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Olivier Harismendy3,7*   

Abstract 

Purpose: The contribution of common genetic variants to pre-cancer progression is understudied due to long 
follow-up time, rarity of poor outcomes and lack of available germline DNA collection. Alternatively, DNA from diag-
nostic archival tissue is available, but its somatic nature, limited quantity and suboptimal quality would require an 
accurate cost-effective genome-wide germline genotyping methodology.

Experimental design: Blood and tissue DNA from 10 individuals were used to benchmark the accuracy of Single 
Nucleotide Polymorphisms (SNP) genotypes, Polygenic Risk Scores (PRS) or HLA haplotypes using low-coverage 
whole-genome sequencing (lc-WGS) and genotype imputation. Tissue-derived PRS were further evaluated for 36 
breast cancer patients (11.7 years median follow-up time) diagnosed with DCIS and used to model the risk of Breast 
Cancer Subsequent Events (BCSE).

Results: Tissue-derived germline DNA profiling resulted in accurate genotypes at common SNPs (blood correlation 
 r2 > 0.94) and across 22 disease-related polygenic risk scores (PRS, mean correlation r = 0.93). Imputed Class I and II 
HLA haplotypes were 96.7% and 82.5% concordant with clinical-grade blood HLA haplotypes, respectively. In DCIS 
patients, tissue-derived PRS was significantly associated with BCSE (HR = 2, 95% CI 1.2–3.8). The top and bottom decile 
patients had an estimated 28% and 5% chance of BCSE at 10 years, respectively.

Conclusions: Archival tissue DNA germline profiling using lc-WGS and imputation, represents a cost and resource-
effective alternative in the retrospective design of long-term disease genetic studies. Initial results in breast cancer 
suggest that common risk variants contribute to pre-cancer progression.

Keywords: Low-coverage whole-genome sequencing, Breast cancer, Ductal carcinoma in situ, Polygenic risk score, 
Pre-cancer, Genotyping

Introduction
The study of the contribution of germline genetic vari-
ation to disease risk or treatment outcome typically 
requires blood or saliva samples as a source of constitu-
tive DNA. Depending on the phenotype studied, such 
samples may not be banked and readily available. Samples 
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may have to be prospectively collected, which hinders 
studies requiring long-term follow-up or obtained after 
contacting potential subjects of interest, which can be 
logistically and ethically challenging or impossible if a 
patient has relocated or died. In cancer research, there 
is a growing interest in directly profiling tumor tissue 
to obtain germline measures such as ancestry, polygenic 
risk, and HLA-typing [1]. Array-based genotyping fol-
lowed by imputation from a reference population has 
been a standard method to genotype genome-wide SNPs 
in the human genome, but its compatibility with DNA 
obtained from archival tissue specimens remains to be 
established [2, 3]. The approach can be challenging when 
the amount of tissue available for research is limited, 
which is often the case with surgical excisions of prema-
lignant lesions or with most needle biopsies.

Recently low-coverage whole-genome sequencing (lc-
WGS) has emerged as an attractive alternative to single 
nucleotide polymorphism (SNP) array by offering higher 
throughput at a reduced cost, reduced DNA input, and 
improved genotyping accuracy [4–6]. In fact, recent stud-
ies have shown the feasibility of using frozen tissue for 
germline profiling by imputing genotypes from off-target 
reads repurposed from tumor-targeted panel sequenc-
ing data, effectively equivalent to ultra-low coverage (less 
than 0.1×) whole-genome sequencing [1]. It is therefore 
likely that, in the absence of available targeted sequenc-
ing data, lc-WGS can be performed with DNA of lower 
quality and quantity to enable the imputation of germline 
variants from archival tissue specimens.

If accurate, such an approach could have important 
implications for the study of the contribution of inher-
ited risk factors to the progression of premalignant 
disease. For many cancer types, the widespread adop-
tion of cancer screening has led to an increase in the 
detection of premalignant lesions. Despite such efforts, 
screening has had limited impact on overall survival 
[7]. Clinical guidelines vary widely from watchful wait-
ing or biopsy as for prostatic intraepithelial neoplasia 
to surgery and adjuvant treatment as for ductal carci-
noma in situ (DCIS) of the breast [8, 9]. In absence of 
reliable progression risk biomarkers and models, these 
interventions may have deleterious consequences at the 
two clinical extremes: delay in life-saving treatment or 
complications from overtreatment. DCIS is the most 
common breast cancer-related diagnosis, comprising 
~ 20% of annual cases in the U.S. [10]. In breast disease, 
factors that impact the risk of breast cancer subsequent 
event (BCSE), defined as an in  situ or invasive breast 
cancer neoplasm developed at least 6  months after 
treatment of a DCIS diagnosis, include age, size, grade 
of the lesion, hormone receptor status, and molecular 
profile. Their combined effect in risk models such as the 

University of Southern California/Van Nuys Prognostic 
Index has not resulted in any reliable BCSE risk predic-
tion model and additional, more in-depth molecular 
and histological characterization is needed [11–16].

