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From fault-detection to automated fault correction: a field study 1 

Marco Pritoni1, Guanjin Lin1, Yimin Chen1, Raphael Vitti1, Christopher Weyandt,1 Jessica 2 

Granderson1 3 

1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 4 

Abstract 5 

A fault detection and diagnostics (FDD) tool, as addressed by this study, is a tool that continuously 6 

identifies the presence of faults and efficiency improvement opportunities through a one-way 7 

interface to the building automation system and the application of automated analytics. Although 8 

FDD tools can inform operators of building operational faults, currently an action is always 9 

required to correct the faults to generate energy savings. Fault auto-correction integrating with 10 

commercial FDD technology offerings can close the loop between the passive diagnostics and 11 

active control, increase the savings generated by FDD tools, and reduce the reliance on human 12 

intervention. This paper presents the field study of seven fault auto-correction algorithms 13 

implemented in commercial FDD platforms. Implementation includes software changes in the 14 

FDD tools and additional controls hardware or software changes in the BAS that were required to 15 

enable the execution of different types of auto-correction algorithms in real buildings. The routines 16 

successfully and automatically correct faults and improve the operation of large built-up Heating, 17 

Ventilation, and Air Conditioning (HVAC) systems, common in most commercial buildings. The 18 

auto-correction algorithms are tested across four buildings and three different building automation 19 

systems, following a rigorous procedure to make sure they work properly and do not negatively 20 

impact the system and building occupants. Technology benefits, market drivers, and scalability 21 

changes are drawn from the implementation effort and test results, to drive future research and 22 

industry engagement. 23 

24 
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1. Introduction and background 31 

Buildings use 40% of primary energy globally, and account for 33% of direct and indirect carbon 32 

emissions from fuel combustion (Economidou M, 2011). Based on an analysis of the most 33 

common faults in building systems, studies estimate that the energy savings achievable from 34 

correcting these faults ranges from 5 to 30% whole building savings (Fernandez, 2017, Roth et 35 

al. 2005). Commercial fault detection and diagnostics (FDD) tools automate the process of 36 

detecting faults and suboptimal performance of building systems and help to diagnose potential 37 

causes (Dexter et al. 2001). They offer several interrelated benefits including energy savings and 38 

improved operational efficiency, utility cost savings, persistence in savings over time, streamlining 39 

operations and maintenance processes, and supporting continuous energy management 40 

practices such as monitoring-based commissioning.  41 

As buildings become more data rich, FDD technologies are increasingly adopted in commercial 42 

buildings. There are over 30 full-featured FDD software product offerings in today’s market in the 43 

US and new software products continue to enter the market (Kramer et al., 2020). Building 44 

operators at the forefront of technology adoption are using FDD to enable median whole-building 45 

portfolio savings of 9% (Kramer et al., 2020). A FDD tool usually is a software layer on top of the 46 

existing building automation systems (BAS). It integrates with BAS to obtain building system or 47 

equipment operational data (e.g. temperature, pressure, flow rate). Extensive libraries of detection 48 

logic are continuously run against the data, and results are presented through a graphical user 49 

interface for resolution by operations and maintenance staff. A number of possible causes or 50 

recommendations for correcting each fault are listed, requiring either additional data analysis by 51 

the user or on-site inspection. In addition, tools may provide a report of the duration and frequency 52 

of faults, cost and/or energy impacts, and relative priority levels (Granderson et al. 2017).  53 

Although FDD tools are being used to enable cost-effective energy savings, there is a capability 54 

gap. Today’s FDD technologies operate in an open loop manner. Faults are identified by the FDD 55 

tools, however, the identified faults must be corrected through manual human intervention 56 

(Kramer et al., 2020). In practice, the need for human intervention to fix faults once they are 57 

identified often results in delay or inaction, causing additional operations and maintenance costs 58 

or deteriorating comfort conditions. This capability gap is not only technical, but also represents 59 

market-relevant desired functionality on behalf of FDD users and technology providers 60 

