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 26	

Abstract 27	

 The evolution of intrinsic postzygotic isolation can be explained by the accumulation of 28	

Dobzhansky-Muller incompatibilities (DMI). Asymmetries in the levels of hybrid inviability and 29	

hybrid sterility are commonly observed between reciprocal crosses, a pattern that can result from 30	

the involvement of uniparentally inherited factors. The mitochondrial genome is one such factor 31	

that appears to participate in DMI in some crosses but the frequency of its involvement versus 32	

biparentally inherited factors is unclear.  Here we assess the relative importance of 33	

incompatibilities between nuclear factors (nuclear-nuclear) versus those between mitochondrial 34	

and nuclear factors (mito-nuclear) in a species that lacks sex chromosomes. We used a Pool-seq 35	

approach to survey three crosses among genetically divergent populations of the copepod, 36	

Tigriopus californicus, for regions of the genome that are affected by hybrid inviability. Results 37	

from reciprocal crosses suggest that mito-nuclear incompatibilities are more common than 38	

nuclear-nuclear incompatibilities overall. These results suggest that in the presence of very high 39	

levels of nucleotide divergence between mtDNA haplotypes, mito-nuclear incompatibilities can 40	

be important for the evolution of intrinsic postzygotic isolation. This is particularly interesting 41	

considering this species lacks sex chromosomes, which have been shown to harbor a particularly 42	

high number of nuclear-nuclear DMI in several other species. 43	

 44	
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 46	

 47	

 48	



	 3	

Introduction 49	

 The formation of reproductive isolation through the evolution of hybrid incompatibilities 50	

(intrinsic postzygotic isolation), can often be attributed to the evolution of Dobzhansky-Muller 51	

incompatibilities (DMI [(Dobzhansky 1936; Muller 1942)]). One pattern that is observed in these 52	

crosses is that in reciprocal crosses asymmetries in hybrid inviability and hybrid sterility are 53	

commonly found. This pattern of asymmetry is called Darwin’s corollary and is likely to result 54	

from DMI that have uniparentally inherited genetic elements comprising at least one partner in 55	

the interaction (Turelli and Moyle 2007). These uniparentally inherited factors can include things 56	

such as mitochondrial DNA (mtDNA), chloroplast DNA (cpDNA), sex chromosomes, and 57	

maternal transcripts. While sex chromosome often show up in many crosses as making key 58	

contributions to DMI (Tao et al. 2003; Masly and Presgraves 2007), in other crosses including 59	

those without sex chromosomes cytoplasmic factors such as mtDNA and cpDNA are 60	

increasingly showing up as important contributors (Burton et al. 2013). In animal taxa for which 61	

evidence for mito-nuclear interactions has been found it is not generally clear what are the 62	

relative contributions of mito-nuclear interactions versus nuclear/nuclear interactions to DMI 63	

leading to postzygotic reproductive isolation. 64	

The accumulation of mito-nuclear incompatibilities is facilitated by a number of features 65	

shared by mtDNA in a variety of animal taxa, that might lead to it having outsized impacts 66	

despite its small size in comparison with the nuclear genome. One factor is that mtDNA 67	

generally has a higher rate of sequence evolution than the nuclear genome in most animal taxa 68	

(Willett 2012). In most cases mtDNA is maternally inherited and as such its haploid nature can 69	

expose DMI that would otherwise be masked in a diploid setting, (analogous to heteromorphic 70	

sex chromosomes). Additionally rapid evolution due to genomic conflicts can be particularly 71	
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pronounced given the different patterns of inheritance between nuclear and mtDNA genomes 72	

(Gershoni et al. 2009; Chou and Leu 2015). The evolution of genomic conflicts could be 73	

accelerated in many taxa by the higher mutation rate of mtDNA compared to nuclear DNA. 74	

Combined, the faster rate of sequence evolution mito-interacting genes and the existence of 75	

genomic conflicts in these genes could drive the evolution of compensatory changes in nDNA 76	

within populations and could lead to DMI between populations or species where gene flow is 77	

absent or low (Burton and Barreto 2012; Burton et al. 2013). 78	

Strong support for the importance of mito-nuclear DMI has been found in the copepod 79	

Tigriopus californicus, a species that lacks sex chromosomes. This copepod, which lives in high 80	

intertidal pools on the west coast of North America, has polygenic sex determination with 81	

several unlinked factors contributing to sex determination (Voordouw and Anholt 2002; 82	

Alexander et al. 2014; 2015).  Tigriopus californicus populations occupy rocky pools on 83	

headlands that are often isolated from other headlands by long stretches of sandy beach. Gene 84	

flow is highly restricted amongst populations (Burton 1997; Willett and Ladner 2009), and levels 85	

of polymorphism within populations are very low (Willett 2012; Pereira et al. 2016). Reciprocal 86	

crosses between divergent clades within this species show differences in patterns of reproductive 87	

isolation depending on the direction of the cross (Ganz and Burton 1995; Peterson et al. 2013), 88	

suggesting that mito-nuclear incompatibilities may be important for the formation of these 89	

reproductive barriers. When populations with lower levels of divergence are crossed, first 90	

generation hybrids (F1) are usually equal in fitness, or even superior, to the parental populations. 91	

while second generation hybrids (F2) have, on average, lower fitness (Burton 1987; Edmands 92	

