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ABSTRACT OF THE THESIS 

 

In search of memory: can eDNA be used in storage sediment samples from Borikén? 

 

by 

 

Javier Jomar García-Colón 

 

Master of Arts in Anthropology 

 

University of California San Diego 2023 

 

Professor Isabel Rivera-Collazo, Chair 

 

 

 

 The application of environmental DNA (eDNA) methods in tropical environments has 

been limited due to assumptions of poor preservation of genomic material given drastic climate 

variations (high temperature, soil acidity, high precipitation). However, improvements in 

technologies and methods (Orlando et al 2021; Shapiro et al 2019; Rizzi et al 2012; Mumy et al 

2004; Miller et al 1999) have made it possible to extract and sequence highly degraded DNA 

(aDNA) from some tropical environments, drastically changing our previous understanding of 

DNA preservation capacities. Addressing the need to reclaim material from archaeological   
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collections, I visited the Paleogenomics lab at the University of California Santa Cruz (UCSC) 

and performed DNA extraction experiments on sediment samples from three archaeological sites 

in Borikén (Puerto Rico) - Tierras Nuevas, Cueva María de la Cruz, and Puerto del Rey - in 

search of the presence of aDNA, and the levels of degradation they present. The ability to extract 

genomic material from tropical sediments, could provide high value proxy data to inquiry past 

climate, migration patterns, biomonitoring, and landscape formation processes, in addition to 

providing mitigation strategies to deal with the ongoing curation crisis exacerbated by the 

colonial system.  

Keywords: molecular archaeology, tropical climate, eDNA, curation crisis



 

 1 

 

 

Introduction 

 

 In a verse from her song, “Contra todo", Grammy award winning singer and composer Ilé 

Cabra, states - “Yo soy terreno invadido, naturaleza robada” (“I am invaded soil, stolen land”). 

This verse aptly captures the nature of the relationship that we Boricuas (people of 

Borikén/Puerto Rico) have with the island; a connection that reinforces our identity without a 

distinction from the land. We are de aquí, de e’jta tierra (from this land); a land akin to an SD 

card, a preserver of memory that can be made accessible with environmental DNA technologies. 

 

The application of environmental DNA (eDNA) methods in tropical environments has 

been limited due to assumptions of poor preservation of genomic material given to drastic 

climate variations (high temperature, soil acidity, high precipitation) and reinforced by 

Western/Colonial mindsets. Laboratory work has drastically changed since the development of 

Next Generation Sequencing (NGS) technologies and now highly degraded DNA (aDNA) is 

extractable and sequenceable for research (Orlando et al 2021,Taberlet et al 2018). The 

application of these technologies to archaeological context materials has the potential to access 

data that was not previously available (Hassan et al 2022; Jia et al 2022; Jansson et al 2019; 

Eisenmann et al 2018; Han et al 2017).  

 

Not unsurprisingly, the struggles of the ongoing curation crisis of archaeological deposits 

around the world, are exacerbated for geographies marked by colonization. The application of 

eDNA technologies could mitigate this crisis by offering less invasive ways to extract data for 
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research. The application of the technologies to existing collections also poses a mitigation 

strategy for the crisis (Schiappacasse 2019; Rizzi et al 2012). 

 

For this project, the sediment samples were previously collected for geoarchaeological 

analysis during archaeological excavations from 2009-2019. This is important to consider for we 

expect to have a high level of contamination and degradation of DNA. This research has a 

primary question, can we extract eDNA from archived sediment samples?As a way to have a 

basic understanding of how DNA behaves under these conditions and further develop protocols 

for possible application of these techniques on tropical environments. These techniques could be 

of use for biomonitoring, environmental reconstructions, and archaeological research (Pascher et 

al 2022; Mohammed et al 2022; Orr et al 2021; Wibowo et al 2021; Zhang et al 2021, 2020; 

Nägele et al 2020; Suleymanov et al 2020; Sun et al 2020; Siles et al 2018; Warinner et al 2017; 

Watzinger et al 2015; Nerlich et al 2009).   

 

What is DNA? 