Given the independence between DCIS and asso-
ciated BCSE in upwards of 20% of cases as evidenced 
by molecular studies comparing genomic profiles of 
initial DCIS and subsequent ipsilateral BCSE, sys-
temic risk factors need to be considered in addition 
to those related to the index lesion [17]. While pen-
etrant germline pathogenic variants exist and repre-
sent strong risk factors in breast cancer susceptibility 
genes such as BRCA1, BRCA2, CHEK2, PALB2, and 
PMS2, they are only present in 1.5% of all women [18]. 
Meanwhile, population-based genome-wide associa-
tion studies (GWAS), have identified multiple com-
mon variants associated with lifetime risk of invasive 
breast cancer (IBC) [2, 19]. The same SNPs have also 
been associated with risk of DCIS demonstrating the 
shared genetic susceptibility for IBC and DCIS [20]. 
It is however unclear if these SNPs are also associated 
with DCIS progression. Polygenic risk scores (PRS) 
derived from the allelic burden of risk-associated SNPs 
are now being added to common breast cancer risk 
models, significantly improving their performance, 
with individuals in the top percentile having a three- to 
fivefold increase in lifetime risk relative to women with 
risk scores in the middle quintile of those studied [21, 
22]. It is thus possible that DCIS patients with elevated 
breast cancer PRS are also at higher risk of BCSE and 
the addition of PRS could improve DCIS prognostic 
models akin to lifetime breast cancer risk models. Since 
BCSE can occur years after the initial DCIS diagnosis 
and is uncommon—observed in 10 to 25% of patients 
after 10 years, depending on treatment and known risk 
factors—a retrospective study is much more feasible for 
the purposes of validation [23, 24]. Formalin-fixed par-
affin-embedded (FFPE) tissue (referred to as archival 
tissue) from the DCIS biopsy or resection are therefore 
the only source of genetic material available and their 
validity for genome-wide genotyping of germline vari-
ants would be critical to the feasibility of such study.

Here we evaluate the validity of repurposing archival 
tissue specimens for germline genetic studies. We per-
formed lc-WGS and imputed genotypes for 10 pairs of 
matching blood and tumor tissue samples to benchmark 
the accuracy for calling genome-wide genotypes, HLA 
haplotypes, and for implementing PRS. The reported 
results indicate the high accuracy of germline genotypes 
and haplotypes obtained from archival tissue DNA. 
Using this methodology we present a use-case measur-
ing breast cancer PRS in 36 DCIS patients and explore its 
association with BCSE.
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Results
Concordance of lc‑WGS imputed genotypes 
between blood DNA and FFPE tissue DNA
In order to establish the analytical validity of FFPE tissue 
DNA for germline genotyping and genotype imputation 
from lc-WGS, we selected 10 subjects including from 
European, African, and Asian ancestries with matching 
FFPE tissue and whole blood. Given the lack of match-
ing blood specimens for most DCIS archival tissue in 
this retrospective study, we chose to perform this bench-
marking using specimens from lung cancer patients, 
which should not affect the overall conclusions of this 
analytical validation. The archival tissue blocks were 
between 3 and 9  years old and yielded between 5 and 
176 ng of DNA, which was then prepared for sequencing 
with a low-input protocol (see “Materials and methods”). 
Mean coverage depth was 0.92× (range 0.68–1.41×) and 
0.7× (range 0.44–0.97) for blood and tissue, respectively. 
Genotypes were imputed using a Gibbs sampling method 
specifically designed for lc-WGS, which leverages hap-
lotype reference panel information (1000G 30× NYGC 
reference panel—N = 3202 individuals; see “Materials 
and methods”) [5, 25]. Overall genotypes were imputed 
for 61,715,567 SNPs in each of the 20 samples, of which 
43,274,690 (70.1%) were considered high quality (Impute 
INFO score > 0.80) [26]. Genotype concordance between 
blood and tissue increased with the minor allele fre-
quency (MAF) of the variant in the global population. 
For SNPs with MAF of 0.1 or more, the aggregate  r2 was 
greater than 91% for all SNPs, and greater than 94% for 

high-quality SNPs (Fig.  1a). The concordance between 
blood and tissue was not lower for the two individu-
als who were non-white (Additional file 1: Figure S1). In 
contrast, the concordance was lower (87% at SNPs with 
MAF greater or equal to 0.1) when the sequencing cover-
age depth of the tissue DNA was lower (Additional file 1: 
Figure S2). Overall, the strongest discordance between 
blood and tissue was observed for SNPs at MAF lower 
than 0.01 which are typically imputed with decreased 
accuracy irrespective of the sample type [27].

The presence of somatic mutations and copy number 
alterations (CNA) in DNA from malignant cells has the 
potential to decrease local imputation accuracy. In par-
ticular, CNA may play a larger role than somatic muta-
tions, as recently reported [1]. We estimated the effect of 
CNA status on the genotype concordance between blood 
and tissue across SNPs located in DNA regions that are 
copy neutral, in a copy gain, or in a copy loss. The studied 
DNA samples had, on average, 15% of the genome (range 
0 to 65%) involved in CNA while no CNA was detected 
in the blood (see “Materials and methods”, Additional 
file  1: Table  S1). Common SNPs (MAF ≥ 0.1) located 
in copy neutral or copy gain regions had a remarkable 
blood-tissue genotype concordance  r2 higher than 95%, 
while those in regions of copy number loss showed lower 
concordance  r2 of 83% (Fig. 1b). The decreased imputa-
tion accuracy in areas of copy number loss can likely 
be explained by the decrease in allele-specific coverage 
depth, resulting in missed heterozygotes or a sparser 
scaffold for imputation.

Fig. 1 Assessment of genome-wide concordance of lc-WGS imputed genotypes in tissue versus blood of N = 10 patients. a, b Genome-wide 
concordance (Pearson correlation coefficient squared—y-axis) of allele dosages across all genotyped SNPs between blood and tissue as a function 
of their minor allele frequency (MAF, x-axis). Concordance was calculated for each individual and each filtering category including genotype 
imputation quality (a) with all genotypes shown in light green and high-quality genotypes (INFO > 80) in dark green, and copy number status 
of high-quality genotypes in tissue (b), from SNPs located in a region that was copy neutral (orange), gain (red) or loss (blue). For any given bin 
corresponding to a patient, MAF and filtering category had to have a minimum of 1000 SNPs to be included. Error estimates from 95% confidence 
intervals computed from 1000 bootstrapping iterations are indicated as shaded areas
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We conclude that tissue-derived genome-wide geno-
types faithfully represent germline profiles obtained 
from blood, especially at SNPs frequent in the popula-
tion (MAF ≥ 0.1). Discrepancies between tissue and 
blood can be explained by decreased coverage depth 
caused by technical (insufficient sequencing) or genetic 
(copy number loss) limitations and mainly affecting rare 
SNPs (MAF < 0.01). These lower frequency SNPs are less 
likely to reach statistical significance in GWAS studies 
unless they have extreme effect size and therefore are 
rarely incorporated into PRS models. Taken together, the 
results suggest the feasibility of using archival tissues as a 
source of constitutive DNA in genetic studies relying on 
common SNPs.

