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ABSTRACT OF THE THESIS

Adversarial Strength Estimation Using Simulated Reconnaissance

Data for Urban Combat Operations

by
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Master of Science in Engineering Sciences (Mechanical Engineering)
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Professor William M. McEneaney, Chair

Developing a model of the force distributions of an adversary has become an

urgent need for military personnel, particularly in today’s urban environment. In this

thesis, we present and discuss the estimation of the adversarial strength and location

using UAV-reconnaissance data from a simulated terrain. We will apply a stochastic

model to our estimator and compare our results to our true data. We implement our

model, obtain an error bound for our estimator, present several examples of observation-

based estimator in conjunction with an urban combat simulator, and analyze the effects

that our input parameters have on our resulting estimator.

x



1

Introduction

In today’s combat environment, military analysts and commanders are in great

need of obtaining an accurate assessment of an adversary’s strength and location. This

assessment can be determined based on the data that is collected from various observa-

tions made through unmanned autonomous vehicles (UAV’s) deployed in the field. For

example, we must estimate the force distributions of the adversary in an urban setting.

To do this, we must develop an algorithm that analyzes the observation-based data and

generates an estimator, which can be tabulated and graphically represented by a com-

mand and control simulator. In this thesis, using several mathematical tools, we present

this strength estimator and analyze it, through simulations, with the ground truth itself.

The forces that are driving the need for such an estimate are the observer and

the observed. That is, through UAV observations, we have the ability to collect detailed

data of a complex environment such as an urban terrain. Also, we must consider that

the situation on the ground, due to its complex nature, continues to change. Despite

this gathering capability, we must determine a robust method to reinterpret the data so

that it may become operationationally useful.

During a reconnaissance mission, we will be taking several observations of the

urban environment (e.g. the terrain, buildings, elevation, population, etc.). We must

develop an algorithm to process these observations in a computationally fast manner into

viable data. In this thesis, we will focus on discrete observations based on adversarial

manpower and try to reinterpret that information through our mathematical algorithm.

Like a Kalman filter, this algorithm will seek to objectively provide us with an

estimate called strength distribution. At each time-step, we will have both observation

1
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update and dynamic update, which corresponds to the potential movement of the ad-

versarial forces. In the end, our goal is to generate a robustly accurate assessment of the

adversary’s state from information that tends to be subjective in nature.

1.1 List of Symbols

• L: Set of all nodes on the graph.

• L: Total number of locations on the graph.

• N : Total possible strength for Red units.

• St: Strength distribution of Red units at time t.

• l: Main subset of all nodes of strength distribution, St.

• λ: Subset of nodes that are not part of l.

• [St]l: Estimated Strength at location l at time t.

• Ht: True strength of Red units at time t.

• [Ht]l: True Strength at location l at time t.

• F : Matrix for dynamic flow update of Red units.

• [yt]l: The observed strength at location l at time t.

• I: Total number of iterations ran through Monte Carlo method.

1.2 Region of Interest

In this thesis, we choose a complex region in order to appropriately simulate

the urban environment. In Figure 1.1, we see this complexity based on the description

of the legend and the plot itself. We have approximately 9000 nodes/locations, which

we refer to as waypoints (denoted by the black colored dots). These nodes are connected

by edges. In the graph, we have several Blue and Red fire teams (denoted by asterisks)

composed of multiple units. Each of these teams move can along adjacent location/nodes,

connected by the edges. Some of these waypoints are stacked in this 2-D snapshot (e.g.

the waypoints inside a multi-story building). Besides the waypoints and the Blue and
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Figure 1.1: Region of Interest

Red teams, we have nodes that denote rivers and bridges in our graph. A team can only

cross a river through a bridge. The solid lines between the Red and Blue teams indicate

a line of sight occuring, which we will discuss later.

1.3 Strength Distribution

The state of the system of the urban environment would be the location and

strength of the forces. The system will be composed of two types of forces: Red units

and Blue units. Each unit may represent some firing team, with an associated strength,

in the given terrain.
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In Figure 1.1, we provided a plot of a large urban environment. Due to the

complexity of the region (e.g. several thousand waypoints), we find it was best to im-

plement our model within a subregion of the larger terrain. Due to sufficient number

of waypoints, the presence of buildings, and lack of rivers, the arbitrary subregion we

choose to focus on is the bottom left corner from the figure. Therefore, for the rest of

this thesis, we will focus on the subregion displayed in Figure 1.2.

In Figure 1.2 below, we represent each of four Red teams and each of the four

Blue teams by the different symbols of a circle, square, asterisk, and plus sign. The

strength of the unit can be interpreted as manpower of the unit at a particular location.

Since we are interested in estimating the strength and location of the adversary, we will

primarily focus on the Red units, which represent as the adversary.
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Figure 1.2: Sample Graph of Subregion

For the model that we discuss in this thesis, we will focus within the subregion

and analyze how our estimate compares with our true data. For most of our simulations,

we will observe the behaviors of one Red team represented by circles(s) on the graph
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and determine how well our estimate matches with the truth of that Red team. In our

subregion, we will have approximately L = 500 locations/nodes in which the Red team

will move across on the graph. We will observe two cases: the deterministic and the

stochastic cases.

For the strength distribution, we define the estimated strength St as a two-

column nodal set. At each time-step t, the first column represents the nodal location and

the second column represents the nodal strength of the adversary for the corresponding

location.

1.4 Observation Update

We may have multiple observations occurring at a given time-step t. We repre-

sent these observations as an order pair (l, y) where l denotes the location of observation

in L and y is the observed strength at node l. They are both integers where l ∈ L and

y ∈ Z+, since we only observe discrete units.

We motivate our estimator form construction with standard Bayesian propa-

gation. Suppose that prior to the observation, the probability that a Red unit is at l is

denoted by Pl. Also, suppose that one observes the unit at node z. Let P (z|λ) denoted

the probability that one observes unit at z given that it is at node λ. By applying

Bayesian propagation, the a posteriori probability distribution [1, 2, 3] is

P̂l =
P (z|l)

P (z|l)Pl +
∑

λ6=l P (z|λ)Pλ
Pl,

and also, for λ 6= l,

P̂λ =
P (z|λ)

P (z|l)Pl +
∑

λ6=l P (z|λ)Pλ
Pλ.

We use the above Bayesian propagation to derive the following form of our

strength update. Given a priori (pre-observation) strength St, the a posteriori (post-

observation) strength, Ŝt, is determine by the following equation [1, 2, 3]:

[Ŝt]l =
1 + δ

1 + δ[St]l
N

[St]l (1.1)

[Ŝt]λ =
1

1 + δ[St]l
N

[St]λ ∀λ 6= l, (1.2)

where δ = δ(y, [St]l).
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We define δ so that we obtain an estimate, [St]l, that converges to our obser-

vation, y. We therefore choose δ = δ(y, [St]l) to be

δ(y, s) = k

[
y − s

s

]
, (1.3)

where k ∈ (0, 1). Our selection of k will depend on level of confidence in our observation,

y.

When we apply an observation update to a given location, we state that the

total strength within our strength distribution is conserved. We show this in Proposition

1.4.1[1, 2, 3]:

Proposition 1.4.1 Suppose
∑

l∈L[St]l = N . Then,
∑

l∈L[Ŝt]l = N .

Proof. Noting that
∑

λ6=l[St]λ = N − [St]l, one has∑
k∈L

[Ŝt]k =
∑

λ∈L\{l}

[Ŝt]λ + [Ŝt]l

=
N − [St]l
1 + δ[St]l

N

+
1 + δ

1 + δ[St]l
N

[St]l = N.

Through our selection of δ, we redefine the observation update by the following

equations:

[Ŝt]l = G(y, [St]l) (1.4)

[Ŝt]λ = F (y, [St]l)[St]λ (1.5)

where

G(y, s) =
1 + k

(y−s
s

)
1 + k

(y−s
N

)s =
s + ky − ks

1 + ky−ks
N

(1.6)

F (y, s) =
1

1 + k
(y−s

N

) . (1.7)

In our simulations, we model the observations of the Red units through different

means. This depends on whether we want measurements using deterministic data or

random observations. The deterministic data is based on terrain constraints: whether

there is line-of-sight (LOS) between the Red unit location and the given location of the

Blue units. We must also consider that we may have noise in our observations.

On the other hand, we can generate observations randomly. We use the param-

eter, pl, which is the probability of observing a unit at l.
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1.5 Dynamics Update: Strength Flow

We assume that the dynamics in the system are represented by the movement

of the Red units. The movement itself would have possible observed and unobserved

inputs at each time-step. We model the movement dynamics as a Markov Model. For

instance, a set of Red units with estimated strength distribution [1, 2, 3, 4] of St at time

t would have a distribution at the next time-step given by

St+1 = FT St, (1.8)

where F is L× L transition matrix of the Red units. In our application, we will model

this motion through two means: deterministic and stochastic motion.

For the deterministic motion, we assume that there is natural definite flow of

Red units on the nodal graph, where each of the adjacent nodes is still connected by

edges. The units will flow on the graph based on data that is provided to us with regards

to the terrain (e.g. Red units move on shortest path).

For stochastic motion, we model the motion of the Red units differently. In-

stead, we are focused on the probable location of the Red units. The Red units will

flow by equation 1.8, but the graph for stochastic motion will present the probable lo-

cation and strength of our estimate. Given that the diagonal entries of our flow matrix,

0 < Fi,i < 1, we know that our resulting estimate at each time-step is due to a Markovian

motion.

1.6 Thesis Content, Objectives, and Analysis

The primary purpose for this document is to present the application of the

strength estimator through simulations that use the proposed estimator form. Through

these means, we are able to verify whether these tools hold true or not. We will imple-

ment the concepts discussed in this introduction in Command and Control simulator to

understand how they work. If our estimator reflects the ground truth, then we know

they work as predicted.

In our main content, we will apply the stochastic tools by conducting several

simulations and compare our obtained strength estimator with the ground truth data.

