Title

Genomic scans reveal multiple mito-nuclear incompatibilities in population crosses of the copepod Tigriopus californicus

Permalink

https://escholarship.org/uc/item/347083xx

Journal

Evolution, 73(3)

ISSN

0014-3820

Authors

Lima, Thiago G
Burton, Ronald S
Willett, Christopher S

Publication Date

2019-03-01
DOI
10.1111/evo. 13690

Peer reviewed

GENOMIC SCANS REVEAL MULTIPLE MITO-NUCLEAR INCOMPATIBILITIES IN POPULATION CROSSES OF THE COPEPOD TIGRIOPUS CALIFORNICUS

Thiago G. Lima ${ }^{\text {a,b, }, ~ C h r i s t o p h e r ~ S . ~ W i l l e t t ~}{ }^{\text {a }}$ and Ronald S. Burton ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599.
${ }^{\mathrm{b}}$ Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, 92037.
${ }^{1}$ To whom correspondence should be addressed: Thiago G. Lima, MBRD, Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093; phone: (858) 534-7827; email: thiago.ghirello.lima@gmail.com

Running head: Nuclear-nuclear versus mito-nuclear incompatibilities

Keywords: Postzygotic reproductive isolation; hybrid inviability; Tigriopus; Pool-seq

Data archival location: Raw Illumina reads were deposited in NCBI SRA (XXXX); allele frequency data were deposited at Dryad (XXXXX)

Abstract

The evolution of intrinsic postzygotic isolation can be explained by the accumulation of Dobzhansky-Muller incompatibilities (DMI). Asymmetries in the levels of hybrid inviability and hybrid sterility are commonly observed between reciprocal crosses, a pattern that can result from the involvement of uniparentally inherited factors. The mitochondrial genome is one such factor that appears to participate in DMI in some crosses but the frequency of its involvement versus biparentally inherited factors is unclear. Here we assess the relative importance of incompatibilities between nuclear factors (nuclear-nuclear) versus those between mitochondrial and nuclear factors (mito-nuclear) in a species that lacks sex chromosomes. We used a Pool-seq approach to survey three crosses among genetically divergent populations of the copepod, Tigriopus californicus, for regions of the genome that are affected by hybrid inviability. Results from reciprocal crosses suggest that mito-nuclear incompatibilities are more common than nuclear-nuclear incompatibilities overall. These results suggest that in the presence of very high levels of nucleotide divergence between mtDNA haplotypes, mito-nuclear incompatibilities can be important for the evolution of intrinsic postzygotic isolation. This is particularly interesting considering this species lacks sex chromosomes, which have been shown to harbor a particularly high number of nuclear-nuclear DMI in several other species.

Keywords: Postzygotic reproductive isolation; hybrid inviability; Tigriopus; Pool-seq

Introduction

The formation of reproductive isolation through the evolution of hybrid incompatibilities (intrinsic postzygotic isolation), can often be attributed to the evolution of Dobzhansky-Muller incompatibilities (DMI [(Dobzhansky 1936; Muller 1942)]). One pattern that is observed in these crosses is that in reciprocal crosses asymmetries in hybrid inviability and hybrid sterility are commonly found. This pattern of asymmetry is called Darwin's corollary and is likely to result from DMI that have uniparentally inherited genetic elements comprising at least one partner in the interaction (Turelli and Moyle 2007). These uniparentally inherited factors can include things such as mitochondrial DNA (mtDNA), chloroplast DNA (cpDNA), sex chromosomes, and maternal transcripts. While sex chromosome often show up in many crosses as making key contributions to DMI (Tao et al. 2003; Masly and Presgraves 2007), in other crosses including those without sex chromosomes cytoplasmic factors such as mtDNA and cpDNA are increasingly showing up as important contributors (Burton et al. 2013). In animal taxa for which evidence for mito-nuclear interactions has been found it is not generally clear what are the relative contributions of mito-nuclear interactions versus nuclear/nuclear interactions to DMI leading to postzygotic reproductive isolation.

The accumulation of mito-nuclear incompatibilities is facilitated by a number of features shared by mtDNA in a variety of animal taxa, that might lead to it having outsized impacts despite its small size in comparison with the nuclear genome. One factor is that mtDNA generally has a higher rate of sequence evolution than the nuclear genome in most animal taxa (Willett 2012). In most cases mtDNA is maternally inherited and as such its haploid nature can expose DMI that would otherwise be masked in a diploid setting, (analogous to heteromorphic sex chromosomes). Additionally rapid evolution due to genomic conflicts can be particularly
pronounced given the different patterns of inheritance between nuclear and mtDNA genomes (Gershoni et al. 2009; Chou and Leu 2015). The evolution of genomic conflicts could be accelerated in many taxa by the higher mutation rate of mtDNA compared to nuclear DNA. Combined, the faster rate of sequence evolution mito-interacting genes and the existence of genomic conflicts in these genes could drive the evolution of compensatory changes in nDNA within populations and could lead to DMI between populations or species where gene flow is absent or low (Burton and Barreto 2012; Burton et al. 2013).

Strong support for the importance of mito-nuclear DMI has been found in the copepod Tigriopus californicus, a species that lacks sex chromosomes. This copepod, which lives in high intertidal pools on the west coast of North America, has polygenic sex determination with several unlinked factors contributing to sex determination (Voordouw and Anholt 2002; Alexander et al. 2014; 2015). Tigriopus californicus populations occupy rocky pools on headlands that are often isolated from other headlands by long stretches of sandy beach. Gene flow is highly restricted amongst populations (Burton 1997; Willett and Ladner 2009), and levels of polymorphism within populations are very low (Willett 2012; Pereira et al. 2016). Reciprocal crosses between divergent clades within this species show differences in patterns of reproductive isolation depending on the direction of the cross (Ganz and Burton 1995; Peterson et al. 2013), suggesting that mito-nuclear incompatibilities may be important for the formation of these reproductive barriers. When populations with lower levels of divergence are crossed, first generation hybrids $\left(\mathrm{F}_{1}\right)$ are usually equal in fitness, or even superior, to the parental populations. while second generation hybrids $\left(\mathrm{F}_{2}\right)$ have, on average, lower fitness (Burton 1987; Edmands 1999; Willett 2008). When F_{2} and F_{3} hybrids are backcrossed to the maternal population, where
there is an increase in the proportion of the nDNA that matches mtDNA, hybrid fitness is rescued (Ellison and Burton 2008b).

