implementation must include at least a single global operation to
gather necessary global information from all elements (or group of
elements). We generalize the approaches we study in this paper into
a series of N rounds, where each round has 3 stages: a set of local
operations (which run in parallel on independent subparts of the
global problem); a global operation (across all subparts); and another
set of local operations. In short: {local, global, local}, repeated N
times; in this paper we refer to these three stages as {prescan, scan,
postscan}.

The deterministic approaches in Section 3 all fit this model. Scan-
based split starts by making a flag vector (where the local level is
per-thread), performing a global scan operation on all flags, and then
storing the results into their final positions (thread-level local). The
recursive scan-based split repeats the above approach for dlogme
rounds. Radix sort also requires several rounds. Each round starts
by identifying a bit (or a group of bits) from its keys (local), running

a global scan operation, and then locally moving data such that all
keys are now sorted based on the selected bit (or group of bits).
Reduced-bit sort is derived from radix sort; the only differences are
that in the first round, the label vector and the new packed values are
generated locally (thread-level), and in the final round, the packed
key-value pairs are locally unpacked (thread-level) to form the final
results.

Multisplit requires a global computation Let’s explore the global
and local components of stable multisplit, which together com-
pute a unique permutation of key-value pairs into their final posi-
tions. Suppose we have m buckets B0, B1, . . . , Bm−1, each with
h0, h1, . . . , hm−1 elements respectively (

∑
i hi = n). If ui ∈ Bj

is the ith key element in key vector u, then its final permuted posi-
tion p(i) should be

p(i) =

j−1∑
k=0

hk + |{ur : ur ∈ Bj , r < i}| , (1)

where | · | denotes the number of elements within its set argument.
The left term is the total number of key elements that belong to
the preceding buckets, and the right term is the total number of
preceding elements in ui’s bucket Bj . Computing both of these
terms in this form and for all elements (for all i) requires global
operations (e.g., computing a histogram of buckets).

Dividing multisplit into subproblems Now, let us divide our in-
put key vector u into L subproblems: u = [u0,u1, . . . ,uL−1].
Suppose each subvector u` has h0,`, h1,`, . . . , hm−1,` elements in
buckets B0, B1, . . . Bm−1 respectively. For example, for arbitrary
values of i, s, and j such that key item ui ∈ us and ui is in bucket
Bj , equation (1) can be rewritten as:

p(i) =

previous buckets︷ ︸︸ ︷
j−1∑
k=0

(
L−1∑
`=0

hk,`

)
+

my bucket︷ ︸︸ ︷
s−1∑
`=0

hj,`︸ ︷︷ ︸
global offset

+ |{ur ∈ us : ur ∈ Bj , r < i}|︸ ︷︷ ︸
local offset within my subproblem

.

(2)
This formulation has two separate parts. The first and second
terms require global computation (first: the element count of all
preceding buckets across all subproblems, and second: the element
count of the same bucket in all preceding subproblems). The third
term can be computed locally within each subproblem. Note that
equation (1) and (2)’s first terms are equivalent (total number of
previous buckets), but the second term in (1) is broken into the
second and third terms in (2).

The first and second terms can both be computed with a global
histogram computed over L local histograms. A global histogram is
generally implemented with global scan operations (here, exclusive
prefix-sum). We can characterize this histogram as a scan over a
2-dimensional matrix H = [hi,`]m×L, where the “height” of the
matrix is the bucket count m and the “width” of the histogram is
the number of subproblems L. The second term can be computed
by a scan operation of size L on each row (total of m scans for all
buckets). The first term will be a single scan operation of size m
over the reduction of all rows (first reduce each row horizontally
to compute global histograms and then scan the results vertically).
Equivalently, both terms can be computed by a single scan operation
of size mL over row-vectorized H. Either way, the cost of our
global operation is roughly proportional to both m and L. We see
no realistic way to reduce m. Thus we concentrate on reducing L.

Local offset computation Each element must compute its own
local offset, which represents the number of elements in its subprob-
lem that both precede it and share its bucket. We can compute the
local offset in two ways: explicitly or hierarchically.

To explicitly compute local offsets of a subproblem of size n̄,
we make a new binary matrix H̄m×n̄, where each row represents
a bucket and each column represents a key element. Each entry of
this new matrix is one if the corresponding key element belongs to
that bucket, and zero otherwise. Then by performing an exclusive
scan on each row, we can compute local offsets for all elements
belonging to that row (bucket). So each subproblem requires the
following computations:

1. Mark all elements in each bucket (making local H̄)

2. m local reductions over the rows of H̄ to compute local his-
tograms (a column in H)

3. m local exclusive scans on rows of H̄ (local offsets)

For clarity, we separate steps 2 and 3 above, but we can achieve both
with a single local scan operation.

If we decide to take the hierarchical approach, each time that
we divide our subproblems into L2 smaller sub-subproblems, we
similarly break the local offset term into two new terms, both
among all items within our own bucket: the total number of items in
previous sub-subproblems, and our new local offset within our own
sub-subproblem (equivalent to the second and third terms in (2)).
So, assuming that we divide each subproblem into L2 smaller parts,
we would simply apply the explicit steps above to each smaller part.

Our multisplit algorithm Now that we’ve outlined the different
computations required for the multisplit, we can present a high-level
view of the algorithmic skeleton we use in this paper. We require
three steps:

1. Local. For each subproblem, for each bucket, count the number
of items in the subproblem that fall into that bucket.

2. Global. Scan the bucket counts for each bucket across all
subproblems, then scan the bucket totals. Each subproblem now
knows both the total count for each bucket across the whole
input vector (term 1 in equation 2) as well as the total count for
each buckets in the previous subproblems (term 2 in equation 2).

3. Local. For each subproblem, for each item, compute the local
offset for that item’s bucket (term 3 in equation 2). We can now
write each item in parallel into its location in the output vector.

Reordering elements for better locality After computing equa-
tion (2) for each key element, we move key-value pairs to their
final positions in global memory accordingly. However, in general,
consecutive key elements in the original input do not belong to the
same bucket, and thus their final destination might be far away from
each other. Thus, when we write them back to memory, our memory
writes are poorly coalesced, and our achieved memory bandwidth
during this global scatter is similarly poor. This results in a huge
performance bottleneck. How can we increase our coalescing and
thus the memory bandwidth of our final global scatter?

