
Lawrence Berkeley National Laboratory
LBL Publications

Title

From fault-detection to automated fault correction: A field study

Permalink

https://escholarship.org/uc/item/34758298

Authors

Pritoni, Marco
Lin, Guanjin
Chen, Yimin
et al.

Publication Date

2022-04-01

DOI

10.1016/j.buildenv.2022.108900

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/34758298
https://escholarship.org/uc/item/34758298#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

From fault-detection to automated fault correction: a field study 1

Marco Pritoni1, Guanjin Lin1, Yimin Chen1, Raphael Vitti1, Christopher Weyandt,1 Jessica 2

Granderson1 3

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 4

Abstract 5

A fault detection and diagnostics (FDD) tool, as addressed by this study, is a tool that continuously 6

identifies the presence of faults and efficiency improvement opportunities through a one-way 7

interface to the building automation system and the application of automated analytics. Although 8

FDD tools can inform operators of building operational faults, currently an action is always 9

required to correct the faults to generate energy savings. Fault auto-correction integrating with 10

commercial FDD technology offerings can close the loop between the passive diagnostics and 11

active control, increase the savings generated by FDD tools, and reduce the reliance on human 12

intervention. This paper presents the field study of seven fault auto-correction algorithms 13

implemented in commercial FDD platforms. Implementation includes software changes in the 14

FDD tools and additional controls hardware or software changes in the BAS that were required to 15

enable the execution of different types of auto-correction algorithms in real buildings. The routines 16

successfully and automatically correct faults and improve the operation of large built-up Heating, 17

Ventilation, and Air Conditioning (HVAC) systems, common in most commercial buildings. The 18

auto-correction algorithms are tested across four buildings and three different building automation 19

systems, following a rigorous procedure to make sure they work properly and do not negatively 20

impact the system and building occupants. Technology benefits, market drivers, and scalability 21

changes are drawn from the implementation effort and test results, to drive future research and 22

industry engagement. 23

24

Keywords: fault correction; fault detection and diagnostics; energy efficiency; field testing; 25

building HVAC system; smart building 26

27

28

29

30

2

1. Introduction and background 31

Buildings use 40% of primary energy globally, and account for 33% of direct and indirect carbon 32

emissions from fuel combustion (Economidou M, 2011). Based on an analysis of the most 33

common faults in building systems, studies estimate that the energy savings achievable from 34

correcting these faults ranges from 5 to 30% whole building savings (Fernandez, 2017, Roth et 35

al. 2005). Commercial fault detection and diagnostics (FDD) tools automate the process of 36

detecting faults and suboptimal performance of building systems and help to diagnose potential 37

causes (Dexter et al. 2001). They offer several interrelated benefits including energy savings and 38

improved operational efficiency, utility cost savings, persistence in savings over time, streamlining 39

operations and maintenance processes, and supporting continuous energy management 40

practices such as monitoring-based commissioning. 41

As buildings become more data rich, FDD technologies are increasingly adopted in commercial 42

buildings. There are over 30 full-featured FDD software product offerings in today’s market in the 43

US and new software products continue to enter the market (Kramer et al., 2020). Building 44

operators at the forefront of technology adoption are using FDD to enable median whole-building 45

portfolio savings of 9% (Kramer et al., 2020). A FDD tool usually is a software layer on top of the 46

existing building automation systems (BAS). It integrates with BAS to obtain building system or 47

equipment operational data (e.g. temperature, pressure, flow rate). Extensive libraries of detection 48

logic are continuously run against the data, and results are presented through a graphical user 49

interface for resolution by operations and maintenance staff. A number of possible causes or 50

recommendations for correcting each fault are listed, requiring either additional data analysis by 51

the user or on-site inspection. In addition, tools may provide a report of the duration and frequency 52

of faults, cost and/or energy impacts, and relative priority levels (Granderson et al. 2017). 53

Although FDD tools are being used to enable cost-effective energy savings, there is a capability 54

gap. Today’s FDD technologies operate in an open loop manner. Faults are identified by the FDD 55

tools, however, the identified faults must be corrected through manual human intervention 56

(Kramer et al., 2020). In practice, the need for human intervention to fix faults once they are 57

identified often results in delay or inaction, causing additional operations and maintenance costs 58

or deteriorating comfort conditions. This capability gap is not only technical, but also represents 59

market-relevant desired functionality on behalf of FDD users and technology providers 60

(Granderson et al., 2017). Therefore, realizing automated fault correction in commercial FDD 61

technology offerings closes the loop between passive diagnostics and active control, increase the 62

savings realized through the use of FDD tools, and reduce the extent to which savings are 63

dependent upon human intervention. 64

Kim and Katipamula (2018) indicate that since 2004, more than 100 FDD research studies 65

associated with building systems have been published. However, the academic publication has 66

extensively focused on the development of new FDD algorithms for HVAC systems (Katipamula 67

et al. 2005, Zhao et al. 2013, Wang et al. 2017). Limited studies have been found on fault-tolerant 68

or self-correcting controls for building HVAC systems. The purpose of fault-tolerant controls is to 69

help good system operation despite the presence of faults (Zhang and Jiang, 2008). Wang et al. 70

(2002) developed a supervisory control strategy that adapts to the presence of outdoor air flow 71

3

rate sensor error. Hao et al. (2005) applied principal component analysis to develop fault tolerant 72

HVAC controls. Bengea et al. (2015) developed a fault-tolerant optimal control schema for a 73

HVAC system integrating FDD and model predictive control. These advanced controls are still in 74

the early research and development stage and are not yet readily deployed in today’s BAS. 75

Additionally, these fault-tolerant controls typically do not integrate with or make use of modern 76

FDD technologies, which are becoming increasingly present in commercial buildings. 77

Regarding the topic of automated fault correction, Fernandez et al. (Fernandez et al., 2009a; 78

Fernandez, et al., 2009b) and Brambley et al. (Brambley et al., 2011) developed both passive 79

and proactive fault auto-correction algorithms for an air-handler unit (AHU) and a variable-air-80

volume (VAV) box. The developed algorithms correct the following faults: temperature and 81

humidity sensor bias, incorrect damper operation, control hunting, and manual overrides. A subset 82

of these algorithms (sensor bias and minimum outdoor air damper position) were tested in a 83

laboratory experiment. They have not been validated in real buildings or integrated into existing 84

BAS and commercial FDD products. 85

Lin et al. (2020a) complemented and extended the work of Fernandez and Brambley (Fernandez 86

et al.,2009a; Fernandez, et al.,2009b, Brambley et al., 2011), by developing fault auto-correction 87

algorithms designed to be integrated with commercial FDD tools. The new auto-correction 88

algorithms afford the FDD technology a certain degree of control capability, as the autonomous 89

correction of faults are enabled by opening 2-way interfaces between the BAS and the FDD tool. 90

These algorithms target incorrectly programmed schedules, override not released, sensor bias, 91

control hunting, rogue zone, and suboptimal setpoints in HVAC systems. All the algorithms 92

developed in the study follow a general auto-correction process, with different control variables 93

overwritten in the BAS, and different ways to determine the correct or improved value of these 94

variables (Lin et al. 2020a). In this process, after the FDD algorithm generates a fault flag for a 95

specific fault, the auto-correction algorithm is initiated to correct this fault. Having a variable in the 96