 

Deoxyribonucleic Acid (DNA) is a biopolymer composed of nucleotides. Each 

nucleotide is composed of a sugar (deoxyribose), a phosphate and a nitrogenous base: these 

could be adenine(A), guanine (G), cytosine (C), or thymine (T). In living cells, DNA exists as 

double-stranded, where two complementary DNA polymers bond through hydrogen bonds 

between A and T and between G and C respectively (Figure 1; Campana, et. al, 2013). Codons 

(groups of three nucleotides) sequence the instructions for protein assembly (coding DNA), these 

regions are called genes. In eukaryotic organisms the majority of DNA (>99%) is located in the 

nucleus as a mixture of proteins and DNA called chromosomes (Figure 2). Eukaryotic organisms 
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also possess mitochondria (chemical energy generators) in which a short circular strand of DNA 

exists (mtDNA). This means there can be thousands of copies of the mitochondrial genome per 

eukaryotic cell (Matisoo-Smith, E. 2008).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Some groups of codons (genes) can sequence the instructions for protein assembly; also known as coding 

DNA.  (Campana, et. al, 2013).  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Gene is composed of DNA, groups of genes and proteins form chromosomes. In living eukaryotic 

organisms each cell nucleus contains two copies of each autosome (non sex chromosomes). The number of 

autosomes varies by species. In addition, cell nuclei may contain a pair of sex chromosomes depending on the 

species.  
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Where can you find environmental DNA? How can it be used? 

 

All organisms leave traces of DNA in their surrounding environments through the 

shedding of skin cells and hair or by the discharge of feces and urine.The complex mixture of 

DNA from different organisms in nature is called environmental DNA (eDNA). It can be 

extracted from environmental samples (e.i. soil, sediments, water, coprolites,air, etc.), and it can 

be used to obtain taxonomic and/or functional information of the organisms and biomonitoring 

(Taberlet et al 2018). These traces of DNA can be found in the environment as intracellular 

(originating from living cells or multicellular organisms) or extracellular (results from cell death 

and subsequent destruction of cell structures) DNA.  

 

Extracellular DNA is susceptible to degradation and the rate in which this happens is 

dependent on the environment, the soil pH, the temperature, the soil microbiome, the sediment 

mineral composition (Taberlet et al 2018), and it is best stable (preserved) in cold, dry 

environments with slightly basic soil and high salt concentrations (Campana, et.al. 2013). The 

degraded fragments of DNA or genomic material obtained from anything other than fresh tissue 

is called ancient DNA (aDNA) (Zhang et al 2021; Matisoo-Smith 2008).  

 

Since the awareness of the possibility to apply DNA analysis to archaeological materials 

during the 1980s,  the first report of an extraction protocol for eDNA from sediments (Ogram 

et.al 1987) and the development of metagenomics in the late 1990s and early 2000s (Giovannoni 

et al. 1990; Handelsman et al. 1998; Willerslev et al. 2003; Shendure & Ji 2008), insights on 

population migration, location, timing and processes of domestication, environmental and 

landscape formation and change processes, biodiversity and biomonitoring, and other research 
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areas have become more accessible. The identification of species or taxa present on 

environmental samples (eDNA or aDNA, it depends on the level of degradation; see Figure 3) 

can be achieved mainly by two approaches, both based on PCR (polymerase chain reaction). 

Quantitative PCR to determine the presence or absence of a single species (1) and metabarcoding 

to identify the many taxa available on the environmental sample (2), which is usually approached 

through shotgun sequencing - the random sequencing (reading or amplification) of DNA 

fragments - generally using NGS (next generation sequencing), a technologie that pushed 

forward the discipline (Pierre Taberlet, Aurélie Bonin, Lucie Zinger, Eric Coissac. 2018; Nicolas 

Arning and Daniel Wilson. 2020., Arriola, L. A., Cooper, A., & Weyrich, L. S. 2020., Ávila-

Arcos, M. C., de la Fuente Castro, C., Nieves-Colón, M. A., & Raghavan, M. 2022).  

 

Thousands of years old DNA has been successfully extracted from permafrost 

(permanently frozen) sediments (Slon et al 2017, Pedersen et al 2016; Willerslev et al 2014; 

Meyer et al 2014; Carrigg et al 2007; Hebert et al 2003). Likewise, traces of aDNA have also 

been found in non-frozen sediments and soils, even in the absence of macrofossils (Nieves-Colón 

et al 2022; Pérez et al 2022; Capo et al 2022; Crump 2021; Arning et al 2020; Arriola et al 2020; 

Berkelmann et al 2020; Domain et al 2020; Nieves-Colón et al 2019, 2018; Foley et al 2011; 