(Granderson et al., 2017). Therefore, realizing automated fault correction in commercial FDD 61 

technology offerings closes the loop between passive diagnostics and active control, increase the 62 

savings realized through the use of FDD tools, and reduce the extent to which savings are 63 

dependent upon human intervention. 64 

Kim and Katipamula (2018) indicate that since 2004, more than 100 FDD research studies 65 

associated with building systems have been published. However, the academic publication has 66 

extensively focused on the development of new FDD algorithms for HVAC systems (Katipamula 67 

et al. 2005, Zhao et al. 2013, Wang et al. 2017). Limited studies have been found on fault-tolerant 68 

or self-correcting controls for building HVAC systems. The purpose of fault-tolerant controls is to 69 

help good system operation despite the presence of faults (Zhang and Jiang, 2008). Wang et al. 70 

(2002) developed a supervisory control strategy that adapts to the presence of outdoor air flow 71 
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rate sensor error. Hao et al. (2005) applied principal component analysis to develop fault tolerant 72 

HVAC controls. Bengea et al. (2015) developed a fault-tolerant optimal control schema for a 73 

HVAC system integrating FDD and model predictive control. These advanced controls are still in 74 

the early research and development stage and are not yet readily deployed in today’s BAS. 75 

Additionally, these fault-tolerant controls typically do not integrate with or make use of modern 76 

FDD technologies, which are becoming increasingly present in commercial buildings. 77 

Regarding the topic of automated fault correction, Fernandez et al. (Fernandez et al., 2009a; 78 

Fernandez, et al., 2009b) and Brambley et al. (Brambley et al., 2011) developed both passive 79 

and proactive fault auto-correction algorithms for an air-handler unit (AHU) and a variable-air-80 

volume (VAV) box. The developed algorithms correct the following faults: temperature and 81 

humidity sensor bias, incorrect damper operation, control hunting, and manual overrides. A subset 82 

of these algorithms (sensor bias and minimum outdoor air damper position) were tested in a 83 

laboratory experiment. They have not been validated in real buildings or integrated into existing 84 

BAS and commercial FDD products.  85 

Lin et al. (2020a) complemented and extended the work of Fernandez and Brambley (Fernandez 86 

et al.,2009a; Fernandez, et al.,2009b, Brambley et al., 2011), by developing fault auto-correction 87 

algorithms designed to be integrated with commercial FDD tools. The new auto-correction 88 

algorithms afford the FDD technology a certain degree of control capability, as the autonomous 89 

correction of faults are enabled by opening 2-way interfaces between the BAS and the FDD tool. 90 

These algorithms target incorrectly programmed schedules, override not released, sensor bias, 91 

control hunting, rogue zone, and suboptimal setpoints in HVAC systems. All the algorithms 92 

developed in the study follow a general auto-correction process, with different control variables 93 

overwritten in the BAS, and different ways to determine the correct or improved value of these 94 

variables (Lin et al. 2020a). In this process, after the FDD algorithm generates a fault flag for a 95 

specific fault, the auto-correction algorithm is initiated to correct this fault. Having a variable in the 96 

BAS that is accessible by the FDD tool is the key element in the process. The developed auto-97 

correction algorithms were integrated into commercial FDD tools and some preliminary integration 98 

challenges and solutions were documented in Lin et al. (2020b). Among the auto-correction 99 

algorithms, three algorithms (rogue zone, improve AHU supply air temperature setpoint reset, and 100 

improve AHU static pressure setpoint reset) were deployed in a single commercial FDD software 101 

and tested in two office buildings. These preliminary field testing results are presented in Lin et al. 102 

(2020a) and Lin et al. (2021). The enhanced FDD tool with these three auto-correction algorithms 103 

was able to correct faults successfully. While these preliminary results are encouraging, they fall 104 

short of demonstrating all the algorithms and they are limited to a single software platform. 105 

This article presents and discusses the final results of the project introduced in Lin et al. (2020a), 106 

focusing on their implementation in two commercial FDD tools, and extensive field testing 107 

performed in four buildings from late 2019 to 2021. The research team is composed of 108 

researchers, FDD implementation partners and facility managers testing the new FDD features in 109 

their buildings. This paper presents modifications to the FDD tools and the BAS that were required 110 

to enable the execution of different types of auto-correction algorithms in real buildings. It also 111 
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presents the field testing procedure and results of seven auto-correction algorithms across four 112 

buildings and three different BASs. This study aims to answer the following three questions: 113 