BAS that is accessible by the FDD tool is the key element in the process. The developed auto-97

correction algorithms were integrated into commercial FDD tools and some preliminary integration 98

challenges and solutions were documented in Lin et al. (2020b). Among the auto-correction 99

algorithms, three algorithms (rogue zone, improve AHU supply air temperature setpoint reset, and 100

improve AHU static pressure setpoint reset) were deployed in a single commercial FDD software 101

and tested in two office buildings. These preliminary field testing results are presented in Lin et al. 102

(2020a) and Lin et al. (2021). The enhanced FDD tool with these three auto-correction algorithms 103

was able to correct faults successfully. While these preliminary results are encouraging, they fall 104

short of demonstrating all the algorithms and they are limited to a single software platform. 105

This article presents and discusses the final results of the project introduced in Lin et al. (2020a), 106

focusing on their implementation in two commercial FDD tools, and extensive field testing 107

performed in four buildings from late 2019 to 2021. The research team is composed of 108

researchers, FDD implementation partners and facility managers testing the new FDD features in 109

their buildings. This paper presents modifications to the FDD tools and the BAS that were required 110

to enable the execution of different types of auto-correction algorithms in real buildings. It also 111

4

presents the field testing procedure and results of seven auto-correction algorithms across four 112

buildings and three different BASs. This study aims to answer the following three questions: 113

1. Can auto-correction algorithms be successfully implemented in modern FDD tools and 114

field tested in real buildings? 115

2. Are the enhanced FDD solutions able to correct faults in real buildings without adverse 116

operational effects? 117

3. What are the benefits, adoption drivers, and scalability challenges of fault auto-correction 118

capability? 119

The rest of the paper is organized as follows: section 2 describes the method used for 120

implementing, deploying and testing the algorithms, section 3, 4, and 5 present the FDD tool 121

implementation results, the field tests results, and benefits and challenges of fault auto-correction, 122

respectively. Section 6 summarizes the conclusions. 123

2. Method 124

In this study, a set of seven fault-correction algorithms for HVAC systems were tested in real 125

buildings by two FDD partners (Table 1). The development of these routines is described in detail 126

in Lin et al (2020a). The variables corrected by the algorithms span schedules, setpoints, sensor 127

readings, commands, heating/cooling requests, and proportional, integral, derivative (PID) 128

parameters. The algorithms were created based on a detailed literature review and domain 129

expertise of the research and implementation team. 130

The routines can be broadly divided into three types (Table 1): 131

● One-time correction. After detecting and identifying the fault, the algorithm corrects it 132

automatically. The correction is not re-triggered until the fault is detected again (Section 133

3.2.1). Algorithms #1-3 are one-time corrections of faults. 134

● Active testing + one-time correction. Similar to the one above, with the addition of one or 135

more active tests performed before the variable is overridden in the BAS. The active tests 136

perturb the system in specific operating conditions to determine the best values of 137

parameters to be corrected (Section 3.2.2). Algorithm #4: Control Hunting is in this 138

category. 139

● Continuous optimization. After identifying the opportunity, these routines act continuously 140

to optimize system operation, behaving similarly to a “continuous” control algorithm. The 141

overwriting of BAS variables happens with higher frequency than the other two types of 142

routines and human intervention is not required to authorize each BAS variable update, 143

although the algorithm may require initial operator’s approval (Section 3.2.3). Algorithms 144

#5-7 belong to this type. 145

The selected auto-correction routines were implemented into two FDD products (Section 2.1). 146

Then field tests were performed in four commercial buildings (Section 2.2) following the same 147

testing procedure (Section 2.3). 148

 149

5

Table 1: Summary of the seven auto-correction algorithms implemented and tested in this study 150

Fault/Opportunity
Name

Fault/Opportunity Description Type of
Correction

Variables
Corrected

1 HVAC schedules are
incorrectly
programmed

HVAC equipment doesn’t turn on/off according to
intended schedule due to error in control

programming

One-time
correction

Schedule

2 Override not
released

Operator unintentionally neglects to release what was
intended to be a short-term override of setpoints or
other control commands (e.g. fan VFD speed, valve

control command).

One-time
correction

Override
property of
setpoint or
command

3 Improve zone
temperature setpoint
setback

The zone temperature cooling setpoint is lower than
needed or the heating setpoint is higher than needed
while the space is scheduled occupied or unoccupied.

One-time
correction

Zone
temperature

setpoint

4 Control hunting The actuator operates under oscillation due to
improper PID parameter setting

Active testing
+ one-time
correction

PID parameters

5 Rogue zone A zone continuously sends cooling/heating requests,
due to zone-level equipment problems like a leaky
reheat valve, a dysfunctional supply air damper, or

unachievable zone temperature setpoints.

Continuous
Optimization

Number of
ignored

requests from
zones

6 Improve AHU static
pressure setpoint
reset

Non optimized AHU static air pressure setpoint Continuous
Optimization

Supply static
pressure
setpoint

7 Improve AHU supply
air temperature
setpoint reset

Non optimized AHU supply air temperature setpoint Continuous
Optimization

Supply air
temperature

setpoint

2.1 Implementation of auto-correction routines into FDD tools 151

The research team first developed the high-level algorithms in the form of flow charts (Lin et al 152

2020a). Later the FDD partners selected a subset of them to implement and deploy them based 153

on desired new features for their platforms and the interest of their clients (Table 2). Partner 1 is 154

an end-user with the staff and internal capability to customize the platform for their needs. 155

Therefore, the routines developed by Partner 1 are site-specific customizations of the standard 156

vendor platform. The FDD tool used by partner 1 is located on the premises and has direct access 157

to the BAS network. This allowed Partner 1 to more easily implement continuous optimization 158

routines and more complex BAS modifications. Partner 2, instead, is a FDD provider with a 159

centralized, cloud-based platform without direct access to the BAS network. The algorithms were 160

developed in a “sandbox” environment where initial testing of the auto-correction functionality took 161

place. Once functionally tested and validated, these new platform features were incorporated into 162

the “production” version of the software for deployment to the test buildings, making this capability 163

also available to other customers while focusing on easily scalable algorithms. 164

Implementation activities included: (1) Modifying the FDD tool and the BAS to enable write 165

capability into the BAS and to set up user interfaces for building operators. These changes are 166

typically software modifications (creation of new points, interface programming, BAS logic 167

6

changes), but can also include hardware changes or additions (e.g., a new auto-correction device.) 168

(2) Coding the algorithms in the analytics engine of the FDD tool (3) Commissioning the algorithms, 169

including a review of the auto-correction algorithm outputs. The results of this implementation step 170

are described in Section 3. 171

2.2 Testing sites and equipment 172

FDD Partner 1 deployed the algorithms on two buildings in the same campus, while Partner 2 173

deployed them in two separate locations. The testing equipment includes AHUs, variable-air-174

volume boxes (VAV), fan coils (FC) and a heat recovery ventilation (HRV) unit for a total of 225 175

distinct pieces of equipment. The routines were also integrated with three different BAS vendor’s 176

platforms: Automated Logic Controls1 (ALC), Johnson Controls Inc.2 (JCI), and Delta Controls3 177

(DC). Table 2 summarizes sites, equipment, BAS and tested algorithms. The tests were 178

performed between the end of 2019 and the beginning of 2021. 179

 Table 2: Summary of the field testing sites and equipment 180

FDD
Partner

Site Location Equipment Tested Algorithm Tested BAS

Partner 1 Site A Berkeley,
CA, US

2 AHU, 48 VAV 4. Control hunting
5. Rogue zone

ALC

Site B Berkeley,
CA, US

2 AHU, 163 VAV 5. Rogue zone,
6. Improve AHU supply air static pressure
setpoint reset
7. Improve AHU supply air temp. setpoint reset