Concordance of tissue‑derived PRS
We next sought to further validate the performance of 
tissue-based genome-wide genotyping to accurately 
estimate PRS in individuals. Germline variants can be 
used to estimate disease risk in individuals by summing 
the effects of previously identified risk alleles carried by 

an individual into a personalized PRS. The clinical util-
ity of PRS is currently being evaluated in multiple set-
tings, including breast cancer screening and surveillance, 
where elevated PRS can be included in lifetime risk 
models [28]. The ability to accurately estimate PRS ret-
rospectively, using archival tissue DNA, would greatly 
improve the ability to conduct large retrospective studies 
with long-term outcomes. We investigated multiple PRS 
derived from GWAS of susceptibility to 16 cancer types, 
and 6 non-cancer phenotypes [29–31]. We computed 
a tissue and blood-derived PRS for 10 individuals (see 
“Materials and methods”) using the imputed genotypes 
from lc-WGS sequencing data described above. Overall 
93% (2744 of 2962) of PRS single-nucleotide variant sites 
were successfully imputed, 84% of which were high qual-
ity (Additional file 1: Table S2). In each of the 16 cancer 
types, the tissue-derived PRS closely matched the blood-
derived PRS, evidenced by high correlation coefficients 
(r ≥ 0.9) in 12/16 of the PRS (Fig.  2a). We saw similar 
results when evaluating PRS for non-cancer phenotypes, 
with 4/6 being highly correlated (r ≥ 0.9) (Fig.  2b). 

Fig. 2 Blood versus tissue-derived PRS. a Cancer and b non-cancer PRS computed from imputed genotypes from lc-WGS of blood (x-axis) and 
tissue (y-axis) of the same patient. Spearman correlation coefficient, r, was measured between blood and tissue PRS values across N = 10 patients, 
for each normalized PRS. The q-values represent Bonferroni corrected p-values. T1D Type 1 diabetes, T2D Type 2 diabetes, HDL high-density 
lipoprotein, CVD cardiovascular disease, BMI body mass index, UC ulcerative colitis
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Differences between PRS in blood and tissue were associ-
ated with decreased tumor genome coverage (r = − 0.26, 
p = 0.02), but not with copy number loss (Additional 
file  1: Figure S3). Overall we report that archival tissue 
DNA profiled with lc-WGS resulted in a reliable PRS 
estimate in an individual and preserved relative ranks in 
a cohort enabling studies such as the use case presented 
below.

Contribution of breast polygenic risk scores to DCIS 
prognosis
We next demonstrated the utility of lc-WGS to investi-
gate the contribution of breast cancer PRS to predict 
breast cancer subsequent events (BCSE—in situ or inva-
sive, irrespective of laterality) after a DCIS diagnosis 
using a retrospective study design (Fig.  3a). We assem-
bled a cohort of patients diagnosed with pure DCIS 
(N = 31 cases) who were then diagnosed with a BCSE at 
least 6 months after the DCIS diagnosis. We then com-
plemented this cohort with a set of patients (N = 19 con-
trols) diagnosed with pure DCIS who did not develop a 
BCSE for at least 5 years. A median of 51.2 ng (range 6.6–
300) of DNA was extracted from the primary DCIS FFPE 
specimen archived between 6 and 25  years (Additional 
file  1: Table  S3). The extracted DNA was sequenced to 
an average coverage depth of 0.89× (range 0.2–1.8×) 
(see “Materials and methods”). Fourteen out of 50 (28%) 
samples yielded insufficient coverage (N = 5) or had evi-
dence of contamination with another patient (N = 9) 
and were excluded, leaving 22 cases and 14 controls for 
analysis (Table  1). Both cases and controls were equally 
affected (9/31 vs 5/19, p = 1; Fisher Exact Test). The 
median time to BCSE was 6.2 years (min: 1.4, max: 10.9), 
and patients without BCSE had a median time to follow-
up of 11.7 years (min: 6.7, max: 19.6). Cases and controls 
were approximately matched for age, ancestry, DCIS size, 

grade, and ER status (Additional file  1: Table  S4). We 
then performed imputation as described earlier which 
resulted in high-quality genotypes at a total of 27,605,021 
SNP loci. 

In order to evaluate the relationship between breast 
cancer PRS and DCIS prognosis, we evaluated two 
recent and well established breast cancer PRS, meas-
uring risk for overall breast cancer, consisting of 526 
total and 270 unique sites (see “Materials and meth-
ods”, Additional file 1: Table S2) [22, 32]. We computed 
PRS for each patient, and compared groups with and 
without BCSE (Fig.  3b) (see “Materials and meth-
ods”). Patients with BCSE showed higher PRS val-
ues across both (mean 1.15× fold increase, minimum 
p = 0.05). We next measured the prognostic value of 
PRS in a multivariate Cox proportional hazard model 
to account for other risk factors previously associated 
with DCIS progression such as age, DCIS size, histo-
logical grade, and ancestry. We found that both breast 
cancer PRS had highly similar hazard ratios (mean 
2.07), but found only one to have significant (q < 0.01) 
impact on BCSE risk, with the hazard ratio of 2.07 
(95% CI 1.2–3.6, q = 0.0188), respectively (Fig.  3c, 
Additional file 1: Figure S4). Adding PRS to the model 
slightly improved the discrimination between patients 
with and without BCSE raising the mean C-index 
from 0.60 to 0.63 (Fig.  3d). In contrast, none of the 
six non-cancer PRS contributed significantly to the 
BCSE prognosis, indicating that the effects observed 
are likely specific to the underlying genetic risk spe-
cific to breast cancer (Fig. 3e). Using an extended Cox 
regression model, accounting for different incidence of 
cases and controls (see “Materials and methods”), we 
estimate that 10  years post-DCIS diagnosis, approxi-
mately 28% of patients with the highest decile of breast 
PRS will have a BCSE, as opposed to approximately 
5% of patients with PRS in the lowest decile (Fig. 3f ). 