This data depends upon the knowledge we have of the Red units. That includes the

location of the units, their movements, and their strength. Ultimately, the implementa-
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tion of these tools will determine how well our estimate will be, compared to the ground

truth itself.

Finally, once we have completed our simulations, we will analyze and discuss

how well our estimator, St, compares with the ground truth. In this thesis, we will

primarily analyze the case where we have stochastic motion of the Red units. That

is, we have imperfect knowledge of the true movement of the Red units and, instead,

only have an idea of the probable locations of movement. We analyze the relationship

between our input parameters and our resultant estimator by computing of the error and

standard deviation between our estimator and the true strength at each input parameter

in our model.



2

Application of Estimator Using

Offline Data

We now provide details on the implementation on the proposed estimator via

a simulation example. We determine how well our estimator will match up with prere-

corded offline data gathered from a ground UAV for a given terrain. In this chapter, we

will discuss the implementation of the flow dynamic update and the observation update

using offline ground truth data of the terrain itself. From this data, we will produce an

estimated strength distribution of the adversary at each time-step.

2.1 Simulation Example: Flow and Observation Update

Using Offline Data

In the following simulation, we use the offline data to produce an estimator

of the ground truth. We assume that we do not have aerial UAV capability and must

rely on Blue teams on the ground to conduct reconnaissance. For one of the data that

we apply, we use the actual ground truth movement of the Red and Blue teams in our

ground truth. These teams move along the shortest path in the given terrain that is

predetermined using the data provided. In our simulation, we denote the paths of the

Red and Blue teams with lines that correspond to there color. We choose to have five

Red teams and five Blue teams that start at arbitrary locations within our graph so

that we may encounter frequent observations of the Red units. These observations of

the Red teams by the Blue teams occur when we have a line of sight (LOS) between

9



10

two waypoints. We predetermined this line of sight from the data provided to us. Since,

realistically, we do not always have perfect observation of the adversary, our observation

measurements can vary and do not necessarily have to match the truth. In this example,

our measurements are denoted by a natural number y such that 0 ≤ y ≤ 6 and we

choose k = 0.95. Using these measurements, we update our strength estimator using the

observation update discussed in the introduction. Thus, as one will see, for example, on

the left plot in Figure 2.1, the Red and Blue teams will move within the graph with the

Blue team taking an observation of the Red team when appropriate.
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Figure 2.1: Movement and Obserevation Snapshot, Time-Step 1

In our figures, we denote each of the Red and Blue teams with a unique symbol

(i.e., asterisk, circle, diamond, square, and plus sign). For our strength estimator, we

choose to focus on 50 arbitrary locations out of the 500 locations for our l subset. The

rest will make up the λ subset. We will set the the total strength of all the Red teams

combined to be N = 15. Whenever we have a LOS between Blue and Red teams, we

denote in our graph with a solid black line between the Red and Blue teams.

However, we may also have errors in our observation. As a result, the Blue team
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may not see the Red team even though we have a LOS. We denote this “missed”observation

as shown in Figure 2.1 by a dash-dotted black line displayed between the Red and Blue

teams. We may encounter this instance whenever we compare a random variable with a

tolerance in the algorithm for our simulation. We compute this tolerance by measuring

the distance between the two teams. We divide this distance with the maximum possible

distance in graph itself.

Besides an algorithm to produce the ground truth in our simulation, we also ap-

ply flow dynamic update and the observation update to produce the estimated strength

distribution in our simulation. In our ground truth graph, whether we have an obser-

vation or not, we still run a flow dynamic update in our simulation. In this simulation,

we take the main diagonal of our transition matrix, F , to be Fi,i = η = 0.5, which

means that half of the strength mass at a particular location in our strength estima-

tor will stay at the current location while the other half will redistribute equally to all

nearby connected locations. Taking the observation data from our graph, we compute

an observation update in our algorithm corresponding to the location of observation,

thus updating our estimated strength distribution. For each time-step, we represent this

distribution in our simulation with the two right-half plots in Figure 2.1. We show the

a priori and a posteriori observations in the two plots.

In the two right-half plots, we denote the strength distribution by the various

sizes of the black circles on the graph. We make an initial conjecture of where our

strength distribution, St, will be concentrated as shown by the top right plot in the

figure. Since we have five Red teams and the total strength is N = 15, we will initially

surmise that each of the teams has a true strength of 3. Our distribution will change

at each time-step based on the changes in our ground truth as well as our flow and

observation update. Whenever we have a LOS between the Blue and Red teams, we

have an observation in the strength distribution plots. We denote the observation by

either a magenta or red circle. Whenever we obtain an observation within the l subset,

we denote that by the red circle. If the observation occurs outside the set, we denote it

by the magenta circle.

2.1.1 Continuation of the Simulation from Previous Section

In the ground truth plot in Figure 2.1, we would generally have an observation

based on the LOS between a Red and Blue teams. However, according to the dashed-
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dotted line, we have an observation error occurring between the two opposing teams. As

a result, we have no observation update at the very first time-step, and, therefore, our

a priori and a posteriori observation plots remain the same. The only update that we

consistently have at each time-step is the dynamic flow update, which we see occurring

in the two right-half plots. We notice that in addition to our initial “guess”(large black

circles in the plot), we also have smaller circles that were distributed from the large

circles through the dynamic flow update in our algorithm.
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Est. Observ. Strngth − 3.0361
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Line of Sight
Red Path
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Figure 2.2: Movement and Observation Snapshot, Time-Step 3

As we increase the time-steps in our simulation, we see both the Red and Blue

teams moving along their shortest path in the ground truth plot. We have our first

LOS in Figure 2.2 between a Blue and Red team. As a result of that LOS, we have an

observation that occurs outside the l subset. This “new”location will become part of the

l subset, while one of the locations with negligible strength is disregarded. The large

magenta circle indicates that, at that location (Sl = 3.0361), we have an overestimated

measurement observation. That is, our measurement y was greater than our initial

conjecture of each of the Red teams. We note that our estimate is Sl = 3.0361 and not
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Sl = 3. We clearly have an imperfect observation on the ground truth. As a result, our

observation update is computationally designed so that our estimate, Sl, converges to y

and not necessarily Sl = y.

In addition, the other circles in our distribution have reduced in size. Since the

strength mass is conserved, the total strength in our distribution will not change (N =

15). This means that some of the the mass from our initial conjecture is redistributed

to our newly observed location.
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Figure 2.3: Movement and Observation Snapshot, Time-Step 5

In our final time-step, we have an observation occurring inside the l subset as

indicated by the red circle in the a posteriori plot in Figure 2.3. Also, if we note the

size of the red circle, we see that the estimated observed strength is relatively small

(Sl = 0.92179) compared to the observation that we had during our previous time-step.

This indicates that our measurement y was underestimated from our initial conjecture.

Also, if we look at the previous observation, we notice that it has reduced greatly from

its original size (Sl = 0.94102). This is the direct consequence of our flow update and

observation update, where much of that strength mass has been redistributed throughout

the graph.
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Generally, in this simulation, we continue to update our strength distribution

whenever we have an observation update. This means that the more observations that

we have of the Red units at each time-step, the more accurate our estimator will be.

The location of the Red teams continue to change in our graph, and they are not mov-

ing through stochastic motion but along a fixed shortest path. Since our observation

measurements depend upon fixed LOS data between the Blue and Red teams on the

ground and the movement of the Red teams is fixed, our estimate may not accurately

reflect the state of the adversary. In this case, this simulation suggests that modeling

the truth itself using the stochastic tools presented can have limited effectiveness. That

is, the appropriate use of the tools would depend upon the initial knowledge we have of

the Red units and knowledge that we gain at each incremental time-step.



3

Deterministic Movement

We look at the deterministic movement in order to develop an better idea in

regards how effective our methods will be assuming that we have perfect knowledge of

the terrain itself and the troop’s actual movements. In the deterministic movement, we

maintain a fixed nominal path for which the Red units move on the given terrain. We,

from there, compare this ground truth to the estimator itself. Suppose that the Red

units were to diverge from the nominal path. We therefore must update our estimator

to take this into account. This is where the observation update allows us to improve our

estimate.

3.1 Movement Dynamics

For deterministic movement, we assume that there is a natural flow of Red

units on the graph composed of a set of nodes, L, called waypoints, which are connected

through edges. These edges are represented by an L×L symmetric matrix, F where Fi,j

is one if nodes i and j are adjacent or zero otherwise. In the deterministic movement,

the flow matrix may have each row with a single entry of one and the remaining entries

being zero. For example, for each l ∈ L, we have k ∈ L such that Fl,k = 1 and Fl,λ = 0

for all λ 6= k. This matrix construction helps define where Red units nominally move

from node l to node k. Therefore, given the true strength distribution Ht at time t, the

true strength distribution at the next time-step is given by

Ht+1 = FT Ht. (3.1)

Suppose now the Red commander inputs a control signal changing the move-

15
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ment of the Red units. We will represent this control input by an L × L symmetric

matrix, Ut, which modifies the nominal movement given by F . The modification of, say

node l ∈ L, occurs through the elements of the lth row of Ut. If there is no control input

at node l at time t, then the lth row of Ut will compose of entirely of zeros.

For example, suppose the Red commander inputs a signal to change the Red

units movement from node l. The flow matrix, F , remains unchanged. The nominal

movement from node l to k, as stated in the beginning paragraph, is represented by the

entry, Fl,k = 1. One of the entries for the control matrix, Ut, will be [Ut]l,k = −1, where

k is the same index referring to the destination node k in the flow matrix, F . We denote

the revised destination node as κ. Therefore, the other significant entry is [Ut]l,κ = 1.

All of the remaining entries of the lth row of Ut will be zeros. To clarify this, we provide

a matrix example of our flow and commander input matrices:

F =



0 1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 1

. . . . . . . . . . .

0 0 1 . . . 0


, Ut =



0 −1 0 . . . 1

0 0 0 . . . 0

0 0 0 . . . 0

. . . . . . . . . . . . . .