JCI

Partner 2 Site C Vancouver
B.C. Canada

3 FC and 1 HRV 1. HVAC schedules are incorrectly programmed
2. Override not released
3. Improve zone temp. setpoint setback

DC

Site D Atlanta, GA 1 AHU and 6 VAVs DC

2.3 Testing procedure 181

After implementing the algorithms and deploying them into the buildings, their operation was 182

tested using the following procedure. The procedure aimed at assessing the ability of an FDD tool 183

to automatically correct a fault, and therefore allowed the “correction” capability of the FDD tool 184

to be decoupled from its ability to perform detection and diagnostics. In this way, potentially 185

confounding factors can be ignored, associated with false negative/positive detection or 186

incorrect/missed diagnosis. 187

For each fault and automated fault correction procedure, each implementation partner did: 188

1. Verify the ability to override all setpoints/parameters to be tested. 189

1 https://www.automatedlogic.com/en/
2 https://www.johnsoncontrols.com/
3 https://deltacontrols.com/

7

2. Use a naturally occurring fault or impose the fault in “clean” (fault-free) equipment or 190

"assume" the fault is present if physical presence of the fault is not necessary to validate 191

the behavior of the corrective action. 192

3. Observe and document the FDD tool output, i.e., its detection and diagnosis results (not 193

applicable for assumed faults). 194

4. Execute the FDD-embedded correction routine. 195

5. Observe and document the effect of the automated fault correction. 196

 The results of the tests are described in Section 4. 197

2.4 Interviews with partners, facility managers and industry advisors 198

At the end of the project, the research team conducted a series of interviews with seven different 199

FDD providers and two facility managers. The researchers asked questions about perceived 200

benefits of auto-correction, as well as market barriers and potential drivers of adoption of this 201

technology. The interviews were transcribed and their content is summarized in Section 5, to 202

support answering the third research question. 203

3. FDD tool and BAS modifications for auto-correction 204

Partner 1 implemented one active testing + one-time correction algorithm and three continuous 205

optimization algorithms. Partner 2, instead, implemented three one-time correction algorithms. 206

These are listed in Table 2. 207

3.1 FDD-BAS infrastructure update 208

The current state-of-art FDD systems typically use one-way communication with the BAS, reading 209

operational data, running analytics, and flagging faults on the software interface (Lin et al., 2020b). 210

The first step in the software development for both partners consisted of enabling secure 2-way 211

communication between the FDD tool and the BAS. 212

3.1.1 Partner 1 implementation 213

Due to cybersecurity requirements of the site for Partner 1, the FDD software is hosted on a server 214

within the site’s firewall protected internal networks. The server collects data directly from 215

BACnet/IP networks, and by existing on those networks it is also capable of issuing BACnet 216

commands4. For this reason, access to the server is restricted to administrators. Data from the 217

FDD software is replicated to a separate server for end-user access to visualization and reporting 218

tools, accessible remotely. All FDD auto-correction routines, applications, and point mappings 219

reside on the internal server. The architecture of the FDD tool and the BAS developed by partner 220

1 is presented in Figure 1a. The blue line shows the original infrastructure and the red line shows 221

the upgrade. Before the start of the project the FDD tool already included a BACnet module, which 222

implemented the BACnet communication protocol (ASHRAE, 2021), to extract data from the BAS. 223

This BACnet module already enabled two-way communication, but each writable setpoint or 224

4 For more information about known cybersecurity vulnerabilities related to the BACnet protocol, the reader
should consult Holmberg and Evans, (2003) and Peacock et al. (2018).

8

command needed to be further configured in the FDD tool to enable writing operations and to 225

define BACnet priority levels5. Several modifications also needed to be made in the BAS to make 226

sure that the auto-corrected controls could operate even if the connection with the FDD tool was 227

lost, described in Section 3.2.3. 228

 229
(a) (b) 230

Figure 1: New FDD-BAS architecture created to support auto-correction (a: Partner 1, b: Partner 2) 231

3.1.2 Partner 2 implementation 232

The architecture of the new system is shown in Figure 1b. In traditional deployments, the most 233

common FDD integration pathway for Partner 2 involves the installation of a local device within 234

the BAS infrastructure. Once online, this device is tasked with systematically polling the 235

networked devices to retrieve configuration and operational data, continuously delivering these 236

data sets to the cloud servers for storage and analysis. The data-collection device is securely 237

connected to the cloud platforms by limiting its interaction with a specified IP address and only 238

initiating outbound messages from the site to the cloud. The existing FDD algorithms of the 239

standard platform are run on the cloud and accessed via a web interface from any computer with 240

the proper credentials. 241

To enable two-way communication to the FDD platform, Partner 2 opted for adding a new device 242

– Autocorrection Commander, which manages the execution of the auto-correction algorithms. 243

After BAS data is collected and pushed to the cloud platform, the new auto-correction algorithms 244

are run in the cloud and the correction commands are prepared for execution. The new device 245

periodically pulls these commands from the cloud and executes them on the BAS network. When 246

the BAS receives the correction command, correction actions are implemented. The correction 247

results are collected via the new device and pushed back to the cloud FDD platform. Compared 248

to Partner 1, this implementation requires more attention to be paid to synchronization between 249

cloud intelligence and local execution, because loss of connectivity is more likely to occur. Partner 250

5 BACnet uses priority levels as a mechanism to assign priority to specific entities to prevent conflict
between control actions.

9

2 implemented two features in the new device to avoid synchronization issues. The first feature 251

is “value validation” which means the device will validate the value that has been collected (in 252

case this value is changed after the FDD results are delivered) before it attempts to auto-correct 253

it. If the value is as expected, the auto-correction would proceed, if it is different, it would deny 254

auto-correction and insert an explanation of this in the activity log. The second feature is 255

"command expiration" in case loss of connectivity delays the ability for the auto-correction device 256

to communicate to the cloud and get the latest correction commands from the queue. 257

3.2 Software development for algorithms, BAS integration and UI 258

In addition to modifying the platform to enable two-way communication, each partner translated 259

the research-grade algorithms generated by the research team into platform-specific auto-260

correction algorithms. This was accomplished by using the native scripting language of each 261

platform. Other software modifications were required in both the FDD tool and the BAS, for 262

example to create and integrate new points, to generate user interfaces, or to modify the BAS 263

logic. Sections 3.2.1-3.2.3 describe the translation and Table 3 summarizes other software 264

modifications. 265

Table 3: Software modifications in the FDD tool and the BAS in addition to the translation of the 266
algorithms 267

Fault/Opportun
ity

FDD tool modification BAS modification

1 HVAC
schedules are
incorrectly
programmed

- Create new FDD writable point6 (schedule)
- Modify the user interface
- Create an action log

- No algorithm-specific modification

2 Override not
released

- Create new writable point (override)
- Modify the user interface
- Create an action log

- No algorithm-specific modification

3 Improve zone
temperature
setpoint setback

- Create new writable point (setpoint)
- Modify the user interface
- Create an action log

- No algorithm-specific modification

4 Control hunting - Integrate PID parameters as new points
- Create test management application
- Create new database tables for PID loop info
- Create test log

- Expose PID parameters to BACnet
(when not available by default)

5 Rogue zone - Create 1 new ignored requests7 point for
each zone (if desired for logging)
- If not already present, add FDD rules related
to rogue zone detection (e.g. leaky reheat
valve)
- Create ignore calculation application
- Integrate new writable AHU ‘ignore’ points

- Add BACnet-exposed ‘ignore’ inputs
to existing AHU control logic.
- If logic doesn’t already exist,
calculate new effective heating and
cooling requests, using provided
‘ignore’ inputs

6 Note: BAS and FDD tools typically store time-series data into a database sometimes called “historian”. By
“point” we mean new variables linked to these time-series data.
7 Requests and ignored requests (also called ‘ignore’) are defined in section 3.2.3

10

6 Improve AHU
static pressure
setpoint reset

- Create FDD writable point (setpoint)
- Integrate required zone points if not already
available (e.g. cooling PID output)

- Create new BAS point (setpoint)
- Create new point for FDD heartbeat
- Modify control sequence to use the
new static pressure/supply air temp.
setpoint when heartbeat is present
- Modify BAS graphics to provide
operator transparency and control.