(See figure on next page.)
Fig. 3 Breast cancer polygenic risk score in DCIS patients with and without a breast cancer subsequent event. a Schematic overview of the study 
design. Treatment consisted of surgery and adjuvant radiation or endocrine therapy. b Comparison of breast cancer PRS score distribution between 
patients with (red) or without (black) a breast cancer subsequent event (BCSE). Dashed vertical lines represent mean normalized PRS values for each 
respective group. A logistic regression was constructed with each PRS and DCIS size, grade, age and ancestry for outcome of 5-year recurrence, the 
resulting Pseudo-R-squared, p-value and Bonferroni corrected q-values are listed for each PRS. Distributions were generated using kernel density 
estimates of histograms. c Forest plot representation of hazard ratios (square) and 95% confidence intervals (error-bars), for each tested breast 
cancer PRS, obtained from a Cox Proportional-Hazard model accounting for DCIS size, grade, and age, the ancestry of the patient (Additional file 1: 
Figure S4). The dotted line represents a log hazard ratio of 1, or having no effect on the outcome. The q-values represent Bonferroni corrected 
p-values for the effective number of tests. Significant hazard ratios (q < 0.05) are indicated in bold text. d Evaluation of discrimination of Cox 
proportional hazard model for BCSE vs no BCSE outcome using Harrel’s C-index (y-axis) for models only using available risk factors versus available 
risk factors and breast cancer PRS, colored by the significance of hazard ratios for breast PRS (q < 0.05, light green). e Same as c but for non-cancer 
PRS. f Cox proportional hazard estimate of breast cancer subsequent event (BCSE)—free survival for two PRS over time in years. Curves are obtained 
by varying PRS (solid colored lines from blue as lowest and red as highest PRS percentile), as compared to each model baseline (dashed line) while 
keeping all other covariates the same. Each case and control was weighted by the epidemiological incidence of BCSE treated with surgery and 
endocrine therapy (15% at 10 years) [24]
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Even with this limited dataset, there is a suggestive 
contribution of pre-established breast cancer PRS in 
DCIS prognosis, though this will require validation in 
a larger independent cohort. Independent of its pos-
sible clinical significance, and acknowledging the need 
for additional validation of the results, the presented 
use case demonstrates the feasibility of using DNA 
from tissues archived for decades to associate germline 

genetic factors with long-term patient outcomes and 
gain new insight into disease etiology and progression.

Imputation of HLA‑gene alleles from lc‑WGS
In addition to SNP genotyping, we next investigated 
whether lc-WGS of archival tissue could be used to 
determine the haplotypes of the various HLA genes. 
HLA genes are some of the most polymorphic genes in 

Fig. 3 (See legend on previous page.)
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the human genome and the major histocompatibility 
complex plays a critical role in antigen presentation to 
the immune system, particularly in tumorigenesis [33–
35]. Using samples collected from 14 patients, including 
10 patients with both blood and tissue DNA available, 
we compared HLA-alleles imputed from genome-wide 
genotypes obtained from lc-WGS against the results 
of clinical-grade deep targeted sequencing of the HLA 
locus from matching blood DNA samples (referred to 
as gold standard—see “Materials and methods”). Alleles 

for Class I (HLA-A, B, C genes) and Class II (DRB1, 
DQB1 genes) were imputed using QUILT-HLA against 
the 1000G reference panel [6]. Overall 4 field allele 
calls from blood DNA were 92.8% (78/84) and 80.4% 
(45/56) concordant with the gold standard for Class I 
and Class II genes respectively (Fig.  4a). At a lower 2 
field resolution, the concordance was 97% for Class I 
and 91% for Class II (Additional file 1: Figure S5). The 
decreased accuracy for HLA Class II, particularly for 
DRB1 likely reflects the increased diversity of these 

Table 1 Clinical characteristics of the DCIS cohort

Patient BCSE? Race Ethnicity Age range 
at diagnosis

Type of surgery Pathologic 
size (cm)