1. Can auto-correction algorithms be successfully implemented in modern FDD tools and 114 

field tested in real buildings? 115 

2. Are the enhanced FDD solutions able to correct faults in real buildings without adverse 116 

operational effects? 117 

3. What are the benefits, adoption drivers, and scalability challenges of fault auto-correction 118 

capability? 119 

The rest of the paper is organized as follows: section 2 describes the method used for 120 

implementing, deploying and testing the algorithms, section 3, 4, and 5 present the FDD tool 121 

implementation results, the field tests results, and benefits and challenges of fault auto-correction, 122 

respectively. Section 6 summarizes the conclusions.  123 

2. Method 124 

In this study, a set of seven fault-correction algorithms for HVAC systems were tested in real 125 

buildings by two FDD partners (Table 1). The development of these routines is described in detail 126 

in Lin et al (2020a). The variables corrected by the algorithms span schedules, setpoints, sensor 127 

readings, commands, heating/cooling requests, and proportional, integral, derivative (PID) 128 

parameters. The algorithms were created based on a detailed literature review and domain 129 

expertise of the research and implementation team. 130 

The routines can be broadly divided into three types (Table 1):  131 

● One-time correction. After detecting and identifying the fault, the algorithm corrects it 132 

automatically. The correction is not re-triggered until the fault is detected again (Section 133 

3.2.1). Algorithms #1-3 are one-time corrections of faults.  134 

● Active testing + one-time correction. Similar to the one above, with the addition of one or 135 

more active tests performed before the variable is overridden in the BAS. The active tests 136 

perturb the system in specific operating conditions to determine the best values of 137 

parameters to be corrected (Section 3.2.2). Algorithm #4: Control Hunting is in this 138 

category. 139 

● Continuous optimization. After identifying the opportunity, these routines act continuously 140 

to optimize system operation, behaving similarly to a “continuous” control algorithm. The 141 

overwriting of BAS variables happens with higher frequency than the other two types of 142 

routines and human intervention is not required to authorize each BAS variable update, 143 

although the algorithm may require initial operator’s approval (Section 3.2.3). Algorithms 144 

#5-7 belong to this type.  145 

The selected auto-correction routines were implemented into two FDD products (Section 2.1). 146 

Then field tests were performed in four commercial buildings (Section 2.2) following the same 147 

testing procedure (Section 2.3). 148 

 149 
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Table 1: Summary of the seven auto-correction algorithms implemented and tested in this study 150 

# Fault/Opportunity 
Name 

Fault/Opportunity Description Type of 
Correction 

Variables 
Corrected  

1 HVAC schedules are 
incorrectly 
programmed 

HVAC equipment doesn’t turn on/off according to 
intended schedule due to error in control 

programming 

One-time 
correction 

Schedule 

2 Override not 
released 

Operator unintentionally neglects to release what was 
intended to be a short-term override of setpoints or 
other control commands (e.g. fan VFD speed, valve 

control command). 

One-time 
correction 

Override 
property of 
setpoint or 
command 

3 Improve zone 
temperature setpoint 
setback 

The zone temperature cooling setpoint is lower than 
needed or the heating setpoint is higher than needed 
while the space is scheduled occupied or unoccupied. 

One-time 
correction 

Zone 
temperature 

setpoint 

4 Control hunting The actuator operates under oscillation due to 
improper PID parameter setting 

Active testing 
+ one-time 
correction 

PID parameters 

5 Rogue zone A zone continuously sends cooling/heating requests, 
due to zone-level equipment problems like a leaky 
reheat valve, a dysfunctional supply air damper, or 

unachievable zone temperature setpoints. 

Continuous  
Optimization 

Number of 
ignored 

requests from 
zones 

6 Improve AHU static 
pressure setpoint 
reset 

Non optimized AHU static air pressure setpoint Continuous 
Optimization 

Supply static 
pressure 
setpoint 

7 Improve AHU supply 
air temperature 
setpoint reset 

Non optimized AHU supply air temperature setpoint Continuous 
Optimization 

Supply air 
temperature 

setpoint 

2.1 Implementation of auto-correction routines into FDD tools 151 

The research team first developed the high-level algorithms in the form of flow charts (Lin et al 152 

2020a). Later the FDD partners selected a subset of them to implement and deploy them based 153 

on desired new features for their platforms and the interest of their clients (Table 2). Partner 1 is 154 

an end-user with the staff and internal capability to customize the platform for their needs. 155 