Our solution is to reorder our elements within a subproblem
before they are scattered back to memory. Within a subproblem, we
attempt to place elements from the same bucket next to each other,
while preserving order within a bucket (and thus the stable property
of our multisplit implementation). We do this reordering at the same
time we compute local offsets in equation (2). How do we group
elements from the same bucket together? A local multisplit within
the subproblem!

We have already computed histogram and local offsets for each
element in each subproblem. We only need to perform another local
exclusive scan on local histogram results to compute new positions
for each element in its subproblem (computing equation (1) for each
subproblem). We emphasize that performing this additional stable
multisplit on each subproblem does not change its histogram and
local offsets, and hence does not affect any of our computations

Granularity size of H global operation on

thread-level m× No. of threads mn
warp-level m× No. of warps mn/NT

block-level m× No. of blocks mn/(NTNW)

Table 1: Size of global operations for each local granularity. NT

denotes the number of threads per warp, and NW is the number of
warps per block.

described previously from a global perspective; the final multisplit
result is identical. But, it has a significant positive impact on the
locality of our final data writes to global memory.

Choosing the size of subproblems The traditional approach to
both histograms and multisplit (as in He et al. [14]) is to assign the
n elements to n threads5 and treat them as n separate subproblems.
This approach is simple: with it, “local” work is minimal, even trivial,
and the scan implementation at the core of the global operation will
typically transparently leverage the GPU’s computation hierarchy.
Nonetheless, a scan of size n is still more expensive than we would
like.

GPUs offer many potential natural subproblem sizes that corre-
spond to the levels of their computational hierarchies: problems the
size of threads, warps, blocks, and the entire device (global). We
have shown above that choosing larger subproblems is possible, and
in the next section how we can implement their operations efficiently.
We thus face a performance tradeoff. With a large L, local computa-
tions are easier because each subproblem has fewer elements, but
global operations will cost more because H is larger. On the other
hand, a smaller L (fewer subproblems) leads to cheaper global oper-
ations, but also larger subproblems and hence more expensive local
computation.

5. Implementation Details
So far we have seen that we can reduce the size and cost of our global
operation (size of H, Table 1) by doing more local work (increasing
the size of H̄ instead). This is a complex tradeoff. In this section we
describe three novel and efficient multisplit implementations that
explore different points in this implementation space:

Direct Multisplit Rather than split the problem into subproblems
across threads, as in traditional approaches [14], Direct MS
splits the problem across warps, leveraging efficient warp-wide
intrinsics to perform the local computation. The major advantage
of warp-sized subproblems is the reduction of the cost of the
global step by a factor of NT = 32, the number of threads per
warp.

Warp-level Multisplit Warp-level MS also uses warp-sized sub-
problems, but additionally reorders elements within a warp for
better locality.

Block-level Multisplit Block-level MS modifies Warp-level MS to
use thread-block-sized subproblems and reordering, offering a
further reduction in the cost of the global step (but considerably
more complex local computation).

Table 2 shows an overview comparison between different stages of
each approach. We now discuss the most interesting aspects of our
implementations of these three approaches, separately describing
how we compute histograms and local offsets for larger subproblem
sizes and how we reorder final results before writing them to global
memory to increase coalescing.

5 We might apply thread coarsening—multiple items per thread—and divide
n by the number of items per thread.

5.1 Computing Histograms and Local Offsets
Direct Multisplit and Warp-level MS reduce the size and cost of the
global scan by a factor of NT = 32 at the cost of more complex local
offset computations. These computations now require cooperation
between the threads inside a warp. Fortunately, NVIDIA’s relatively
new warp-wide intrinsics [25] enable efficient computations within
a warp. Direct MS follows the skeleton we summarized in the last
section:

Pre-scan (local) Each warp reads a section of key elements,
generates a local matrix H̄, and computes its histogram (reducing
each row). Each warp thus computes a single column of H and
stores its results into global memory.

Scan (global) We perform an exclusive scan operation over the
row-vectorized H and store the result back into global memory (e.g.,
matrix G = [gi,`]m×L).

Post-scan (local) Each warp reads a section of key-value pairs,
generates its local matrix H̄ again6, and computes local offsets (with
a local exclusive scan on each row). We then compute final positions
by using the base addresses from G, then write key-value pairs
directly to their storage locations in the output vector. For example,
if key u ∈ Bi is read in warp ` and its local offset is equal to k, its
final position will be gi,` + k.

A simplified pseudo-code of the Direct MS is shown in Al-
gorithm 1. Here, we can identify each key’s bucket by using a
whatBucket() function. We compute warp histogram and local
offsets with warp histogram() and warp offsets() procedures,
which we describe in detail later in this section (Alg. 2 and 3).

Algorithm 1 The Direct Multisplit algorithm
Input: key[], value[], whatBucket(): keys, values and a bucket identifier fn.
Output: key ms[], value ms[]: keys and values after multisplit
// key[], value[], key ms[], value ms[], H, and G are all in global memory
// L is the number of subproblems (here total number of warps)
// ====== Pre-scan stage:
for each warp i=0:L-1 parallel device do

bucket id[0:31] = whatBucket(key[32*i + (0:31)]);
histo[0:m-1] = warp histogram(bucket id[0:31]);
H[0:m-1][i] = histo[0:m-1];

end for
// ====== Scan stage:
H row = [H[0][0:L-1],H[1][0:L-1], ..., H[m-1][0:L-1]];
G row = exclusive scan(H row);
[G[0][0:L-1],G[1][0:L-1], ..., G[m-1][0:L-1]] = G row;
// ====== Post-scan stage:
for each warp i=0:L-1 parallel device do

bucket id[0:31] = whatBucket(key[32*i + (0:31)])
histo[0:m-1] = warp histogram(bucket id[0:31]);
offsets[0:31] = warp offsets(bucket id[0:31]);
for each thread k=0:31 parallel warp do

final position[k] = G[bucket[k]][i] + offsets[k];
key ms[final position[k]] = key[32*i + k];
value ms[final position[k]] = value[32*i + k];

end for
end for

In computing warp-level histogram and local offsets, we aim to
use only warp-level voting schemes (ballots) without any shared
memory usage, and to use a minimum number of rounds (logm).
So, instead of explicitly forming the binary matrix H̄, each thread
generates its own version of the rows of this matrix and stores it
in its local registers as a binary bitmap. Then per-row reduction is
equivalent to a warp-wide population count operation (popc), and
exclusive scan equates to first masking corresponding bits and then
reducing the result. We now describe both in more detail.