1 0 −1 . . . 0


(3.2)

F + Ut =



0 0 0 . . . 1

1 0 0 . . . 0

0 0 0 . . . 1

. . . . . . . . . . .

1 0 0 . . . 0


. (3.3)

If we compare our example nominal flow matrix, F , with Matrix 3.3, [F + Ut], we see

that have at least two commander inputs from the first and Lth row of the matrix. Thus,

the true strength distribution [3] with the commander input is given by

Ht+1 = [F + Ut]T Ht (3.4)

If there are no commander inputs in our deterministic model, we simply take

Ut ≡ 0. Also, the dynamic flow update remains unchanged for the estimated strength.

That is, the strength distribution is given by

St+1 = FT St. (3.5)

Notice that if there is a commander input, the estimated strength still flows nominally.
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In addition to the dynamic flow update for the estimated strength, we also

include observation update for the estimated strength that occurs based on observation

measurements taken from the true strength. We take these observations randomly using

the observation update defined in the introduction and we assume that our observations

are imperfect. For each subset l ∈ L and λ ∈ L \ {l}, the observations in our simulations

are respectively given by the equations:

Ŝl =
Sl + ky − kSl

1 + ky−kSl
N

(3.6)

Ŝλ =
1

1 + k
(

y−Sl
N

)Sλ. (3.7)

3.1.1 Input to Output Error Bounds

To further understand the extent our strength estimator converges or diverges

from the ground truth as a result of the commander input, we will examine the error

bounds for the flow dynamics. We will apply Theorem 3.1.3 to see this. Since we compare

our estimator, S, to our ground truth, H, we must choose a bounds that reflects this. We

therefore bound the L1 norm (also called Least Absolute Deviations) of the estimator

error as a function of L1 norm of the deterministic components of the system. Also, for

an L×L matrix, M , we apply |M | to denote the induced norm on the matrix as a linear

operator. That is, |M | = sup|s|≤1 |Ms|.

Remark 3.1.1 [3] It is well-known that the induced norm of the transpose of a stochas-

tic matrix (i.e., a square matrix satisfying (4.1)) is one. To see this, note that

|MT s| =
L∑

λ=1

∣∣[MT s]λ
∣∣ =

L∑
λ=1

[
L∑

l=1

Ml,λ|sl|

]

=
L∑

l=1

[
L∑

λ=1

Ml,λ

]
|sl| =

L∑
l=1

|sl| = |s|.

Lemma 3.1.2

|St+1 −Ht+1| ≤ |St −Ht|+ |Ut||Ht| ≤ |St −Ht|+ N |Ut|. (3.8)

As one may recall from above, we define the dynamics of the deterministic case

for the true strength as

Ht+1 = [F + Ut]T Ht, (3.9)
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while the dynamics for the estimated strength is

St+1 = FT St. (3.10)

Proof. From (3.9) and (3.10),

|St+1 −Ht+1| =
∣∣FT St −

(
FT + UT

t

)
Ht

∣∣
≤

∣∣FT (St −Ht)
∣∣ +

∣∣UT
t Ht

∣∣
≤ |St −Ht|+ |UT

t | |Ht| .

Theorem 3.1.3 [3] Let the true strength dynamics update be given by (3.9) in the de-

terministic case. Let the strength estimator update be given by (3.10). Then, in the

deterministic, we have

|St −Ht| ≤ |S0 −H0|+ N
t−1∑
r=0

|UT
r |

for all t ≥ 0, respectively.

Proof. The proof is immediate by Lemma 3.1.2 and an induction argument.

3.2 Simulation Example: True Strength versus Estimated

Strength

For simplicity of exposition, we choose to have only one Red team on a graph

of approximately 500 locations/waypoints. We run the simulation for five time-steps in

order to compare the long term differences between the strength estimator and the true

strength. In our simulation, we focus on a small region from a larger area of interest.

The color coding in the larger area depicts the terrain type of the location, i.e., water

bodies, building corners, etc. The Red team starts at the same location at the beginning

of the simulation regardless of whether we have a commander input. We designate the

Red team with a true strength of Hl = 3. In our simulation figures for the true strength

plot, we display the actual position (the red circle) of the Red team, which includes the

commander input, as well as nominal position (the green diamond) of the Red team. In

addition, we trace the path of the Red teams actual path and nominal path using their

corresponding color.
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For the simulation of the estimated strength, we represent the Red team as

black circle(s) that move nominally. We have a random observation that occurs in our

simulation such that our observation parameter is pl = 0.5. Whenever an observation oc-

curs, the black circle(s) break off into smaller circles where the magenta circle represents

the location of the observation that corresponded to the actual Red team position. We

choose k = 0.95 in the observation update. For each time we run the simulation, the final

distribution of the true strength, Ht, remains unchanged, while the final distribution for

the estimated strength, St, can vary.

In addition, we compute the error bound given by Theorem 3.1.3 at each time

step. We compare the left side and the right side of the inequality.

3.3 Simulation Results
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Figure 3.1: Deterministic Movement, Initial Time-Step

In Figure 3.1 on the right-half side, we have the Red team’s actual position

starting at the same place as the nominal position. We also note that for each time-step,

the Red team does not remain idle at the same place. That is, mathematically, the

flow matrix for the deterministic case, F , has its main diagonal entries, Fi,i = 0. The

strength estimator on the left side also starts at the same nominal location as on the

right side. Notice that the color of the circle is magenta, indicating that Red team is

observed at that starting location.
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Figure 3.2: Deterministic Movement, Time-Step 3

In Figure 3.2, we see on the right-half plot that the actual location diverges from

the nominal location. This clearly indicates that the Red team received a command input

to move to a different location. As a result of this divergence, the original larger circle

in our estimated strength plot (left-half plot) breaks off into two smaller circles: one

representing where the observation occurred (magenta), the other continuing to move

along the nominal path (black).
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Figure 3.3: Deterministic Movement, Final Time-Step
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At the final time-step, the Red team receives another commander input, thus

diverging from the nominal location. For the estimated strength plot (left side), however,

since we do not have an observation taken of the Red team, the final movement for the

estimator is nominal.

3.3.1 Analysis: Dynamics Effects

Table 3.1: Dynamic Error Bounds

Time-steps Left Side Right Side
1 0 0
2 0 0
3 3.6735 6
4 3.0769 12
5 6.0000 18

We computed and tabulated the error bounds (See Table 3.1) from our simu-

lated data to verify if they were consistent with Theorem 3.1.3. We bound the estimation

errors by a function of the L1 norm. We do not see any changes to our error bounds until

the third time step. Recall we had a commander input at that step, therefore leading

our Red troops away from the nominal path. Since we do not have perfect observation of

the Red troops, we have a bound that is greater than zero. The larger the left side is, the

larger the measurement of our error will be. The right side indicates how frequently we

had a commander input. As the right side increases at each time-step, then by Theorem

3.1.3, we see an increase in commander inputs. In Table 3.1, we had three commander

inputs total in our simulation.
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Stochastic Flow

We need to use a robust model that provides us with the best assessment of

the adversarial location and strength. Since we may never have perfect knowledge of the

terrain, the movement of the Red units, and the conditions on the ground, we therefore

must consider a stochastic model as our estimator. The stochastic model provides us with

an estimate, St, composed of the most probable location and strength of an adversary.

We update this estimate through various stochastic concepts such as Markov chains,

Bayes’ rule, and normal distributions.

4.1 Movement Dynamics

For the stochastic movement, we model the motion of Red units in the form of

a Markov chain. Like deterministic motion, we still have a graph composed of nodes (or

waypoints) that are connected by edges. These edges are still represented by an L × L

symmetric matrix, F . However, in stochastic motion, each row will have entries that

are less than one or equal to zero. For example, for each node l ∈ L, we have connected

nodes k ∈ L such that ηnom = Fl,l = 0.9, Fl,k corresponds to the connected nodes where

the remaining mass is evenly distributed, and Fl,λ = 0 for all λ 6= k. Like a true Markov

property, the sum of each row will equal one. More specifically, we state that the flow

matrix, F , has the property [3, 4] such that

Fi,j ∈ [0, 1] ∀ i, j ∈ L, and
∑
j∈L

Fi,j = 1 ∀ i ∈ L. (4.1)

We are essentially defining the nominal movement through this matrix con-

struction where we try to determine the most probable movement of the Red units. By

22
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defining the flow matrix in this manner, the expected true strength distribution of the

Red units for each time-step is given by

E[Ht+1] = FTE[Ht]. (4.2)

Suppose now the Red commander inputs the control signal to change the prob-

able flow of the Red units. Like the deterministic case, we will still represent this control

input by an L × L symmetric matrix, Ut, which modifies the nominal flow given by F .

This modification of, say node l ∈ L, occurs through the elements of the lth row of Ut.

The modification does not, however, change the basic Markov property of the overall

flow matrix. That is, we set the constraint for Ut to be

[F ]i,j + [Ut]i,j ∈ [0, 1] ∀ i, j ∈ L∑
j∈L

[F ]i,j + [Ut]i,j = 1 ∀ i ∈ L.

As before, if there is no control input at node l at time t, then the lth row of Ut will

compose of entirely of zeros.

For example, suppose the Red commander inputs a signal to change the Red

units flow from node l. The flow transition matrix, F , remains unchanged. The nominal

flow from node l to k, as stated in the beginning, is represented by the entries, ηnom =

Fl,l = 0.9 and Fl,k represents the nearby connected nodes where the remaining strength

mass distributes. Now suppose we wish to modify the flow at node l so that the actual

flow is given by ηcom = 0.4. Therefore, the diagonal entry for the control matrix, Ut,

will be the difference between 0.4 and Fl,l = 0.9, [Ut]l,l = −0.5. The entries,[Ut]l,k, are

determined through similar means. All of the remaining entries of the lth row of Ut will

be zeros. Thus, the expected true strength distribution with the commander input [3] is

given by

E[Ht+1] = [F + Ut]TE[Ht]. (4.3)

If there are no commander inputs in our stochastic model, we simply take

Ut ≡ 0. Also, the dynamic flow update remains unchanged for the estimated strength.