7 Improve AHU
supply air temp.
setpoint reset

 268

3.2.1 One-time Correction 269

Partner 2 developed platform-specific algorithms #1: HVAC schedules are incorrectly 270

programmed; #2: Override not released and #3: Improve zone temperature setpoint setback 271

described in Table 1. The underlying FDD tool already saves several parameters describing the 272

intended operation of the buildings, including schedules, control modes, and setpoints. These 273

“recommended” parameters are actively determined from the operation history or selected by the 274

facility managers. In the FDD tool, these parameters are continuously compared with current 275

schedules and operation, and when the operation deviates from the recommended values, the 276

facility managers are notified. In the standard implementation of the software, the user is required 277

to use the BAS interface to revert the parameters back to the saved value or change this saved 278

value at the FDD if the BAS value is deemed the more appropriate value. With auto-correction, 279

the software was modified to allow updates of these parameters from the FDD tool. In order to 280

accomplish that, the user interface was modified to show the recommended value and a log of 281

the previous auto-correction actions (a and b in Figure 2 respectively). The end-users have the 282

option to either approve the auto-correction action that reverts the values back to the 283

recommended value or confirm the latest value is correct and update it to be the new 284

recommended value. This additional evaluation step was adopted to earn facility staff’s trust. The 285

software also includes an option to enable automatic correction of faults, bypassing the approval, 286

once the building manager has gained trust in the system. These two alternative paths are also 287

represented in Figure 9 (i.e., correction evaluation and auto-approval). When executing the auto-288

correction actions for all three algorithms, the FDD tool changes the value of the related BACnet 289

variable (i.e., Weekly_Schedule for #1, Out_Of_Service property for #2 and Present_Value for #3 290

respectively) to recommended values. On the BAS side, no change was necessary for each 291

algorithm, aside from opening two-way communication between the FDD and BAS platforms. 292

 293

11

Figure 2: Update to the Partner 2’s user interface8 to accommodate automatic fault correction 294

3.2.2 Active testing + one-time correction 295

Algorithm #4: Control Hunting corrects the fault by overwriting the values of PID parameters in 296

the control loop of the BAS. Partner 1 implemented the algorithm as three separate FDD software 297

modules (b), (c), (d), in addition to a standard fault detection algorithm (a): 298

a. Fault detection algorithm 299

b. Management of active tests 300

c. Calculation of improved PID parameters 301

d. Database and interface to access test results 302

As shown in Figure 3, after the hunting fault is detected by module (a), the auto-correction is 303

initiated by the facility manager. Modules (b), (c), (d) are executed to obtain the improved PID 304

parameters through the designed active tests. In this prototype implementation, the improved PID 305

parameters are shown through a custom interface in the FDD tool, then the facility manager 306

manually enters the new parameters in the BAS. 307

 308

Figure 3: Software modules created (in blue) and updated (in white) in the FDD tool to implement the 309
auto-correction algorithm 310

(a) Fault Detection 311

An existing fault detection algorithm is run in the background to identify what command variables 312

are hunting9 and on which equipment. The detection conditions look at the rate of change of the 313

variable that is hunting. If the rate of change exceeds a certain threshold (e.g., 5%/min) 314

continuously or more than twice during a certain period of time (e.g., 30 min), a fault is generated. 315

The above algorithm is meant to detect bad cycling behaviors with minimal false positives. 316

8 Image modified from FDD interface
9 “Hunting” is a term used in the HVAC industry to indicate variables that keep oscillating with a higher
frequency than expected.

12

(b) Management of active tests 317

As the start of the auto-correction process, this module initiates the active test following the 318

Lambda open-loop tuning rule (Pruna et al, 2017) which determines the improved PID parameters 319

based on the open-loop reaction of the process variable (e.g. temperature) to a change in the 320

control variable (e.g. valve control command). 321

● A persistent task runs every hour to review all the PID loop records that have auto-testing 322

enabled. If a PID loop requires a test (number of successful tests < target) and a test 323

wasn’t recently completed (in the last 24 hours), the software queues up a new test by 324

creating a PID test record, and a new temporary, dedicated task. 325

● Temporary, dedicated tasks run every 5 minutes to perform the following steps 326

sequentially: 327

● Load its dedicated PID test record, 328

● Synchronize time-series data to have the most recent data available for the 329

process and control variables, 330

● Check if testing conditions are met (e.g. airflow is detected for a reheat valve test), 331

● If testing conditions are not met, the current test fails. 332

● If testing conditions are met, monitor previous changes in the control variable and 333

the corresponding reaction of the process variable to determine what action, if any, 334

needs to be taken: 335

○ Override control variable to achieve stable state (start of test) 336

○ Override control variable to perform step change 337

○ Release override (end of test) 338

When enough data has been collected, module (c) is called. 339

(c) Calculation of improved PID parameters 340

This module is invoked during testing, if enough data has been collected after the execution of 341

module (b). In this module, the improved PID parameters are calculated using the collected data 342

of the control variable, the process variable, and the time between the step change in control 343

variable and the response from the process variable. If the module then successfully returns 344

improved PID parameters, the test is considered to be complete and successful. 345

(d) Database and interface to access test results 346

This module stores and views the results from modules (b) and (c). Information about each test 347

is recorded in a database, including start and end timestamps, whether the active test is 348

successful or failed, and the PID parameters’ results from the successful tests. A user interface 349

is also created that allows for viewing these results. 350

3.2.3 Continuous Optimization 351

Partner 1 implemented three algorithms #5, #6, and # 7 aimed at improving AHU operation using 352

supply air temperature and static pressure resets, enhanced by an evaluation of rogue zones. 353

These strategies are ranked in the top ten efficiency measures implemented by organizations 354

using FDD technology based on FDD analytics results. (Kramer et al., 2020). The auto-correction 355

algorithms for this opportunity are closely related to ASHRAE High-Performance Sequences of 356

Operation Guideline 36 (ASHRAE, 2018), but deployed via the FDD tool instead of the BAS (Lin 357

13

et al., 2020a). These algorithms determine the values of setpoints depending on the number of 358

cooling “requests” generated by downstream zones that are served by the same AHU and write 359

the improved setpoints into the BAS every five minutes. Details about their implementation are 360

described in Lin et al. 2020a and Lin et al. 2020b. Table 3 summarizes the modifications 361

necessary to their operation. These include creation of new points and new logic in the FDD tool 362

and modification of interfaces and control sequences in the BAS. Heartbeat signals were also 363

added in the FDD tool and sent to the BAS to constantly monitor connectivity between the two 364

systems. If the BAS lost connection with the FDD tool it would revert back to the output of the old 365

control sequence. 366

4. Field testing results 367

After implementing the routines and debugging them, each partner conducted formal field tests in 368

real buildings, following the procedure highlighted in Section 2.3. The implementation partners 369

successfully tested the algorithms, without adverse consequences, in at least one building and 370