Nuclear grade ER status (0/1) Days to BCSE or 
last followup

OXPA003 Yes White Non-Hispanic 41–50 Lumpectomy 0.8 1 + 2554

OXPA028 Yes White Non-Hispanic 51–60 Mastectomy 0.5 1 + 1012

OXPA033 Yes White Non-Hispanic 71–80 Lumpectomy NA 1 + 1024

OXPA036 Yes White Non-Hispanic 51–60 Lumpectomy NA 1 + 2296

OXPA161 Yes White Non-Hispanic 61–70 Mastectomy 0.4 1 + 3752

OXPA166 Yes White Non-Hispanic 51–60 Lumpectomy 0.7 1 + 7037

OXPA020 Yes White Non-Hispanic 51–60 Lumpectomy NA 1 NA 5967

OXPA021 Yes White Non-Hispanic 41–50 Lumpectomy 0.9 1 NA 2398

OXPA527 Yes White Hispanic 41–50 Lumpectomy 0.7 1 NA 2203

OXPA002 Yes Asian Non-Hispanic 41–50 Lumpectomy 1.4 2 + 2492

OXPA006 Yes White Non-Hispanic 61–70 Lumpectomy 1 2 + 3022

OXPA032 Yes Asian Non-Hispanic 41–50 Lumpectomy 2.5 2 + 502

OXPA044 Yes White Non-Hispanic 51–60 Lumpectomy 0.9 2 + 2147

OXPA064 Yes White Non-Hispanic 71–80 Lumpectomy 0.4 2 + 553

OXPA179 Yes White Hispanic 71–80 Lumpectomy 1.2 2 NA 3077

OXPA147 Yes White Non-Hispanic 61–70 Lumpectomy 1.1 3 + 1981

OXPA185 Yes White Non-Hispanic 41–50 Lumpectomy 0.3 3 + 497

OXPA150 Yes White Non-Hispanic 51–60 Lumpectomy 0.4 NA + 2402

OXPA153 Yes White Non-Hispanic 61–70 Lumpectomy 0.5 NA + 3970

OXPA246 Yes White Non-Hispanic 71–80 Lumpectomy 0.5 NA + 1179

OXPA267 Yes White Non-Hispanic 61–70 Mastectomy NA NA + 3083

OXPA151 Yes White Non-Hispanic 71–80 Lumpectomy NA NA NA 1029

OXPA644 No White Non-Hispanic 51–60 Lumpectomy 1.1 1 - 2456

OXPA347 No White Non-Hispanic 81–90 Lumpectomy 5 1 + 3894

OXPA508 No White Non-Hispanic 51–60 Lumpectomy 0.9 1 + 2570

OXPA172 No White Non-Hispanic 71–80 Lumpectomy 1.8 1 NA 6903

OXPA295 No White Non-Hispanic 51–60 Lumpectomy 1.2 1 NA 4903

OXPA092 No White Non-Hispanic 51–60 Lumpectomy 0.5 2 + 3822

OXPA156 No White Hispanic 41–50 Lumpectomy 0.5 2 + 7170

OXPA392 No White Non-Hispanic 51–60 Lumpectomy 0.6 2 + 3709

OXPA445 No White Non-Hispanic 51–60 Lumpectomy 1.3 2 + 3594

OXPA501 No Asian Non-Hispanic 41–50 Lumpectomy 1.2 2 + 3044

OXPA530 No White Hispanic 61–70 Lumpectomy 1.5 2 + 3167

OXPA540 No Asian Non-Hispanic 41–50 Lumpectomy 1.8 2 + 2941

OXPA182 No White Non-Hispanic 51–60 Lumpectomy 0.5 3 NA 4543

OXPA146 No White Non-Hispanic 41–50 Lumpectomy 1 NA + 7067
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loci in comparison to Class I as well as the presence of 
pseudo-genes which may introduce ambiguity in the 
alignment of short sequence reads [36].

In order to evaluate the effect of DNA source on 
HLA-typing accuracy, we compared tissue-derived 
HLA types to the gold standard. We found 4 field allele 
calls from tissue were 96.7% (58/60) and 82.5% (33/40) 
concordant with the gold standard blood HLA-typing, 
for Class I and Class II respectively (Fig. 4b). In 49/50 
comparisons between blood and tissue, tissue-derived 
samples provided as accurate calls, suggesting that 
the DNA source did not have an impact on imputa-
tion quality (Fig.  4c). Overall, HLA-types that did not 
match the gold standard had worse imputation qual-
ity as reflected by their lower posterior probabilities 
(Fig.  4d). The high accuracy of HLA-typing from lc-
WGS as well as the consistent results between blood 
and tissue-based DNA demonstrates that remarkably, 
imputed HLA-types from lc-WGS on archival tissue are 
comparable against deep targeted HLA sequencing on 

blood, with a fraction of the required DNA input and a 
streamlined protocol.

Discussion
Here we rethink the traditional design of germline 
genetic studies by answering the question, when typical 
DNA sources such as blood, saliva or urine are unavail-
able, can we extract the same information from archi-
val tissue specimens? Often collected for histological 
examination and diagnosis and then stored indefinitely, 
these samples offer an abundant source of genetic mate-
rial from patients with potentially long clinical follow-
up. By using lc-WGS and recent advances in genotype 
imputation, we compared the concordance of germline 
genotypes obtained from blood DNA and archival tissue 
DNA in 10 different individuals. Archival tissue faith-
fully represented the germline profile of common SNPs 
obtained from blood both at the genome-wide level and 
across well-established PRS. Beyond concordance at the 

Fig. 4 Assessment of 4 field HLA-typing accuracy from lc-WGS. a, b Number of concordant HLA alleles (0: white, 1: grey:, 2: black) between 
haplotypes from the clinical gold standard and those imputed using QUILT-HLA for class I (A, B, C) and class II (DQB1 and DRB1) HLA genes (rows) 
using a blood DNA of 14 patients or b tissue DNA of 10 patients (columns). c Fraction of HLA alleles correctly imputed (y-axis), versus the sample 
source of the DNA (x-axis), colored by the HLA gene. d Imputation posterior probability from QUILT-HLA for each HLA gene (color) and sample (dot), 
compared between samples with perfect HLA-gene concordance (both alleles match) versus those with errors
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SNP-level, we also demonstrated accurate genotyping 
at highly polymorphic HLA alleles. To our knowledge, 
we present the first evidence that HLA-typing using lc-
WGS from archival tissue is as accurate as true clinical-
grade HLA-typing. The restriction to lung tissue in the 
comparison may have some limitations. The tissue was 
on average more recent than the one used for the breast 
cancer study and therefore results in higher quality DNA 
and overestimation of the accuracy of the approach. This 
would however not affect the genotypes of a particular 
patient, but rather result in a larger number of non-eval-
uable samples due to overall assay failure. Lung cancer 
may also have increased mutational burden or genomic 
instability resulting in a possible underestimation of the 
accuracy compared to breast DCIS. A more comprehen-
sive collection of various tissue types, grades, age or fixa-
tion conditions would be needed to fully understand the 
impact of histological variables on archival tissue-based 
genotyping. Nevertheless, our results support the future 
utilization of archival tissue to construct large retrospec-
tive studies to characterize the role of germline variants 
in disease etiology, progression, and treatment.