1999; Willett 2008). When F2 and F3 hybrids are backcrossed to the maternal population, where 93	
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there is an increase in the proportion of the nDNA that matches mtDNA, hybrid fitness is 94	

rescued (Ellison and Burton 2008b). 95	

Here, we were interested in determining the relative importance of nuclear-nuclear versus 96	

mito-nuclear DMI for hybrid breakdown in early stages of reproductive isolation between 97	

populations of T. californicus. We used a Pool-seq approach (Schlötterer et al. 2014) to sequence 98	

the genomes of pools of F2 hybrids from three different pairs of reciprocal crosses, looking for 99	

deviations from expected allelic frequencies to determine regions of the genome that were 100	

affected by hybrid inviability. We show that mito-nuclear DMI are in general more common than 101	

nuclear-nuclear DMI, but that the relative contribution of different types of incompatibilities are 102	

unique in the different crosses.  103	

 104	

Material and Methods 105	

Population sampling, crossing design, DNA isolation and sequencing 106	

Tigriopus californicus were collected from intertidal rocky pools at four sites in 107	

California, Abalone Cove (AB, 33°44’ N, 118°22’ W), Catalina Island (CAT, 33°27’ N, 118°29’ 108	

W), San Diego (SD, 32°44’ N, 117°15’ W), and Santa Cruz (SC, 36°57’ N, 122°03’ W). 109	

Animals were maintained in mass cultures in 400 mL beakers in seawater at 35 ppt and fed 110	

powdered commercial flake fish food as well as natural algae growth. Cultures were kept in 111	

incubators at 20°C with 12h light:dark cycle.  Males and females used in crosses were sampled 112	

from culture beakers so that different crosses between the same populations included some of the 113	

genetic diversity of natural populations. Reciprocal crosses were setup between the AB 114	

populations and the SD, CAT and SC populations in 24 well culture plates, with a single pair of 115	

copepods in each well. F2	hybrid breakdown in viability has been shown for the SD x AB and SC 116	



	 6	

x AB crosses (Burton 1987; Ellison and Burton 2008b), but no studies have been published using 117	

the CAT the population (although population crosses with similar levels genetic divergence 118	

typically show hybrid breakdown in this species (Edmands 1999)). Virgin females were obtained 119	

by separating females from clasped pairs (Burton 1985), and their non-mated status was 120	

confirmed by monitoring them in individual wells over a week, at which point males were added 121	

to each well. Twenty-four crosses between the parental populations were setup.  F1 hybrids from 122	

these crosses were separated into individual wells before they reached sexual maturity, to prevent 123	

siblings from mating with each other.  F1 x F1 crosses were setup with a single pair per well 124	

again, and outcrossing was insured by crossing siblings from one cross to copepods from as 125	

many different crosses as possible, maximizing the number of combinations between the original 126	

24 parental x parental crosses (within the same two population crosses).  In both parental and F1 127	

x F1 crosses, male fathers were removed from the cross as soon as nauplii were observed, while 128	

females were kept in the wells as they can produce multiple egg clutches from the single mating 129	

(Fig. 1a).  130	

Crosses with the SD, CAT and SC female parents were setup and sequenced between 131	

2012-2014. For each cross, 300 adult F2 hybrids (150 males and females) were collected and 132	

pooled for DNA extraction. Crosses with the AB females were setup and sequenced from 2015-133	

2016. For each of these crosses, two replicates of 100 males and 100 females were collected and 134	

pooled for DNA extraction. For the SDf x ABm and SCf x ABm crosses, DNA was isolated 135	

using the Qiagen DNeasy blood and tissue kit, with the suggested modification for extraction 136	

from insects (Qiagen). For all other crosses, DNA was isolated using a Phenol:Chloroform 137	

procedure (Sambrook and Russell 2006). Samples were sequenced as 100-bp paired-end (PE) 138	

libraries on the Illumina HiSeq 2000 for the SDf x ABm and SCf x ABm crosses, as 125-bp PE 139	
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libraries on the Illumina HiSeq 2500 for the CATf x ABm cross and as 100-bp PE libraries on 140	

the Illumina HiSeq 4000 for the ABf x SDm, ABf x CATm and ABf x SCm crosses.  Results for 141	

the SDf x ABm cross have been published in Lima and Willett (2018). The difference in 142	

sequencing platforms used here should not affect or bias SNP determination or allele frequency 143	

estimation, as errors rates for these sequencing platforms are not significantly different. 144	

 145	

Generation of consensus references for populations 146	

Lima and Willett (2018) generated an AB reference genome sequence using the mapping 147	

file (BAM) available at (https://i5k.nal.usda.gov/Tigriopus_californicus; v1.0), where AB reads 148	

were mapped to the SD reference. We followed the same procedure to create consensus 149	

reference genomes for CAT and SC, by extracting the consensus sequences from the BAM files 150	

(CAT and SC reads mapped to the SD reference) using the Samtools and Bcftools pipeline (Li et 151	

al. 2009; Li 2011). We then compared the references between each pair of populations used in 152	

the three crosses, and made them equivalent by adding “N”s to any position where either the AB 153	

or the alternative populations also had an “N”. This maintains the length of the references, but 154	

makes them comparable in terms of where reads can map, which is particularly important when 155	

the SD reference is considered (this population was de novo assembled, using diverse sequence 156	

stes, into a high-quality assembly [Barreto et al. 2018]). The purpose of creating these references 157	

is to allow the mapping of reads from both parental populations as well as hybrids, in order to 158	

identify SNPs that are fixed between populations in each cross. We take a very conservative 159	

approach that only considers regions of the genome where reads map with high alignment score, 160	

ignoring regions where divergence is too high and confidence in SNP calling may be low (see 161	

below for further details). 162	
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 163	