Haile, et.al, 2007). Based on laboratory and field experiments, acidic and warm conditions are 

known to promote DNA hydrolysis (the rupture of chemical bonds due to water molecules) and 

are non-conductive to long-term DNA preservation (Dommain, et.al. 2018). This has limited the 

application of these techniques to tropical regions of the planet, although these areas hold the 

greatest biodiversity on Earth containing about three quarters of all species. These technologies 

have the potential to open a window into present and past composition of ecosystems, climate, 
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etc (Ávila-Arcos et al 2022; Liu et al 2022; Lipson, et.al, 2021; Blong et at 2021; Li et al 2021; 

Li et al 2020; Khomutova et al 2019; Lacerda-Júnior et al 2019; Benn-Torres 2019, 2018; 

Dommain, et.al, 2018; Bohmann et al 2014;Boessenkool et al 2013; Rivera-Collazo, 2015; Haile, 

et.al, 2007).  

 

In 2021 the sedaDNA Scientific Society, established as a collaborative effort to promote 

best practices and increase collaborations between research groups, formed the African sedaDNA 

Working Group. They shared a paper published in 2018 where they address the challenges of 

applying sedimentary aDNA research methods in an unaltered tropical forest swamp in Uganda 

(Dommain, et.al. 2018). Their conclusions indicated that (1)metagenomic sedimentary DNA can 

provide valuable insights into past tropical biodiversity, but that further development of genomic 

databases are necessary to provide robust, detailed community reconstruction, (2) the actual 

taxonomic composition and resolution of DNA recovery would likely change  due to little 

sequencing of tropical species genomes, and (3) that until taxonomically representative databases 

are generated and further DNA taphonomic studies are completed, sedaDNA cannot be fully 

utilized for biodiversity studies in the tropics (Dommain et al., 2018).  

 

Other studies (Bremond et al., 2017; Gomez Cabrera et al., 2019; Mergeay et al., 2007; 

Epp et al., 2010, 2011; Stoof-Leichsenring et al., 2012; Boessenkool et al., 2014; Bremond et al., 

2017; Ávila-Arcos et al., 2022; Berkelmann et al., 2020; Borry et al., 2020; Bravo-Lopez et al., 

2020;Gutiérrez-García et al., 2014; Kehlmaier et al., 2017; Lewis et al., 2012; Nieves-Colón et 

al., 2019; Haile 2011; Hagan et al 2019) have shown that DNA can also persist in tropical 

lacustrine and marine sediments under high temperatures for hundreds to thousands of years. Yet 

https://sedadna.github.io/
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a better understanding of the processes of transport, deposition, preservation and degradation of 

genetic material is needed, hence DNA preservation is dependent on the different environmental 

conditions (Dommain et al., 2018).  

 

Figure 3: Ancient and Environmental DNA, where to find them (Rawlence, et al., 2014). 

 

Following this train of thought, the gap of information regarding the degradation and 

preservation processes of environmental DNA in tropical settings is still not well understood. But 

it does not mean that it is impossible for DNA to be preserved in these settings. It is dependable 

on the context of those sediments (caves, lakes, etc) and the sampling methods, hence the 

contamination of the samples with modern DNA is possible if the correct protocols are not 

followed (Capo et al 2022; Crump et al 2021; Epp et al 2019; Eisenmann et al 2018; Straube et al 

2013; Dabney et al 2013; Bollongino et al 2008; Bürgmann et al 2001).  
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Molecular Biology, Sediments, and Caribbean Archaeology 

 

 The integration of molecular biology techniques for DNA extraction of environmental 

samples in archaeological contexts can contribute to reconstruction of past environments and the 

ability to track environmental change through time, population origins and dispersals, 

domestication and other anthropogenic processes (Matisoo-Smith, 2008). For archaeological 

research, the application of these technologies can challenge master narratives established during 

the 19th and early 20th centuries (Martin-Laurent et al 2001; Miller et al 1999;); and although 

the identity of social groups cannot be reflected or demonstrated by genetic diversity, the 

reconstruction of the environment and the ecosystems surrounding these communities can better 

promote a more regional research focus of human decision making processes ( Hassan et al 

2022; Vernot et al 2021; Cajete 2020; Domain et al 2020; Sun et al 2020; Wiscovitch-Russo et al 

2020; Epp et al 2019; Hagan et al 2019; Brather 2016;Gansauge et al 2013, 2020; Smith 2011; 

Bürgmann et al 2001).  