HVAC system. In two cases (algorithms #1 and #4) the code had to be modified to address 371

problems identified during the field test. In seven cases, the faults were artificially imposed on the 372

system, in order to test the procedure and in nine cases, the faults were successfully detected by 373

the FDD tool. In two cases the FDD tool did not have the detection algorithms and the faults or 374

opportunities were practically determined by the facility staff (N/A). The results of these field 375

studies are summarized in Table 4 and described by type of algorithm in Section 4.1-4.3. 376

Table 4: Summary of test results of field testing in four buildings 377

Algorithm Tested Site Equipment Artificially
imposed

Fault
detected

Auto-correction
without adverse impact

1 HVAC schedules are
incorrectly programmed

Site C 1 FC Y Y Y

Site D 1 AHU Y Y Y

2 Override not released Site C 3 FCs and 1

HRV

Y Y Y

Site D 3 VAVs Y Y Y

3 Improve zone temp.
setpoint setback

Site C 3 FCs Y Y Y

Site D 6 VAVs Y Y Y

4 Control hunting Site A 1 VAV Y Y Y

5 Rogue zone Site A 2 AHU, 48 VAV N Y Y

Site B 2 AHU, 163 VAV N Y Y

6 Improve AHU static
pressure setpoint reset

Site B 2 AHU, 163 VAV N N/A Y

7 Improve AHU supply air
temp. setpoint reset

Site B 2 AHU, 163 VAV N N/A Y

4.1 Testing results of one-time correction algorithms 378

Partner 2 tested algorithm #1 on two pieces of equipment in two sites, algorithm #2 on seven 379

pieces of equipment and algorithm #3 on nine pieces of equipment across two sites (Table 4). All 380

the faults were artificially imposed on the equipment and then the facility manager executed 381

corrections after the faults were flagged in the FDD tool. 382

For algorithm #1: HVAC schedules are incorrectly programmed, two cases failed and two were 383

successful in the two testing sites. The two early tests failed due to inconsistencies in the 384

14

implementation of the schedule object in the BAS. Two additional tests were successful after 385

updates in the auto-correction code. An example of the successful results is presented in Figure 386

4 (a). The equipment schedule was modified by purposely deleting Friday’s schedule set to 6:30 387

AM - 5:00 PM on the BAS object property ‘TEMP_SCH’. The fault was correctly identified by the 388

FDD tool on July 15. Figure 4 (a) shows the Friday schedule disappeared after the fault was 389

implemented and reappeared on August 21 after the correction action was authorized by the user. 390

Between the start of the test on July 1 and the successful correction on August 21, the first test 391

failed due to an integration issue between the BAS and the FDD platform. This required changes 392

in the FDD software that was resolved the second week of August. Following this software update, 393

the correction operated as expected. 394

For algorithm #2: Override not released, the correction succeeded in all test cases at the two test 395

sites. The results of an example test case “The zone temperature setpoint mode of a FC was 396

overridden from auto to manual” is presented in Figure 4 (b). The value of “zone temperature 397

setpoint mode” was changed from 0 (auto) to 1 (manual) when the fault was imposed on August 398

20. Auto-correction was executed at 18:00 on August 21 after the fault was detected, and 399

successfully changed back the value from 1 (manual) to 0 (auto). In the other test cases, the 400

mode of other setpoints (i.e., maximum, minimum, or actual space temperature setpoints, the 401

night-heating setback enable temperature setpoint, and the CO2 differential setpoint) were 402

overridden from auto to manual, and the algorithms also successfully converted them back to 403

auto. 404

For algorithm #3: Improve zone temperature setpoint setback, the values of zone temperature 405

setpoints were changed to impose faults. All the faults were successfully corrected without 406

adverse impact. For example, during the test of a FC in Site C, the actual zone temperature 407

setpoint was changed from 21 °C to 19 °C at 5:00 PM August 20 to impose the fault. Figure 4 (c) 408

shows the zone temperature and setpoint between August 20 and August 22. After the fault was 409

imposed at 5:00 PM, the zone temperature setpoint was decreased from 21°C to 19°C. As a result, 410

the zone temperature dropped until it reached the new setpoint of 19°C two hours later. The next 411

day (i.e., August 21), the zone temperature tracked the wrong zone temperature setpoint until the 412

correction action was executed at 11:00 AM August 21. Consequently, zone temperature reached 413

the corrected setpoint value 21°C. 414

 415

 416

(a) 417

15

 418

(b) 419

 420

(c) 421

Figure 4: Example auto-correction test results (a): #1 HVAC schedules are incorrectly programmed, (b): 422
#2 Override not released, and (c): #3 Improve zone temperature setpoint setback (left: the fault was 423

imposed on Aug. 20; right: the fault was corrected on Aug. 21) 424

4.2 Testing results of active testing + one-time correction algorithm 425

Partner 1 tested algorithm #4 Control hunting on a VAV box discharge air temperature control. In 426

this control loop, the PID controller compares the setpoint to the discharge air temperature 427

(process variable) to obtain the error, then the reheat valve command (control variable) is 428

determined based on the error and PID parameters. The reheat valve command inputs to the 429

actuators to generate actual control actions so that the discharge air temperature reaches the 430

setpoint (Figure 5) 431

16

432
Figure 5: Control loop, control variable and process variable for test of algorithm #4 433

The successful test was conducted in January 2021. The behavior of the control and process 434

variables on January 26th, 2021, before auto-correction, is displayed in Figure 6a. The top panel 435

shows the Discharge Air Temperature (process variable, in blue) and the Discharge Air 436

Temperature Setpoint (in red). The temperature oscillated more than 15 times per hour between 437

2-3pm and between 5-6pm. The oscillations were caused by the control variable, the Reheat 438

Valve Command, displayed in the bottom panel (in blue). This hunting behavior was caused by 439

improper PID parameters. Figure 6b shows trends from the same points on January 29th, 2021, 440

after the auto-correction routine was executed. The oscillations of control and process variables 441

(i.e., hunting) disappeared after the update of the parameters, and a hunting fault was no longer 442

detected by the FDD tool. 443

To calculate the improved PID parameters for correction, the implementation team performed an 444

active perturbation test, as described in Section 3.2.2. Figure 7 displays trends and the active test 445

results. The results include proposed PID parameters - proportional and integral gains (Kp and 446

Ki) determined from the test. To perform the open-loop step change test, the FDD tool increased 447

the control variable (Reheat Valve Command of the VAV) from 45% to 65%. As a result, the 448

Discharge Air Temperature increased from 38.4 °C to 40 °C. The improved PID parameters, 449

calculated from Lambda open-loop tuning rules (Pruna et al, 2017), were proportional gain(Kp) = 450

0.5 and integral gain (Ki) = 0.1. Derivative gain is zero for PI controls, frequently used in HVAC 451

control systems. 452

17

 453

Figure 6: Comparison of behavior of the Discharge Air Temperature (process variable) and Reheat Valve 454

Command (control variable) in Site A before (Jan 21th 2021, a) and after (Jan 29th 2021, b) the update of 455
the PID parameters. 456