Anchoring of scaffolds to chromosomes 164	

 As noted in Lima and Willett (2018), a newer reference genome for the SD population 165	

has recently become available (v2) (Barreto et al. 2018), where greater than 90% of the genome 166	

is anchored to chromosomes. We used this reference to anchor and order the scaffolds from the 167	

reference assembly used in the present study (v1) by BLASTing scaffolds from the v1 assembly 168	

to the v2 assembly, and using these alignments to anchor and order the v1 scaffolds into the 12 T. 169	

californicus chromosomes. This increased the percentage of the genome that is anchored to 170	

chromosomes from ~30% to approximately 97% of the v1 reference length. In the process of 171	

anchoring the v1 scaffolds it was determined that a few of these scaffolds were misassembled, 172	

which in some cases can be observed as sharp changes in allele frequency in the hybrid datasets. 173	

We removed these positions from the allele frequency plots. These misassembled regions can be 174	

observed as small sections of the chromosome where allele frequency clearly deviates from the 175	

trend in allele frequency change across the rest of the chromosome (Fig. S1a-3a). 176	

 177	

SNP database between parental populations 178	

Populations of T. californicus have been shown to be genetically stable and highly 179	

segregated, with nearly no gene-flow between populations that are geographically very close 180	

(Burton 1997; Willett and Ladner 2009; Pereira et al. 2016). Shared polymorphism in T. 181	

californicus decreases exponentially with divergence, and even populations with ~ 1/3 the level 182	

of divergence of the crosses presented here, share 0.6% or less of variable sites (Pereira et al. 183	

2016). Within population polymorphism is also extremely low (Willett 2012; Pereira et al. 2016). 184	

For the purpose of this study, we were interested in establishing a list of SNPs to be used as 185	
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markers across the genome (and not as a thorough survey of population differences). We aimed 186	

to find SNPs that are fixed between the populations used in each cross. This means that 187	

reciprocally fixed differences between populations are likely to reflect long term population 188	

differences. We accomplished this by a) performing reciprocal mapping of reads of a population 189	

to the reference sequence of another, b) considering only those position where all mapped reads 190	

showed an alternative nucleotide to the reference (“fixed differences”), and c) comparing the 191	

reciprocal mappings and keeping only SNP that were “fixed differences” in both mappings. 192	

Reads were mapped reciprocally to the parental populations’ reference of each cross, 193	

using BWA with default parameters. Only reads that mapped with a MAPQ score > 20 were 194	

kept, which excludes reads that map with low alignment score.  We used PoPoolation2 (Kofler et 195	

al. 2011b) to find positions across the genome where all reads had an alternative nucleotide to 196	

that of the reference, considering only biallelic positions with coverage  ≥ 10 (CAT mapped to 197	

AB, 20X average coverage), ≥ 15X (SD mapped to AB, 35X average coverage) and ≥ 20X for 198	

all other comparisons (SC mapped to AB = 50X; and 46X for AB mapped to the other three 199	

populations).  We chose different lower coverage cutoffs because the depth of coverage differed 200	

for each population. Since we are only considering SNP positions with 100% of the reads having 201	

an alternative nucleotide to that of the reference sequence, the difference in coverage between 202	

populations should not have a significant effect on SNP selection. Populations with lower 203	

coverages (CAT and SD), may include SNP positions that are not quite fixed between these 204	

populations and AB. Since all three populations are compared to the reciprocal mapping of AB 205	

reads, with a minimum coverage of 20X, many of these positions would be excluded. 206	

Furthermore, SNP allele frequencies were averaged in sliding windows (see below), and 207	
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chromosome wide patterns were considered, making the effects of a posible small number of 208	

non-fixed SNP insignificant. 209	

 210	

Hybrid read mapping, SNP identification, and allele frequency calculation 211	

Illumina reads were trimmed for quality using PoPoolation (Kofler et al. 2011a) 212	

discarding bases with Phred quality scores lower than 25, and keeping reads of at least 50-bp 213	

after trimming. We followed the pipeline from Lima and Willett (2018) from mapping through 214	

allele frequency calculation and smoothing. This involved mapping reads from each cross to both 215	

of their parental genomes using BWA MEM with default parameters (Li and Durbin 2009), and 216	

keeping reads that mapped with MAPQ score > 20. Read counts for every variable position, as 217	

well as population specific allele counts were determined using PoPoolation 2. Only biallelic 218	

positions were considered where the minor allele had a minimum coverage of at least four. Allele 219	

frequencies were calculated as the AB allele frequency for each of the three pairs of crosses.  220	

Due to the large amount of noise in the allele frequency data (likely due to stochastic differences 221	

in coverage between SNPs, as well as the sampling of alleles from a pool), we averaged the 222	

allele frequency for a sliding window of 3000 consecutive SNPs, moving the window by 3000 223	

SNPs each step (non-overlapping windows; Table 1). This sliding window size was chosen 224	

following Lima and Willett (2018), as it minimizes noise in allele frequency estimation, 225	

compared to smaller windows, without losing any signal. If the sliding window is done by 226	

position, averaging window sizes of 250Kbp, the pattern remains the same (Fig. S1b-S3b). 227	