Here, we were interested in determining the relative importance of nuclear-nuclear versus mito-nuclear DMI for hybrid breakdown in early stages of reproductive isolation between populations of T. californicus. We used a Pool-seq approach (Schlötterer et al. 2014) to sequence the genomes of pools of F_{2} hybrids from three different pairs of reciprocal crosses, looking for deviations from expected allelic frequencies to determine regions of the genome that were affected by hybrid inviability. We show that mito-nuclear DMI are in general more common than nuclear-nuclear DMI, but that the relative contribution of different types of incompatibilities are unique in the different crosses.

Material and Methods

Population sampling, crossing design, DNA isolation and sequencing

Tigriopus californicus were collected from intertidal rocky pools at four sites in California, Abalone Cove ($\mathrm{AB}, 33^{\circ} 44^{\prime} \mathrm{N}, 118^{\circ} 22^{\prime} \mathrm{W}$), Catalina Island (CAT, $33^{\circ} 27^{\prime} \mathrm{N}, 118^{\circ} 29^{\prime}$ W), San Diego (SD, $32^{\circ} 44^{\prime} \mathrm{N}, 117^{\circ} 15^{\prime} \mathrm{W}$), and Santa Cruz (SC, $36^{\circ} 57^{\prime} \mathrm{N}, 122^{\circ} 03^{\prime} \mathrm{W}$). Animals were maintained in mass cultures in 400 mL beakers in seawater at 35 ppt and fed powdered commercial flake fish food as well as natural algae growth. Cultures were kept in incubators at $20^{\circ} \mathrm{C}$ with 12 h light:dark cycle. Males and females used in crosses were sampled from culture beakers so that different crosses between the same populations included some of the genetic diversity of natural populations. Reciprocal crosses were setup between the AB populations and the SD, CAT and SC populations in 24 well culture plates, with a single pair of copepods in each well. F_{2} hybrid breakdown in viability has been shown for the $\mathrm{SD} \times \mathrm{AB}$ and SC
x AB crosses (Burton 1987; Ellison and Burton 2008b), but no studies have been published using the CAT the population (although population crosses with similar levels genetic divergence typically show hybrid breakdown in this species (Edmands 1999)). Virgin females were obtained by separating females from clasped pairs (Burton 1985), and their non-mated status was confirmed by monitoring them in individual wells over a week, at which point males were added to each well. Twenty-four crosses between the parental populations were setup. F_{1} hybrids from these crosses were separated into individual wells before they reached sexual maturity, to prevent siblings from mating with each other. $\mathrm{F}_{1} \times \mathrm{F}_{1}$ crosses were setup with a single pair per well again, and outcrossing was insured by crossing siblings from one cross to copepods from as many different crosses as possible, maximizing the number of combinations between the original 24 parental x parental crosses (within the same two population crosses). In both parental and F_{1} $\mathrm{x} \mathrm{F}_{1}$ crosses, male fathers were removed from the cross as soon as nauplii were observed, while females were kept in the wells as they can produce multiple egg clutches from the single mating (Fig. 1a).

Crosses with the SD, CAT and SC female parents were setup and sequenced between 2012-2014. For each cross, 300 adult F_{2} hybrids (150 males and females) were collected and pooled for DNA extraction. Crosses with the AB females were setup and sequenced from 20152016. For each of these crosses, two replicates of 100 males and 100 females were collected and pooled for DNA extraction. For the SDf x ABm and SCf x ABm crosses, DNA was isolated using the Qiagen DNeasy blood and tissue kit, with the suggested modification for extraction from insects (Qiagen). For all other crosses, DNA was isolated using a Phenol:Chloroform procedure (Sambrook and Russell 2006). Samples were sequenced as 100-bp paired-end (PE) libraries on the Illumina HiSeq 2000 for the SDf x ABm and SCf x ABm crosses, as 125-bp PE
libraries on the Illumina HiSeq 2500 for the CATf x ABm cross and as 100-bp PE libraries on the Illumina HiSeq 4000 for the ABf x SDm, ABf x CATm and ABf x SCm crosses. Results for the SDf x ABm cross have been published in Lima and Willett (2018). The difference in sequencing platforms used here should not affect or bias SNP determination or allele frequency estimation, as errors rates for these sequencing platforms are not significantly different.

Generation of consensus references for populations

Lima and Willett (2018) generated an AB reference genome sequence using the mapping file (BAM) available at (https://i5k.nal.usda.gov/Tigriopus_californicus; v1.0), where AB reads were mapped to the SD reference. We followed the same procedure to create consensus reference genomes for CAT and SC , by extracting the consensus sequences from the BAM files (CAT and SC reads mapped to the SD reference) using the Samtools and Bcftools pipeline (Li et al. 2009; Li 2011). We then compared the references between each pair of populations used in the three crosses, and made them equivalent by adding " N "s to any position where either the AB or the alternative populations also had an " N ". This maintains the length of the references, but makes them comparable in terms of where reads can map, which is particularly important when the SD reference is considered (this population was de novo assembled, using diverse sequence stes, into a high-quality assembly [Barreto et al. 2018]). The purpose of creating these references is to allow the mapping of reads from both parental populations as well as hybrids, in order to identify SNPs that are fixed between populations in each cross. We take a very conservative approach that only considers regions of the genome where reads map with high alignment score, ignoring regions where divergence is too high and confidence in SNP calling may be low (see below for further details).

Anchoring of scaffolds to chromosomes

As noted in Lima and Willett (2018), a newer reference genome for the SD population has recently become available (v2) (Barreto et al. 2018), where greater than 90% of the genome is anchored to chromosomes. We used this reference to anchor and order the scaffolds from the reference assembly used in the present study (v1) by BLASTing scaffolds from the v 1 assembly to the v 2 assembly, and using these alignments to anchor and order the v 1 scaffolds into the $12 T$. californicus chromosomes. This increased the percentage of the genome that is anchored to chromosomes from $\sim 30 \%$ to approximately 97% of the v1 reference length. In the process of anchoring the v1 scaffolds it was determined that a few of these scaffolds were misassembled, which in some cases can be observed as sharp changes in allele frequency in the hybrid datasets. We removed these positions from the allele frequency plots. These misassembled regions can be observed as small sections of the chromosome where allele frequency clearly deviates from the trend in allele frequency change across the rest of the chromosome (Fig. S1a-3a).