 457

Figure 7: Process variable (Discharge Air Temperature), control variable (Reheat Valve Command) and 458
derivative of the process variable for the test of algorithm #4. The bottom table shows the results of the 459

calculation of improved PID parameters in the FDD interface (ALC Kp and Ki) 460

4.3 Testing results of continuous optimization correction algorithms 461

Partner 1 tested algorithm #5 in two buildings and #6 and #7 in a single building. For each building, 462

the routines were implemented on two large AHUs serving tens to hundreds of VAV boxes. 463

18

Detailed results of the preliminary tests of algorithms #5, #6, #7 are presented in Lin et al., 2020a, 464

and Lin et al., 2020b. The new control strategies have been permanently adopted by the site 465

beyond the testing requirements of the project and have now been running for over a year. The 466

new control sequence did not cause any occupant complaints, and it worked more efficiently than 467

the previous ones, although precise savings estimates were beyond the scope of the test. Figure 468

8 shows results when the FDD tool successfully changed the supply air temperature setpoint of 469

one of two test AHUs based on the algorithms described in Section 3.2.3. The bottom of Figure 8 470

describes the number of calculated requests R’, defined as: 471

Calculated (Heating or Cooling) Requests (R’) = Incoming Requests (R) - Ignored

Requests (I)
(2)

When the number of R’ became larger than zero starting at 10:05 a.m., the algorithm slowly 472

reduced the SAT setpoint by 0.06 °C for each request every five minutes. Starting at 11:50 a.m., 473

the requests remained at zero and the routine slowly increased the supply air temperature 474

setpoint by 0.12 °C every five minutes until it reached a max value (SATmax=18.3 °C). The 475

setpoint remained at SATmax until R’ was positive again at 14:50 p.m. Then, the supply air 476

temperature setpoint again slowly decreased when R’ was positive and slowly increased when R’ 477

became zero. The strategy saved energy compared to the legacy control algorithm as illustrated 478

in Lin et al., 2020a. 479

 480

Figure 8: The SAT setpoint of an AHU after the execution of the auto-correction algorithm (Lin et al. 481
2020a) 482

19

5. Benefits and challenges of fault auto-correction 483

5.1 Technology benefits and market drivers 484

Commercial FDD platforms help to continually identify operational inefficiencies in building 485

equipment. However, these FDD tools generate recommendations that need to be implemented 486

by service technicians or other staff, resulting in delays, operations and maintenance costs or lost 487

opportunities. All the FDD providers and facility managers interviewed during the project (Section 488

2.4) recognized these shortcomings and agreed that fault auto-correction integrating with 489

commercial FDD technology offerings can close the loop between the passive diagnostics and 490

active control. Several providers highlighted that many buildings with small operations teams may 491

struggle to respond to FDD fault reports in a timely manner. The ability to auto-correct faults, even 492

if it is only a subset of the total faults list identified by an FDD tool, can make a significant difference 493

in the realized savings. One interviewee asserted that, for many organizations, auto-correction 494

will be the primary way they can scale their ability to act on FDD findings. 495

In particular, the interviewees identified several benefits of this technology: 496

1. reducing the extent to which savings are dependent upon human intervention 497

2. scaling building operators’ ability to act on FDD findings (especially for facilities with small 498

operations teams), 499

3. tracking the changes executed on the BAS 500

4. applying consistent fixes for a subset of fault conditions, 501

5. saving a significant amount of energy from the routines related to optimal controls 502

To better understand how the different algorithms tested in this paper enable these benefits, the 503

research team abstracted the workflow of each category of algorithm and compared them to the 504

standard FDD workflow (Figure 9). Each box in Figure 9 represents a step in the process and the 505

arrows indicate the data transferred between them. The steps that involve facility staff are 506

indicated by a human icon, while the automated steps have no icon. The colored boxes represent 507

changes compared to the standard workflows. The tasks in blue are automated by the algorithms, 508

while tasks in red add a new step to the traditional process. The second and third group of 509

algorithms show two parallel paths, because different options may fully automate the task or 510

require human confirmation. 511

In the traditional case, the FDD tool identifies the faults using data from the BAS (step B in Figure 512

9). A human (e.g., facility manager) evaluates these faults and plans a set of actions to fix the 513

identified issues (step C). After this phase, other actors fix physical problems in the underlying 514

systems or reprogram the BAS (step F). The resulting actions are typically, but not always, 515

recorded in a system different from the FDD tool (step G), for instance a computerized 516

maintenance management system (CMMS) (Wireman, 1994). The manual steps in the 517

implementation of the corrective actions and the difficulties in tracking their outcomes are often 518

recognized as limitations of current FDD platforms (Granderson et al., 2017). 519

The algorithms proposed in this paper improve over this base workflow through some degree of 520

automation, but they differ in some of the steps. All the algorithms automate the correction of 521

faults (step F: action execution), thus contributing to reducing the dependency of savings from 522

20

human intervention (benefit #1) and increasing the ability of the facility team to act on FDD findings 523

(benefit #2). However, they also replace the manual evaluation of faults (step C, in the basic 524

workflow) with additional steps that depend on the algorithm group. For the one-time correction 525

algorithms, the detection of the fault triggers a proposed action. The user can manually approve 526

it or decide to approve it automatically (step E). Partner 2 plans to implement options in the 527

interface in future that allow users to auto-approve certain corrections, after gaining trust in the 528

system (Step E, in blue). This feature will allow to apply consistent fixes to a subset of fault 529

conditions (benefit #4). After this decision, the FDD tool generates a command, pushes it to the 530

BAS (step F) and tracks it in a log (step G). 531

 532

 533

Figure 9: Traditional FDD workflow and enhanced process with the three fault correction types 534

The workflow for active testing + one-time correction algorithms add an additional step to the 535

previous process, to gather additional information (step D, Figure 9) used to calculate parameters 536

and recommend them to the user. Auto-correction routines that involve active testing have 537

promising applications. For instance, automated tuning of PID loops could save operators the 538

time to perform trial and error tests of parameters in the field. This is useful for control systems 539

that don’t already have such functionality, or for which out-of-the-box results are not satisfactory. 540

21

The algorithms belonging to the continuous optimization category automate both fault evaluation 541

(step C) and execution of the correction (step F). Since the correction takes place continuously, 542

the operator is only involved in initial approval and periodic evaluations of the outcome of the 543

strategy. Based on the interviews and preliminary test results (Lin et al, 2020a), these strategies 544

have the highest potential for energy savings (benefit #5). Further, these routines may be 545

especially cost-effective on sites where the underlying control infrastructure is obsolete and 546

heterogeneous, because they allow the deployment of supervisory control algorithms more with 547

less labor. 548

In addition, all the algorithms log the corrections enacted by the FDD tool, tracking the changes 549

executed on the BAS (benefit #3). 550

The interviewees agreed that the drivers for market adoption of auto-correction features will be 551

similar to those of FDD tools. For example, energy efficiency and conservation goals are likely to 552

be increasingly important in the future. Labor shortages within the operation and management 553

industry, caused by many facility staff approaching retirement age, may also favor solutions that 554

automate parts of the traditional operation workflows. With common experience of electronics and 555

other consumer devices, facility staff may also expect a better user experience with HVAC 556

controls. A new driver may also emerge as building occupancy patterns are more dynamic post-557

pandemic, whereby auto-correction via the FDD tool can be a good option to implement the 558

occupancy-based supervisory control strategies. 559

An additional driver is that FDD adoption continues to increase, meaning there is a larger market 560

of established FDD users who will be looking for ways to extend their benefits beyond one-way 561

fault detection. 562

5.2 Scalability challenges 563

While the benefits of this technology are significant, several challenges have to be addressed in 564

future research to enable scalable deployment of these algorithms. The first common challenge 565

is enabling secure two-way communication between the FDD tool and the BAS, allowing the FDD 566

tool to override the BAS. The required effort for this integration varies depending on the IT/BAS 567

network architecture. During this project this step was successful on two FDD tools and three 568

types of BAS in three office buildings and one university student center, as described in Section 569