6 Note that we compute H̄ a second time rather than store and reload the
results from the computation in the first step. This is deliberate. We find that
the recomputation is cheaper than the cost of global store and load.

Pre-scan

Operation Direct MS Warp-level MS Block-level MS

Reading from memory

warp histogram warp histogram

b
u
ck

et
s

subproblem

H = [hij]m⇥L H = [hij]m⇥L

hij : hij :

Scan
Exclusive scan

m ⇥ L b
u
ck

et
s

subproblem
global o↵set

Post-scan

Reading from memory

Reordering in subproblems no reordering warp-level reordering block-level reordering

Computing final positions

no changes

Computed based on Equation (2): by using G and new local o↵sets

Final data movements Moving key-value pairs into final positions in memory

Computing histograms in
each subproblem

1. warp histogram
2. block histogram by reduction over

warp results per bucket

Storing histogram results
into global memory

Hm⇥L =
number of elements in i-th bucket and j-th warp number of elements in i-th bucket

and j-th block

Device-wide exclusive
scan on rows of Hm⇥L

and generate Gm⇥L

Gm⇥L =

1. warp histograms
2. warp local o↵sets

1. Recomputing histograms
in subproblems

2. Computing local o↵sets in
subproblems

1. warp histograms
2. block histogram by exclusive scan

over step 1’s results per bucket
3. warp local o↵sets
4. block local o↵sets by using steps 2

and 3

reading keys from global memory (n)

reading keys, values, and global o↵sets from global memory (2n + mL)

Computing new local o↵sets† lane ID �Pj�1
k=0 hk,` thread index �Pj�1

k=0 hk,`

Table 2: Detailed overview of our three proposed algorithms. Merged columns denote that the discussed operation is identical between the
corresponding approaches. †: In order to compute new local indexes after the reordering, we assume the (arbitrary) considered key is in the
j-th bucket and in the `-th subproblem. Lane ID denotes a thread’s position within a warp, and thread index denotes a thread’s position within
a block.

Warp-level histograms To compute warp-level histograms, we
assign each bucket (each row of H̄) to a thread. That thread is
responsible for counting the elements of the warp that fall into that
bucket. For cases where there are more buckets than the warp width
(NT = 32), we assign dm/32e buckets to each thread. First, we
focus on m ≤ 32; Algorithm 2 shows the detailed code.

Each thread i is in charge of the bucket with an index equal
to its lane ID (0–31). Thread i reads a key, computes that key’s
bucket ID (0–31), and initializes a warp-sized bitvector (32 bits) to
all ones. This bitvector corresponds to threads (keys) in the warp
that might have a bucket ID equal to this thread’s assigned bucket.
Then each thread broadcasts the least significant bit (LSB) of its
observed bucket ID, using the warp-wide ballot instruction. Thread i
then zeroes out the bits in its local bitmap that correspond to threads
that are broadcasting a LSB that is incompatible with i’s assigned
bucket. This process continues with all other bits of the observed
bucket IDs (for m buckets, that’s logm rounds). When all rounds
are complete, each thread has a bitmap that indicates which threads
in the warp have a bucket ID corresponding to its assigned bucket.
The histogram result is then a reduction over these set bits, which is
computed with a single population count (popc) instruction (line
14). For m ≥ 32, we do the updates in lines 8 and 10 multiple times
(for multiple histo bmp registers per thread).

Algorithm 2 Warp-level histogram computation

1: procedure WARP HISTOGRAM(bucket id[0:31])
Input: bucket id[0:31] . a warp-wide array of bucket IDs
Output: histo[0:m-1] . number of elements within each m buckets

2: for each thread i = 0:31 parallel warp do . all threads within a warp
3: histo bmp[i] = 0xFFFFFFFF;
4: for (int k = 0; k < ceil(log2(m)); k++) do
5: temp buffer = ballot(bucket id[i] & 0x01);
6: if ((i >> k) & 0x01) then . histogram computation
7: histo bmp[i] &= temp buffer;
8: else
9: histo bmp[i] &= XOR(0xFFFFFFFF, temp buffer);

10: end if
11: bucket id[i] >>= 1;
12: end for
13: histo[i] = popc(histo bmp[i]); . counting number of set bits
14: end for
15: return histo[0:m-1];
16: end procedure

Warp-level local offset computation Local offset computations
follow a similar structure to histograms (Algorithm 3). In local offset
computations, however, each thread is only interested in keeping
track of ballot results that match its item’s observed bucket ID,
rather than the bucket ID to which it has been assigned. Thus we
compute a bitmap that corresponds to threads whose items share

our same bucket, mask away all threads from later buckets, and
use the population count instruction to compute the local offset
(line 14). Histogram and local offset computations are shown in
two separate procedures (Alg. 2 and 3), but since they share many
common operations they can be merged into a single procedure
if necessary. For example, in Direct MS, we only need histogram
computation in the pre-scan stage, but we need both histogram and
local offsets in the post-scan stage.

Algorithm 3 Warp-level local offset computation
1: procedure WARP OFFSET(bucket id[0:31])

Input: bucket id[0:31] . a warp-wide array of bucket IDs
Output: offset[0:31]: . for each element, number of preceding elements
within the same bucket

2: for each thread i = 0:31 parallel warp do . all threads within a warp
3: offset bmp[i] = 0xFFFFFFFF;
4: for (int k = 0; k < ceil(log2(m)); k++) do
5: temp buffer = ballot(bucket id[i] & 0x01);
6: if (bucket id[i] & 0x01) then . local offset computation
7: offset bmp[i] &= temp buffer;
8: else
9: offset bmp[i] &= XOR(0xFFFFFFFF, temp buffer);

10: end if
11: bucket id[i] >>= 1;
12: end for
13: offset[i] = popc(offset bmp[i]&(0xFFFFFFFF>>(31-i)));

. counting number of preceding set bits
14: end for
15: return offset[0:31];
16: end procedure

Block-level histograms For our Block-level MS, we perform the
identical computation as Direct MS and Warp-level MS, but on a
block granularity. If we chose explicit local computations (described
in Section 4) to compute histograms and local offsets, the binary
matrix H̄ would be large, and we would have to reduce it over rows
(for histograms) and scan it over rows (for local offsets). Because of
this complexity, and because our warp-level histogram computation
is quite efficient, we pursue the second option: the hierarchical
approach. We first compute histograms for each warp, storing results
in shared memory and forming a matrix H2 with m rows and NW

columns (similar to H but among warps within each block). We then
reduce block-level histograms per row, which we implement with
our own multi-reduction operation in shared memory (in logNW

rounds of coalesced shared memory accesses).