SNP database between parental populations

Populations of T. californicus have been shown to be genetically stable and highly segregated, with nearly no gene-flow between populations that are geographically very close (Burton 1997; Willett and Ladner 2009; Pereira et al. 2016). Shared polymorphism in T. californicus decreases exponentially with divergence, and even populations with $\sim 1 / 3$ the level of divergence of the crosses presented here, share 0.6% or less of variable sites (Pereira et al. 2016). Within population polymorphism is also extremely low (Willett 2012; Pereira et al. 2016). For the purpose of this study, we were interested in establishing a list of SNPs to be used as
markers across the genome (and not as a thorough survey of population differences). We aimed to find SNPs that are fixed between the populations used in each cross. This means that reciprocally fixed differences between populations are likely to reflect long term population differences. We accomplished this by a) performing reciprocal mapping of reads of a population to the reference sequence of another, b) considering only those position where all mapped reads showed an alternative nucleotide to the reference ("fixed differences"), and c) comparing the reciprocal mappings and keeping only SNP that were "fixed differences" in both mappings.

Reads were mapped reciprocally to the parental populations' reference of each cross, using BWA with default parameters. Only reads that mapped with a MAPQ score >20 were kept, which excludes reads that map with low alignment score. We used PoPoolation2 (Kofler et al. 2011b) to find positions across the genome where all reads had an alternative nucleotide to that of the reference, considering only biallelic positions with coverage ≥ 10 (CAT mapped to $\mathrm{AB}, 20 \mathrm{X}$ average coverage), $\geq 15 \mathrm{X}$ (SD mapped to $\mathrm{AB}, 35 \mathrm{X}$ average coverage) and $\geq 20 \mathrm{X}$ for all other comparisons (SC mapped to $\mathrm{AB}=50 \mathrm{X}$; and 46 X for AB mapped to the other three populations). We chose different lower coverage cutoffs because the depth of coverage differed for each population. Since we are only considering SNP positions with 100% of the reads having an alternative nucleotide to that of the reference sequence, the difference in coverage between populations should not have a significant effect on SNP selection. Populations with lower coverages (CAT and SD), may include SNP positions that are not quite fixed between these populations and AB . Since all three populations are compared to the reciprocal mapping of AB reads, with a minimum coverage of 20X, many of these positions would be excluded. Furthermore, SNP allele frequencies were averaged in sliding windows (see below), and
chromosome wide patterns were considered, making the effects of a posible small number of non-fixed SNP insignificant.

Hybrid read mapping, SNP identification, and allele frequency calculation

Illumina reads were trimmed for quality using PoPoolation (Kofler et al. 2011a) discarding bases with Phred quality scores lower than 25 , and keeping reads of at least $50-\mathrm{bp}$ after trimming. We followed the pipeline from Lima and Willett (2018) from mapping through allele frequency calculation and smoothing. This involved mapping reads from each cross to both of their parental genomes using BWA MEM with default parameters (Li and Durbin 2009), and keeping reads that mapped with MAPQ score >20. Read counts for every variable position, as well as population specific allele counts were determined using PoPoolation 2. Only biallelic positions were considered where the minor allele had a minimum coverage of at least four. Allele frequencies were calculated as the AB allele frequency for each of the three pairs of crosses. Due to the large amount of noise in the allele frequency data (likely due to stochastic differences in coverage between SNPs, as well as the sampling of alleles from a pool), we averaged the allele frequency for a sliding window of 3000 consecutive SNPs, moving the window by 3000 SNPs each step (non-overlapping windows; Table 1). This sliding window size was chosen following Lima and Willett (2018), as it minimizes noise in allele frequency estimation, compared to smaller windows, without losing any signal. If the sliding window is done by position, averaging window sizes of 250 Kbp , the pattern remains the same (Fig. S1b-S3b).

Identification of hybrid inviability patterns caused by nuclear-nuclear vs mito-nuclear incompatibilities

Statistical tests to determine if the allele frequency differs between the reciprocal crosses in F_{2} hybrids are conservative when using read counts and coverage, unless coverage is much greater than 100X. That is because even if one of the homozygous genotypes is completely lethal, the allele frequency would only change by 0.167 in either direction. Instead we determined if the overall allele frequency distribution between reciprocal crosses was the same using the Kolmogorov-Smirnov test (KS test). Since allele frequencies from SNPs in close proximity would not be independent from each other, we compared the distributions of allele frequencies after averaging allele frequencies in sliding windows of 2 Mbp . This decreased the number of data points per chromosome to 6-8 allele frequency windows. In comparing allele frequency distributions for the entire genome, or for each chromosome (see below) we expect that if the pattern observed was caused by incompatibilities between nuclear factors (nuclearnuclear), the allele frequencies are expected to be skewed in the same direction in each reciprocal cross. On the other hand, incompatibilities caused by problems between the nuclear genome and mitochondrial genome are expected to lead to allele frequencies that are skewed towards the population that matches the mitochondria. This may occur in only one direction of the cross or in both directions, resulting in allele frequencies that are skewed in opposite directions in the reciprocal crosses. A third pattern is also possible, where nuclear alleles from one population are favored while having mitochondria from another population; we term this a "mismatch" pattern. Again, this may happen in one direction of the cross, with the other direction showing no skew, or in both directions with opposite allele frequencies (Fig. 1b-c).

To differentiate among these three potential patterns, we first looked for mito-nuclear incompatibilities or mismatch patterns by determining the 10% and 90% allele frequency quantiles for each chromosome for each cross, looking for chromosomes where the 10% quantile
of a cross did not overlap with the 90% quantile of its reciprocal cross. The pattern of skew in relation to the mtDNA-type in the cross would then determine if the deviation was consistent with a mismatch or mito-nuclear incompatibility pattern for each chromosome. To detect nuclear-nuclear incompatibilities, where the allele frequencies between reciprocal crosses are expected to show skews in the same direction, we used the method described in Lima and Willett (2018) which defined cutoffs for deviations from the expected allele frequency of 0.5 based on deviations seen in a naupliar dataset (Fig. 1c). The nauplii provide an estimate of experimental error in the estimation of these frequencies because little to no genotype specific selection occurs before nauplii hatch and no evidence of meiotic drive from F_{1} parents has been describe in this species. Studies that compared nauplii to adults showed that nearly no deviations in expected Mendelian ratios of segregation occur prior to, or just after hatching, with nearly all effects of hybrid inviability taking place as nauplii develop post hatching (Willett and Ladner 2007; Pritchard et al. 2011; Foley et al. 2013; Willett et al. 2016; Lima and Willett 2018). We therefore used this SDf x ABm F2 naupliar dataset to calculate the 10% and 90% allele frequency quantiles for all chromosomes combined and found that these fell at ± 0.018 relative to the mean allele frequency (Fig. S4). We take a slightly more conservative cutoff and look for chromosomes where the 10% and 90% allele frequency quantiles were ± 0.02 away from 0.5 (see Table S1 for full results).