Therefore, the routines developed by Partner 1 are site-specific customizations of the standard 156 

vendor platform. The FDD tool used by partner 1 is located on the premises and has direct access 157 

to the BAS network. This allowed Partner 1 to more easily implement continuous optimization 158 

routines and more complex BAS modifications. Partner 2, instead, is a FDD provider with a 159 

centralized, cloud-based platform without direct access to the BAS network. The algorithms were 160 

developed in a “sandbox” environment where initial testing of the auto-correction functionality took 161 

place. Once functionally tested and validated, these new platform features were incorporated into 162 

the “production” version of the software for deployment to the test buildings, making this capability 163 

also available to other customers while focusing on easily scalable algorithms. 164 

Implementation activities included: (1) Modifying the FDD tool and the BAS to enable write 165 

capability into the BAS and to set up user interfaces for building operators. These changes are 166 

typically software modifications (creation of new points, interface programming, BAS logic 167 



6 

changes), but can also include hardware changes or additions (e.g., a new auto-correction device.) 168 

(2) Coding the algorithms in the analytics engine of the FDD tool (3) Commissioning the algorithms, 169 

including a review of the auto-correction algorithm outputs. The results of this implementation step 170 

are described in Section 3. 171 

2.2 Testing sites and equipment  172 

FDD Partner 1 deployed the algorithms on two buildings in the same campus, while Partner 2 173 

deployed them in two separate locations. The testing equipment includes AHUs, variable-air-174 

volume boxes (VAV), fan coils (FC) and a heat recovery ventilation (HRV) unit for a total of 225 175 

distinct pieces of equipment. The routines were also integrated with three different BAS vendor’s 176 

platforms: Automated Logic Controls1 (ALC), Johnson Controls Inc.2 (JCI), and Delta Controls3 177 

(DC). Table 2 summarizes sites, equipment, BAS and tested algorithms. The tests were 178 

performed between the end of 2019 and the beginning of 2021. 179 

 Table 2: Summary of the field testing sites and equipment 180 

FDD 
Partner 

Site Location Equipment Tested Algorithm Tested BAS 

Partner 1 Site A Berkeley, 
CA, US 

2 AHU, 48 VAV 4. Control hunting  
5. Rogue zone 

ALC 

Site B Berkeley, 
CA, US 

2 AHU, 163 VAV 5. Rogue zone, 
6. Improve AHU supply air static pressure 
setpoint reset  
7. Improve AHU supply air temp. setpoint reset 

JCI 

Partner 2 Site C  Vancouver 
B.C. Canada 

3 FC and 1 HRV  1. HVAC schedules are incorrectly programmed  
2. Override not released 
3. Improve zone temp. setpoint setback 

DC 

Site D Atlanta, GA 1 AHU and 6 VAVs DC 

2.3 Testing procedure 181 

After implementing the algorithms and deploying them into the buildings, their operation was 182 

tested using the following procedure. The procedure aimed at assessing the ability of an FDD tool 183 

to automatically correct a fault, and therefore allowed the “correction” capability of the FDD tool 184 

to be decoupled from its ability to perform detection and diagnostics. In this way, potentially 185 

confounding factors can be ignored, associated with false negative/positive detection or 186 

incorrect/missed diagnosis. 187 

For each fault and automated fault correction procedure, each implementation partner did: 188 

1. Verify the ability to override all setpoints/parameters to be tested. 189 

                                                
1 https://www.automatedlogic.com/en/ 
2 https://www.johnsoncontrols.com/  
3 https://deltacontrols.com/  
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2. Use a naturally occurring fault or impose the fault in “clean” (fault-free) equipment or 190 

"assume" the fault is present if physical presence of the fault is not necessary to validate 191 

the behavior of the corrective action. 192 

3. Observe and document the FDD tool output, i.e., its detection and diagnosis results (not 193 

applicable for assumed faults). 194 

4. Execute the FDD-embedded correction routine. 195 

5. Observe and document the effect of the automated fault correction. 196 

 The results of the tests are described in Section 4. 197 

2.4 Interviews with partners, facility managers and industry advisors 198 

At the end of the project, the research team conducted a series of interviews with seven different 199 