The use of archival tissue as a source of constitutive 
DNA will enable a wealth of retrospective studies by 
repurposing specimens archived by most clinical sites to 
help address the genetic underpinnings of disease with 
long-outcome, such as the progression of pre-malignant 
lesions as presented here. Such studies would either 
require long follow up after the initial sample collection, 
or a massive and costly effort to retrospectively collect 
blood or saliva samples. In contrast, provided the sub-
jects have been offered diagnostic biopsies, or surgical 
treatment, the course of their clinical care or study par-
ticipation, their left-over specimen can be used to enable 
post-hoc genetic analysis. Such studies would require 
approval of the Institutional Review Boards (IRB) and, 
since 2015, informed consent needs to be explicit about 
the use of specimens and data for genetic research and 
the risk for privacy it entails [37]. Commonly, IRBs waive 
the requirement for consent from patients deceased or 
lost to follow-up, however, such data needs to be dis-
tributed with caution and typically protected by a Data 
Access Policies the researcher has to comply with. As 
such, while our approach can enable large retrospective 
genetic studies where informed consent may be waived, 
the eligibility of each patient, and the overall data sharing 
policy need to be carefully considered.

Our report includes the application of the approach 
to interrogate the contribution of genetic factors to 
breast DCIS progression. The relatively good outcome 
of the disease poorly justified a thorough collection of 
risk variables, especially those related to inherited risk. 
However, overtreatment of DCIS, and its harms, is being 

increasingly acknowledged and systematic reviews of 
clinicopathological factors have not resulted in reliable 
models of progression [11, 12, 38]. Most epidemiological 
studies need to be large due to the slow progression and 
rarity of poor outcomes and rely exclusively on medical 
chart review [24, 39, 40]. As such, additional factors that 
are hard or impossible to collect from the charts such as 
mammography or magnetic resonance imaging, digital 
pathology, or germline inherited factors have not been 
as thoroughly and systematically investigated. We made 
the narrow hypothesis that lifetime breast cancer suscep-
tibility—which can be seen as progression from normal 
to malignant epithelium—and progression of DCIS share 
the same genetic risk factors. We tested this hypothesis 
by measuring breast PRS in a small cohort of carefully 
selected DCIS subjects using our approach. Interest-
ingly, the effect size observed (HR = 2) is higher than 
the one observed for other risk factors to DCIS progres-
sion, suggesting PRS could significantly improve previ-
ous risk models [22, 41, 42]. Thanks to the accurate PRS 
estimate obtained from left-over surgical specimens, we 
were able to see that germline variation likely contrib-
uted significantly to the DCIS progression to an extent 
similar or greater to previously investigated risk factors 
such as grade, age, and Her2 overexpression [38]. The 
case–control design of the study is suboptimal and the 
findings would need to be validated in a larger cohort 
of unselected patients, where a more comprehensive set 
of covariates would be accounted for, including treat-
ment. Subsequent larger studies would also be impor-
tant to evaluate competing risk models for subsequent 
in  situ versus invasive disease, or laterality of the event, 
where PRS may contribute more in particular contexts. 
The modest cost and relative experimental simplicity of 
our approach, accompanied by a state-of-the-art impu-
tation strategy can likely be scaled up provided diagnos-
tic sections or left-over specimens can be found. Several 
large DCIS cohorts are generating mutational profiles, 
including some with lc-WGS and associated with clinical 
outcomes, which would be particularly suitable for vali-
dation in the future [17, 43].

In the study of malignant progression as well as the 
onset and progression of multiple other diseases, the 
overactivity or inactivity of the immune system repre-
sents a key factor. A large contribution of variation in 
immune traits is inherited and yet the role of this con-
tribution in disease progression is poorly understood 
[44, 45]. In particular, the genetic diversity of the MHC, 
one of the most polymorphic regions of the genome, is 
a real challenge to study the role of the adaptive immune 
system. In the context of tumorigenesis, the failure of 
the major histocompatibility complex (MHC) to pre-
sent antigens to the immune system is being increasingly 
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recognized as contributing to cancer immune evasion 
and failure to respond to immune checkpoint inhibi-
tors [46–48]. The determination of the HLA haplotypes, 
encoding the MHC is typically limited to the setting of 
organ or bone marrow transplants and not typically 
performed in other epidemiological studies. Recent 
reports however show the importance of the HLA-type 
in understanding the exposed mutanome, and its consid-
eration can have important predictive value in the con-
text of immunotherapies [33, 34, 49]. But with a lack of 
systemic HLA-typing or absence of genetic material to 
do so, such studies are hard to replicate or scale-up. To 
address this, we demonstrated that we can assign 4 field 
alleles to HLA-A, B, C, and DRB1, DQB1 genes by ref-
erence informed imputation of lc-WGS data [6]. These 
imputed HLA-types had comparable accuracy to deep 
targeted sequencing of the HLA locus with a fraction 
of the required DNA input (5 vs 40,000  ng) and with a 
simplified protocol (no need for targeted capture). The 
improvement in both sample requirement and through-
put to HLA-typing supports the evaluation in lc-WGS 
with imputation in replacing current clinical standard 
tests.

While offering many benefits, there are still some limi-
tations to lc-WGS paired with imputation for germline 
profiling of archival tissue. Similar to previous reports 
benchmarking lc-WGS imputation, error increases with 
decreasing minor allele frequency [5, 6]. This would pre-
clude the use of this strategy for the identification of rare 
variants of high penetrance associated with familiar risk 
(BRCA , Lynch, or Li-Fraumeni syndromes). Similarly, 
genotypes from rare risk-associated SNPs or HLA-types 
only found in small populations would be more likely 
missed by this approach. In the future, the availability 
of even larger and more diverse reference populations 
may help mitigate this effect. For the purposes of this 
study we utilized the unrestricted 1000G reference panel 
(N = 3202 haplotypes), however larger extensive, though 
restricted, panels such as Haplotype Reference Consor-
tium (HRC) (N = 64,976) or TopMed (N = 53,831) exist 
[25, 50, 51]. Low coverage depth represents an addi-
tional limitation of our approach. While a restricted 
number of reads sequenced from a WGS library can 
result in decreased imputation accuracy, another source 
of tumor-specific decreased coverage is somatic copy 
number alterations (CNA). We observed that regions 
in a copy number loss resulted in decreased imputation 
accuracy. Similar observations were recently reported in 
a study performing germline imputation from discarded 
reads from targeted-sequencing tumor-derived tissue 
[1]. Here the choice of the tissue source, or the possi-
bility to dissect normal histological regions, can help 