Divergence between populations

In order to determine the amount of genome-wide divergence between each of the pairs of populations used for crosses, we calculated the number of synonymous changes per synonymous sites $(\mathrm{d} S)$ for all genes annotated in the T. californicus genome (13,449 genes).

Alignments were done for each gene separately using PRANK (Löytynoja 2013), and positions where the quality of the alignment was low were removed with Gblocks (Castresana 2000), keeping codons intact. Alignments with length $<100 \mathrm{bp}$ were removed. Estimation of $\mathrm{d} S$ was done in PAML 4.8 (Yang 2007) in the program YN00, in pairwise comparisons between AB and the other populations. Only two genes showed $\mathrm{dS}>1$ across any of the combinations; removing or including these genes in the analysis did not affect the final dS average (individual values for each are in Table S2). While $\mathrm{d} S$ was calculated for pairwise comparisons, the alignment for all four populations was used, removing any position where any population had a gap or " N " in the sequence. This was done to minimize the effect that differences in assembly quality can cause when estimating $\mathrm{d} S$. Values were averaged across all genes for each pairwise comparison (\pm standard error; Table 1). We also performed a sliding window averaging of $d S$ using window sizes of 250 kbp , as a way to determine if any chromosomal regions have particularly high levels of divergence (Fig. S1b-S3b).

Results

Descriptive analysis

 which yielded between 2.1-2.4 million SNPs and 698-805 windows of 3000 SNP per cross, with mean window sizes ranging from 222,464-256,820 bp (Table 1). Divergences between AB and the other populations were calculated as the average genome-wide $\mathrm{d} S$, a measure that approximates the level of genomic divergence between the populations. Values for $\mathrm{d} S$ show that divergences between $A B-S D$ and $A B-C A T$ are very similar, while $A B-S C$ is slightly more divergent (Table 1).

Patterns of hybrid inviability across different population crosses

We were interested in determining the relative importance of nuclear-nuclear versus mito-nuclear incompatibilities by comparing allele frequency changes caused by hybrid inviability between reciprocal crosses. These two types of incompatibilities can be distinguished by comparing reciprocal crosses, since the average composition of the nuclear genome of these crosses should be the same, but the mtDNA would differ. As discussed previously, allele frequency changes that are caused by nuclear-nuclear incompatibilities should affect both reciprocals of the cross equally, while mito-nuclear incompatibilities would affect each direction of the cross differently (though these incompatibilities need not be symmetric) (Fig. 1c). To test this, we compared genome-wide allele frequency distributions between the reciprocal crosses using a Kolmogorov-Smirnov test (KS test). The distributions of allele frequencies were significantly different between the reciprocal crosses for all three crosses (KS test: $\mathrm{SDxAB}: \mathrm{D}=$ 0.226, $N=84, P=0.027 ;$ CATxAB: $\mathrm{D}=0.398, N=83 P<3.017^{-6} ; \mathrm{SCxAB}: \mathrm{D}=0.298, N=84$ $P=0.001$), indicating that hybrid inviability due to mito-nuclear interactions may have a significant effect on the genome-wide allele frequency patterns (Fig. 2).

Mito-nuclear incompatibilities

When referring to each direction of a cross, we will use a two-letter acronym as follows: DA (SDf x ABm, AD (ABf x SDm), CA (CATf x ABm), AC (ABf x CATm), SA (SCf x ABm) and AS (ABm x SCf). Patterns consistent with mito-nuclear incompatibilities affect DA for chromosomes 8 and 10, and AD for chromosomes 4 and 7 (Fig. 3a). CA is affected by mitonuclear incompatibilities for chromosomes 1, 2, 9 and 10, and AC for chromosome 1 and 3 (Fig.

3b). Chromosome 1 shows signs of a reciprocal mito-nuclear incompatibility between CA and AC. SA and AS do not show evidence of strong mito-nuclear incompatibilities, but for four chromosomes (c6, c8, c9 and c10) the allele frequencies between the reciprocal crosses are divergent and may indicate the presence of weaker mito-nuclear incompatibilities (Fig. 3c).

Nuclear-nuclear incompatibilities

When we consider nuclear-nuclear incompatibilities, DA and AD show strong allele frequency skews in chromosomes 1 and 3 both with an excess of AB alleles (Fig. 3a; Table S1 shows full results for all crosses). CA, AC show signs of nuclear-nuclear incompatibility in chromosome 6 (Fig. 3b), and SA and AS have skewed allele frequencies consistent with nuclearnuclear incompatibilities for chromosome 5 (Fig. 3c). In both cases, the magnitude of the skew is different between the reciprocal crosses, indicating either variation in the expression of the incompatibility, or a more complicated combination of the nuclear-nuclear and mismatch patterns (Fig. 3).

Mismatch pattern

Surprisingly, a mismatch pattern is observed for at least one chromosome in all three crosses. A portion of chromosome 11 is skewed in DA with excess AB alleles, but no mismatch pattern is observed in AD (Fig. 3a). AC has the most extreme form of a mismatch pattern with chromosomes 6 and 7 showing strongly skewed allelic frequencies, which account for the majority of the skewed allelic frequency observed in this cross (16.3% of the SNP windows) (Fig. 3b). The reciprocal cross does not show a mismatch pattern. As mentioned above, allele frequencies are skewed for chromosome 6 for both directions of the cross, but are not nearly as
skewed as in AC. This may suggest a more complicated combination of the nuclear-nuclear and mismatch patterns. SA and AS show evidence of a reciprocal mismatch pattern for chromosome 7, while AS also has a mismatch pattern for chromosome 11 (Fig. 3c).

Mito-nuclear interactions in relation to mito-interacting nuclear genes

We plotted the chromosomal position of all annotated nuclear genes that code for proteins that are known to directly interact with mtDNA, mitochondrial encoded proteins or mitochondrial encoded RNAs (Table S3). These included proteins involved in oxidative phosphorylation (OXPHOS complexes 1, 3, 4 and 5), mitochondrial aminoacyl tRNA synthethases (mArs), as well as the three transcription associated genes: mitochondrial RNA polymerase (mtRPOL), mitochondrial transcription factor A (TFAM), and mitochondrial transcription factor 1 (TFB1) (Fig. 3). These are spread out across all 12 chromosomes, with at least 6 genes per chromosome, with the exception of chromosome 12 which only has one gene mapping to it (TFAM). Chromosome 10 has the most genes (29), both from OXPHOS complexes and mArs, and this is the only chromosome where all three crosses show evidence of mito-nuclear incompatibilities in at least one direction (DA, CA and a reciprocal pattern between SA and AS). Chromosome 7, which shows evidence of mito-nuclear incompatibilities in AD , and a mismatch pattern in AC, SA and AS, has 10 mito-interacting genes, two of these are the tightly linked mtRPOL and TFB1 genes. A cluster of mito-interacting genes on the left portion of chromosome 2 coincides with a mito-nuclear incompatibility pattern in CA, while a cluster on the right portion of chromosome 4 appear to coincide with a mismatch pattern in AC (Fig. 3; Table S3).