 228	

Identification of hybrid inviability patterns caused by nuclear-nuclear vs mito-nuclear 229	

incompatibilities 230	
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Statistical tests to determine if the allele frequency differs between the reciprocal crosses 231	

in F2 hybrids are conservative when using read counts and coverage, unless coverage is much 232	

greater than 100X. That is because even if one of the homozygous genotypes is completely 233	

lethal, the allele frequency would only change by 0.167 in either direction. Instead we 234	

determined if the overall allele frequency distribution between reciprocal crosses was the same 235	

using the Kolmogorov-Smirnov test (KS test). Since allele frequencies from SNPs in close 236	

proximity would not be independent from each other, we compared the distributions of allele 237	

frequencies after averaging allele frequencies in sliding windows of 2 Mbp. This decreased the 238	

number of data points per chromosome to 6-8 allele frequency windows.  In comparing allele 239	

frequency distributions for the entire genome, or for each chromosome (see below) we expect 240	

that if the pattern observed was caused by incompatibilities between nuclear factors (nuclear-241	

nuclear), the allele frequencies are expected to be skewed in the same direction in each reciprocal 242	

cross. On the other hand, incompatibilities caused by problems between the nuclear genome and 243	

mitochondrial genome are expected to lead to allele frequencies that are skewed towards the 244	

population that matches the mitochondria. This may occur in only one direction of the cross or in 245	

both directions, resulting in allele frequencies that are skewed in opposite directions in the 246	

reciprocal crosses. A third pattern is also possible, where nuclear alleles from one population are 247	

favored while having mitochondria from another population; we term this a "mismatch" pattern. 248	

Again, this may happen in one direction of the cross, with the other direction showing no skew, 249	

or in both directions with opposite allele frequencies (Fig. 1b-c).  250	

To differentiate among these three potential patterns, we first looked for mito-nuclear 251	

incompatibilities or mismatch patterns by determining the 10% and 90% allele frequency 252	

quantiles for each chromosome for each cross, looking for chromosomes where the 10% quantile 253	
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of a cross did not overlap with the 90% quantile of its reciprocal cross. The pattern of skew in 254	

relation to the mtDNA-type in the cross would then determine if the deviation was consistent 255	

with a mismatch or mito-nuclear incompatibility pattern for each chromosome. To detect 256	

nuclear-nuclear incompatibilities, where the allele frequencies between reciprocal crosses are 257	

expected to show skews in the same direction, we used the method described in Lima and Willett 258	

(2018) which defined cutoffs for deviations from the expected allele frequency of 0.5 based on 259	

deviations seen in a naupliar dataset (Fig. 1c). The nauplii provide an estimate of experimental 260	

error in the estimation of these frequencies because little to no genotype specific selection occurs 261	

before nauplii hatch and no evidence of meiotic drive from F1 parents has been describe in this 262	

species. Studies that compared nauplii to adults showed that nearly no deviations in expected 263	

Mendelian ratios of segregation occur prior to, or just after hatching, with nearly all effects of 264	

hybrid inviability taking place as nauplii develop post hatching (Willett and Ladner 2007; 265	

Pritchard et al. 2011; Foley et al. 2013; Willett et al. 2016; Lima and Willett 2018). We therefore 266	

used this SDf x ABm F2 naupliar dataset to calculate the 10% and 90% allele frequency 267	

quantiles for all chromosomes combined and found that these fell at ± 0.018 relative to the mean 268	

allele frequency (Fig. S4).  We take a slightly more conservative cutoff and look for 269	

chromosomes where the 10% and 90% allele frequency quantiles were ± 0.02 away from 0.5 270	

(see Table S1 for full results). 271	

 272	

Divergence between populations 273	

In order to determine the amount of genome-wide divergence between each of the pairs 274	

of populations used for crosses, we calculated the number of synonymous changes per 275	

synonymous sites (dS) for all genes annotated in the T. californicus genome (13,449 genes). 276	
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Alignments were done for each gene separately using PRANK (Löytynoja 2013), and positions 277	

where the quality of the alignment was low were removed with Gblocks (Castresana 2000), 278	

keeping codons intact. Alignments with length < 100bp were removed. Estimation of dS was 279	

done in PAML 4.8 (Yang 2007) in the program YN00, in pairwise comparisons between AB and 280	

the other populations. Only two genes showed dS > 1 across any of the combinations; removing 281	

or including these genes in the analysis did not affect the final dS average (individual values for 282	

each are in Table S2). While dS was calculated for pairwise comparisons, the alignment for all 283	

four populations was used, removing any position where any population had a gap or “N” in the 284	

sequence. This was done to minimize the effect that differences in assembly quality can cause 285	

when estimating dS. Values were averaged across all genes for each pairwise comparison (± 286	

standard error; Table 1). We also performed a sliding window averaging of dS using window 287	

sizes of 250kbp, as a way to determine if any chromosomal regions have particularly high levels 288	

of divergence (Fig. S1b-S3b). 289	

 290	

Results 291	

Descriptive analysis 292	

The average depth of coverage ranged from 71.06 (SC x AB) to 229.20 (CAT x AB), 293	

which yielded between 2.1-2.4 million SNPs and 698-805 windows of 3000 SNP per cross, with 294	

mean window sizes ranging from 222,464-256,820 bp (Table 1). Divergences between AB and 295	

the other populations were calculated as the average genome-wide dS, a measure that 296	

approximates the level of genomic divergence between the populations. Values for dS show that 297	

divergences between AB-SD and AB-CAT are very similar, while AB-SC is slightly more 298	

divergent (Table 1). 299	
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 300	