That is, the strength distribution is given by

St+1 = FT St. (4.4)

Therefore, we still have nominal flow for stochastic motion.



24

Also, once a flow dynamic update takes place for the estimated strength, we

leave the probability that an observation update takes place at a particular time-step.

Now, assuming that we have noise in our stochastic model, we take observations randomly

using the same observation update:

Ŝl =
Sl + ky − kSl

1 + ky−kSl
N

(4.5)

Ŝλ =
1

1 + k
(

y−Sl
N

)Sλ. (4.6)

4.2 Input to Output Error Bounds

4.2.1 Dynamics Only

We bound L1 norm of the estimator error as a function of L1 norm (also know

as Least Absolute Deviations) of the deterministic components of the system. Like the

deterministic case, we choose the L1 norm because we want to compare our estimator,

St, to our expected ground truth, E[Ht].

Lemma 4.2.1 [3]

|St+1 −E[Ht+1]| ≤ |St −E[Ht]|+ |Ut||E[Ht]| ≤ |St −E[Ht]|+ N |Ut|. (4.7)

As one may recall from Chapter 1, we define the dynamics of the stochastic

case for the true strength as

E[Ht+1] = [F + Ut]TE[Ht], (4.8)

while the dynamics for the estimated strength is

St+1 = FT St. (4.9)

Proof. From (4.8) and (4.9),

|St+1 −E[Ht+1]| =
∣∣FT St −

(
FT + UT

t

)
E[Ht]

∣∣
≤

∣∣FT (St −E[Ht])
∣∣ +

∣∣UT
t E[Ht]

∣∣
≤ |St −E[Ht]|+ |UT

t | |E[Ht]| .
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Theorem 4.2.2 [3] Let the true strength dynamics update be given by (4.8) in the

stochastic case. Let the strength estimator update be given by (4.9). Then, in the stochas-

tic, we have

|St −E[Ht]| ≤ |S0 −E[H0]|+ N
t−1∑
r=0

|UT
r |

for all t ≥ 0, respectively.

Proof. The proof can easily be shown by Lemma 3.1.2 and an induction argument.

4.2.2 Dynamics with Observation Disturbance Effects

We, in addition, have error bounds for the observation. We obtain the a pos-

teriori estimated strength error, given the a priori error. We will consider two separate

cases for this error bound: [Ht]l ≥ [St]l and [Ht]l < [St]l. We will show the former case

first.

For the simplicity of notation, we will drop the subscript t. We denote Sl to be

[St]l, Ŝl to be [Ŝt]l, and Hl to be [Ht]l. First, we note that

Ŝl =
Sl + k(y − Sl)

1 + k (y−Sl)
N

. (4.10)

Solving for y, we obtain

y
.= y(Ŝl, Sl)

.=
Ŝl − S + kS(1− Ŝl/N)

k(1− Ŝl/N)
. (4.11)

By differentiating with respect to Ŝl, one finds that

∂y

∂Ŝl

=
N(N − Sl)

k(N − Ŝl)2
> 0. (4.12)

We find that y monotonically increases as a function of Ŝl. Therefore, for the following

lemma, we define yu = y(Hl, Sl). As a reminder, we define G(y, Sl) and F (y, Sl) as the

following:

G(y, Sl) =
Sl + ky − kSl

1 + ky−kSl
N

(4.13)

F (y, Sl) =
1

1 + k
(

y−Sl
N

) . (4.14)
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Lemma 4.2.3 [3] Suppose [Ht]l ≥ [St]l. One has

∣∣∣H − Ŝ
∣∣∣ ≤


|H − S| − Hl−Sl

N−Sl
|Hl − Sl|+ 2 [G(y, Sl)−Hl] if y > yu,

|H − S| − (1− F (y, Sl))|Hl − Sl| if yu ≥ y ≥ Sl,

|H − S|+ 2k|y −Hl| if Sl > y.

In particular, when y = Hl, |H − Ŝ| ≤ |H − S| − (1− F (y, Sl))|Hl − Sl|.

Proof. Beginning with the middle case, y ∈ [Sl, y
u], we note that the a posteriori

strength at node l satisfies Ŝl ∈ [Sl,Hl], i.e., where the observation noise is not as bad

that the revised estimate could be worse than the a priori.

∆l = Ŝl − Sl = G(y, Sl)− Sl =
k(N − Sl)(y − Sl)

N + k(y − Sl)
. (4.15)

Due to the conservation of mass, the mass ∆l > 0 must be removed from the

other nodes via Ŝλ = F (y, Sl)Sλ. In other words, these nodes will lose mass, that is

Ŝλ < Sλ. The remaining nodes, L \ {l} = C1 ∪ C2 ∪ C3, where C1, C2, C3 are disjoint, and

given by

C1 = {λ ∈ L \ {l}|Ŝλ < Sλ < Hλ},

C2 = {λ ∈ L \ {l}|Hλ ≤ Ŝλ < Sλ},

C3 = {λ ∈ L \ {l}|Ŝλ < Hλ ≤ Sλ}.

In the C1 case,

|Hλ − Ŝλ| = Hλ − Ŝλ = Hλ − Sλ + Sλ − Ŝλ

= (Hλ − Sλ) + (Sλ − Ŝλ)

= |Hλ − Sλ|+ Sλ(1− F (y, Sl)). (4.16)

In the C2 case,

|Hλ − Ŝλ| = Ŝλ −Hλ = Sλ −Hλ + Ŝλ − Sλ

= |Hλ − Sλ| − (Sλ − Ŝλ)

= |Hλ − Sλ| − Sλ(1− F (y, Sl)). (4.17)

In the C3 case,

|Hλ − Ŝλ| = Hλ − Ŝλ = Hλ − Sλ + Sλ − Ŝλ

= (Sλ − Ŝλ)− (Sλ −Hλ)

= Sλ(1− F (y, Sl))− (Sλ −Hλ). (4.18)
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Lastly, we note that

|Hl − Ŝl| = Hl − Ŝl

= Hl − Ŝl − Sl + Sl

= Hl − Sl + (Sl − Ŝl)

= |Hl − Sl| −∆l. (4.19)

Combining (4.16)–(4.19), one obtains,

|H − Ŝ| =
∑
λ∈L

|Hλ − Ŝλ| =
∑

λ∈L\C3

|Hλ − Sλ| −∆l +
∑

λ∈C1∪C3

(Sλ − Ŝλ)

−

∑
λ∈C2

Sλ(1− F (y, Sl)) +
∑
λ∈C3

(Sλ −Hλ)

 .

By conservation of strength mass and by noting that (Sλ − Ŝλ) > 0,∀λ ∈ C2, we have∑
λ∈C1∪C3

(Ŝλ − Sλ) +
∑
λ∈C2

(Ŝλ − Sλ)−∆l = 0. (4.20)

∑
λ∈C1∪C3

(Ŝλ − Sλ)−∆l ≤ 0. (4.21)

Clearly, the inequality (4.21) holds true if one removes the middle term in equation

(4.20). Therefore, combining (4.20) and (4.21), one has

|H − Ŝ| ≤
∑

λ∈L\C3

|Hλ − Sλ| −

∑
λ∈C2

Sλ(1− F (y, Sl)) +
∑
λ∈C3

(Sλ −Hλ)


|H − Ŝ| ≤ |H − S| −

∑
λ∈C2

Sλ(1− F (y, Sl)) +
∑
λ∈C3

(Sλ −Hλ)

 . (4.22)

From there, we use the statement that∑
λ∈C3

(Sλ −Hλ) ≥ (1− F (y, Sl))
∑
λ∈C3

(Sλ −Hλ). (4.23)

In addition, we assume that ∑
λ∈C2

Sλ ≥
∑
λ∈C2

(Sλ −Hλ). (4.24)

By substituting (4.23) and (4.24) into (4.22), one obtains

|H − Ŝ| ≤ |H − S| −
∑
λ∈C2

(1− F (y, Sl))(Sλ −Hλ)

−
∑
λ∈C3

(1− F (y, Sl))(Sλ −Hλ).
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≤ |H − S| −
∑

λ∈C2∪C3

(1− F (y, Sl))(Sλ −Hλ). (4.25)

Also, since
∑

λ∈L(Sλ −Hλ) = 0, one has∑
λ∈C2∪C3

(Sλ −Hλ) = (Hl − Sl) +
∑
λ∈C1

(Hλ − Sλ) ≥ Hl − Sl. (4.26)

Thus, by substituting (4.26) into (4.25), one has

|H − Ŝ| ≤ |H − S| − (1− F (y, Sl))|Hl − Sl|, (4.27)

which is the second case of the Lemma. Next, we look at the first case of the Lemma

4.2.3. This is the case where the a posteriori estimate, Ŝl, exceeds Hl. We add Ŝl−Sl to

the strength at node l. We remove this strength mass from all nodes L \ {l}. We denote

this added mass by the equation εu
l + (Hl −Sl) = Ŝl −Sl. The additional mass, Hl −Sl,

at l and removal of the same mass from L \ {l} provides the same estimate as given by

case 2 where y = yu. We, therefore, define the intermediary strength distribution to be

S̃t such that [S̃t]l = Hl and have

Ŝt − St = (Ŝt − S̃t) + (S̃t − St). (4.28)

From case 2, we know that

|H − S̃t| ≤ |H − S| − (1− F (yu, Sl))|Hl − Sl|. (4.29)

By inserting yu into F (y, Sl), we have

F (yu, Sl) =
N −Hl

N − Sl
. (4.30)

Combining (4.29) and (4.30), we obtain

|H − S̃t| ≤ |H − S| − Hl − Sl

N − Sl
|Hl − Sl|. (4.31)

From there, we wish to add excess mass, εu
l , at node l and remove it elsewhere. Since

we are adding and removing εu
l , we must choose a worse-case bound such that

|Ŝt − S̃t| ≤ 2εu
l = 2[G(y, Sl)−Hl], (4.32)

so that the inequality remains valid in the worst case. Combining (4.31) and (4.32), we

obtain

|H − Ŝt| ≤ |H − S̃t|+ |Ŝt − S̃t|

≤ |H − S| − Hl − Sl

N − Sl
|Hl − Sl|+ 2[G(y, Sl)−Hl], (4.33)



29

which proves the first case.