mitigate these effects. Indeed the use of adjacent normal 
tissue, pre-malignant or low-grade lesions or even lym-
phocytic aggregates, or lymph node specimens would 
enrich for diploid cells resulting in fewer inaccurate 
genomic regions. In contrast, imputation in high-grade 
lesions or invasive tumors with prominent aneuploidy 
needs to be carefully considered and may be mitigated 
in the largest dataset where available CNA profiles could 
be used as prior information in the imputation strategy.

Conclusion
In conclusion, our study demonstrates that archival 
tumor tissue is an appropriate DNA source to measure 
germline genetic variation in lieu of normal tissue or 
blood. By shallow sequencing of the genome, and imput-
ing missing sequences using haplotypes from thousands 
of individuals, the resulting genotypes, particularly for 
common SNPs and HLA alleles between blood and archi-
val tissue were quite comparable. Especially in the study 
of slow progressing or rare diseases which may have 
been logistically unrealistic due to a long time to events 
and large sample numbers required, this framework has 
the potential to enable very large retrospective genetic 
studies, driving both basic research and translational 
discoveries.

Materials and methods
Patient selection
For the tissue-blood benchmarking study, a total of 
N = 14 Lung adenocarcinoma cancer patients with avail-
able tumor tissue and matching buffy coat in N = 10 were 
selected from the Moores Cancer Center Tissue and 
Technology Shared Resource (BTTSR).

For the DCIS PRS study, a total of 50 patients were 
originally selected from the UC San Diego ATHENA 
DCIS registry—a retrospective registry approved by the 
UCSD and UCSF IRB. Case patients with BCSE were first 
selected on the basis of time to BCSE, surgery type, care 
location, and availability of archival tissue blocks. Control 
patients were then selected from patients without BCSE, 
with long follow-up time and matching cases for risk fac-
tors including age at DCIS, ancestry, DCIS grade, DCIS 
size, treatment type, ER, and Her2 status when available 
(Table 1).

Sample preparation
Blood DNA was extracted from 50 µL of buffy-coat using 
DNAeasy blood and tissue kit (Qiagen). Tissue blocks 
were sectioned in 5  µm scrolls and 3 to 5 scrolls were 
used to extract DNA with Covaris FFPE truXTRAC FFPE 
tNA kit using M220 Covaris Focused UltraSonicator 
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(Covaris). DNA was quantified using Qubit dsDNA HS 
Assay Kit (Thermo Fisher Scientific).

Low‑coverage whole genome sequencing (lc‑WGS)
Between 5 and 300 ng of DNA was used as input for the 
library preparation using NEB Ultra II FS library prepa-
ration kit (New England Biolabs), which combines enzy-
matic fragmentation with end-repair and A-tailing in 
the same tube. Ligated and purified libraries were ampli-
fied using KAPA HiFi HotStart Real-time PCR 2X Mas-
ter Mix (KAPA Biosystems). Samples were amplified 
with 5 μL of KAPA P5 and KAPA P7 primers. The reac-
tions were denatured for 45  s (sec) at 98  °C and ampli-
fied 13–15 cycles for 15 s at 98 °C, for 30 s at 65 °C, and 
for 30 s at 72 °C, followed by final extension for 1 min at 
72  °C. Samples were amplified until they reached Fluo-
rescent Standard 3, cycles being dependent on input 
DNA quantity and quality. PCR reactions were then puri-
fied using 1× AMPure XP bead clean-up and eluted into 
20 μL of nuclease-free water. The amplified and purified 
libraries were analyzed using the Agilent 4200 Tapesta-
tion (D1000 ScreenTape) and quantified by fluorescence 
(Qubit dsDNA HS assay). Sample libraries with dis-
tinct indices were pooled in equimolar amounts, then 
sequenced to a target coverage of 0.5×, using paired-end 
2 × 100 bp reads on a NovaSeq 6000 (Illumina).

Sequencing read processing and sample quality control
Sequencing libraries were deconvoluted using bcl2fastq 
[52]. Adapter sequences were trimmed from the raw 
fastq files using atropos (v1.1.31) [53]. The trimmed reads 
were then aligned to GRCh38 using bwa-mem (v0.7.17) 
[54]. Duplicate reads were then marked using biobam-
bam (v2.0.87) [55]. Overall genome-wide coverage was 
measured using mosdepth (v0.2.6), and contamination 
was measured using verifyBamID2 (v1.0.6) [56, 57]. For 
the DCIS, samples with less than 0.45× coverage or were 
estimated to be > 5% contaminated were removed from 
downstream analyses.

Imputation of genotypes from lc‑WGS
Genome-wide genotypes were imputed using lc-WGS 
specific method GLIMPSE (v1.1.1) with the hg38 version 
of 1000G 30× NYGC reference panel (N = 3202 indi-
viduals) [5, 25] Phasing and imputation were performed 
directly on BAM files in individual chunks of each chro-
mosome using “GLIMPSE_phase”, and then the imputed 
variants were subsequently ligated together for each 
chromosome using “GLIMPSE_ligate”. We note that short 
insertions and deletions were excluded from any analysis 
as these are currently unreliable from lc-WGS and not 
currently imputed by the strategy implemented [1].

Measuring imputation concordance
Imputation concordance between samples was summa-
rized using squared Pearson correlation values obtained 
from the bcftools “stats” function (v1.9), which captures 
the correlation between allele dosages of variants in each 
minor allele frequency (MAF) bin [58]. Variants across all 
the autosomes were used in genome-wide benchmarking 
performance and all chromosomes for PRS evaluations.