Block-level local offsets For warp-level local offsets, we begin
with a similar scheme to Algorithm 3. Then, the block-level local
offset for each element is its warp-level local offset plus the sum
of all elements in previous warps and in the same bucket (similar
to the second term in equation (2)). So, we must perform another
scan operation on block histograms. Finally, the warp that already
possesses the final reduction result from the histogram computation
performs the scan operation by using warp-wide shuffles.

5.2 Reordering for better locality
As described in Section 4, one of the main bottlenecks in a permuta-
tion like multisplit is the random scatter in its final data movement.
Figure 2 shows an example of such a case. As we suggested previ-
ously, we can improve scatter performance by reordering elements
locally in each subproblem such that in the final scatter, we get
better coalescing behavior (i.e., consecutive elements are written to
consecutive locations in global memory).

However, while a higher achieved write memory bandwidth will
improve our runtime, it comes at the cost of more local work to
reorder elements. Warp-level reordering requires the fewest extra
computations, but it may not be able to give us enough locality as
the number of buckets increases (Fig. 2). We can achieve better

Initial key distribution

Warp level reordering

Block level reordering

Multisplit result
0 32 64 96 128 160 192 224 256

Buckets
0
1

D
ir

ec
t

M
S

W
a
rp

le
ve

l
M

S

B
lo

ck
le

v
el

M
S

(a) Key distribution with 2 buckets

Initial key distribution

Warp level reordering

Block level reordering

Multisplit result
0 32 64 96 128 160 192 224 256

Buckets
0
1
2
3
4
5
6
7D

ir
ec

t
M

S

W
ar

p
le

ve
l
M

S

B
lo

ck
le

v
el

M
S

(b) Key distribution with 8 buckets

Figure 2: Key distributions for different multisplit methods and
different number of buckets. Key elements are initially uniformly
distributed among different buckets. This window shows an input
key vector of length 256; each warp is 32 threads wide and each
block has 128 threads.

locality, again at the cost of more computation, by reordering across
warps within a block.

5.2.1 Warp-level Reordering
Warp-level MS extends Direct MS by reordering warps before the
final write for better memory coalescing behavior. Our first question
was whether we prefer to perform the reordering in our pre-scan
stage or our post-scan stage. We know that in order to compute the
new index for each element in the warp, we need to know about its
histogram and we need to perform a local (warp-level) exclusive
scan over the results. We have already computed the warp level
histogram in the pre-scan stage, but we do not have it in the post-
scan stage and thus would either have to reload it or recompute
it.

However, if we reorder key-value pairs in the pre-scan stage, we
must perform two coalesced global reads (reading key-value pairs)
and two coalesced global writes (storing the reordered key-value
pairs before our global operation) per thread. Recall that in Direct
MS, we only required one global read (just the key) per thread in its
pre-scan stage.

In the end, the potential cost of the additional global reads
was significantly more expensive than the much smaller cost of
recomputing our efficient warp-level histograms. As a result, we
reorder in the post-scan stage and require fewer global memory
accesses overall.

The only difference between Direct MS and Warp-level MS is in
post-scan, where we compute both warp-level histogram and local
offsets (Algorithm 2 and 3). Then, in order to find the new index
for each key element, we need to know the total number of keys in
previous buckets (as in equation (1)) and thus we need an exclusive
scan operation over the already-computed histograms. This requires
only warp-wide shuffle instructions (shfl up) in logNT rounds.

Now, each thread has observed a key element and has identified
its bucket ID. It also knows which thread was in charge of that
bucket ID and can ask for the result of the exclusive scan using a
single shfl instruction. Note that local offsets for keys do not
change as we reorder them, but we do have to recompute them as
well, based on equation (1): a reordered element in shared memory
corresponding to lane ID i that belongs to bucket j has a local offset
equal to i −

∑j−1
k=0 hk,`. Once again, we know who has the scan

result (right term) and can ask for it by shfl. Using this result,
we reorder the key-value pairs in shared memory to correspond to
the more coalesced order we just computed and write all key-value
pairs back to global memory in a coalesced way.

5.2.2 Block-level Reordering
The benefit from warp-level reordering is rather modest, particularly
as the number of buckets grows, because we only see a small number
of elements per warp that belong to the same bucket. For potentially
larger gains in coalescing, our block-level MS reorders entire blocks.

Just as with warp-level reordering, we must evaluate equation (2)
for all elements within a block. Block-level histograms and our
scan operation for local offset computation gives us the first term
in equation (2). We have already computed local offsets (the third
term) as well. The additional information we need is the total number
of elements in the same bucket but in previous warps within that
block (the second term in equation (2)). To achieve that, in our
second histogram computation in the post-scan stage, instead of row
reductions we perform an exclusive scan operation on each row.

We implement our own multi-scan operation to do this with
2 logNT coalesced shared memory accesses. Another option was to
rearrange elements into shared memory in a row-vectorized fashion
and then run a single block-wide scan operation on mNW elements.
We found this unappealing as it requires random shared memory
scatters. Also, because of the way we assign buckets to threads in
warps, each warp has a column of H2, which makes it easier to
perform element-wise row scan (or reduction) on columns.

Final data movement In a similar way to Warp-level MS, since
key-value pairs are already reordered in shared memory, we can
easily recompute their block-wide local offsets. For example, in
block `, if the key element corresponding to thread index i (i.e.,
threadIdx.x) belongs to bucket j, then the block-level local offset
is i −

∑j−1
k=0 hk,`, where the second term is already computed by

our initial local offset computations. Final positions are then added
to the global offsets computed in G and key-value pairs are stored
in global memory with coalesced writes.

5.3 More buckets than the warp width
So far, we have only considered cases where the number of buckets
is less than or equal to the warp width NT . These cases map nicely
to our implementation because we made each thread responsible
for a single bucket, and hence all histogram-related data movement
could be performed with a single warp access. Adding more buckets
presents no theoretical concerns, but will degrade performance.

For more than NT buckets, some threads must be responsible
for multiple buckets. For example, the k-th thread in each warp is
responsible for counting elements in Bk, Bk+32, Bk+64, and so on.
Histogram and local offset computations in the pre-scan stage do not
change. However, all other histogram-related memory reads/writes
are now linearized by a factor of dm/32e as well. Section 6.4
shows more details about the performance degradation of such
linearization.