 

 In the Caribbean, just like in sub-Saharan Africa and other tropical regions, little genomic 

investigations of the ancient environment, biodiversity, and peoples have been produced. Our 

stories, disrupted by past and modern demographic transformations, colonialism, imperialism, 

enslavement, and socio-political reorganization could benefit from the advent of genome-wide 

DNA technologies that hold the promise for a deeper holistic understanding of our environment 

and how humans interacted and reacted on these scenarios (Lipson et al 2022). As a dataset, 

eDNA - and aDNA - can be used as proxies in combination with radiocarbon dates, 

ethnobotanical remains, zooarchaeology and other datasets in order to address deep-time 

anthropogenic dynamics and long-term environmental change (Rivera-Collazo 2015; Rivera-
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Collazo et al 2018; Eaton et al 2021; Dussex et al 2021; Eisenmann et al 2018; Gougoulias et al 

2014; Griffin et al 2019; Grund et al 2014; Gutiérrez-García et al 2014; Jia et al 2022; Stilling et 

al 2014; Smith 2011).  

 The Anthropocene, suggested by Rivera-Collazo (2015) to be used interchangeably as a 

synonym of the Holocene, refers to the period after 10ka were human impacts transformed the 

environments and created landscapes useful for them. The landscapes we appreciate today (in 

modernity) are not the same as past individuals experienced since humans continue to transform 

their surroundings. In the Caribbean, the impacts of humans and environmental changes are 

considered significant only after the European colonization ca. 1490. But these changes and 

environmental information accumulates on the landscape as palimpsests of data, and the 

application of molecular biology could provide insights to information otherwise invisible in the 

archaeological record (Massilani et al 2021; Dussex et al 2021; Fernandes et al 2020; García del 

Amo et al 2020; Zhang et al 2020; Sun et al 2020; Ficetola et al 2019; Rivera-Collazo et al 2018; 

Siles et al 2018; Rivera-Collazo 2015). 

  

 Technology developments on eDNA extraction provide the opportunity to address those 

palimpsests of information on tropical environments. Giving us another dataset useful for past 

environmental reconstructions and so, better understand human decision-making processes. The 

ability to extract genomic material from sediments (sedaDNA) pushes the boundaries of what we 

know about the modification of island landscapes by providing us with a resource that is less 

destructive to the environmental and archaeological setting.  Similar to the metaphor of tearing 

pages of a book that can never be recovered  to address the practice of archaeological digging, I 

make a comparison of the sediments (the earth beneath our feet, ej’ta tierra) with a memory 
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card. This comparison comes from the capacity of the soils to preserve memory through 

remnants of eDNA (Foucher et al 2020) and ecofacts (Li et al 2021; Dussex et al 2021; Demko et 

al 2021; Eaton et al 2021; Escalera-Reyes 2020; Fernandes et al 2020; Foucher et al 2020; 

Frindte et al 2020; Lyons  2020; Griffin et al 2019; Davidson et al 2018; Dutta et al 2016; Deng 

et al 2014; Demkina et al 2008). 

 

 Thus, to access that memory stick we must increase our comprehension of eDNA 

behavior in tropical settings. Including the way it behaves in different scenarios, environments, 

and collection methods. Hence eDNA can be unstable and the samples can be easily 

contaminated, the sampling, extraction and analyzing methods should be specific for the settings 

and contexts under research. Because of this, this project functions as an initial experiment to 

start understanding eDNA behavior and start building methods to better integrate these 

techniques. 

 

The Curation Crisis 

 

 The curation crisis, that is, too much stuff with too little research, analysis, and public 

interpretation (Allen and Ford 2019) is a complex issue that affects many countries, particularly 

those with a colonial history.  In December 2005 a nonprofit organization from Washington 

D.C., (Heritage Preservation) made the first comprehensive survey of U.S. archaeological 

collections held in the public trust and found that roughly 20% of them need better care and that 

more than 40% of bulk cataloged collections have an unknown status, meaning that they had not 

recently been inspected by archaeological staff (Bayawa 2007). Insufficient space, inadequate 

funding management, and a growing collection due to Federal and State laws for archaeological 
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surveys before construction work has unbalanced the conservation system for more than 30 

years, risking the artifacts research and educational value (Childs 2022; Allen et al, 2019; 

Bawaya 2007). Some scholars suggest the reclamation of these ‘old’ collections to mitigate the 

effects of the crisis (Childs 2022; Schiappacasse 2019; Williams et al 2019; Allen and Ford 

2019; Benden et al 2019; Bremong et al 2017; Bawaya 2007)  

 

In the Caribbean, colonialism and imperialism have worsened the archaeological curation 

crisis. During the eighteenth and nineteenth centuries, the art of collecting was intertwined with 

antiquarianism and some of those collections eventually found their way to museums all over the 

world (Schiappacasse 2019). The discarding of material that is considered to hold little research 

value (e.i. soil samples) has become another threat to these ‘orphan’ collections - the term orphan 

or orphaned connote a lack of intellectual guidance, no longer accessible or actively contributing 

to archaeological research (Williams et al 2019). Now, the discipline of archaeology has many 

tools, like environmental DNA, to ask new questions of existing archaeological collections and 

new methodological and theoretical approaches that can be applied in order to reclaim these 

valuable data from these collections (Schiappacasse 2019; Allen and Ford 2019; Bremong et al 

2017; Bawaya 2007 Camp 2003;). 