3.1. Additional field testing with more FDD tools and BAS types will be conducted in future to 570

prove the generalizability of these solutions. 571

The second common challenge is overcoming cybersecurity and accountability concerns, when 572

systems are controlled by a third party. The building owners and operators interviewed indicated 573

that, similar to other supervisory control software, they are concerned about remote changes to 574

BAS settings, especially for some building segments like military and healthcare. Interviewees 575

also noted that many owners may be reluctant to hand over any portion of their building’s control 576

to a third party. The acceptability of this control overwritten will eventually be determined by the 577

balance between risks and benefits perceived by the organizations using them. To mitigate this 578

challenge, interviewees suggested ensuring the correction routines and corresponding control 579

action be transparent, implementing proposed auto-correction routines only after the confirmation 580

from onsite operations staff, enhancing auto-correction interface to build trust and confidence, 581

22

and starting with owners who are well established with using FDD and looking for additional 582

benefits. Close attention should be paid to clearly communicating to all the facility staff so that 583

they are aware of the changes to the BAS made by the FDD tool. 584

The research team then evaluated each type of algorithm in relationship to the two dimensions of 585

scalability, 1) required effort, 2) generalizability. 586

The one-time fault correction algorithms require low effort (coding and integration) and has high 587

generalizability. They were the simplest to implement, because they modify schedules, setpoints, 588

commands and sensor values, most of which are standard BACnet objects. For the same reason, 589

the implementation partners believe these routines will be easy to scale up across multiple 590

buildings using different BAS, given the growing adoption of BACnet in the control industry. 591

However, the field test demonstrated that even when BACnet is used, different versions of the 592

protocol or proprietary/custom objects used by different BAS vendors may require customization 593

of the code. For example, Partner 2 discovered different implementations of schedule objects in 594

different buildings, some starting the week from Monday, while others from Sunday. These 595

discrepancies in data formatting were found between different versions of BACnet devices as well 596

as in different implementations of the BACnet protocol stack. To ensure user acceptability, Partner 597

2 updated the user interfaces of the FDD tool to allow operators to revise the proposed corrections 598

and to automate the process even further. During the tests, users provided positive feedback and 599

seem to accept these algorithms without problems. 600

The one-time correction + active testing algorithm requires high effort and has medium-low 601

generalizability. Several interviewees highlighted the benefits of auto-correction of “control 602

hunting”. Many PID loops in the buildings are out of tune, and it would take significant operator 603

time to manually perform trial and error tests of parameters in the field. In spite of great potential, 604

the effort required to develop this type of active testing algorithm was significant, since neither the 605

FDD nor the BAS offered tools to manage the periodic tests needed. As described in Sections 606

3.2.2 and 4.2, three modules and a new interface were added in the FDD tool to understand and 607

manage these tests. Timing and scope of the active testing were managed programmatically, by 608

setting allowed testing times and other conditions based on available trends (e.g. zone 609

temperature) in order to ensure that the desired perturbation of the system did not adversely affect 610

occupant safety or comfort. The generalizability of the auto-correction of PID parameters is 611

medium to low. While the single test with Lambda open-loop tuning rule was successful in a reheat 612

valve - discharge air temperature VAV-box control loop in this study, further work has to be done 613

to fully automate this procedure, prove its robustness, and make it applicable to additional types 614

of equipment. Partner 1 reported that the BAS controller tested did not expose PID loop 615

parameters via BACnet and exposing them required significant manual work. Without proper 616

standardization of BACnet objects and properties describing PID parameters, implementing these 617

routines will require customization to interface with different implementations of PID loops. 618

The continuous optimization algorithms also require high effort and has medium-low 619

generalizability. The development was time-intensive, because it required the modification of the 620

BAS logic as well as the FDD tool. The BAS logic cannot be accessed via BACnet and its update 621

currently requires dedicated and proprietary tools that depend on the BAS vendor. While recent 622

research has been exploring how to digitize control sequences (Wetter et al, 2022), 623

standardization of such workflows is still underway. Partner 1 successfully implemented these 624

23

algorithms in the FDD software which is hosted on a server within the site’s firewall protected 625

internal networks. To scale up these algorithms in the cloud FDD software, FDD providers should 626

develop methods to ensure the synchronization between the BAS and the FDD tool in controlling 627

the equipment. Any loss of connectivity may cause delays in the control logic with negative 628

consequences on occupant comfort and equipment safety. For example, partner 2 developed two 629

new features “value validation” and “command expiration” to accommodate the asynchronous 630

interaction of the data collection and the auto-correction devices. 631

6. Conclusion and Future Work 632

This paper presents the field study of seven fault auto-correction algorithms implemented in 633

commercial FDD platforms. It puts the algorithms in their logical contexts, summarizes their 634

objectives, describes the testing procedure, and shows the successful testing results. The 635

algorithms automatically correct faults and improve the operation of large built-up HVAC systems, 636

focusing on incorrectly programmed schedules, override not released, control hunting, rogue zone, 637

and suboptimal setpoints in HVAC systems. These algorithms were integrated into two 638

commercial FDD platforms and deployed across four buildings and three different building 639

automation systems. The modifications of the FDD tool and the building BAS for auto-correction 640

are summarized in the paper, including FDD-BAS infrastructure update and other software 641

modifications. Each of the seven correction routines was tested in one or two buildings following 642

a rigorous procedure. In general, the enhanced FDD tools were able to correct faults successfully 643

without negatively impacting the system and building occupants. The control hunting correction 644

was tested in a semi-automated way and the schedule correction was successful after some 645

adjustments to the algorithms. Technology benefits, market drivers, and scalability changes are 646

also discussed based on implementation and field testing results, as well as interviews with the 647

FDD providers and facility managers. 648

Future work will focus on more field testing of the auto-correction algorithms with additional FDD 649

platforms in a larger cohort of buildings to prove their robustness. This will include the evaluation 650

of the technical efficacy and the performance of each correction routine, the evaluation of the 651

operations and maintenance benefits for each site in the cohort and the characterization of 652

challenges and best practices. A second area of future work should enhance the auto-correction 653

interface of these FDD tools. This is needed to overcome the natural concerns among end-users 654

about accountability and loss of control, when the FDD routines correct BAS control parameters 655

automatically. At last, the current testing of the auto-correction algorithms was decoupled from 656

the FDD algorithms embedded in the FDD tools. Faults were artificially induced to validate the 657

correction capability. In future, the FDD and auto-correction process needs to be tested together 658

to mitigate the impact of false positives during fault detection. 659

7. Acknowledgements 660

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, 661

Building Technologies Office, of the U.S. Department of Energy under Contract No. DE-AC02-662

05CH11231. The authors wish to acknowledge Harry Bergmann and Hannah Debelius for their 663

24

guidance and support of the research. We also thank the fault detection and diagnostics 664

technology and service providers who participated in this study. 665

8. References 666

American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). (2018). 667
Guideline 36–2018. High Performance Sequences of Operation for HVAC Systems. 668
ASHRAE. Akron, OH, USA, 2018. 669