6. Performance Evaluation
In this section we evaluate our multisplit methods and analyze their
performance. All experiments are run on a NVIDIA K40c GPU

Method Avg. running time Processing rate

Radix sort (key-only) 22.36 ms 1.50 Gkeys/sec
Radix sort (key-value) 37.36 ms 0.90 Gkeys/sec

Scan-based split (key-only) 5.55 ms 6.05 Gkeys/sec
Scan-based split (key-value) 6.96 ms 4.82 Gkeys/sec

Table 3: Average running time and processing rate, over 225 ran-
domly generated inputs, uniformly distributed over two buckets.

with 12 GB DRAM. All programs are compiled with NVIDIA’s
nvcc compiler (version 6.5.12). The authors have implemented all
codes except for device-wide scan operations and radix sort, which
are from CUB (version 1.4.1). All experiments are run over 50
independent trials. Since the main focus of this paper is on multisplit
as a GPU primitive within the context of a larger GPU application,
we assume that all required data is already in the GPU’s memory
and hence no transfer time is included. Throughout this section,
unless otherwise stated, we have used NW = 8 warps per block
(256 threads per block). Choosing an appropriate NW is important
because it moderately influences the amount of parallelism in each
block (for instance, for Warp-level MS, NW = 2 is 1.4x slower).
Its influence is more important for Block-level MS as it affects
both the potential locality to be extracted as well as the amount of
inter-warp communications (for Block-level MS, NW = 2 is 2x
slower). All our experiments (except in Section 6.5) are over 32-bit
random integers uniformly distributed over m buckets, and buckets
are defined to equally divide the 32-bit domain. All our multisplit
methods have similar performance for any other 32-bit data (e.g.,
floating-point numbers).

6.1 Common approaches and references
In Section 3, we introduced some of the common approaches to
implement multisplit. Table 3 shows performance results for radix
sort and the scan-based split methods. With uniform distribution
of keys, radix sort’s performance is independent of the number of
buckets; instead, it only depends on the number of significant bits.
Iterative scan-based split can be used on any number of buckets. For
this method, we ideally have a completely balanced distribution
of keys, which means in each round we run twice the number
of splits as the previous round over half-sized subproblems. So,
we can assume that in the best-case scenario, iterative scan-based
split’s average running time is lower-bounded by log(m) times the
runtime of a single scan-based split method. This ideal lower bound
is not competitive for any of our scenarios, and thus we have not
implemented the iterative part of this method.

6.2 Performance versus number of buckets: m ≤ 32

In this section we analyze our performance as a function of the num-
ber of buckets (m ≤ 32). Our methods differ in three principal ways:
1) how expensive are our local computations, 2) how expensive are
our memory accesses, and 3) how much locality can be extracted by
reordering.

6.2.1 Average running time
Table 4 shows the average running time of different stages in each of
our three approaches, the reduced bit sort method, and a lower bound
for the recursive scan-based split. All of our proposed methods have
the same basic computational core, warp-wide local histogram and
local offset computations. However, there are three major reasons
behind the performance differences among our methods as the
number of buckets increases (each can be verified in Table 4):

Reordering process Reordering keys (key-values) requires extra
computation and shared memory accesses. Reordering is always

4

5

6

7

8

9

0 10 20 30
Number of buckets (m)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(m

se
c)

Block level MS

Direct MS

Reduced bit sort

Warp level MS

(a) Key-only, m ≤ 32

8

12

16

0 10 20 30
Number of buckets (m)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(m

se
c)

(b) Key-value, m ≤ 32

Figure 3: Average running time (ms) versus number of buckets for
all multisplit methods: (a) key-only, 32 M elements (b) key-value,
32 M elements.

more expensive for Block-level MS as it also requires inter-warp
communications. But both of these negative costs are relatively
constant with respect to m (mostly depend on NW and NT).

Increased locality from reordering Since block level subprob-
lems have more elements than warp level subproblems, Block-
level MS is always superior to Warp-level MS in terms of locality.
Both factors decrease by 1

m
as m increases.

Global operations As described before, by increasing m, the
height of matrix H increases. However, Block-level MS per-
forms most of its computations locally and only stores block
histograms in global memory (compared to other methods that
store warp histograms). As a result, scan operations for both the
Direct MS and Warp-level MS get significantly more expensive
by a factor of mNW , rather than just m as in Block-level MS.

Figures 3a and 3b show the average running time of our multisplit
algorithms vs. the number of buckets. For small m, Block-level MS
has the best locality (at the cost of substantial local work), but
Warp-level MS achieves fairly good locality coupled with simple
local computation; it is the fastest choice for small m (≤ 6 (key-
only), ≤ 5 (key-value)). For large m (≥ 22 (key-only), ≥ 16 (key-
value)), the superior memory locality of Block-level MS coupled
with a minimized global scan cost make it the best method overall.
In between these extremes, all three methods are roughly similar

Key-only Key-value

Number of buckets (m)

Algorithm Stage 2 8 32 2 8 32

Direct
MS

Pre-scan 1.32 1.49 2.19 1.32 1.49 2.19
Scan 0.12 0.39 1.48 0.12 0.39 1.48
Post-scan 2.31 2.98 4.92 3.36 4.06 11.97
Total 3.75 4.85 8.59 4.79 5.93 15.63

Warp
level
MS

Pre-scan 1.32 1.49 2.19 1.32 1.49 2.19
Scan 0.12 0.39 1.47 0.12 0.40 1.47
Post-scan 1.91 2.99 5.44 3.27 4.34 10.56
Total 3.34 4.86 9.11 4.70 6.22 14.23

Block
level
MS

Pre-scan 1.59 1.58 1.88 1.59 1.58 1.88
Scan 0.03 0.07 0.21 0.03 0.07 0.21
Post-scan 3.70 4.30 5.35 4.41 5.13 6.44
Total 5.33 5.95 7.44 6.04 6.78 8.53

Reduced
bit sort

Labeling 2.07 2.07 2.07 2.07 2.07 2.07
Sorting 5.01 5.22 6.60 5.94 6.33 10.49
(un)Packing — — — 5.66 5.66 5.66
Total 7.09 7.29 8.67 13.67 14.06 18.22

Recursive
split

Labeling 1.54 4.62 7.70 1.54 4.62 7.70
Scan 1.47 4.41 7.35 1.47 4.41 7.35
Splitting 2.54 7.62 12.7 3.95 11.85 19.75
Total 5.55 16.65 27.75 6.96 20.88 34.8

Sort on identity buckets† 2.62 2.68 4.20 5.01 5.22 6.60

Table 4: Average running time (ms) for different stages of our
multisplit approaches, reduced bit sort, and recursive split, with
n = 225 and a varying number of buckets. Because we did not fully
implement recursive scan-based split, its runtimes are expressed as a
lower (ideal) bound equal to the scan-based split time multiplied by
logm rounds. †: Radix sort results for the trivial case with identity
buckets (Bi = {i}) (Section 3.1).

in performance, staking out different points in the tradeoff space
between complexity and global scan/scatter cost.