 

 

Case Study  

 

 I will use my training on the application of eDNA technologies on sediment samples 

from the archaeological collection at the Human Ecology Lab at the University of California in 
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San Diego (UCSD) as my case study. With this, I intend to answer an important question: are 

there sequenceable fragments of DNA on these sediment samples? As mentioned earlier, the 

improvement of methods for the extraction of highly degraded DNA (Kapp et al 2021; Gansauge 

et al 2020; Dabney et al 2019; Epp et al 2019; Hagan et al 2019; Gansauge et al 2013; Haile et al 

2011; Bollongino et al 2008; Bürgmann et al 2001; ) and better insights on the preservation of 

DNA in tropical climate environments (Dommain et al 2020; Ficetola et al 2019; Bremond et al 

2017; Gutiérrez-García et al 2014; Boessenkool et al 2013; Stoof-Leichsenring et al 2012; Epp et 

al 2011; Epp et al 2010; Mergeay et al 2007) provide a strong framework for the application of 

these techniques in tropical contexts.  

 

 If the null hypothesis is confirmed, where no DNA is successfully extracted from the 

sediment samples, I would first suggest the experiments be repeated to address possible errors on 

the different extraction steps. There should also be experimentation between different extraction 

kits and genetic library protocols to know which combination has the best results. In the case 

where the alternative hypothesis is confirmed and genomic material (DNA) is successfully 

extracted from the samples, I suggest addressing the sediment samples on archaeological 

collections to test for DNA before discarding them.  

 

The datasets 

 

 The sediment samples used (n=27) belong to three archaeological sites on the island of 

Borikén (Puerto Rico): Tierras Nuevas (TN; n=14), Cueva María de la Cruz (CMLC; n=11), and 

La Gallera (LG; n=2). The sites, respectively located in the municipalities of Manatí, Loíza, and 
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the boundaries of Ceiba and Fajardo (Figure4&5), are all located in coastal tropical environments 

(Rivera-Collazo et al 2019; Oliver et al 2012a, 2012b; Muñoz-Guevara 2020). The samples were 

collected for geoarchaeological analysis; hence we are expecting a high level of human 

contamination due to inadequate sampling methodology.  

Tierras Nuevas is a site located on the eastern side of the Grande Manatí river mouth on 

an aeolianite terrace on the north of the island.  The site is considered the only surviving coastal 

archaeological site with ball courts in Puerto Rico given the impact of agriculture over most of 

the other reported sites (Rivera-Collazo et al 2019-report in progress). Approximately 70 km 

from this site we find Cueva María de la Cruz, a cave located near the Grande de Loíza river 

around 1500m inland from the coast. The last site, La Gallera, is located at the east of the island, 

in the vicinity of the Damajagua river near the Puerto del Rey marine (Muñoz-Guevara, L. V. 

2020).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The distribution of the archaeological sites on the island. 1. Tierras Nuevas, Manatí. 2. Cueva María de la 

Cruz, Loiza. 3. La Gallera, Ceiba.  
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Figure 5: The archaeological sites. 1. Tierras Nuevas, Manatí. 2. Cueva María de la Cruz, Loíza.  3. La Gallera,  

Ceiba.  

 

Methods 

 All sediment samples were stored at the Human Ecology Lab facilities at UCSD. Under 

the supervision of Dr. Isabel Rivera-Collazo, the sediments resided in the lab’s fridge at 6ºC. 

Approximately 3 g were collected for each sample, and they were transported to UC Santa 

Cruz’s (UCSC) Paleogenomics Lab, where Dr. Rachel Meyer mentored me on the techniques 

and methods used in environmental DNA and guided me through the entire process.  