Copy number analysis
Copy number alterations (CNAs) were called using 
CNVkit (v0.9.9) in “wgs” mode, average bin size was 
set at 100,000 bp [59]. A set of unrelated normal tissues 
sequenced with the same protocol were used to generate 
a panel of normals used during CNA calling. Any bins 
with a  log2 copy ratio lower than − 15, were considered 
artifacts and removed. Breakpoints between copy number 
segments were determined using the circular binary seg-
mentation algorithm (p <  10− 4). Copy number genomic 
burden was computed as the sum of sizes of segments in 
a gain  (log2(ratio) > 0.3) or loss  (log2(ratio) < − 0.3) over 
the sum of the sizes of all segments.

Clinical standard HLA genotyping
Reference HLA genotyping was performed on approxi-
mately 40  μg genomic DNA extracted from buffy-coat 
aliquots. Samples were prepared using targeted hybrid-
capture with AlloSeq Tx17 reagents (CareDx). Samples 
were pooled and sequenced in 2 × 150 bp read-length on 
iSeq 100 instruments (Illumina). Sequence data was ana-
lyzed using Assign (v1.0.2) software (CareDx) and IMGT-
HLA reference database (v3.43.0.1) [60].

Measuring PRS
Polygenic risk scores (PRS) were computed using the fol-
lowing equation:

Equation 1. PRS is computed as a function of βi which 
is the per-allele log odds ratio, or beta coefficient for the 
risk SNP allele i, and xi is the dosage of the risk allele i 
{0,1,2}, and n is the total number of SNPs composing the 
PRS. PRS scores were then scaled using z-score transfor-
mation. PRS sites and effect weights were all obtained 
from the Polygenic Score (PGS) Catalog [61]. The catalog 
numbers and descriptions of each PRS are listed in Addi-
tional file 1: Table S2.

(1)PRS =

n∑

i=1

βixi
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Cox proportional hazard model construction for breast PRS
Cox proportional hazard models were constructed non-
parametrically, using Breslow’s method with robust esti-
mates in lifelines survival analysis package in Python [62]. 
As the case–control study design does not reflect true 
DCIS population incidence, we gave each case a weight 
of 1, and each control a weight of 1

p
 , with p being the pro-

portion of controls sampled out of the total needed to 
reflect epidemiological incidence of BCSE treated with 
surgery and endocrine therapy (15% at 10 years) [24, 63, 
64]. A separate model was constructed for each of the six 
evaluated breast PRS, in order to measure the effect on 
risk of BCSE, by PRS, DCIS nuclear grade, age of the 
patient at diagnosis, the size of the lesion, and whether 
the ancestry of the individual was European or not. Each 
covariate was tested for violation of the proportional haz-
ards assumption. The 5 samples missing lesion size, were 
excluded from the model. In the 6 DCIS samples missing 
grade, grade was assigned on the basis of the tertiles of 
copy number burden distribution observed in the cohort 
since grade and copy number burden are highly corre-
lated [14].

Multiple hypothesis correction for non‑independent PRS
In order to perform multiple hypothesis correction on 
multiple non-independent PRS, such as the breast PRS, 
we implemented the Li and Ji method in R package meff 
to estimate for the effective number of tests performed 
[65, 66]. The effective number of tests was then used 
to generate Bonferroni corrected p-values, labeled as 
q-values.
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 Additional file 1: Figure S1. Effect of patient ancestry on lc-WGS 
imputation concordance between blood and tissue. Comparison of 
concordance between blood and tissue-based on ancestry background of 
the patient, with White ancestry in light green and Black or Asian ancestry 
in dark green. Pearson correlation squared  (r2) is for all aggregated SNPs 
within a MAF bin. When available, 95% confidence intervals are shaded 
around the line based on 1000 bootstrap iterations. Figure S2. Effect of 
coverage-related features on lc-WGS imputation concordance between 
blood and tissue. (a, b) Comparison of concordance as measured by 
squared Pearson correlation (y-axis) between blood and tissue as a 
function of MAF (x-axis) based on mean sequencing genome coverage 
depth of blood (a) or tissue (b). Figure S3. Effect of coverage-related 
features on the error in non-cancer PRS calculation. (a, b) PRS error (y-axis), 
as measured by the absolute difference between blood and tissue PRS 
across all non-cancer PRS, as a function of (a) fraction of genome in a copy 
number loss or (b) mean tissue/tumor genome coverage (x-axis). The 95% 
confidence intervals are shaded around the line based on 1000 bootstrap 
iterations. Spearman correlation coefficient, r, and corresponding p-value 
are indicated as text in the upper right. Figure S4. Cox proportional 
hazard models measuring BCSE outcome in DCIS patients for 6 breast 
cancer PRS. Forest plot representation of hazard ratios (square) and 95% 
confidence intervals (error-bars), for each normalized breast cancer PRS 
and covariates for DCIS BCSE risk including DCIS nuclear grade (Grade), 

age of the patient at diagnosis (Age), the size of the DCIS lesion (Size), and 
whether the ancestry of the individual was European (EUR). The dotted 
line represents a hazard ratio of 1, indicating no effect on BCSE risk, > 1 
indicating increased, and < 1 indicating decreased risk. Figure S5. Assess-
ment of 2 field HLA-typing accuracy from lc-WGS. Number of concord-
ant HLA alleles (0: white, 1: grey, 2: black) between haplotypes from the 
clinical gold standard and those imputed using QUILT-HLA for class I (A, 
B, C) and class II (DQB1 and DRB1) HLA genes (rows) using blood DNA of 
14 patients. Table S1. Description of the studied samples. Table S2. PRS 
description. Table S3. DCIS cohort technical characteristic description. 
Table S4. DCIS cohort covariate association with patient outcome.
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