As described in Section 3.1, in this paper we have focused on
non-trivial bucket identification scenarios, without trivial cases such
as identity buckets. For example, if our original key elements are
all from 0, 1, . . . ,m− 1, and all buckets are defined as Bi = {i},
then each key element is equal to its bucket ID and thus we can
directly do sorting rather than multisplit. As shown in Table 4, in
such a scenario radix sort is almost always more efficient than
our multisplit methods (the exception is 2-bucket key-value pairs).
We should note that such a key-only case has little to no practical
use, but we included it for the sake of clear comparison. Part of
this difference is caused by kernel overheads in our methods from
launching multiple kernels.

For other non-trivial cases and with uniform distribution of keys
among all 32-bit integers, by comparing Table 4 and Table 3 it
becomes clear that our multisplit method outperforms radix sort
by a big margin. Our multisplit methods are also always superior
to the reduced bit sort method that we introduced in Section 3.4.
This is partly because of the extra overheads that we introduced
for bucket identification and creating the label vector. Even if we
ignore this overhead, since reduced bit sort performs its operations
and permutations over the label vector as well as original key (key-
value) elements, its data movements are more expensive compared
to all our multisplit methods that only process and permute original
key (key-value) elements.

6.2.2 Processing rate, and multisplit speed of light
It is instructive to compare any implementation to its “speed of
light”: a processing rate that could not be exceeded. For multisplit’s
speed of light, we consider that computations take no time and all
memory accesses are fully coalesced. Our parallel model requires

Number of buckets (m)

Scenario Algorithm 2 4 8 16 32

Key-only

Direct MS 8.95 7.88 6.92 5.51 3.91
Warp level MS 10.04 8.23 6.90 5.14 3.69
Block level MS 6.29 5.84 5.64 4.95 4.51
Reduced bit sort 4.64 4.60 4.51 4.34 3.85

Key-value

Direct MS 7.00 6.06 5.66 4.19 2.15
Warp level MS 7.14 6.31 5.40 3.86 2.36
Block level MS 5.56 5.11 4.95 4.50 3.93
Reduced bit sort 2.46 2.44 2.39 2.13 1.84

Table 5: Processing rate (G keys/sec) for our multisplit methods on
n = 225 keys with a uniform distribution across buckets.

one single global read of all elements before our global operation
barrier to compute histograms. We assume the global operation is
free. Then after the global operation, we must read all keys (or
key-value pairs) and then store them into their final positions. For
multisplit on keys, we thus require 3 global memory accesses per
key; 5 for key-value pairs. Our GPU has a peak memory bandwidth
of 288 GB/s, so the speed of light for keys, given the many favorable
assumptions we have made for it, is 24 Gkeys/s, and for key-value
pairs is 14.4 G keys/s.

Table 5 shows our processing rates for 32M keys and key-value
pairs, uniformly distributed among buckets. Warp-level MS has
the highest peak throughput (on 2 buckets), 10.04 G key/s. Our
achieved rates significantly outperform radix sort and scan-based
split (Table 3).

6.3 Performance on different GPU microarchitectures
As discussed in the beginning of this section, we have used
NVIDIA’s Tesla K40c GPU for all our experiments. This GPU,
designed primarily for servers, is NVIDIA’s most powerful computa-
tional device. The K40c is based on NVIDIA’s “Kepler” microarchi-
tecture. In this part we want to briefly explore performance results of
our multisplit methods on other NVIDIA microarchitectures as well.
In our design we have not used any (micro)architecture-dependent
optimizations and hence we do not expect radical behavior change
on any other machine, other than possible speedup differences based
on the device’s capability. We have repeated our experiments on a
GeForce GTX 750 Ti GPU, a mid-level consumer GPU based on
NVIDIA’s newer “Maxwell” microarchitecture. On the GTX 750 Ti,
radix sort over 32 M key elements and key-value pairs achieves 0.80
and 0.48 G keys/sec processing rate respectively (compared to the
K40c’s 1.50 and 0.90 G keys/sec from Table 3). Table 6 shows the
speedup of our multisplit methods and the reduced-bit sort against
radix sort on both devices.

As we expected, the general behavior is similar on both mi-
croarchitectures. The major difference for the Maxwell device is
the superiority of reordering-based methods (Warp-level MS and
Block-level MS) compared to the Direct MS method. We believe
this indicates that the Tesla-based K40c does a better job in hiding
latencies imposed by non-coalesced memory accesses than the one
in our Maxwell device. In other words, the reordering process that
we implement to avoid non-coalesced memory accesses appears to
be even more valuable in the newer Maxwell microarchitecture.

6.4 Performance for more than 32 buckets
In this section we consider scenarios with more than 32 buckets
(m > NT). As discussed in Section 5.3, our algorithms were specif-
ically designed to exploit warp-level primitives for their histogram
computations. With more buckets, our histogram computations
require logm rounds; all intermediate registers and data move-
ments must be scaled by dm/32e. We concentrate on Block-level

Radix sort (key−only)

Radix sort (key−value)

5

10

15

20

32 64 256 1024 4096 16384 65536
Number of buckets (m)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(m

se
c)

Block level MS

Reduced bit sort

Key−only

Key−value

Figure 4: Average running time (ms) versus m ≥ 32 for Block-level
MS and reduced bit sort, 16 M elements.

MS, which had our best performance as the number of buckets
approached (and exceeded) 32 buckets.