  

For the first step, DNA extraction, approximately 50 mg of each sediment sample were 

mixed with a lysis buffer in a 2 ml screw cap tube to tear the cell apart and free the genomic 

material. This happens overnight while incubating at 37 ºC. Next day, the Rohland protocol was 

followed to extract and separate the genomic material from the sediment. Quantification using 
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the QuietFlex Fluorometer and Agilents 5200 Fragment Analyzer (See fragment Analyzer data 

reports) were performed and DNA was successfully extracted from the sediments. The DNeasy 

PowerSoil Pro Kit from Qiagen was selected in order to increase the efficiency in the isolation of 

DNA. After this, single-stranded DNA library preparation was realized following the Spotlight 

protocol (Kapp et al 2021).  

 

 Kapp’s Spotlight protocol was designed thinking of applying it on the extraction of very 

degraded DNA from rootless hairs on forensic settings. Considering that the sediment samples 

were taken for geoarchaeological analysis - not for genomic analysis -, spent some time in the 

HELab’s fridge storage and they come from a tropical climate context, among other issues, we 

expect that the DNA present is  highly degraded and to present a high level of modern DNA 

contamination (See Table 1). Quantitative PCR, to know the amount of DNA present in the 

sample, and Indexing PCR proceeded in order to attach an adapter design to interact with a 

specific sequencing platform, finalizing the genomic library preparation process for 16 samples 

having them ready for sequencing. Quantification using the QuietFlex Fluorometer and Agilents 

5200 Fragment Analyzer was performed again (See Table 2).    

 

 Back at UCSD, I received guidance from my mentor Dr. Kelly Fox and Dr. Elsa Molina - 

director of the Next Generation Sequencing Core at the Salk Institute - in order to better address 

the data collected during the experiment. In collaboration with personnel from Agilent, we have 

identified the presence of highly degraded DNA on some of the samples, yet it is still impossible 

to say if they come from ancient or degraded modern DNA. To fully know this, sequencing must 

be performed. Sequencing using Illumina’s NextSeq was recommended because it is cost-
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effective and it has the option to do 2x100bp reads - which means each library is sequenced 2 

times, from 5’ to 3’ and reverse. This would give us a basic overview of the genomic material 

present in each library. 

 

 The sequencing raw data was shared through SFTP server, from where it was 

downloaded and uploaded into mBRAVE (https://mbrave.net/), a multiplex barcode research and 

visualization environment (Ratnasingham 2019). This platform is a cloud based data storage and 

analytics platform with standardized pipelines and a sophisticated web interface for transforming 

raw high-throughput sequencing (HTS) data into biological insights by integrating analytical 

methods and links to the BOLD system (Barcode of Life Data-Bold Systems v4) for reference 

datasets (Ratnasingham 2019).  

 

Table 1: Sample description and values for Qubit and Fragment Analysis after extraction (green) and after library 

preparation (yellow). Only 16 of the initial 27 samples were selected for sequencing because as can be seen from the 

Qubit data, after library preparation some samples did not present enough DNA. Samples 18 and 27 are the same 

samples, yet present different values. This could suggest possible contamination during the laboratory 

experimentation. In addition, you can see sample 30 (control) which indicates Qubit value after library preparation, 

which also suggests contamination of the samples.  

 

Sample 
Archaeologi

cal Site 
Description 

Qubit 

(ng/uL) 

after 

extractio

n 

Fragment 

Analyzer 

*Peaks* 

Fragment 

Analyzer 

(ng/uL) 

Qubit 

(ng/uL) 

after 

Library 

Preparati

on 

Fragment 

Analyzer 

*Peaks* 

Fragment 

Analyzer 

(ng/uL) 

S1 La Gallera 45cmbd 5.2 56 2.1568 41.8 203 45.0733 

S2 La Gallera 4cmbd 2.36 51 0.906 5.04 192 89.0562 

S6 

TNAP 

Bloque 1 Strata B 23-30cmbd 3.33 57 1.4423 8.92 200 8.6786 

S7 

TNAP 

Bloque 1 Strata C 30-35cmbd 4.46 55 1.3614 <0.05 - - 

S8 

TNAP 

Bloque 1 Strata D1 2.16 51 0.5948 <0.05 - - 

S9 

TNAP 

Bloque 1 Strata D2 2.97 52 0.9102 4.02 194 1.5619 

https://mbrave.net/
http://www.boldsystems.org/


 

 17 

 

 