Patterns of hybrid inviability across different population crosses 301	

 We were interested in determining the relative importance of nuclear-nuclear versus 302	

mito-nuclear incompatibilities by comparing allele frequency changes caused by hybrid 303	

inviability between reciprocal crosses.  These two types of incompatibilities can be distinguished 304	

by comparing reciprocal crosses, since the average composition of the nuclear genome of these 305	

crosses should be the same, but the mtDNA would differ. As discussed previously, allele 306	

frequency changes that are caused by nuclear-nuclear incompatibilities should affect both 307	

reciprocals of the cross equally, while mito-nuclear incompatibilities would affect each direction 308	

of the cross differently (though these incompatibilities need not be symmetric) (Fig. 1c). To test 309	

this, we compared genome-wide allele frequency distributions between the reciprocal crosses 310	

using a Kolmogorov-Smirnov test (KS test). The distributions of allele frequencies were 311	

significantly different between the reciprocal crosses for all three crosses (KS test: SDxAB: D = 312	

0.226, N = 84, P = 0.027; CATxAB: D = 0.398, N = 83 P < 3.017-6; SCxAB: D = 0.298, N = 84 313	

P = 0.001), indicating that hybrid inviability due to mito-nuclear interactions may have a 314	

significant effect on the genome-wide allele frequency patterns (Fig. 2). 315	

 316	

Mito-nuclear incompatibilities 317	

When referring to each direction of a cross, we will use a two-letter acronym as follows: 318	

DA (SDf x ABm, AD (ABf x SDm), CA (CATf x ABm), AC (ABf x CATm), SA (SCf x ABm) 319	

and AS (ABm x SCf). Patterns consistent with mito-nuclear incompatibilities affect DA for 320	

chromosomes 8 and 10, and AD for chromosomes 4 and 7 (Fig. 3a). CA is affected by mito-321	

nuclear incompatibilities for chromosomes 1, 2, 9 and 10, and AC for chromosome 1 and 3 (Fig. 322	
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3b). Chromosome 1 shows signs of a reciprocal mito-nuclear incompatibility between CA and 323	

AC. SA and AS do not show evidence of strong mito-nuclear incompatibilities, but for four 324	

chromosomes (c6, c8, c9 and c10) the allele frequencies between the reciprocal crosses are 325	

divergent and may indicate the presence of weaker mito-nuclear incompatibilities (Fig. 3c). 326	

 327	

Nuclear-nuclear incompatibilities 328	

When we consider nuclear-nuclear incompatibilities, DA and AD show strong allele 329	

frequency skews in chromosomes 1 and 3 both with an excess of AB alleles (Fig. 3a; Table S1 330	

shows full results for all crosses). CA, AC show signs of nuclear-nuclear incompatibility in 331	

chromosome 6 (Fig. 3b), and SA and AS have skewed allele frequencies consistent with nuclear-332	

nuclear incompatibilities for chromosome 5 (Fig. 3c). In both cases, the magnitude of the skew is 333	

different between the reciprocal crosses, indicating either variation in the expression of the 334	

incompatibility, or a more complicated combination of the nuclear-nuclear and mismatch 335	

patterns (Fig. 3). 336	

 337	

 Mismatch pattern 338	

 Surprisingly, a mismatch pattern is observed for at least one chromosome in all three 339	

crosses. A portion of chromosome 11 is skewed in DA with excess AB alleles, but no mismatch 340	

pattern is observed in AD (Fig. 3a). AC has the most extreme form of a mismatch pattern with 341	

chromosomes 6 and 7 showing strongly skewed allelic frequencies, which account for the 342	

majority of the skewed allelic frequency observed in this cross (16.3% of the SNP windows) 343	

(Fig. 3b). The reciprocal cross does not show a mismatch pattern. As mentioned above, allele 344	

frequencies are skewed for chromosome 6 for both directions of the cross, but are not nearly as 345	



	 16	

skewed as in AC. This may suggest a more complicated combination of the nuclear-nuclear and 346	

mismatch patterns. SA and AS show evidence of a reciprocal mismatch pattern for chromosome 347	

7, while AS also has a mismatch pattern for chromosome 11 (Fig. 3c). 348	

 349	

Mito-nuclear interactions in relation to mito-interacting nuclear genes 350	

 We plotted the chromosomal position of all annotated nuclear genes that code for 351	

proteins that are known to directly interact with mtDNA, mitochondrial encoded proteins or 352	

mitochondrial encoded RNAs (Table S3). These included proteins involved in oxidative 353	

phosphorylation (OXPHOS complexes 1, 3, 4 and 5), mitochondrial aminoacyl tRNA 354	

synthethases (mArs), as well as the three transcription associated genes: mitochondrial RNA 355	

polymerase (mtRPOL), mitochondrial transcription factor A (TFAM), and mitochondrial 356	

transcription factor 1 (TFB1) (Fig. 3). These are spread out across all 12 chromosomes, with at 357	

least 6 genes per chromosome, with the exception of chromosome 12 which only has one gene 358	

mapping to it (TFAM). Chromosome 10 has the most genes (29), both from OXPHOS 359	

complexes and mArs, and this is the only chromosome where all three crosses show evidence of 360	

mito-nuclear incompatibilities in at least one direction (DA, CA and a reciprocal pattern between 361	

SA and AS). Chromosome 7, which shows evidence of mito-nuclear incompatibilities in AD, 362	

and a mismatch pattern in AC, SA and AS, has 10 mito-interacting genes, two of these are the 363	

tightly linked mtRPOL and TFB1 genes. A cluster of mito-interacting genes on the left portion of 364	

chromosome 2 coincides with a mito-nuclear incompatibility pattern in CA, while a cluster on 365	

the right portion of chromosome 4 appear to coincide with a mismatch pattern in AC (Fig. 3; 366	