In the third case, we obtain an observation y that is less than Sl. We, therefore,

have a negative effect where strength mass is removed from Sl due to the observation.

Since Hl > Sl > y, we have

|Ŝ −H| = |Ŝl −Hl|+
∑
λ6=l

|Sλ −Hλ|. (4.34)

Since Hl > Sl > Ŝl, we have

|Ŝ −H| = Hl − Ŝl +
∑
λ6=l

|Ŝλ −Hλ|

= (Hl − Sl) + (Sl − Ŝl) +
∑
λ6=l

|Ŝλ − Sλ + Sλ −Hλ|

≤ (Hl − Sl) + (Sl − Ŝl) +
∑
λ6=l

|Ŝλ − Sλ|+
∑
λ6=l

|Sl −Hl|

= |H − S|+ |Sl − Ŝl|+
∑
λ6=l

|Ŝλ − Sλ| (4.35)

We know that Sl > y and therefore Sl > Ŝl. That means also, Ŝλ − Sλ > 0. Therefore,

we have

= |H − S|+ (Sl − Ŝl) +
∑
λ6=l

(Ŝλ − Sλ) (4.36)

We also know that
∑

λ6=l(Ŝλ − Sλ) = (Sl − Ŝl).

= |H − S|+ 2(Sl − Ŝl) (4.37)

= |H − S|+ 2[Sl −G(y, Sl)] (4.38)

The terms [Sl −G(y, Sl)] simplifies to

Sl −G(y, Sl) = Sl −
Sl + k(y − Sl)

1 + k(y−Sl)
N

= Sl
1 + k(y−Sl)

N

1 + k(y−Sl)
N

− Sl + k(y − Sl)

1 + k(y−Sl)
N

= k(Sl − y)
N − Sl

N + k(y − Sl)

=
kSl(y − Sl)− kN(y − Sl)

N + k(y − Sl)

=
k(Sl − y)(N − Sl)

N + k(y − Sl)
(4.39)



30

Since y − Sl ≥ −Sl, we have N + k(y − Sl) ≥ N − kSl. If we substitute this inequality

into the denominator of (4.39), we get

≤ k(Sl − y)
N − Sl

N − kSl

Sl −G(y, Sl) ≤ k(Sl − y) (4.40)

Combining (4.38) and (4.40) and knowing that Hl > Sl > y, we have

|H − Ŝ| ≤ |H − S|+ 2k(Sl − y)

≤ |H − S|+ 2k(Hl − y)

= |H − S|+ 2k|y −Hl|, (4.41)

which proves the third case of the Lemma as well as completing the proof of Lemma

4.2.3.

Next, we will look at and prove the other case that is given by the following

Lemma. Once again, we define yu = y(Hl, Sl) where we evaluate Ŝl with Hl in the

equation from 4.12.

Lemma 4.2.4 Suppose [Ht]l ≤ [St]l. One has

∣∣∣Ŝ −H
∣∣∣ ≤


|S −H| − Sl−Hl

N−Sl
|Sl −Hl|+ 2 [Hl −G(y, Sl)] if y < yu,

|S −H| − (F (y, Sl)− 1)|Sl −Hl| if yu ≤ y ≤ Sl,

|S −H|+ 2k|Hl − y| if Sl < y.

Proof. Like the previous lemma, we begin with the middle case, y ∈ [yu, Sl]. Also

as before, note that this is the case where the a posteriori strength at node l satisfies

Ŝl ∈ [Hl, Sl], i.e., where the observation noise is not as bad that the revised estimate

could be worse than the a priori. Unlike the previous lemma, however, the adjustment

at the observed node is

∆l = Sl − Ŝl = Sl −G(y, Sl) =
k(Sl −N)(y − Sl)

N + k(y − Sl)
. (4.42)

Due to the conservation of mass, the mass ∆l > 0 must be added to the other

nodes via Ŝλ = F (y, Sl)Sλ. In other words, these nodes will gain mass, that is Ŝλ > Sλ.
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The remaining nodes, L \ {l} = C1 ∪ C2 ∪ C3, where C1, C2, C3 are disjoint, and given by

C1 = {λ ∈ L \ {l}|Sλ < Ŝλ < Hλ},

C2 = {λ ∈ L \ {l}|Hλ ≤ Sλ ≤ Ŝλ},

C3 = {λ ∈ L \ {l}|Sλ < Hλ ≤ Ŝλ}.

In the C1 case,

|Ŝλ −Hλ| = Hλ − Ŝλ = Hλ − Sλ + Sλ − Ŝλ

= (Hλ − Sλ)− (Ŝλ − Sλ)

= |Sλ −Hλ| − Sλ(F (y, Sl)− 1). (4.43)

In the C2 case,

|Ŝλ −Hλ| = Ŝλ −Hλ = Ŝλ − Sλ + Sλ −Hλ

= (Ŝλ − Sλ) + Sλ −Hλ

= Sλ(F (y, Sl)− 1) + |Sλ −Hλ|. (4.44)

In the C3 case,

|Ŝλ −Hλ| = Ŝλ −Hλ = Ŝλ − Sλ + Sλ −Hλ

= (Ŝλ − Sλ) + Sλ −Hλ

= Sλ(F (y, Sl)− 1)− (Sλ −Hλ). (4.45)

Lastly, as before, we note that

|Ŝl −Hl| = Ŝl −Hl

= Ŝl −Hl + Sl − Sl

= Sl −Hl + (Ŝl − Sl)

= |Sl −Hl| −∆l. (4.46)

Combining (4.43)–(4.46), one obtains,

|Ŝ −H| =
∑
λ∈L

|Ŝλ −Hλ| =
∑

λ∈L\C3

|Sλ −Hλ| −∆l +
∑

λ∈C2∪C3

(Ŝλ − Sλ) (4.47)

−

∑
λ∈C1

Sλ(F (y, Sl)− 1) +
∑
λ∈C3

(Hλ − Sλ)

 .
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Using the principle of conservation of strength mass and the case that (Ŝλ−Sλ) > 0,∀λ ∈
C1, we state that ∑

λ∈C2∪C3

(Ŝλ − Sλ) +
∑
λ∈C1

(Ŝλ − Sλ)−∆l = 0. (4.48)

∑
λ∈C2∪C3

(Ŝλ − Sλ)−∆l ≤ 0. (4.49)

Clearly, the inequality (4.49) must hold true if one removes the middle term in equation

(4.48). Therefore, combining (4.47) and (4.49), one has

|Ŝ −H| ≤
∑

λ∈L\C3

|Sλ −Hλ| −

∑
λ∈C1

Sλ(F (y, Sl)− 1) +
∑
λ∈C3

(Hλ − Sλ)


|Ŝ −H| ≤ |S −H| −

∑
λ∈C1

Sλ(F (y, Sl)− 1) +
∑
λ∈C3

(Hλ − Sλ)

 . (4.50)

From there, we use the statement that∑
λ∈C3

(Hλ − Sλ) ≥ (F (y, Sl)− 1)
∑
λ∈C3

(Hλ − Sλ) if F (y, Sl) ≤ 2. (4.51)

We examine the condition that F (y, Sl) ≤ 2 through the definition of F (y, Sl).

F (y, Sl) =
1

1 + k y−Sl
N

≤ 2 (4.52)

With some algebraic manipulation we have

1 + k
y − Sl

N
≥ 1

2

(Sl −
N

2k
) ≤ y (4.53)

Thus, we set the constraint such that y (the right side of 4.53) must be greater than

or equal to the difference of the left side expression in order for (4.52) to hold true. In

addition, we assume that∑
λ∈C1

Sλ ≥
∑
λ∈C1

(Hλ − Sλ), which is true if 2Sλ > Hλ > Sλ. (4.54)

By substituting (4.51) and (4.54) into (4.50), one obtains

|Ŝ −H| ≤ |S −H| −
∑
λ∈C1

(F (y, Sl)− 1)(Hλ − Sλ)

−
∑
λ∈C3

(F (y, Sl)− 1)(Hλ − Sλ).
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≤ |S −H| − (F (y, Sl)− 1)
∑

λ∈C1∪C3

(Hλ − Sλ). (4.55)

Also, since
∑

λ∈L(Hλ − Sλ) = 0, one has∑
λ∈C1∪C3

(Hλ − Sλ) = (Sl −Hl) +
∑
λ∈C2

(Sλ −Hλ) ≥ Sl −Hl. (4.56)

Thus, by substituting (4.56) into (4.55), one has

|Ŝ −H| ≤ |S −H| − (F (y, Sl)− 1)|Sl −Hl|, (4.57)

which is the second case of the Lemma. We now take a look at the first case of the

Lemma. This is the case where the observation noise y is less compared to yu that

the a posteriori estimate, Ŝl, ends up being less than Hl, that is Ŝl < Hl. We remove

Sl − Ŝl from the strength at node l. We add this mass to nodes L \ {l}. We denote the

adjustment mass, Sl − Ŝl, by the equation εu
l + (Sl −Hl) = Sl − Ŝl. The removal of the

strength mass Sl−Hl at l and the addition of mass at L \ {l} gives the same estimate as

the second case where y = yu. Let this intermediary strength distribution be S̃t where

[S̃t]l = Hl and we have

St − Ŝt = (St − S̃t) + (S̃t − Ŝt) (4.58)

From the second case, we have the inequality

|S̃t −H| ≤ |S −H| − (F (yu, Sl)− 1)|Sl −Hl| (4.59)