Because all our previous intermediate data movements to shared
memory are now scaled, our previous multi-scan and multi-reduction
procedures (Section 5.1) are not as efficient any more (the height of
H̄ is now more than the warp-width). So instead, we do what we
did with our global scan operations: we store a row-vectorized H̄ in
shared memory and then run a single block-wide scan operation of
size mNW (we use CUB’s scan implementation for this). The rest
of our procedure is similar to the m < 32 case.

As the number of buckets grows, radix sort is increasingly
attractive: it has no performance dependence on the number of
buckets. Since the reduced bit sort uses a regular radix sort in its
logarithmic number of stages, its performance should scale with the
number of buckets only logarithmically, as opposed to our methods,
which in some parts scale linearly. So, our expectation is that as
the bucket count grows, reduced bit sort will eventually become
the best method. Figure 4 shows the average running time of our
Block-level MS and reduced-bit sort vs. the number of buckets until
they converge to radix sort’s performance limit. In a key-only (key-
value) scenario, Block-level MS remains superior to reduced-bit
sort until almost 64 (96) buckets, and finally converges to radix sort
for 192 (224) buckets. Reduced-bit sort scales much better with the
number of buckets: it converges to radix sort for almost 32k (key)
and 16k (key-value) buckets. One of the important bottlenecks for
our methods with a high number of buckets is our heavy usage of
shared memory within a block. In our implementations, we assign an
exclusive part of shared memory for each column of H̄ of length m
per warp. As the number of buckets increases, we are still observing
the same 32 key elements per warp, which means on average most
of our elements in H̄ are zero (H̄ becomes very sparse). Future
work may choose a different approach to address the sparsity of H̄
as bucket count becomes large.

6.5 Initial key distribution over buckets
So far we have only considered scenarios in which initial key
elements were uniformly distributed over buckets (i.e., a uniform
histogram). In our implementations we have considered small
subproblems (warps and blocks) compared to the total size of our
initial key vector. Since these subproblems are relatively small,
having a non-uniform distribution of keys means that it would be
more likely to see empty buckets in some of our subproblems; in
practice, our methods would behave as if there were fewer buckets

Tesla K40c (Kepler) GeForce GTX 750 Ti (Maxwell)

Number of buckets (m) Number of buckets (m)

Scenario Algorithm 2 4 8 16 32 2 4 8 16 32

Key-only

Direct MS 5.97x 5.25x 4.61x 3.67x 2.60x 4.67x 3.73x 2.80x 2.52x 1.52x
Warp level MS 6.69x 5.49x 4.60x 3.43x 2.46x 5.61x 4.26x 3.39x 2.63x 1.70x
Block level MS 4.20x 3.89x 3.76x 3.30x 3.01x 3.32x 3.14x 2.96x 2.88x 2.73x
Reduced bit sort 3.15x 3.12x 3.06x 2.95x 2.58x 2.90x 2.82x 2.76x 2.72x 2.65x

Key-value

Direct MS 7.80x 6.75x 6.30x 4.66x 2.39x 5.65x 3.86x 2.83x 2.41x 1.45x
Warp level MS 7.95x 7.03x 6.01x 4.29x 2.62x 6.35x 5.32x 4.00x 3.03x 1.66x
Block level MS 6.19x 5.69x 5.51x 5.01x 4.38x 4.47x 4.36x 4.23x 4.06x 3.40x
Reduced bit sort 2.73x 2.71x 2.66x 2.37x 2.05x 2.12x 2.12x 2.11x 2.08x 2.06x

Table 6: Speedup versus radix sort for a varying number of buckets and two GPU architectures. The initial key vector of length n = 225 is
uniformly distributed over buckets. Each speedup is computed against the radix sort performance on that specific device.

for those subproblems. All of our computations (e.g., warp-level
histograms) are data-independent and, given a fixed bucket count,
would have the same performance for any distribution. However,
our data movement, especially after reordering, would benefit from
having more elements within fewer buckets and none for some
others (resulting in better locality for coalesced global writes).
Consequently, the uniform distribution is the worst-case scenario
for our methods.

In this section we consider a binomial distribution as an example
of a non-uniform distribution. In general B(m − 1, p) denotes a
binomial distribution over m buckets with a probability of success
p. For example, the probability that a key element belongs to bucket
0 ≤ k < m is

(
m−1
k

)
pk(1− p)m−k−1. This distribution forces

an unbalanced histogram as opposed to the uniform distribution.
Note that by choosing p = 0.5, the expected number of keys
within the kth bucket will be n

(
m−1
k

)
21−m. We also consider a

milder distribution where 25% of keys are uniformly distributed
among buckets and the rest are within one bucket. Figure 5 shows
the average running time of Block-level MS and reduced-bit sort
for different distributions. Both methods perform better as keys
become less uniformly distributed, because on average there is less
intermediate data movement. The reduced-bit sort is more sensitive,
because the internal hierarchical approach in radix sort helps it to put
most of its effort on more common bits. With a uniform distribution,
all bits are equally populated, so all bits get the same attention.

7. Conclusion
The careful design and analysis of our GPU multisplit implemen-
tations allow us to provide significant performance speedups for
multisplit operations over traditional sort-based methods. Beyond
simply demonstrating the design and implementation of a family of
fast and efficient multisplit primitives, we offer three main lessons
that are broadly useful for parallel algorithm design and implemen-
tation: Minimize global (device-wide) operations, even at the cost
of increased local computation; the benefit of more coalesced mem-
ory accesses outweighs the cost of local reordering; and leveraging
warp-wide hardware intrinsics and warp-synchronous programming,
where applicable, is both highly beneficial and superior to shared-
memory-based communication.

Acknowledgments
The authors would like to thank Michael Garland and Sean Bax-
ter for their valuable comments on paper drafts. Also, thanks to
NVIDIA for providing the GPUs that made this research possible.
We appreciate the funding support from UC Lab Fees Research Pro-
gram Award 12-LR-238449, DFG grant ME 2088/3-1, MADALGO
(Center for Massive Data Algorithmics), NSF awards CCF-1017399
and OCI-1032859, and Sandia LDRD award #130144.

5

6

7

8

0 4 8 12 16 20 24 28 32
Number of buckets (m)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(m

se
c)

0.25 Uniform

Binomial

Uniform

Block level MS

Reduced bit sort

Key−only

(a) Key-only

5.0

7.5

10.0

12.5

15.0

17.5

0 4 8 12 16 20 24 28 32
Number of buckets (m)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(m

se
c)

Key−value

(b) Key-value

Figure 5: Average running time vs. number of buckets for three
different initial key distributions: a uniform distribution, a binomial
distribution B(m − 1, 0.5), and a distribution with 25% of keys
uniformly distributed and the rest in just one bucket..