FDD providers and two facility managers. The researchers asked questions about perceived 200 

benefits of auto-correction, as well as market barriers and potential drivers of adoption of this 201 

technology. The interviews were transcribed and their content is summarized in Section 5, to 202 

support answering the third research question. 203 

3. FDD tool and BAS modifications for auto-correction 204 

Partner 1 implemented one active testing + one-time correction algorithm and three continuous 205 

optimization algorithms. Partner 2, instead, implemented three one-time correction algorithms. 206 

These are listed in Table 2.  207 

3.1 FDD-BAS infrastructure update 208 

The current state-of-art FDD systems typically use one-way communication with the BAS, reading 209 

operational data, running analytics, and flagging faults on the software interface (Lin et al., 2020b). 210 

The first step in the software development for both partners consisted of enabling secure 2-way 211 

communication between the FDD tool and the BAS. 212 

3.1.1 Partner 1 implementation 213 

Due to cybersecurity requirements of the site for Partner 1, the FDD software is hosted on a server 214 

within the site’s firewall protected internal networks. The server collects data directly from 215 

BACnet/IP networks, and by existing on those networks it is also capable of issuing BACnet 216 

commands4. For this reason, access to the server is restricted to administrators. Data from the 217 

FDD software is replicated to a separate server for end-user access to visualization and reporting 218 

tools, accessible remotely. All FDD auto-correction routines, applications, and point mappings 219 

reside on the internal server. The architecture of the FDD tool and the BAS developed by partner 220 

1 is presented in Figure 1a. The blue line shows the original infrastructure and the red line shows 221 

the upgrade. Before the start of the project the FDD tool already included a BACnet module, which 222 

implemented the BACnet communication protocol (ASHRAE, 2021), to extract data from the BAS. 223 

This BACnet module already enabled two-way communication, but each writable setpoint or 224 

                                                
4 For more information about known cybersecurity vulnerabilities related to the BACnet protocol, the reader 
should consult Holmberg and Evans, (2003) and Peacock et al. (2018). 
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command needed to be further configured in the FDD tool to enable writing operations and to 225 

define BACnet priority levels5. Several modifications also needed to be made in the BAS to make 226 

sure that the auto-corrected controls could operate even if the connection with the FDD tool was 227 

lost, described in Section 3.2.3. 228 

 229 
(a)                                                                   (b) 230 

Figure 1: New FDD-BAS architecture created to support auto-correction (a: Partner 1, b: Partner 2) 231 

3.1.2 Partner 2 implementation 232 

The architecture of the new system is shown in Figure 1b. In traditional deployments, the most 233 

common FDD integration pathway for Partner 2 involves the installation of a local device within 234 

the BAS infrastructure. Once online, this device is tasked with systematically polling the 235 

networked devices to retrieve configuration and operational data, continuously delivering these 236 

data sets to the cloud servers for storage and analysis. The data-collection device is securely 237 

connected to the cloud platforms by limiting its interaction with a specified IP address and only 238 

initiating outbound messages from the site to the cloud. The existing FDD algorithms of the 239 

standard platform are run on the cloud and accessed via a web interface from any computer with 240 

the proper credentials.  241 

To enable two-way communication to the FDD platform, Partner 2 opted for adding a new device 242 

– Autocorrection Commander, which manages the execution of the auto-correction algorithms. 243 

After BAS data is collected and pushed to the cloud platform, the new auto-correction algorithms 244 

are run in the cloud and the correction commands are prepared for execution. The new device 245 

periodically pulls these commands from the cloud and executes them on the BAS network. When 246 

the BAS receives the correction command, correction actions are implemented. The correction 247 

results are collected via the new device and pushed back to the cloud FDD platform. Compared 248 

to Partner 1, this implementation requires more attention to be paid to synchronization between 249 

cloud intelligence and local execution, because loss of connectivity is more likely to occur. Partner 250 

                                                
5 BACnet uses priority levels as a mechanism to assign priority to specific entities to prevent conflict 
between control actions. 