S10 

TNAP 

Bloque 1 Strata D3 2.22 51 0.6063 4.89 192 276.8994 

S11 

TNAP 

Bloque 1 Strata D4 2.81 54 0.8126 <0.05 - - 

S12 

TNAP 

Bloque 1 Strata E 1.77 51 0.3594 <0.05 - - 

S13 

TNAP 

Bloque 1 Strata F 0.844 449 0.2761 <0.05 - - 

S14 

TNAP 

Bloque 1 Strata G 0.636 50 0.2135 <0.05 - - 

S3 

TNAP 

Bloque 2 Level 4 1.01 51 0.2225 36.1 207 39.9557 

S4 

TNAP 

Bloque 2 Level 5 1.23 52 0.4465 39.7 205 37.3056 

S5 

TNAP 

Bloque 2 Level 6 0.714 52 0.512 16.1 203 7.1917 

S27 

TNAP 

Bloque 2 Level 1 6.79 67 32.4908 2 221 0.737 

S28 

TNAP 

Bloque 2 Level 3 2.06 51 0.5408 2.43 221 0.5493 

S29 
TNAP 

Bloque 2 
Level 2 4.14 

64 2.2538 5.51 222 2.7361 

S15 CMDLC level 6 unscreened soil 3.05 436 0.4048 0.577 error - 

S16 CMDLC Strata A 3.05 70 1.4599 28.8 210 37.2652 

S17 CMDLC Strata B 2.55 61 1.1381 <0.05 - - 

S18 CMDLC Strata C 0.999 55 0.5779 <0.05 - - 

S19 CMDLC Strata C arriba 1.64 56 0.6581 <0.05 - - 

S20 CMDLC Strata C abajo 0.809 58 0.3271 <0.05 - - 

S21 CMDLC Strata D 0.24 50 0.0689 <0.05 - - 

S22 CMDLC 

Strata E; associated to 

manatee bone 0.929 55 0.6006 <0.05 - - 

S23 CMDLC Strata E 0.936 56 0.3672 <0.05 - - 

S24 CMDLC 

Strata E; fondo del 

elemento 1.36 - - <0.05 - - 

S25 CMDLC Strata C 1.08 56 0.5308 5.56 221 2.4846 

S26 CMDLC Superior Strata 9 11.6 28 0.2515 0.849 error - 

S30 BLANK Control <0.05 - - 0.586 142 0.3027 
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Table 2: Library samples description, Qubit concentration, Fragment Analyzer peaks and concentration recorded. 

Sample 15 and 26 did not seem to have sufficient DNA for the Fragment Analyzer to record. This could suggest 

extreme levels of DNA degradation for these samples. Yet, sample 15 was validated by the mBRAVE platform 

while sample 26 was not. Similarly, for sample 30 (control), only the first read (R1) was accepted by the mBRAVE 

platform. The reasons for the reasoning of the platform to accept or reject sample data is still unclear. 

 

Sample # 

Archaeological 

Site Description 

Depth 

(cmbd) Qubit (ng/uL) 

Fragment 

Analyzer 

*Peaks* 

Fragment 

Analyzer 

(ng/uL) 

1 La Gallera 

Soil in related to 

human burial 45 41.8 203 45.0733 

2 La Gallera 

Sample from inside 

ceramic 4 5.04 192 89.0562 

6 

TNAP Bloque 

1 Strata B 20-25  8.92 200 8.6786 

9 

TNAP Bloque 

1 Strata D2 60-65  4.02 194 1.5619 

10 

TNAP Bloque 

1 Strata D3 65-70  4.89 192 276.8994 

3 

TNAP Bloque 

2 Level 4 26-34  36.1 207 39.9557 

4 

TNAP Bloque 

2 Level 5 40-48 39.7 205 37.3056 

5 

TNAP Bloque 

2 Level 6 54-59 16.1 203 7.1917 

27 

TNAP Bloque 

2 Level 1 0-4 2 221 0.737 

       

28 

TNAP Bloque 

2 Level 3 18-23 2.43 221 0.5493 

29 

TNAP Bloque 

2 Level 2 8-16 5.51 222 2.7361 

15 CMDLC 

Level 6 - unscreened 

bulk soil 60 0.577 error - 

16 CMDLC Strata A 0-20 28.8 210 37.2652 

25 CMDLC Strata C 60-90 5.56 221 2.4846 

26 CMDLC Strata C9 0-13 0.849 error - 

30 BLANK BLANK BLANK 0.586 142 0.3027 
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Figure 6: Workflow chart:  In order to experiment on DNA extraction from sediments, the samples had to be 

transported from UCSD to UCSC to use the Paleogenomics Lab facilities. Extraction (Rohland et al 2018) and 

genomic library preparation protocols (Kapp et al 2021) were consulted with Dr. Rachel Meyer (UCSC) to increase 

the chances of extracting genomic material. The Spotlight protocol was designed to extract highly degraded DNA 

from hair in forensic settings. Hence the genomic material found on the sediment samples were very degraded, this 

library preparation protocol seemed like the best technique to apply. Sequencing was performed using Ilumina’s 