Table S3). 367	

 368	
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Discussion 369	

 The evolution of intrinsic postzygotic isolation, can occur through the accumulation of 370	

DMI between factors on different chromosomes (nuclear-nuclear), but may also occur between 371	

nuclear factors and the mitochondrial factors with which they interact (mito-nuclear [Burton and 372	

Barreto 2012]). In the present study, we show that in hybrids between populations of the 373	

copepod Tigriopus californicus, patterns of allele frequency deviation from Mendelian 374	

expectations, suggest mito-nuclear incompatibilities are more common than nuclear-nuclear 375	

incompatibilities (Table 1). There is, therefore, strong evidence that hybrid problems between 376	

interacting mitochondria and nuclear genes are particularly important for the evolution of 377	

intrinsic postzygotic isolation in this taxon. However, a direct causality for the role of mtDNA in 378	

this process remains to be demonstrated.  379	

Given the design of our experiment, it is possible other factors besides inviability due to 380	

mito-nuclear DMI may have contributed to pattern of allele frequency observed. For example, 381	

meiotic drive in the F1 hybrids could bias alleles that are observed in F2 hybrids. However, this is 382	

unlikely to be the case, as all studies that have looked at genotypic or allele frequency ratios in 383	

nauplii found little to no deviations from expected Mendelian ratios (Willett and Berkowitz 384	

2007; Pritchard et al. 2011; Foley et al. 2013; Lima and Willett 2018). This indicates that the 385	

deviations in allele frequency from the expected Mendelian ratio of 0.5, occur post hatching, as 386	

the nauplii develop (Willett et al. 2016). There is differential survival between male and female 387	

F2 hybrids, with different loci showing deviations in each sex (Foley et al. 2013; Willett et al. 388	

2016). However, in the present study we were interested in estimating the allele frequency 389	

patterns from equal number of males and females combined. Lastly, reciprocal crosses were 390	

setup at different times, which could confound allele frequency differences due to mito-nuclear 391	
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DMI, with temporal variation in allele frequencies within the parental populations. This is also 392	

unlikely to have a significant effect on the patterns observed here. Populations of T. californicus 393	

have been shown to have stable genetic divergence over several decades in some cases, and the 394	

level of within population polymorphism is very low (Burton 1997; Willett and Ladner 2009; 395	

Pereira et al. 2016). In addition, studies that have looked at the same cross through different 396	

years, tend to find the same genomic regions being affected by hybrid inviability (Burton 1987; 397	

Willett et al. 2016; Lima and Willett 2018). Small differences in allele frequency between 398	

reciprocal crosses, however, may be due to temporal variation in the expression of specific DMI. 399	

One of the interesting aspects of our results is the lack of commonality in allelic 400	

frequency change across the crosses of different populations of T. californicus. Even though all 401	

crosses involve the AB population, only chromosome 10 is affected in a similar manner across 402	

all three crosses. Allelic frequencies along chromosome 10 suggest the presence of mito-nuclear 403	

incompatibilities in both DA and CA, and a trend towards reciprocal mito-nuclear 404	

incompatibility between SA and AS. All other genomic regions affected by hybrid inviability are 405	

unique to each cross suggesting the nature of DMI as unique products of divergence between 406	

allopatric populations, and possibly little parallelism among factors involved in DMI. Tigriopus 407	

californicus populations are extremely isolated, with little to no gene flow even for populations 408	

that are geographically very close (Burton 1997; Willett and Ladner 2009), and the level of 409	

shared polymorphism decreases exponentially as divergence increases between populations 410	

(Pereira et al. 2016). Therefore, even if selection pressures are similar across populations, the 411	

lack of gene flow can lead to different solutions to local adaptation, as different mutations are 412	

likely to appear in the different populations (Lima and Willett 2017). Furthermore, effective 413	
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populations sizes are very low in this species and genetic drift can lead to the fixation of different 414	

alleles, regardless of selection (see below for further discussion on this). 415	

Interestingly chromosome 10 has the highest number and density of mito-interacting 416	

nuclear genes (with 17; all other chromosomes have between 1 [c12] and 10 [c8]) (Table S3). In 417	

T. californicus recombination only occurs in males and large chromosomal blocks will be passed 418	

on together to F2 hybrids. Therefore, chromosomes, or regions of chromosomes, with high 419	

density of mito-interacting nuclear genes may be more likely to lead to hybrid problems even if 420	

each factor alone has only a small effect. It has been proposed that genomic architecture should 421	

evolve to suppress recombination between nuclear encoded mitochondrial genes, and islands of 422	

divergence associated with such genes have been observed in passerine birds (Sunnucks et al. 423	

2017). Chromosomes 2 and 4 may support this idea, as the only skewed portion of the 424	

chromosomes in CA and AC, respectively, coincide with the portion of the chromosome with 425	

high density of mito-interacting nuclear genes. However, high density of mito-interacting genes 426	

may not be necessary for the expression of mito-nuclear incompatibilities. Chromosome 7 427	

suggests a mito-nuclear effect in AD, a mismatch pattern in AC, and reciprocal a mismatch 428	

pattern in AS and SA. Two tightly linked genes responsible for transcription of the mitochondrial 429	

genome are present in this chromosome (RNA polymerase [mtRPOL] and transcription factor B 430	