In order for the middle case to hold true for also the first case, we must bound yu so

that F (yu, Sl) evaluates to some number between one and two. Therefore, we have

1 < F (yu, Sl) ≤ 2 (4.60)

1 <
1

1 + k (yu−Sl)
N

≤ 2

1 > 1 + k
(yu − Sl)

N
≥ 1

2

0 > k
(yu − Sl)

N
≥ −1

2

0 > (yu − Sl) ≥ −N

2k

Sl > yu ≥ Sl −
N

2k

Sl −
N

2k
≤ yu < Sl. (4.61)
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From the previous Lemma, we defined yu = y(Hl, Sl), which evaluates to

yu =
N(Hl − Sl) + kSl(N −Hl)

k(N −Hl)
(4.62)

Using this definition, we evaluate F (yu, Sl) as

F (yu, Sl) =
1

1 + k

[
N(Hl−Sl)+kSl(N−Hl)

k(N−Hl)
− kSl(N−Hl)

k(N−Hl)

N

]

=
N −Hl

N − Sl
. (4.63)

By substituting the evaluated expression from (4.63) into (4.59), we have

|S̃t −H| ≤ |S −H| − Sl −Hl

N −Hl
|Sl −Hl| (4.64)

The other adjustment composed of S̃t − Ŝ requires removing εu
l at node l and adding it

elsewhere. For the worst case, we apply a worst-case bound such that

|S̃t − Ŝ| ≤ 2εu
l = 2[Hl −G(y, Sl)] (4.65)

Finally, by combining (4.64) and (4.65), we obtain

|Ŝt −H| ≤ |S̃t −H|+ |S̃t − Ŝt|

≤ |S −H| − Sl −Hl

N −Hl
|Sl −Hl|+ 2[Hl −G(y, Sl)]. (4.66)

For the third case, we have an observation y that is greater than our estimate, Sl.

Therefore, we obtain a posteriori estimate that is greater than the truth Hl. Using the

fact that y > Sl > Hl, we state that

|Ŝ −H| = |Ŝl −Hl|+
∑
λ6=l

|Ŝλ −Hλ| (4.67)

= (Ŝl − Sl) + (Sl −Hl) +
∑
λ6=l

|Ŝλ − Sλ + Sλ −Hλ|

≤ |Sl −Hl|+ |Ŝl − Sl|+
∑
λ6=l

|Ŝλ − Sλ|+
∑
λ6=l

|Ŝλ −Hλ|

≤ |S −H|+ |Ŝl − Sl|+
∑
λ6=l

|Ŝλ − Sλ|. (4.68)



35

By conservation of strength, we say that
∑

λ6=l(Sλ − Ŝλ) = Ŝl − Sl. Therefore, the right

hand side of inequality (4.68) can be rewritten as

= |S −H|+ 2(Ŝl − Sl) (4.69)

= |S −H|+ 2[G(y, Sl)− Sl]

= |S −H|+ 2

[
Sl + k(y − Sl)

1 + k y−Sl
N

−
Sl(1 + k y−Sl

N )

1 + k y−Sl
N

]

= |S −H|+ kN(y − Sl)− kSl(y − Sl)
N + k(y − Sl)

= |S −H|+ k(N − Sl)(y − Sl)
N + k(y − Sl)

. (4.70)

Taking the second term of the inequality in (4.70) and using the fact that Sl < y, we

claim

N − Sl

N + k(y − Sl)
< 1 (4.71)

N − Sl < N + k(y − Sl).

We can therefore substitute the right hand side of inequality (4.71) into (4.70). And

finally, using the case Sl > Hl, we arrive at the final case where

|Ŝ −H| ≤ |S −H|+ 2k(y − Sl) (4.72)

|Ŝ −H| ≤ |S −H|+ 2k(y −Hl) (4.73)

|Ŝ −H| ≤ |S −H|+ 2k|Hl − y|, (4.74)

thus completing the proof of the Lemma.

4.3 Simulation Example: Expected True Strength versus

Estimated Strength

Since we compare the difference between the expected true strength and esti-

mated strength, we will include all 500 locations within the set l ∈ L. We choose to have

a single Red team in which we simulate the probable location of its movement at five

time-steps. In our plot for the expect true strength, the color coding in the larger area

depicts the terrain type of the location, i.e., water bodies, building corners, etc. The

Red team starts at the same location at the beginning of the simulation regardless of
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whether we have a commander input. We designate the Red team at the initial location

with a true strength of Hl = 3, which is denoted by the red circles in the right plot of

the simulation. The probable flow of the Red units occurs by following the Markov chain

property of the flow matrices, F or [F + Ut], when we have a commander input in our

simulation. For the nominal flow of the Red units, we will set the diagonal entry(ies),

ηnom = Fi,i = 0.7, and the rest of the strength mass being evenly distributed through the

connected edges of the graph. If we have a commander input at a particular time-step,

the diagonal entry(ies) will be modified such that, ηcom = [F + Ut]i,i = 0.3, with the

rest of the strength mass being evenly distributed through the connected edges of the

graph. To understand how we define the two matrices, we provide an example below at

a particular time-step:

F =



0.7 0.1 0.1 . . . 0.1

0.3 0.7 0 . . . 0

0 0.15 0.7 . . . 0.15

. . . . . . . . . . . . . . . . . . .

0 0.15 0.15 . . . 0.7


, Ut =



−0.4 0.13 0.13 . . . 0.13

0 0 0 . . . 0

0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0.2 0.2 . . . −0.4


(4.75)

F + Ut =



0.3 0.23 0.23 . . . 0.23

0.3 0.7 0 . . . 0

0 0.15 0.7 . . . 0.15

. . . . . . . . . . . . . . . . . . .

0 0.35 0.35 . . . 0.3


. (4.76)

We see from the corresponding rows in Matrix 4.76 that we have a commander input in

at least the first and Lth location. The probability flow for the Red units will be much

greater at those locations at that time-step. We see in the above example that even

though we introduce a commander input, the basic Markov property still upholds. That

is,
∑

j∈L[F ]i,j + [Ut]i,j = 1 ∀ i ∈ L.

In this simulation, we introduce the input parameter c, where c is the probability

that a commander input occurring per time-step. To understand the extent to which

the Red commander input (analogous to a disturbance in our system) affects our final

estimate assessment, we set c = 0.5.

We obtain the expected true strength distribution, E[Ht], using Monte Carlo

simulations with I = 1000 iterations at five time-steps. We obtain this distribution using
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both nominal flow matrix, F , and the commander input matrix, [F + Ut] when we have

a commander input. Specifically, at each iteration at each time-step, suppose we were

to have a random variable, r, be some number such that 0 < r < 1. Since we know that∑
j∈LFi,j = 1,∀i ∈ L, and

∑
j∈L[F ]i,j + [Ut]i,j = 1,∀i ∈ L, we would determine at what

matrix row indices does our r value lie in between. For example, suppose in our ground

truth distribution, the true strength is initially located at node 1. Suppose the connected

locations to node 1 are nodes 5, 10, and 15. Therefore, in our nominal flow matrix, our

entries for the first row would be F1,1 = 0.7, F1,5 = 0.1, F1,10 = 0.1, and F1,15 = 0.1.

If our random variable r = 0.85, then [F1,1 + F1,5] < r < [F1,1 + F1,5 + F1,10]. As a

result, for the Red units, the new location at the next time-step would be at node 10.

We would repeat this procedure at each time-step for each iteration and record the new

positions of the Red units. Then, we compute the expected true strength distribution

by taking the mean true strength of the iterations for each time-step.

In our expected true strength plot, whenever we have a commander input in

our simulation, we will denote the distribution for the nominal flow and the commander

input flow (actual flow) as cyan circles and red circles, respectively. When we only have

nominal flow at a particular time-step, the circles will be represented by the color green.

In implementing observation in our simulation, we will parameterize the proba-

bility of an observation at a particular location with pl. We denote pl to be some number

from 0 to 1. In our simulation results, we evaluate pl = 0.5.

For the estimated strength distribution, we assume that we are given complete

information of the Red team’s strength and location at the first time-step. We obtain

the estimated strength distribution at the next time-steps using Monte Carlo simulations

with I = 1000 iterations where each time-step involves a dynamic flow update followed

by an observation update. The final distribution of the estimated strength will depend

upon how we evaluate the flow parameter, ηnom, and the observation parameter, pl.

We assume that our observations are corrupted by random noise; we will have

imperfect observations of the Red units within the terrain. We include this random noise

into our simulation by first creating a normal distribution for the possible observation

measurements, [yt]l. We take the mean, µy, to be the true strength, Hl. We parameterize

the standard deviation, σy, for the noise, to be some value such that 0 < σy ≤ 1. Using

the normal distribution function given by equation 4.77, we determine the probability

bounds corresponding to our possible observation measurements with which a random
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variable r between 0 and 1 lies:

p = F (y|µy, σy) =
1

σy

√
2π

∫ y

−∞
e
−(t−µy)2

2σ2
y dt (4.77)

Once we determine the probability bound with which our random variable r lies, we

select the corresponding observation bin and take the rounded value to be the observation

strength, [yt]l. We will, for this example, take σy = 1 in order to analyze fully the effects

of noise on the final estimated strength distribution.

Suppose, for example, we take the ground truth to be the mean, µy = Hl = 3,

and the observation noise to be σy = 1. That means that, for our normal distribution

(See Figure 4.1), we will have seven bins along the interval [0,6], which represent our

observation potential measurements.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normal Distribution for σ
y
 = 1

Observation Bins

y=2 

Figure 4.1: Example with Observation Noise, σy = 1, µy = 3

Suppose now that r = 0.35, then our random variable would lie within the area

of our normal distribution curve that corresponds to Observation Bin 2 since the prob-

ability interval is approximately (0.16,0.5]. Therefore, in this instance, our observation
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measurement is [yt]l = 2. It is also worth noting that one standard deviation to either

the left or right of our mean, µy = 3, composes of a large area under our probability

curve (68.2%), revealing that we most often will have our observation measurements,

[yt]l = 2 or 3 or 4.