9 

2 implemented two features in the new device to avoid synchronization issues. The first feature 251 

is “value validation” which means the device will validate the value that has been collected (in 252 

case this value is changed after the FDD results are delivered) before it attempts to auto-correct 253 

it. If the value is as expected, the auto-correction would proceed, if it is different, it would deny 254 

auto-correction and insert an explanation of this in the activity log. The second feature is 255 

"command expiration" in case loss of connectivity delays the ability for the auto-correction device 256 

to communicate to the cloud and get the latest correction commands from the queue. 257 

3.2 Software development for algorithms, BAS integration and UI 258 

In addition to modifying the platform to enable two-way communication, each partner translated 259 

the research-grade algorithms generated by the research team into platform-specific auto-260 

correction algorithms. This was accomplished by using the native scripting language of each 261 

platform. Other software modifications were required in both the FDD tool and the BAS, for 262 

example to create and integrate new points, to generate user interfaces, or to modify the BAS 263 

logic. Sections 3.2.1-3.2.3 describe the translation and Table 3 summarizes other software 264 

modifications. 265 

Table 3: Software modifications in the FDD tool and the BAS in addition to the translation of the 266 
algorithms 267 

# Fault/Opportun
ity 

FDD tool modification BAS modification 

1 HVAC 
schedules are 
incorrectly 
programmed 

- Create new FDD writable point6 (schedule) 
- Modify the user interface 
- Create an action log  

- No algorithm-specific modification 

2 Override not 
released 

- Create new writable point (override) 
- Modify the user interface 
- Create an action log  

- No algorithm-specific modification 

3 Improve zone 
temperature 
setpoint setback 

- Create new writable point (setpoint) 
- Modify the user interface 
- Create an action log  

- No algorithm-specific modification 

4 Control hunting - Integrate PID parameters as new points 
- Create test management application 
- Create new database tables for PID loop info 
- Create test log 

- Expose PID parameters to BACnet 
(when not available by default) 
 
 

5 Rogue zone - Create 1 new ignored requests7 point for 
each zone (if desired for logging) 
- If not already present, add FDD rules related 
to rogue zone detection (e.g. leaky reheat 
valve) 
- Create ignore calculation application 
- Integrate new writable AHU ‘ignore’ points 

- Add BACnet-exposed ‘ignore’ inputs 
to existing AHU control logic. 
- If logic doesn’t already exist, 
calculate new effective heating and 
cooling requests, using provided 
‘ignore’ inputs 

                                                
6 Note: BAS and FDD tools typically store time-series data into a database sometimes called “historian”. By 
“point” we mean new variables linked to these time-series data.  
7 Requests and ignored requests (also called ‘ignore’) are defined in section 3.2.3 
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6 Improve AHU 
static pressure 
setpoint reset 

- Create FDD writable point (setpoint) 
- Integrate required zone points if not already 
available (e.g. cooling PID output) 
 
 

- Create new BAS point (setpoint) 
- Create new point for FDD heartbeat 
- Modify control sequence to use the 
new static pressure/supply air temp. 
setpoint when heartbeat is present 
- Modify BAS graphics to provide 
operator transparency and control. 

7 Improve AHU 
supply air temp. 
setpoint reset 

 268 

3.2.1 One-time Correction 269 

Partner 2 developed platform-specific algorithms #1: HVAC schedules are incorrectly 270 

programmed; #2: Override not released and #3: Improve zone temperature setpoint setback 271 

described in Table 1. The underlying FDD tool already saves several parameters describing the 272 

intended operation of the buildings, including schedules, control modes, and setpoints. These 273 

“recommended” parameters are actively determined from the operation history or selected by the 274 

facility managers. In the FDD tool, these parameters are continuously compared with current 275 

schedules and operation, and when the operation deviates from the recommended values, the 276 

facility managers are notified. In the standard implementation of the software, the user is required 277 

to use the BAS interface to revert the parameters back to the saved value or change this saved 278 

value at the FDD if the BAS value is deemed the more appropriate value. With auto-correction, 279 

the software was modified to allow updates of these parameters from the FDD tool. In order to 280 

accomplish that, the user interface was modified to show the recommended value and a log of 281 

the previous auto-correction actions (a and b in Figure 2 respectively). The end-users have the 282 

option to either approve the auto-correction action that reverts the values back to the 283 

recommended value or confirm the latest value is correct and update it to be the new 284 

recommended value. This additional evaluation step was adopted to earn facility staff’s trust. The 285 

software also includes an option to enable automatic correction of faults, bypassing the approval, 286 

once the building manager has gained trust in the system. These two alternative paths are also 287 

represented in Figure 9 (i.e., correction evaluation and auto-approval). When executing the auto-288 

correction actions for all three algorithms, the FDD tool changes the value of the related BACnet 289 

variable (i.e., Weekly_Schedule for #1, Out_Of_Service property for #2 and Present_Value for #3 290 

respectively) to recommended values. On the BAS side, no change was necessary for each 291 

algorithm, aside from opening two-way communication between the FDD and BAS platforms. 292 