Discussion

The evolution of intrinsic postzygotic isolation, can occur through the accumulation of DMI between factors on different chromosomes (nuclear-nuclear), but may also occur between nuclear factors and the mitochondrial factors with which they interact (mito-nuclear [Burton and Barreto 2012]). In the present study, we show that in hybrids between populations of the copepod Tigriopus californicus, patterns of allele frequency deviation from Mendelian expectations, suggest mito-nuclear incompatibilities are more common than nuclear-nuclear incompatibilities (Table 1). There is, therefore, strong evidence that hybrid problems between interacting mitochondria and nuclear genes are particularly important for the evolution of intrinsic postzygotic isolation in this taxon. However, a direct causality for the role of mtDNA in this process remains to be demonstrated.

Given the design of our experiment, it is possible other factors besides inviability due to mito-nuclear DMI may have contributed to pattern of allele frequency observed. For example, meiotic drive in the F_{1} hybrids could bias alleles that are observed in F_{2} hybrids. However, this is unlikely to be the case, as all studies that have looked at genotypic or allele frequency ratios in nauplii found little to no deviations from expected Mendelian ratios (Willett and Berkowitz 2007; Pritchard et al. 2011; Foley et al. 2013; Lima and Willett 2018). This indicates that the deviations in allele frequency from the expected Mendelian ratio of 0.5 , occur post hatching, as the nauplii develop (Willett et al. 2016). There is differential survival between male and female F_{2} hybrids, with different loci showing deviations in each sex (Foley et al. 2013; Willett et al. 2016). However, in the present study we were interested in estimating the allele frequency patterns from equal number of males and females combined. Lastly, reciprocal crosses were setup at different times, which could confound allele frequency differences due to mito-nuclear

DMI, with temporal variation in allele frequencies within the parental populations. This is also unlikely to have a significant effect on the patterns observed here. Populations of T. californicus have been shown to have stable genetic divergence over several decades in some cases, and the level of within population polymorphism is very low (Burton 1997; Willett and Ladner 2009; Pereira et al. 2016). In addition, studies that have looked at the same cross through different years, tend to find the same genomic regions being affected by hybrid inviability (Burton 1987; Willett et al. 2016; Lima and Willett 2018). Small differences in allele frequency between reciprocal crosses, however, may be due to temporal variation in the expression of specific DMI.

One of the interesting aspects of our results is the lack of commonality in allelic frequency change across the crosses of different populations of T. californicus. Even though all crosses involve the AB population, only chromosome 10 is affected in a similar manner across all three crosses. Allelic frequencies along chromosome 10 suggest the presence of mito-nuclear incompatibilities in both DA and CA, and a trend towards reciprocal mito-nuclear incompatibility between SA and AS. All other genomic regions affected by hybrid inviability are unique to each cross suggesting the nature of DMI as unique products of divergence between allopatric populations, and possibly little parallelism among factors involved in DMI. Tigriopus californicus populations are extremely isolated, with little to no gene flow even for populations that are geographically very close (Burton 1997; Willett and Ladner 2009), and the level of shared polymorphism decreases exponentially as divergence increases between populations (Pereira et al. 2016). Therefore, even if selection pressures are similar across populations, the lack of gene flow can lead to different solutions to local adaptation, as different mutations are likely to appear in the different populations (Lima and Willett 2017). Furthermore, effective
populations sizes are very low in this species and genetic drift can lead to the fixation of different alleles, regardless of selection (see below for further discussion on this).

Interestingly chromosome 10 has the highest number and density of mito-interacting nuclear genes (with 17; all other chromosomes have between 1 [c12] and 10 [c8]) (Table S3). In T. californicus recombination only occurs in males and large chromosomal blocks will be passed on together to F_{2} hybrids. Therefore, chromosomes, or regions of chromosomes, with high density of mito-interacting nuclear genes may be more likely to lead to hybrid problems even if each factor alone has only a small effect. It has been proposed that genomic architecture should evolve to suppress recombination between nuclear encoded mitochondrial genes, and islands of divergence associated with such genes have been observed in passerine birds (Sunnucks et al. 2017). Chromosomes 2 and 4 may support this idea, as the only skewed portion of the chromosomes in CA and AC , respectively, coincide with the portion of the chromosome with high density of mito-interacting nuclear genes. However, high density of mito-interacting genes may not be necessary for the expression of mito-nuclear incompatibilities. Chromosome 7 suggests a mito-nuclear effect in AD , a mismatch pattern in AC , and reciprocal a mismatch pattern in AS and SA. Two tightly linked genes responsible for transcription of the mitochondrial genome are present in this chromosome (RNA polymerase [mtRPOL] and transcription factor B [TFB1M]). Previous studies have shown that mismatched alleles between mtRPOL alleles and the mitochondria population is associated with reduced hybrid fitness in some crosses (Ellison and Burton 2006; 2008a; 2010), while in other crosses a mismatch pattern has been observed for other markers (Ellison and Burton 2008a; Edmands et al. 2009).

In all three crosses, the distribution of allelic frequencies is significantly different between the reciprocal crosses, suggesting the mitochondrial background has a significant effect
on the nuclear allelic frequency distribution. Surprisingly, however, this signal comes not only from the effects of mito-nuclear incompatibilities, but from chromosomes affected by a mismatch pattern. Pereira et al. (2016) found that effective population sizes are very small in this species, with within population genetic diversity raging from 0.006-0.017 π_{S} (genetic diversity at synonymous sites). Populations with small effective populations sizes should be strongly affected by genetic drift, potentially leading to the fixation of slightly deleterious mutations (Kimura 1968). Therefore, it is possible that populations of T. californicus have fixed slightly deleterious mito-nuclear combinations and when given an alternative nuclear allele in hybrids, this mismatch combination will increase fitness (a similar hypothesis has been proposed by Edmands et al. 2009). These slightly deleterious mito-nuclear combinations (within each population) might not cause inviability when in a completely parental population genome, but when in a hybrid genome where other deleterious hybrid combinations are also affecting fitness, their effect might be amplified.