[TFB1M]). Previous studies have shown that mismatched alleles between mtRPOL alleles and 431	

the mitochondria population is associated with reduced hybrid fitness in some crosses (Ellison 432	

and Burton 2006; 2008a; 2010), while in other crosses a mismatch pattern has been observed for 433	

other markers (Ellison and Burton 2008a; Edmands et al. 2009).  434	

 In all three crosses, the distribution of allelic frequencies is significantly different 435	

between the reciprocal crosses, suggesting the mitochondrial background has a significant effect 436	
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on the nuclear allelic frequency distribution. Surprisingly, however, this signal comes not only 437	

from the effects of mito-nuclear incompatibilities, but from chromosomes affected by a 438	

mismatch pattern. Pereira et al. (2016) found that effective population sizes are very small in this 439	

species, with within population genetic diversity raging from 0.006-0.017 πS (genetic diversity at 440	

synonymous sites). Populations with small effective populations sizes should be strongly 441	

affected by genetic drift, potentially leading to the fixation of slightly deleterious mutations 442	

(Kimura 1968). Therefore, it is possible that populations of T. californicus have fixed slightly 443	

deleterious mito-nuclear combinations and when given an alternative nuclear allele in hybrids, 444	

this mismatch combination will increase fitness (a similar hypothesis has been proposed by 445	

Edmands et al. 2009). These slightly deleterious mito-nuclear combinations (within each 446	

population) might not cause inviability when in a completely parental population genome, but 447	

when in a hybrid genome where other deleterious hybrid combinations are also affecting fitness, 448	

their effect might be amplified. 449	

 450	

The importance of mito-nuclear incompatibilities for speciation 451	

 The present results show mito-nuclear incompatibilities are more common than nuclear-452	

nuclear incompatibilities in T. californicus (across all crosses there are 4 cases where 453	

chromosomes show evidence of nuclear-nuclear while 13 cases show evidence of mito-nuclear 454	

incompatibilities [Fig. 3]) and may therefore be especially important in the formation of 455	

reproductive isolation. This is also supported by the results of crosses between more divergent 456	

clades of T. californicus where complete (or nearly so) F1 sterility or inviability is observed. In 457	

these crosses, the mitochondrial background appears to determine if F1 hybrids are sterile or 458	

inviable, with some crosses having sterile hybrids with one population’s mitochondria, but 459	
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inviable hybrids with the other population’s mitochondria (Ganz and Burton 1995; Peterson et al. 460	

2013). 461	

The importance of mito-nuclear incompatibilities in speciation is still debated, and much 462	

of the work in the field has focused on the importance of sex chromosomes as contributors to the 463	

evolution of intrinsic postzygotic barriers (Haldane 1922; Tao et al. 2003; Masly and Presgraves 464	

2007). However, a large number of taxa possess modes of sex determination that do not involve 465	

heteromorphic sex chromosomes (Bull 1983).  In many of these cases mito-nuclear 466	

incompatibilities appear to be more common than those between nuclear factors. This is 467	

especially true if we also include chloroplast-nuclear incompatibilities in this category (cyto-468	

nuclear incompatibilities when considering DMI involving either cpDNA or mtDNA). Examples 469	

of cyto-nuclear incompatibilities contributing to reproductive isolation are overwhelmingly from 470	

plants (Fishman and Willis 2001; Sambatti et al. 2008; Rieseberg and Blackman 2010; Scopece 471	

et al. 2010; Barnard-Kubow et al. 2016) (Fishman and Willis 2006; Sambatti et al. 2008; 472	

Rieseberg and Blackman 2010; Scopece et al. 2010; Bernard-Kubow et al. 2016), but also in 473	

yeast (Chou and Leu 2010; Chou et al. 2010), and T. californicus as possibly the best example in 474	

animals (Ellison and Burton 2008b; 2010; Burton and Barreto 2012). Several groups of fish, 475	

amphibians and reptiles have a range of sex determination mechanisms between closely related 476	

taxa (Bull 1983; Hillis and Green 1990; Korpelainen 1990; Pokorná and Kratochvíl 2009), and 477	

evidence of mito-nuclear incompatibilities has been observed in hybrids of these taxa with a 478	

range of sex determination mechanisms (Bolnick et al. 2008; Gagnaire et al. 2013; Lee-Yaw et 479	

al. 2014; Bar-Yaacov et al. 2015). These and other putative cases are reviewed in Sunnucks et al. 480	

(2017) and Sloan et al. (2017). 481	
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There is no doubt that DMI involving sex chromosomes are important in taxa that bare 482	

them, exemplified by the large number of species that obey Haldane’s Rule (where the 483	

heterogametic sex is affected disproportionately by intrinsic postzygotic isolation [Haldane 484	

1922]), but even in some of these cases mito-nuclear incompatibilities can also contribute to 485	

decreased hybrid fitness, as has been observed in birds (McFarlane et al. 2016; Hill 2017; 486	

Morales et al. 2017; Lamb et al. 2018). One reason why the importance of mito-nuclear 487	

incompatibilities may have been underappreciated in these cases is because other reproductive 488	

barriers evolve very early in divergence for some of the most studied taxa. For example, 489	

complete hybrid male sterility is observed in several interspecific Drosophila crosses with dS 490	

~0.05 (Turissini et al. 2018), which is the level of divergence of the crosses presented here. 491	