References
[1] The Graph 500 list. http://www.graph500.org/, July 2013.

[2] Yahoo labs dataset selections. http://webscope.sandbox.yahoo.
com/, July 2013.

[3] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzen-
macher, J. D. Owens, and N. Amenta. Real-time parallel hashing on
the GPU. ACM Transactions on Graphics, 28(5):154:1–154:9, Dec.
2009. doi: 10.1145/1661412.1618500.

[4] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sa-
dayappan. Fast sparse matrix-vector multiplication on GPUs for graph
applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’14,
pages 781–792, Nov. 2014. doi: 10.1109/SC.2014.69.

[5] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms
and Applications, chapter 3.3.4: The Bellman-Ford-Moore Algo-
rithm, pages 97–99. Springer-Verlag London, 2009. doi: 10.1007/
978-1-84800-998-1.

[6] S. Brown and J. Snoeyink. Modestly faster histogram computations
on GPUs. In Proceedings of Innovative Parallel Computing, InPar ’12,
May 2012. doi: 10.1109/InPar.2012.6339589.

[7] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient
parallel GPU methods for single source shortest paths. In Proceedings
of the 28th IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2014, pages 349–359, May 2014. doi: 10.1109/
IPDPS.2014.45.

[8] T. A. Davis and Y. Hu. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS),
38(1):1, 2011. doi: 10.1145/2049662.2049663.

[9] M. Deo and S. Keely. Parallel suffix array and least common prefix for
the GPU. In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’13, pages
197–206, Feb. 2013. doi: 10.1145/2442516.2442536.

[10] A. Deshpande and P. J. Narayanan. Can GPUs sort strings efficiently? In
20th International Conference on High Performance Computing, HiPC
2013, pages 305–313, Dec. 2013. doi: 10.1109/HiPC.2013.6799129.

[11] G. F. Diamos, H. Wu, A. Lele, J. Wang, and S. Yalamanchili. Ef-
ficient relational algebra algorithms and data structures for GPU.
Technical Report GIT-CERCS-12-01, Georgia Institute of Technology
Center for Experimental Research in Computer Systems, Feb. 2012.
URL http://www.cercs.gatech.edu/tech-reports/tr2012/
git-cercs-12-01.pdf.

[12] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959. ISSN 0029-599X. doi:
10.1007/BF01386390.

[13] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan)
with CUDA. In H. Nguyen, editor, GPU Gems 3, chapter 39, pages
851–876. Addison Wesley, Aug. 2007.

[14] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander.
Relational joins on graphics processors. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data,
pages 511–524, June 2008. doi: 10.1145/1376616.1376670.

[15] Q. Hou, X. Sun, K. Zhou, C. Lauterbach, and D. Manocha. Memory-
scalable GPU spatial hierarchy construction. IEEE Transactions on
Visualization and Computer Graphics, 17(4):466–474, Apr. 2011. doi:
10.1109/TVCG.2010.88.

[16] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A unified graphics and computing architecture. IEEE Micro, 28(2):
39–55, Mar./Apr. 2008. doi: 10.1109/MM.2008.31.

[17] D. Merrill and A. Grimshaw. Revisiting sorting for GPGPU stream
architectures. Technical Report CS2010-03, Department of Computer
Science, University of Virginia, Feb. 2010. URL https://sites.
google.com/site/duanemerrill/RadixSortTR.pdf.

[18] U. Meyer. Buckets strike back: Improved parallel shortest paths.
In Proceedings of the 16th International Parallel and Distributed
Processing Symposium, IPDPS 2002, Apr. 2002. doi: 10.1109/IPDPS.
2002.1015582.

[19] U. Meyer. Average-case complexity of single-source shortest-paths
algorithms: lower and upper bounds. Journal of Algorithms, 48(1):
91–134, Aug. 2003. doi: 10.1016/S0196-6774(03)00046-4.

[20] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1):114–152, Oct. 2003. doi:
10.1016/S0196-6774(03)00076-2. 1998 European Symposium on
Algorithms.

[21] G. L. Miller and J. H. Reif. Parallel tree contraction—Part 1: Funda-
mentals. In S. Micali, editor, Randomness and Computation, volume 5
of Advances in Computing Research, pages 47–72. JAI Press Inc., 1989.
ISBN 9780892328963.

[22] L. Monroe, J. Wendelberger, and S. Michalak. Randomized selection
on the GPU. In Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics, HPG ’11, pages 89–98, Aug. 2011. doi:
10.1145/2018323.2018338.

[23] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. ACM Queue, 6(2):40–53, Mar./Apr. 2008.
doi: 10.1145/1365490.1365500.

[24] C. Nugteren, G.-J. van den Braak, H. Corporaal, and B. Mesman.
High performance predictable histogramming on GPUs: Exploring and
evaluating algorithm trade-offs. In Proceedings of the Fourth Workshop
on General Purpose Processing on Graphics Processing Units, page 1.
ACM, 2011.

[25] NVIDIA Corporation. NVIDIA CUDA C programming guide. PG-
02829-001 v6.5, Aug. 2014.

[26] J. Pantaleoni. VoxelPipe: A programmable pipeline for 3D voxelization.
In Proceedings of High Performance Graphics, HPG ’11, pages 99–106,
Aug. 2011. ISBN 978-1-4503-0896-0. doi: 10.1145/2018323.2018339.

[27] S. Patidar. Scalable primitives for data mapping and movement on the
GPU. Master’s thesis, International Institute of Information Technology,
Hyderabad, India, June 2009.

[28] R. Shams and R. A. Kennedy. Efficient histogram algorithms for
NVIDIA CUDA compatible devices. In Proceedings of the Interna-
tional Conference on Signal Processing and Communications Systems
(ICSPCS), pages 418–422, Gold Coast, Australia, Dec. 2007.

[29] Z. Wu, F. Zhao, and X. Liu. SAH KD-tree construction on GPU. In
Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics, HPG ’11, pages 71–78, Aug. 2011. doi: 10.1145/2018323.
2018335.

[30] X. Yang, D. Xu, and L. Zhao. Efficient data management for incoherent
ray tracing. Applied Soft Computing, 13(1):1–8, Jan. 2013. doi:
10.1016/j.asoc.2012.07.002.