The importance of mito-nuclear incompatibilities for speciation

The present results show mito-nuclear incompatibilities are more common than nuclearnuclear incompatibilities in T. californicus (across all crosses there are 4 cases where chromosomes show evidence of nuclear-nuclear while 13 cases show evidence of mito-nuclear incompatibilities [Fig. 3]) and may therefore be especially important in the formation of reproductive isolation. This is also supported by the results of crosses between more divergent clades of T. californicus where complete (or nearly so) F_{1} sterility or inviability is observed. In these crosses, the mitochondrial background appears to determine if F_{1} hybrids are sterile or inviable, with some crosses having sterile hybrids with one population's mitochondria, but
inviable hybrids with the other population's mitochondria (Ganz and Burton 1995; Peterson et al. 2013).

The importance of mito-nuclear incompatibilities in speciation is still debated, and much of the work in the field has focused on the importance of sex chromosomes as contributors to the evolution of intrinsic postzygotic barriers (Haldane 1922; Tao et al. 2003; Masly and Presgraves 2007). However, a large number of taxa possess modes of sex determination that do not involve heteromorphic sex chromosomes (Bull 1983). In many of these cases mito-nuclear incompatibilities appear to be more common than those between nuclear factors. This is especially true if we also include chloroplast-nuclear incompatibilities in this category (cytonuclear incompatibilities when considering DMI involving either cpDNA or mtDNA). Examples of cyto-nuclear incompatibilities contributing to reproductive isolation are overwhelmingly from plants (Fishman and Willis 2001; Sambatti et al. 2008; Rieseberg and Blackman 2010; Scopece et al. 2010; Barnard-Kubow et al. 2016) (Fishman and Willis 2006; Sambatti et al. 2008;

Rieseberg and Blackman 2010; Scopece et al. 2010; Bernard-Kubow et al. 2016), but also in yeast (Chou and Leu 2010; Chou et al. 2010), and T. californicus as possibly the best example in animals (Ellison and Burton 2008b; 2010; Burton and Barreto 2012). Several groups of fish, amphibians and reptiles have a range of sex determination mechanisms between closely related taxa (Bull 1983; Hillis and Green 1990; Korpelainen 1990; Pokorná and Kratochvíl 2009), and evidence of mito-nuclear incompatibilities has been observed in hybrids of these taxa with a range of sex determination mechanisms (Bolnick et al. 2008; Gagnaire et al. 2013; Lee-Yaw et al. 2014; Bar-Yaacov et al. 2015). These and other putative cases are reviewed in Sunnucks et al. (2017) and Sloan et al. (2017).

There is no doubt that DMI involving sex chromosomes are important in taxa that bare them, exemplified by the large number of species that obey Haldane's Rule (where the heterogametic sex is affected disproportionately by intrinsic postzygotic isolation [Haldane 1922]), but even in some of these cases mito-nuclear incompatibilities can also contribute to decreased hybrid fitness, as has been observed in birds (McFarlane et al. 2016; Hill 2017; Morales et al. 2017; Lamb et al. 2018). One reason why the importance of mito-nuclear incompatibilities may have been underappreciated in these cases is because other reproductive barriers evolve very early in divergence for some of the most studied taxa. For example, complete hybrid male sterility is observed in several interspecific Drosophila crosses with $d S$ ~ 0.05 (Turissini et al. 2018), which is the level of divergence of the crosses presented here. Another reason is that the likelihood of mito-nuclear incompatibilities evolving should be dependent on the rate of evolution of mtDNA (Burton and Barreto 2012). Therefore, mitonuclear incompatibilities are more often observed in taxa with relatively high mtDNA substitution rates. In this sense, Drosophila, whose mtDNA has approximately 2 x the substitution rate as those in the nuclear genome, should be less likely to evolve these types of incompatibilities than for example ungulates and primates, with substitution rate for mtDNA approximately 20-40 fold higher than for nDNA (Osada and Akashi 2011). For perspective, T. californicus' rate of mtDNA evolution has been estimated at 55 fold higher than that of nDNA (Willett 2012), and may therefore be particularly prone to evolve mito-nuclear DMI. A thorough assessment of the role of mtDNA substitution rates on mito-nuclear incompatibilities has yet to be completed.

Literature cited

Alexander, H. J., J. M. L. Richardson, and B. R. Anholt. 2014. Multigenerational response to artificial selection for biased clutch sex ratios in Tigriopus californicus populations. J. Evol. Biol. 27:1921-1929.

Alexander, H. J., J. M. L. Richardson, S. Edmands, and B. R. Anholt. 2015. Sex without sex chromosomes: genetic architecture of multiple loci independently segregating to determine sex ratios in the copepod Tigriopus californicus. J. Evol. Biol. 28:2196-2207.

Barreto, F. S., E. T. Watson, T. G. Lima, C. S. Willett, S. Edmands, W. Li, and R. S. Burton. 2018. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nature Ecology \& Evolution 2:1250.

Bar-Yaacov, D., Z. Hadjivasiliou, L. Levin, G. Barshad, R. Zarivach, A. Bouskila, and D. Mishmar. 2015. Mitochondrial involvement in vertebrate speciation? The case of mito-nuclear genetic divergence in chameleons. Genome Biology and Evolution 7:3322-3336.

Barnard-Kubow, K. B., N. So, and L. F. Galloway. 2016. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution 70:2752-2766.

Bolnick, D. I., M. Turelli, H. Lopez-Fernandez, P. C. Wainwright, and T. J. Near. 2008. Accelerated mitochondrial evolution and "darwin's corollary": Asymmetric viability of reciprocal F1 hybrids in centrarchid fishes. Genetics 178:1037-1048.

Bull, J. J. 1983. Evolution of sex determining mechanisms. The Benjamin/Cummings Publishing Company, Inc.

Burton, R. S. 1987. Differentiation and integration of the genome in populations of the marine copepod Tigriopus californicus. Evolution 41:504-513.

Burton, R. S. 1997. Genetic evidence for long term persistence of marine invertebrate populations in an ephemeral environment. Evolution 51:993-998.

Burton, R. S. 1985. Mating system of the intertidal copepod Tigriopus californicus. Mar. Biol. 86:247-252.

Burton, R. S., and F. S. Barreto. 2012. A disproportionate role for mtDNA in DobzhanskyMuller incompatibilities? 21:4942-4957.