Once our simulation illustrates favorable results, we compute the error bound

for the dynamic flow and the observation disturbance effects.

4.4 Simulation Results

In the plots below, we simulated the results of our estimated strength distribu-

tion and the expected true strength distribution given the conditions that we discussed

in the Section 4.3. We test to see how well our estimator distribution compares with the

expected true strength when we place observation noise and commander inputs in our

model. These can also be viewed as disturbances and measurement noises in the system.

In the end, our estimator must converge to the expected true strength.
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Figure 4.2: Stochastic Flow, Initial Time-Step

At the initial time-step of our simulation, the right-half plot in Figure 4.2

indicates that we have a commander input where the red circles indicate the actual

flow (with the commander input), and the cyan circles indicate the nominal flow if

no input occurred for that time-step. We see that the actual flow for the simulation

(ηcom = 0.3) has the strength mass diffusing rapidly from the initial location of the true
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strength compared to the nominal flow (ηnom = 0.7) where most of the strength mass

is concentrated at the initial location. We see from the actual flow that most of the

strength mass has been evenly distributed to the connected edges of the graph.

For the estimated strength plot (left plot in Figure 4.2), we obtain similar

trends from the expected true strength plot but with a different analysis. Based on our

algorithm, we know that the strength estimator has no memory of the commander input

and therefore is computed nominally. However, we must also take into consideration the

observation factor. Besides where the ground truth is located, at a particular iteration

and time-step, we may have observations (random noise) at connected nodes. In our

plot, besides the original location, we see that throughout all 1000 iterations, most of

the connected locations had an observation (as indicated by the magenta circles). This

indicates that the observation update holds the mass closer to the location being observed

no matter if we have observation due to random noise.
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Figure 4.3: Stochastic Flow, Time-Step 3

In Figure 4.3 at time-step 3, we have only nominal flow in our true strength

plot as represented by the green circles. As a result, we have more strength mass being

concentrated at the original location(s) since ηnom = 0.7.

For the strength estimator plot, we see that largely all of the circles are magenta.

This indicates that out of 1000 iterations, we are bound to have an observation update

at every location connected to the original starting point. Note that our estimator

distribution, although we have several observational locations looks somewhat different
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from the expected ground truth. We must consider the fact that our observation noise

parameter is σy = 1. Therefore, our observations will not be as accurate (y = Hl). As a

result, our estimate may not be as close to the ground truth we would like.
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Figure 4.4: Stochastic Flow, Final Time-Step

In Figure 4.4, we see an indication from our expected true strength plot of a

commander input signal, and therefore we see an even wider flow of red circles. If we

compare that to the nominal flow, we notice that some of the red circles and the cyan

circles are approximately the same size. The red circles are somewhat smaller. We can

therefore conclude that given enough time, the strength distribution will diffuse across

regardless of how high our flow parameters are.

For the estimator plot, we see, interestingly, a wider spread in our distribution.

In some locations/waypoints, we have more strength mass than what we had at our

original location. Also, if we compare this plot with our expected true strength plot, we

apparently have more mass at some locations and less others, suggesting that we both

underestimate and overestimate our measurements. This indicates that the observation

update plays a significant role in the final distribution for our estimator.

4.4.1 Analysis: Dynamics Effects

In Table 4.1, we computed the left side and right side of the inequality in

Theorem 4.2.2. As with the deterministic case, the same can be said of the error bounds

for this case. We notice that for the left side of the inequality in this simulation, the error
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Table 4.1: Dynamic Error Bounds

Time-steps Left Side Right Side
1 2.2126 2.2126
2 1.8378 4.6126
3 1.7305 7.8459
4 1.7394 7.8459
5 1.5154 7.8459

bound is reduced, which would indicate that over time, our estimate, St, will improve

(St ≈ E[Ht]). This is particularly true since E[Ht] should converge to St. If we analyze

the right side of our error bound inequality, we see that the commander input occurs

only twice in our simulation. Moreover, suppose we run this simulation for more than

five time-steps. We can claim that the more commander inputs we have, the larger our

error bounds for the right side of Theorem 4.2.2 will be.

4.4.2 Analysis: Observation Disturbance Effects

Table 4.2: Observation Disturbance Effects Error Bounds

Time-steps Left Side Right Side
1 3.6220 5.7952
2 5.4951 7.4948
3 6.3256 8.1765
4 6.7283 8.5228
5 7.0405 8.7713

In Table 4.2, we computed the error bound for the observation by applying

Lemma 4.2.3 in the case where [Ht]l ≥ [St]l and applying Lemma 4.2.4 in the case where

[Ht]l ≤ [St]l. Setting the number of iterations equal to 1000, we did this by applying

the L1 norm to the left and right side of the two inequalities where appropriate for each

sub-case.

From the data in our table, we can see that the left side of the inequality

gradually increases at each time-step. Since we know that the L1 norm allows us to

compare our a posteriori estimator, Ŝ, with our ground truth, Ht, we can see that our

observation error becomes worse as time passes. One possible reason for this is that over

time, we have a much greater variation of our estimated strength distribution due to the

observation noise in our measurements. As a result, our a posteriori estimator, Ŝ, may
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become far from the ground truth as the time-steps increase even though we may have

some good observations (y = Hl).

Table 4.3: Detailed Error Bounds

[Ht]l ≥ [St]l [Ht]l ≤ [St]l
Time-steps y > yu yu ≥ y ≥ Sl Sl > y y < yu yu ≤ y ≤ Sl Sl < y

1 808 394 1970 298 79 451
2 294 1639 1399 354 58 266
3 245 2007 1192 301 47 208
4 240 2137 1083 304 50 186
5 223 2207 1028 300 47 195

Total 1800 8384 6672 1557 281 1306

According to Table 4.3, when we verified that both Lemmas hold true, we found

on the right side of the inequality that the sub-case where yu ≥ y ≥ Sl appeared the

most often in the overall iteration process. In fact, in the table, we see that over the five

time-steps, the sub-case appeared 8384 times. We would consider this to be a positive

finding since it would indicate that the observation, y, made at each iteration is within

range of the ground truth. However, at the very first time-step, it appears the least in

the first Lemma. The reason is that both the estimate, Sl, and the ground truth, Hl,

begin at the same location. That is, Sl = Hl. Since the yu = Hl when Sl = Hl, the only

possible situation where the middle sub-case applies is y = Sl = yu. The chance that

this sub-case appears in our computation has significantly been diminished.

However, when Lemma 4.2.4 was applied to the computation, the middle sub-

case occurred least often. Based on the condition that yu ≤ y ≤ Sl, we see that despite

the fact that the estimator, Sl was greater the truth, Hl, our observation, y, was still

within range of the truth itself (y ≤ Hl). That is, our observation underestimates the

truth more often but does not overestimate very much.
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Estimation Behavior Analysis

Using the stochastic case, we analyze the results at each time-step of the

strength estimator,[St]l, and compare them to the simulated true strength data, [Ht]l.

We investigate how the final results of the estimator will differ by varying the different

results of the input parameters.

5.1 Statistical Computation

In our analysis, we relate the estimated strength, [St]l, with the true strength,

[Ht]l, by computing the mean bias error, et and the mean standard deviation, σt of our

data and see how they vary with the input parameters that we control. Using several

iterations, we must first compute expected bias error, et,l, and the standard deviation,

σt,l, which we obtain by the following equations:

et,l =
1
I

I∑
i=1

([Ŝt]l
i
− [Ht]l

i) (5.1)

σt,l =

√√√√ 1
I − 1

I∑
i=1

[([Ŝt]l
i
− [Ht]l

i)− et,l]2. (5.2)

When we compute the standard deviation, we subtract the error, et,l, in our computation

in order to get a more accurate measure in our standard deviation.

We, from there, compute the mean bias error and mean standard deviation by

44
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taking the average of (5.1) and (5.2) across all 500 locations:

et =
1
L

L∑
l=1

et,l (5.3)

σt =
1
L

L∑
l=1

σt,l. (5.4)

5.2 Comparing the Results for the Estimator and the True

Strength

5.2.1 Effects of Observation Confidence and Observation Noise

We vary our initial parameters to see how it affects the final outcome in our

data. We choose to keep our observation parameter, pl, constant (pl = 1). Therefore, at

each iteration, we will always have an observation occurring. We will keep the dynamic

flow update parameter the same (ηnom = 0.7 and ηcom = 0.3). In Subsection 5.2.1, we

vary the k value and the observation noise, σy, in our simulations in order to see to what

degree they will affect the results of our data. We measure these effects by computing

the mean bias error (5.3) and the mean standard deviation (5.4). In Subsection 5.2.1,

we develop a better understanding as to what degree the input parameter will cause the

estimator to deviate from the true data.

In Figure 5.1, we varied our k value and observation noise to obtain surface plots

of the mean error at the final time-step. We notice that varying the parameters has very

little effect on the outcome of the mean error. We see this from the various fluctuations

across the graph of the error, suggesting that we do not see much of a relationship

between the two input parameters. It is though worth mentioning that our error itself

is indeed infinitesimally small (by a factor of 10−18) that the difference between our

estimator and the ground truth is negligible. Therefore, we have an unbiased error in

our estimator.

The interesting aspect of the error plot is that our bias error becomes large

when k ≥ 1 and σy ≈ 0. We know that in this instance y = Hl = 0 or y < Sl. When

this occurs, we must be mindful of our choice for k. If we choose the wrong k value, we

will have an error division by zero in the computation for the a posteriori estimate, Ŝl,

and our plot will show the error diverge to infinity. We see this indication that we may

approach such a value. Let us analyze the restriction for k. We analyze the denominator
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Figure 5.1: Mean Bias Error versus (Observation Confidence, Observation Noise), Final
Time-Step

of our observation update, Ŝl:

1 + k
y − Sl

N
6= 0

Algebraically manipulating the inequality above, we obtain the following restriction for

k:

k 6= N

Sl − y
, (5.5)

where Sl > y.