NextSeq sequencer and 2x100bp reads were performed. Finally, the data analysis was conducted using the 

mBRAVE metagenomic platform.  
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Results 

 

The extraction of genomic material from the genomic libraries from 15 of the 16 libraries 

was successful. As expected, the sequences present high levels of degradation with 202.357 as an 

average pick size recorded by the fragment analyzer. For the bioinformatics data analysis portion 

of research, I used the mBRAVE platform which filtered and processes the data automatically 

once all the sequence data was uploaded to the system. Sample 26 was unable to upload into 

mBRAVE because of an *unable to validate the sample* error, while for sample 30 only the first 

read (R1) was uploaded successfully. Sample 26 had no fragment analyzer peaks recorded and a 

0.849 Qubit concentration value, indicating that the very small amount of DNA presented high 

levels of degradation. 

The rest of the data set was successfully uploaded to the software; and although they 

present a high number of reads - which reflects the raw sequence data obtained from each 

metagenomic sample - have not yet confirmed the presence of any Operational Taxonomic Unit 

(OTU). In other words, it was unable to find clusters of sequence similarities that could represent 

a taxonomic unit of a species or genus (Figure 7).  
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Figure 7- For the overall samples, the mBRAVE platform was unable to identify any OTU. Indicating that although 

there was genomic material sequenced, they are far too degraded for them to be useful for taxonomic matching.  

 

 

 

 

Conclusion  

  

 As a recap, the application of environmental DNA is in constant improvement. Since the 

development of PCR and NGS technologies the amount of research projects engaging with these 

methods have increased exponentially (Taberlet et al 2018;) although focusing on temperate and 

polar regions of the globe. However, the application of these methods on tropical environments 

demands more attention in order to close the knowledge gap exacerbated by global north biases 

and colonia/imperial legacies. Therefore, focused regional research is needed to better 
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understand the taphonomy of sedimentary DNA considering diverse sampling regions in tropical 

environments (Gagelidze et al 2018).  

 

The use of the Spotlight genomic library preparation protocol (Kapp et al 2021) seems to 

be a useful tool when working with highly degraded fragments of DNA. The continued 

development of methods and protocols like this must continue in order to improve biomolecular 

analysis. The bioinformatic analysis of the sequences determined reads for the genomic material, 

although it was unable to match OTU’s. I understand this in two ways: first, it could be that 

hence the levels of degradation of the samples were drastic, the platform simply cannot find 

taxonomic matches for us to identify. Yet, considering that research biases have excluded the 

tropical regions of the planet, there could be a limited database collection for the platform to 

make those taxonomic connections.  

 

More research must be done in order to improve the analysis of environmental DNA in 

tropical regions. We can say that a portion of the hypothesis was somehow confirmed, we were 

able to extract genomic material from the archived sediment samples. Improvements in protocols 

of collection and sampling must be considered to minimize the possibilities of contamination 

with the use of gloves and disinfected equipment. Storage of the samples in an ice cooler or cold 

environment after collection must be considered unless DNA extraction is conducted at the time 

of sample collection. 

  

A lot is yet unknown, and although the discipline has improved exponentially, there is 

still space for improvement. The biases regarding the possible preservation of DNA in tropical 
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contexts ignore micro-climate regions that could have better possibilities of eDNA preservation. 

But unless we do the experiments, we will simply continue to replicate over simplistic 

generalizations that marginalize these regions once again. The soil preserves our memory, we 

just need to find the correct way to access it.  

  

Future Considerations 

  

 Due to limitations during this MA research project, there are analyses yet to be applied 

to these samples - like degradation pattern analysis, which could give us better insight on the 

quality of the DNA samples and could help us better determine if the genomic material could be 

considered ancient or just highly degraded/contamination. In addition, I would like to continue 

my academic development in environmental DNA analysis considering different sampling 

methods in different tropical contexts like cave, mangrove, and lacustrine sediments, in order to 

compare and have a better understanding of the taphonomy behavior of DNA on tropical 

environments.  
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Appendix 
 

1. Fragment Analyzer data for the genomic libraries (August 25, 2022) 
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