Burton, R. S., R. J. Pereira, and F. S. Barreto. 2013. Cytonuclear Genomic Interactions and Hybrid Breakdown. Annu. Rev. Ecol. Evol. Syst. 44:281-302.

Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17:540-552.

Chou, J.-Y., and J.-Y. Leu. 2010. Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes. Bioessays 32:401-411.

Chou, J.-Y., and J.-Y. Leu. 2015. The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease. Front. Genet. 6:187.

Chou, J.-Y., Y.-S. Hung, K.-H. Lin, H.-Y. Lee, and J.-Y. Leu. 2010. Multiple Molecular Mechanisms Cause Reproductive Isolation between Three Yeast Species. PLoS Biol 8: e1000432-13.

Coyne, J. A., and H. A. Orr. 1989. Two rules of speciation. Pp. 180-207 in D. Otte and J. A. Endler, eds. Speciation and its consequences. Sunderland.

Dobzhansky, T. 1936. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21:113-135.

Edmands, S. 1999. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53:1757-1768.

Edmands, S., S. L. Northrup, A. H. Evolution, 2009. 2009. Maladapted gene complexes within populations of the intertidal copepod Tigriopus californicus? Evolution 63:2184-2192.

Ellison, C. K., and R. S. Burton. 2010. Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. J. Evol. Biol. 23:528-538.

Ellison, C. K., and R. S. Burton. 2006. Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60:1382-1391.

Ellison, C. K., and R. S. Burton. 2008a. Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids. Proc Natl Acad Sci USA 105:15831-15836. National Academy of Sciences.

Ellison, C. K., and R. S. Burton. 2008b. Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62:631-638.

Fishman, L., and J. H. Willis. 2001. Evidence for dobzhansky-muller incompatibilites contributing to the sterility of hybrids between Mimulus guttatus and M. nasutus. Evolution 55:1932-1942.

Gagnaire, P.-A., E. Normandeau, S. A. Pavey, and L. Bernatchez. 2013. Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis). Mol. Ecol. 22:3036-3048.

Ganz, H. H., and R. S. Burton. 1995. Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus. Mar. Biol. 123:821827. Springer-Verlag.

Gershoni, M., A. R. Templeton, and D. Mishmar. 2009. Mitochondrial bioenergetics as a major motive force of speciation. Bioessays 31:642-650.

Haldane, J. B. S. 1922. Sex ratio and unisexual sterility in hybrid animals. Journal of genetics 12:101-109.

Hill, G. E. 2017. The mitonuclear compatibility species concept. The Auk 134:393-409.
Hillis, D. M., and D. M. Green. 1990. Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J. Evol. Biol. 3:49-64. Wiley/Blackwell (10.1111).

Kimura, M. 1968. Evolutionary rate at the molecular level. Nature 217:624-626.
Kofler, R., P. Orozco-terWengel, N. De Maio, R. V. Pandey, V. Nolte, A. Futschik, C. Kosiol, and C. Schlötterer. 2011a. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE 6:e15925-9.

Kofler, R., R. V. Pandey, and C. Schlotterer. 2011b. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27:3435-3436.

Korpelainen, H. 1990. Sex ratios and conditions required for environmental sex determination in animals. Biological Reviews 65:147-184.

Lamb, A. M., H. M. Gan, C. Greening, L. Joseph, Y. P. Lee, A. Morán-Ordóñez, P. Sunnucks, and A. Pavlova. Climate - driven mitochondrial selection: A test in Australian songbirds. Mol. Ecol. 27: 898-918.

Lee-Yaw, J. A., C. G. C. Jacobs, and D. E. Irwin. 2014. Individual performance in relation to cytonuclear discordance in a northern contact zone between long-toed salamander (Ambystoma macrodactylum) lineages. Mol. Ecol. 23:4590-4602.

Levin, D. A. 2012. The long wait for hybrid sterility in flowering plants. New Phytologist 196:666-670.

Li, H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:29872993.

Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078-2079.

Lima, T. G., and C. S. Willett. 2017. Locally adapted populations of a copepod can evolve different gene expression patterns under the same environmental pressures. Ecol. and Evol. 7:4312-4325.

Lima, T. G., and C. S. Willett. 2018. Using Pool-seq to Search for Genomic Regions Affected by Hybrid Inviability in the copepod T. californicus. J. Hered. 256:89.

Löytynoja, A. 2013. Phylogeny-aware alignment with PRANK. Pp. 155-170 in Multiple Sequence Alignment Methods. Humana Press, Totowa, NJ.

Masly, J. P., and D. C. Presgraves. 2007. High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol 5:e243.

McFarlane, S. E., P. M. Sirkiä, M. Ålund, and A. Qvarnström. 2016. Hybrid dysfunction expressed as elevated metabolic rate in male Ficedula flycatchers. PLoS ONE 11:e0161547-10.

Morales, H. E., P. Sunnucks, L. Joseph, and A. Pavlova. 2017. Perpendicular axes of differentiation generated by mitochondrial introgression." Mol. Ecol. 26: 3241-3255.

Muller, H. J. 1942. Isolating mechanisms, evolution and temperature. Biol. Symp. 6:71-125.
Osada, N., and H. Akashi. 2011. Mitochondrial-nuclear interactions and accelerated compensatory evolution: Evidence from the primate cytochrome c oxidase complex. Molecular Biology and Evolution 29:337-346.

Pereira, R. J., F. S. Barreto, N. T. Pierce, M. Carneiro, and R. S. Burton. 2016. Transcriptomewide patterns of divergence during allopatric evolution. Mol. Ecol. 25:1478-1493.

Peterson, D. L., K. B. Kubow, M. J. Connolly, L. R. Kaplan, M. M. Wetkowski, W. Leong, B. C. Phillips, and S. Edmands. 2013. Reproductive and phylogenetic divergence of tidepool copepod populations across a narrow geographical boundary in Baja California. J. Biogeogr. 40:16641675.

Phillips, B. C., and S. Edmands. 2012. Does the speciation clock tick more slowly in the absence of heteromorphic sex chromosomes? 34:166-169.

Pokorná, M., and L. Kratochvíl. 2009. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zoological Journal of the Linnean Society 156:168-183. Wiley/Blackwell (10.1111).

Presgraves, D. C., and H. A. Orr. 1998. Haldane's Rule in taxa lacking a hemizygous X. Science 282:952-954.

Rieseberg, L. H., and B. K. Blackman. 2010. Speciation genes in plants. Annals of Botany 106:439-455.