Another reason is that the likelihood of mito-nuclear incompatibilities evolving should be 492	

dependent on the rate of evolution of mtDNA (Burton and Barreto 2012). Therefore, mito-493	

nuclear incompatibilities are more often observed in taxa with relatively high mtDNA 494	

substitution rates. In this sense, Drosophila, whose mtDNA has approximately 2x the 495	

substitution rate as those in the nuclear genome, should be less likely to evolve these types of 496	

incompatibilities than for example ungulates and primates, with substitution rate for mtDNA 497	

approximately 20-40 fold higher than for nDNA (Osada and Akashi 2011). For perspective, T. 498	

californicus’ rate of mtDNA evolution has been estimated at 55 fold higher than that of nDNA 499	

(Willett 2012), and may therefore be particularly prone to evolve mito-nuclear DMI. A thorough 500	

assessment of the role of mtDNA substitution rates on mito-nuclear incompatibilities has yet to 501	

be completed. 502	
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Tables 670	

Table 1. Summary statistics for the three crosses of T. californicus populations. Windows are the average allele frequency for 3000 671	

consecutive SNPs, in non-overlapping windows. Mean genome-wide allele frequency (± standard deviation) was calculated using the 672	

allele frequencies averaged across all windows for each cross. dS is the average rate of synonymous substitutions across all annotated 673	

genes in the T. californicus genome (± standard error). Allele frequency always refers to the AB allele. 674	

Cross 
Mean depth 

of coverage 

Number 

of SNP 

Number of 

windows 

Base-pairs per 

window (± s.d.) 

Mean genome-

wide allele 

frequency (± s.d.) 

dS (± SEM) 
mt % nucleotide 

divergence 

SD ♀ x AB ♂ (DA) 77 
2,106,984 698 256,820 (± 61,282) 

0.505 (± 0.056) 
0.048 (± 1.99E-04) 20.8 

AB ♀ x SD ♂ (AD) 98 0.521 (± 0.047) 

CAT ♀ x AB ♂ (CA) 229 
2,433,118 805 222,464 (± 69,131) 

0.478 (± 0.022) 
0.048 (± 2.01E-04) 19.5 

AB ♀ x CAT ♂ (AC) 118 0.489 (± 0.053) 

SC ♀ x AB ♂ (SA) 71 
2,275,994 754 237,813 (± 75,634) 

0.497 (± 0.030) 
0.052 (± 4.07E-04) 20.7 

AB ♀ x SC ♂ (AS) 107 0.487 (± 0.042) 
 675	
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Figure legends 676	

Figure 1. Expected allele frequencies for different potential incompatibility scenarios for T. 677	

californicus hybrids with alternate mtDNA backgrounds. (A) Shows the reciprocal cross design 678	

for crosses between two different populations with the copepod body color representing the 679	

nuclear genome and the circle the mtDNA. These crosses result in two reciprocal cross 680	

populations of F2 hybrids with variable nuclear genomes and alternate mtDNA-types. For 681	

regions of the genome displaying mitonuclear coadaptation the expectation is that there will be a 682	

higher allele frequency for the allele that matches the mtDNA-type with (B) showing a 683	

hypothetical example of both a genomic region showing a match pattern and another region 684	

showing a mismatch pattern. (C) Expected patterns of AB allele frequency in F2 hybrids 685	

between two reciprocal crosses for each of six different outcomes consistent with the three 686	

different scenarios of nuclear-nuclear, mito-nuclear, or mismatch incompatibilities. Bars depict 687	

the range of possibilities for F2 AB allele frequencies for nuclear genes on the two different 688	

mtDNA backgrounds in the two reciprocal crosses that are consistent with that outcome. 689	

    690	

Figure 2. Allele frequency distributions for F2 hybrids from three population crosses of T. 691	

californicus. Allele frequencies are based on the allele frequency of the AB alleles (x-axis). Y-692	

axis is the count of allele frequency windows. Allele frequency windows are the average allele 693	

frequency of 3000 consecutive SNPs. a. SD x AB; b. CAT x AB; c. SC x AB. Distributions in 694	

red are for the direction of the cross with AB mitochondria and distributions in blue have the 695	

mitochondria for the other populations. 696	

 697	

Figure 3. Allele frequency plots for F2 hybrids across 12 chromosomes from three population 698	
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crosses of T. californicus. Allele frequencies are based on the allele frequency of the AB alleles 699	

(y-axis). The x-axis indicates the relative position across each chromosome. Data points are the 700	

average allele frequency of 3000 consecutive SNPs. a. SD x AB; b. CAT x AB; c. SC x AB. Red 701	

dots indicate the direction of the cross with AB mitochondria and blue dots have the 702	

mitochondria for the other populations. Dark grey boxes indicate the level of variation observed 703	

in a null dataset. Light grey boxes indicate levels of allele frequency change considered strongly 704	

skewed. Colored diamonds below the allele frequency plots refer to the chromosomal positions 705	

of nuclear encoded genes that interact with mitochondria proteins. Green diamonds: OXPHOS 706	

genes; black diamonds: mitochondrial aminoacyl tRNA synthethases genes; magenta diamonds: 707	

transcription genes Differences between reciprocal crosses indicate the presence of mito-nuclear 708	

incompatibilities (shaded in red) or a mismatch pattern. Differences between each individual 709	

cross and the null allele frequency distribution indicates that cross deviates from the null 710	

expectation allele frequency, and suggest the presence of nuclear-nuclear incompatibilities 711	

(shaded in blue).712	
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Figure 2
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Figure 3 
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