Also, unlike the mean error, in Figure 5.2, we see a significant correlation

between the input parameters themselves and our output, the mean standard deviation.

We see, on one hand, when our k value is large and our observation is large, our mean

standard deviation will be large. However, if we reduce our observation noise, σy, we

reduce the mean standard deviation substantially. This relation suggests that a high

k value with a low observation noise input value will provide us with a more accurate

estimate of the actual ground truth. We know this to be true since the k parameter tells

us the level of confidence we have in our actual observation of the Red units while the

observation noise reveals how perfect our observation would be. In addition, if we choose

a low k value, we are suggesting that we have very little confidence in our observation
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Figure 5.2: Mean Standard Deviation versus (Observation Confidence, Observation
Noise), Initial Time-Step

and therefore our observation noise, σy, becomes irrelevant to our estimate itself. In

other words, not only does our estimate depend on k but also the degree to which the

observation noise influences our estimate depends on k as well. Therefore, if we have

perfect observation (no errors) of the adversary and we are confident in our method, we

will obtain a more accurate estimate of the ground truth itself as revealed by the mean

standard deviation in the figure.

Also, we notice that the observation noise is reduced in discrete steps down-

ward. In our algorithm, we implemented our observation measurements, y, such that

any observation noise in our measurements is represented by the standard deviation of

a normal distribution. If we have a measurement that is not a natural number, we must

round that value since we will see only distinct Red units in the terrain itself. As a

result, varying the precision by a small factor in the observation noise will not make a

significant difference in the outcome of the mean standard deviation since our rounded

y will still be the same.

The plot in Figure 5.3 follows the same trend as our plot in the initial time-step.

Essentially, as before, our mean standard deviation for our estimator and true strength
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Figure 5.3: Mean Standard Deviation versus (Observation Confidence, Observation
Noise), Final Time-Step

diminishes as we increase k and decrease σy in discrete steps. The difference, though, is

that our standard deviation becomes large much faster when we increase the observation

noise. We know that the more close σy is to one, the more imperfect our observation of

the Red units will be. Thus, if we continue to make observations that are poor at each

and every time-step, then we will certainly have an estimate that is far from the truth

itself as illustrated by the larger standard deviation.

In addition, as we increase σy, we note that the mean standard deviation does

not decrease as much when we increase k. From the surface plot in Figure 5.3, when σy

is large our standard deviation stays approximately the same regardless of the k value,

suggesting that the observation update makes no difference in the final estimate. Let us

therefore analyze this further.

We optimize our k value as we vary our observation noise such that we choose

the k value that minimizes the mean standard deviation, σt. In Figure 5.4, we vary the

precision by 0.01 of the observation noise as opposed to the surface plot (precision by

0.05) in order to determine specifically where the standard deviation is minimized. In the

plot, we note that our optimal value fluctuates more as our observation noise variation
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becomes more precise. Even if this is the case, we still gain a better understanding

with regards to our kopt value when the noise is small and when it is large. We see in

Figure 5.4 that for the final time-step, the kopt is approximately greater than one when

the observation noise is small. In fact, if we take the average of the k values such that

0.1 ≤ σy ≤ 0.5, then we have kopt = 1.05 as the average. For all k values such that

0.5 ≤ σy ≤ 1, we have kopt = 0.6176 as the average. Clearly, if we increase the noise,

then k must be reduced since the observation measurements, y, will not be as accurate

(y = Hl) as often.

5.2.2 Effects of Flow Parameter and Commander Input

In the following analysis, we will vary the input parameters for the dynamic

flow update to look at their relationship to the mean standard deviation of our strength

estimator and the true strength. Since we would like to look only at the effects that the

flow update has on our estimator, we will keep observation update parameters constant.

For this computation, we set the remaining parameters to the following values: k = 0.95,

σy = 1, and pl = 1.

In Figure 5.5, we vary the dynamic flow update parameters, ηnom and ηcom,
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Figure 5.5: Mean Standard Deviation versus (Commander Input, Nominal Flow), Initial
Time-Step

to analyze the effects on the mean standard deviation. We see that, at the first time-

step, the standard deviation does not fluctuate as much when the two parameters are

low. We know that when we choose small flow parameter values to run our simulation,

our estimator distribution would spread more thinly across the board. Therefore, for a

particular time-step, our standard deviation will remain at its extrema when we choose

smaller parameter values. On the other hand, as we increase ηcom and ηnom, we see that

the standard deviation varies more.

In Figure 5.6, we see after a few time-steps that for the large flow parameter

values, the mean standard deviation converges to the same value corresponding to the

lowest flow parameter value. In addition, we notice that the converged standard deviation

value has also shifted up, suggesting that over time we may have high number of locations

with non-negligible strength.

At the last time-step in Figure 5.7, we have less kinks than we had initially.

We can see much clearly that for large parameter values, the mean standard deviation

converges much closely to the standard deviation for when our flow parameters are small.

This would imply that over time the strength distribution will diffuse to a more uniform
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Figure 5.6: Mean Standard Deviation versus (Commander Input, Nominal Flow), Time-
Step 3

distribution. Therefore, given enough time-steps, our choice for the flow update parame-

ters would become irrelevant to the final outcome of the estimated strength distribution.

5.2.3 Effects of Observation Probability and Observation Noise

We will vary the probability of observation per location (pl). We will vary this

with the observation noise itself, based on the direct relationship between the two. All

other parameters are kept the same. We set the other parameter values equal to the

following: k = 0.95, ηnom = 0.7, ηcom = 0.3.

Similar to Figures 5.2 and 5.3, we see that the mean standard deviation is

reduced when we decrease our observation noise, σy, and, this time, when we increase

our probability of observation, pl. We realize that observing the actual true strength,

Hl, of the Red units itself will improve our estimate, St. That is, the more observations

taking place will improve our estimate substantially. In addition, we must ensure that

our observation is perfect. Therefore, decreasing the observation noise will provide us

with a better estimate as represented by the mean standard deviation plot given above

in Figure 5.8.
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Figure 5.7: Mean Standard Deviation versus (Commander Input, Nominal Flow), Final
Time-Step

The plot in Figure 5.9 follows the same trend as the plot in Figure 5.8. As we

increase the time-steps, the mean standard deviation has shifted up more. Let us analyze

the extreme cases of the parameters. We notice that when our observation probability is

close to one and the noise is close to zero, our mean standard deviation is minimized like

our initial time-step. However, the standard deviation is reduced even further than from

the initial time-step for the same parameter values. We can see that the more perfect

observation that we have over each time-step will provide us with a best estimate in the

end. Suppose instead that probability of observation is large but our observation noise is

large as well. Hence, we have a highly imperfect observation method. We can conclude

that despite all our observations over time, our estimate, Sl, will be far from the truth,

Hl as represented by the large standard deviation. Finally, it is clearly evident that our

observation noise, σy, becomes irrelevant if our probability of observation parameter, pl,

is small.
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Figure 5.8: Mean Standard Deviation versus (Observation Probability, Observation
Noise), Initial Time-Step
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Figure 5.9: Mean Standard Deviation versus (Observation Probability, Observation
Noise), Final Time-Step
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Conclusions

In this thesis, we sought to objectively model the force distribution (manpower)

of an adversary within a set terrain and compared it to the ground truth–a subjective

topic in nature. Through simulations and numerical computations, we determined how

well our adversarial estimator reflects the ground truth using the stochastic methods

presented. We explored two cases where our methods were implemented: natural de-

terministic flow and primarily the stochastic flow. Our simulation results have shown

that for the stochastic case, our strength estimator converges quite well to our generated

expected true strength.

For the stochastic case, we assumed we had limited knowledge of the state of

the ground truth itself such as location, strength, and the probable movements of the

Red units. In our simulation, the probable movement of the Red units at each time-step

was represented by either a nominal flow transition matrix or commander input matrix,

where the input is analogous to disturbance in the system. Seeing that the state of the

system may change as a result of this disturbance, we applied a Bayesian observation

update in order to adjust our strength estimator so that it may better reflect the true

strength itself.

Once we obtained our stochastic estimator using the arbitrary input parameters

selected, our job was to optimize those parameters in order to produce an estimate that

minimizes the standard deviation between our estimated strength and the true strength.

For instance, we developed a better understanding with regards our various observation

parameters such as the k value and the observation noise, σy. We are able to optimize

our k value depending on the noise in our system. The observation noise, analogous to a
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measurement noise in a system, depends upon how clearly and confidently we view the

adversary. Through this type of analysis, we learned that the input parameters, which

represent our general understanding of the battlefield and the adversary, can determine

how close our assessment is to reality.

6.1 Future Work

As the research in this topic comes to an end, we have another area that we yet

to have touched. Our analysis in adversarial estimation can become more complex when

we introduce attrition into our model. Attrition is the gradual reduction of strength in

numbers or size. In our case, the reduction would be in manpower of the Red units,

assume we have multiple fire teams. From the observation measurements made, our job

is to produce a decent estimate of the adversary, while, at the same time, considering

attrition occuring in our ground truth.

We must therefore determine an algorithm for our simulation that will display

the attrition in our system. Some of the suggested means to show this is computing the

expectation of the true strength, using probabilities of reduction in strength from the

size of manpower. We may find the need to be more subjective in modeling this. For

example, we may believe that a single unit Red fire team would have high chance of

vulnerability then a multiple unit fire team.

Another method that we may choose to consider is fuzzy logic[5]. Some of

the variables that determine attrition is the observation measurements and the distance

between the Blue and Red teams. We may choose to establish some rules with regards

to the distance (i.e.,close, near, far) and observation measurements (i.e. y = 1, y = 2,

y = 3, etc.), which we use to determine our output: the level of reduction of the Red

forces (∆Hl). Once again, we seek to apply a systematic method to model a subjective

topic. Thus, in determining the best method, we must consider many factors.
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