Sambatti, J., D. Ortiz-Barrientos, E. J. Baack, and L. H. Rieseberg. 2008. Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers. Ecol Letters 11:1082-1091. Wiley Online Library.

Sambrook, J., and D. W. Russell. 2006. Purification of nucleic acids by extraction with Phenol:Chloroform. Cold Spring Harb Protoc 2006:pdb-prot4455.

Schlötterer, C., R. Tobler, R. Kofler, and V. Nolte. 2014. Sequencing pools of individuals mining genome-wide polymorphism data without big funding. Nat Rev Genet 15:749-763. Nature Publishing Group.

Scopece, G., C. Lexer, A. Widmer, and S. C. 2010. Polymorphism of postmating reproductive isolation within plant species. Taxon 59:1367-1374.

Sloan, D. B., J. C. Havird, and J. Sharbrough. 2017. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 26:2212-2236.

Sunnucks, P., H. E. Morales, A. M. Lamb, A. Pavlova, and C. Greening. 2017. Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front. Genet. 8:589-12.

Turelli, M. and L. C. Moyle. 2007. Asymmetric postmating isolation: Darwin's Corollary to Haldane's Rule. Genetics 176: 1059-1088.

Turissini, D. A., J. A. McGirr, S. S. Patel, J. R. David, and D. R. Matute. 2017. The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol. Biol. and Evol. 35: 312-334.

Tao, Y., S. Chen, D. L. Hartl, and C. C. Laurie. 2003. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. I. Differential accumulation of hybrid male sterility effects on the X and autosomes. Genetics 164:1383-1398. Genetics.

Voordouw, M. J., and B. R. Anholt. 2002. Environmental sex determination in a splash pool copepod. Biological Journal of the Linnean Society 76:511-520.

Willett, C. S. 2012. Quantifying the elevation of mitochondrial DNA evolutionary substitution rates over nuclear rates in the intertidal copepod Tigriopus californicus. J Mol Evol 74:310-318.

Willett, C. S., and J. N. Berkowitz. 2007. Viability effects and not meoitic drive cause dramatic departures from Mendelian inheritance for malic enzyme in hybrids of Tigriopus californicus populations. J. Evol. Biol. 20: 1196-1205.

Willett, C. S. 2008. Significant Variation for Fitness Impacts of ETS Loci in Hybrids between Populations of Tigriopus californicus. J Hered 99:56-65.

Willett, C. S., and J. T. Ladner. 2009. Investigations of fine-scale phylogeography in Tigriopus californicus reveal historical patterns of population divergence. BMC Evol Biol 9:1-20.

Yang, Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution 24:1586-1591.

670 Tables

671 Table 1. Summary statistics for the three crosses of T. californicus populations. Windows are the average allele frequency for 3000
672 consecutive SNPs, in non-overlapping windows. Mean genome-wide allele frequency (\pm standard deviation) was calculated using the
673 allele frequencies averaged across all windows for each cross. $\mathrm{d} S$ is the average rate of synonymous substitutions across all annotated
674 genes in the T. californicus genome (\pm standard error). Allele frequency always refers to the AB allele.
$\left.\begin{array}{ccccccc}\hline \text { Cross } & \begin{array}{c}\text { Mean depth } \\ \text { of coverage }\end{array} & \begin{array}{c}\text { Number } \\ \text { of SNP }\end{array} & \begin{array}{c}\text { Number of } \\ \text { windows }\end{array} & \begin{array}{c}\text { Base-pairs per } \\ \text { window (} \pm \text { s.d.) }\end{array} & \begin{array}{c}\text { Mean genome- } \\ \text { wide allele } \\ \text { frequency (} \pm \text { s.d. })\end{array} & \text { dS (} \pm \text { SEM) }\end{array} \begin{array}{c}\text { mt \% nucleotide } \\ \text { divergence }\end{array}\right]$

Figure legends
Figure 1. Expected allele frequencies for different potential incompatibility scenarios for T. californicus hybrids with alternate mtDNA backgrounds. (A) Shows the reciprocal cross design for crosses between two different populations with the copepod body color representing the nuclear genome and the circle the mtDNA. These crosses result in two reciprocal cross populations of F2 hybrids with variable nuclear genomes and alternate mtDNA-types. For regions of the genome displaying mitonuclear coadaptation the expectation is that there will be a higher allele frequency for the allele that matches the mtDNA-type with (B) showing a hypothetical example of both a genomic region showing a match pattern and another region showing a mismatch pattern. (C) Expected patterns of AB allele frequency in F2 hybrids between two reciprocal crosses for each of six different outcomes consistent with the three different scenarios of nuclear-nuclear, mito-nuclear, or mismatch incompatibilities. Bars depict the range of possibilities for F 2 AB allele frequencies for nuclear genes on the two different mtDNA backgrounds in the two reciprocal crosses that are consistent with that outcome.

Figure 2. Allele frequency distributions for F_{2} hybrids from three population crosses of T. californicus. Allele frequencies are based on the allele frequency of the AB alleles (x -axis). Yaxis is the count of allele frequency windows. Allele frequency windows are the average allele frequency of 3000 consecutive SNPs. a. SD x AB; b. CAT x AB; c. SC x AB. Distributions in red are for the direction of the cross with AB mitochondria and distributions in blue have the mitochondria for the other populations.

Figure 3. Allele frequency plots for F 2 hybrids across 12 chromosomes from three population
crosses of T. californicus. Allele frequencies are based on the allele frequency of the AB alleles (y-axis). The x -axis indicates the relative position across each chromosome. Data points are the average allele frequency of 3000 consecutive SNPs. a. SD x AB; b. CAT x AB; c. SC x AB. Red dots indicate the direction of the cross with AB mitochondria and blue dots have the mitochondria for the other populations. Dark grey boxes indicate the level of variation observed in a null dataset. Light grey boxes indicate levels of allele frequency change considered strongly skewed. Colored diamonds below the allele frequency plots refer to the chromosomal positions of nuclear encoded genes that interact with mitochondria proteins. Green diamonds: OXPHOS genes; black diamonds: mitochondrial aminoacyl tRNA synthethases genes; magenta diamonds: transcription genes Differences between reciprocal crosses indicate the presence of mito-nuclear incompatibilities (shaded in red) or a mismatch pattern. Differences between each individual cross and the null allele frequency distribution indicates that cross deviates from the null expectation allele frequency, and suggest the presence of nuclear-nuclear incompatibilities (shaded in blue).

Figures

Figure 1
A.

B.
Elevated $A B$ frequency=match

C.

Figure 2

Figure 3
a.