American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). (2020). 670
Standard 135-2020—BACnetTM—A Data Communication Protocol for Building Automation 671
and Control Networks. Available online: https://www.ashrae.org/technical-672
resources/bookstore/bacnet (accessed on 10 Aug 2021). 673

Bengea, S.C., Li, P., Sarkar, S., Vichik, S., Adetola, V., Kang, K., Lovett, T., Leonardi, F., Kelman, 674
A.D. (2015). Fault-tolerant optimal control of a building HVAC system. Science and 675
Technology for the Built Environment, 21(6), 734–751. 676
https://doi.org/10.1080/23744731.2015.1057085 677

Brambley, M., Fernandez, N., Wang, W., Cort, K.A., Cho, H., Ngo, H., Goddard, J.K. (2011). Final 678
project report: Self-correcting controls for VAV system faults filter/fan/coil and VAV box 679
sections. No. PNNL-20452; Pacific Northwest, National Laboratory (PNNL), Richland, WA, 680
USA. 681

Dexter A., J. Pakanen (Eds.). (2001) Demonstrating Automated Fault Detection and Diagnosis 682
Methods in Real Buildings, Technical Research Centre of Finland, Finland. 683

Economidou M. (2011). Europe’s buildings under the microscope. A country-by-country review of 684
the energy performance of buildings. Technical Report Buildings Performance Institute 685
Europe. 686

Fernandez, N.; Brambley, M.; Katipamula, S. (2009a). Self-correcting HVAC controls: Algorithms 687
for sensors and dampers in air-handling units, PNNL-19104; Pacific Northwest; National 688
Laboratory: Richland, WA, USA. 689

Fernandez, N.; Brambley, M.; Katipamula, S.; Cho, H.; Goddard, J.; Dinh, L. (2009b). Self-690
correcting HVAC controls project final report, PNNL-19074; Pacific Northwest; National 691
Laboratory: Richland, WA, USA. 692

Fernandez, N.E., Katipamula, S., Wang, W., Xie, Y., Zhao, M. Corbin, C.D. (2017). Impacts on 693
commercial building controls on energy savings and peak load reduction. Pacific Northwest 694
National Laboratory. PNNL Report Number PNNL-25985, Richland, WA, USA. 695

Granderson, J., Singla, R., Mayhorn, E., Ehrlich, P., Vrabie, D., Frank, S. (2017) . Characterization 696
and survey of automated fault detection and diagnostics tools. Report Number LBNL-697
2001075. 698

Granderson J, Lin G, Singla R, Mayhorn E, Ehrlich P, Vrabie D, Frank S. (2018). Commercial fault 699
detection and diagnostics tools: What they offer, how they differ, and what’s still needed. 700
2018 ACEEE summer study on energy efficiency in buildings, 12-17 August, 2018, Pacific 701
Grove, CA U.S. https://escholarship.org/uc/item/4j72k57p 702

Hao, X., Zhang, G., Chen, Y. (2005). Fault-tolerant control and data recovery in HVAC monitoring 703
system. Energy and Buildings, 37(2), 175–180. 704
https://doi.org/10.1016/j.enbuild.2004.06.023 705

25

Holmberg, D. (2003). BACnet Wide Area Network Security Threat Assessment, NIST 706
Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, 707
Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.7009 (Accessed November 10, 708
2021) 709

Johnson Controls Inc, (2020). Help files. 710

Kramer, H., Lin, G., Curtin, C., Crowe, E., Granderson, J. (2020). Proving the business case for 711
building analytics. Lawrence Berkeley National Laboratory. 712
https://doi.org/10.20357/B7G022 713

Katipamula, S., Brambley, M.R. (2005). Methods for fault detection, diagnostics, and prognostics 714
for building systems—A review, part I. HVAC and R Research, 11(1), 3–25. 715

Kim, W., Katipamula, S. (2018). A review of fault detection and diagnostics methods for building 716
systems, Science and Technology for the Built Environment, 24 (1), 3–21. 717
https://doi.org/10.1080/23744731.2017.1318008 718

Lin G., Pritoni M., Chen Y., Granderson J. (2020a). Development and implementation of fault-719
correction algorithms in fault detection and diagnostics tools. Energies, 13(10). 720
https://doi.org/10.3390/en13102598 721

Lin, G, Pritoni M, Chen Y, Moromisato R, Kozlen S, Granderson J. (2020b). Can we fix it 722

automatically? Development of fault auto-correction algorithms for HVAC and lighting 723

systems. 2020 ACEEE Summer Study on Energy Efficiency in Buildings. 17-21 August, 724

2020, Pacific Grove, CA U.S. https://doi.org/10.20357/B74C7N 725

Lin, G, Pritoni M, Chen Y, Moromisato R, Kozlen S, Granderson J. (2021). Fault “auto correction” 726

for HVAC systems, a preliminary study. 6th International High Performance Buildings 727

Conference. 24-28 May, 2021, West Lafayette, IN U.S. 728

https://docs.lib.purdue.edu/ihpbc/369/ 729

Peacock M., Johnstone M.N., Valli C. (2018). An exploration of some security issues within the 730

BACnet protocol. In: Mori P., Furnell S., Camp O. (eds) Information Systems Security and 731

Privacy. ICISSP 2017. Communications in Computer and Information Science, 867. 732

Springer, Cham. February 19-21, 2017, Porto, Portugal. https://doi.org/10.1007/978-3-319-733

93354-2_12 734

Pruna E., Sasig E. R., Mullo S., (2017). PI and PID controller tuning tool based on the lambda 735

method, 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and 736

Communication Technologies, CHILECON 2017 - Proceedings, 18-20 Oct. 2017. Pucon, 737

Chile. https://doi.org/10.1109/CHILECON.2017.8229616 738

Roth, K.W.,Westphalen, D., Feng, M. Y., Llana, P., Quartararo, L. (2005). Energy impact of 739

commercial building controls and performance diagnostics:market characterization, energy 740

impact of building faults and energy savings potential. Report prepared by TIAX LLC for the 741

U.S. Department of Energy. 742

Wang, S.; Chen, Y. (2002). Fault-tolerant control for outdoor ventilation air flow rate in buildings 743

based on neural network. Building and Environment, 37(7), 691–704. 744

https://doi.org/10.1016/S0360-1323(01)00076-2 745

26

Wang, Z., Wang, Z., He, S., Gu, X., Yan, Z.F. (2017). Fault detection and diagnosis of chillers 746

using Bayesian network merged distance rejection and multi-source non-sensor information. 747

Applied Energy, 188, 200-14. https://doi.org/10.1016/j.apenergy.2016.11.130 748

Wetter, M., Ehrlich, P., Gautier, A., Grahovac, M., Haves, P., Hu, J., Prakash, A., Robin, D. and 749

Zhang, K. (2022). OpenBuildingControl: Digitizing the control delivery from building energy 750

modeling to specification, implementation and formal verification. Energy, 238, 121501. 751

https://doi.org/10.1016/j.energy.2021.121501 752

Wireman, T. (1994). Computerized maintenance management systems. Industrial Press Inc. 753

Zhang, Y., Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems. 754

Annual Reviews in Control, 32(2), 229–252. https://doi.org/10.1016/j.arcontrol.2008.03.008 755

Zhao Y, Wang S, Xiao F. (2013). Pattern recognition-based chillers fault detection method using 756

support vector data description (SVDD). Applied Energy, 112,1041-8. 757

https://doi.org/10.1016/j.apenergy.2012.12.043 758