 293 
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Figure 2: Update to the Partner 2’s user interface8 to accommodate automatic fault correction 294 

3.2.2 Active testing + one-time correction 295 

Algorithm #4: Control Hunting corrects the fault by overwriting the values of PID parameters in 296 

the control loop of the BAS. Partner 1 implemented the algorithm as three separate FDD software 297 

modules (b), (c), (d), in addition to a standard fault detection algorithm (a):  298 

a. Fault detection algorithm 299 

b. Management of active tests 300 

c. Calculation of improved PID parameters 301 

d. Database and interface to access test results 302 

As shown in Figure 3, after the hunting fault is detected by module (a), the auto-correction is 303 

initiated by the facility manager. Modules (b), (c), (d) are executed to obtain the improved PID 304 

parameters through the designed active tests. In this prototype implementation, the improved PID 305 

parameters are shown through a custom interface in the FDD tool, then the facility manager 306 

manually enters the new parameters in the BAS.  307 

 308 

Figure 3: Software modules created (in blue) and updated (in white) in the FDD tool to implement the 309 
auto-correction algorithm 310 

(a) Fault Detection 311 

An existing fault detection algorithm is run in the background to identify what command variables 312 

are hunting9 and on which equipment. The detection conditions look at the rate of change of the 313 

variable that is hunting. If the rate of change exceeds a certain threshold (e.g., 5%/min) 314 

continuously or more than twice during a certain period of time (e.g., 30 min), a fault is generated. 315 

The above algorithm is meant to detect bad cycling behaviors with minimal false positives.  316 

                                                
8 Image modified from FDD interface 
9 “Hunting” is a term used in the HVAC industry to indicate variables that keep oscillating with a higher 
frequency than expected. 
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(b) Management of active tests 317 

As the start of the auto-correction process, this module initiates the active test following the 318 

Lambda open-loop tuning rule (Pruna et al, 2017) which determines the improved PID parameters 319 

based on the open-loop reaction of the process variable (e.g. temperature) to a change in the 320 

control variable (e.g. valve control command). 321 

● A persistent task runs every hour to review all the PID loop records that have auto-testing 322 

enabled. If a PID loop requires a test (number of successful tests < target) and a test 323 

wasn’t recently completed (in the last 24 hours), the software queues up a new test by 324 

creating a PID test record, and a new temporary, dedicated task. 325 

● Temporary, dedicated tasks run every 5 minutes to perform the following steps 326 

sequentially: 327 

● Load its dedicated PID test record,  328 

● Synchronize time-series data to have the most recent data available for the 329 

process and control variables,  330 

● Check if testing conditions are met (e.g. airflow is detected for a reheat valve test), 331 

● If testing conditions are not met, the current test fails. 332 

● If testing conditions are met, monitor previous changes in the control variable and 333 

the corresponding reaction of the process variable to determine what action, if any, 334 

needs to be taken: 335 

○ Override control variable to achieve stable state (start of test) 336 

○ Override control variable to perform step change 337 

○ Release override (end of test) 338 

When enough data has been collected, module (c) is called. 339 

(c) Calculation of improved PID parameters 340 

This module is invoked during testing, if enough data has been collected after the execution of 341 

module (b). In this module, the improved PID parameters are calculated using the collected data 342 

of the control variable, the process variable, and the time between the step change in control 343 

variable and the response from the process variable. If the module then successfully returns 344 

improved PID parameters, the test is considered to be complete and successful. 345 

(d) Database and interface to access test results 346 

This module stores and views the results from modules (b) and (c). Information about each test 347 

is recorded in a database, including start and end timestamps, whether the active test is 348 

successful or failed, and the PID parameters’ results from the successful tests. A user interface 349 

is also created that allows for viewing these results. 350 

3.2.3 Continuous Optimization 351 

Partner 1 implemented three algorithms #5, #6, and # 7 aimed at improving AHU operation using 352 

supply air temperature and static pressure resets, enhanced by an evaluation of rogue zones. 353 

These strategies are ranked in the top ten efficiency measures implemented by organizations 354 

using FDD technology based on FDD analytics results. (Kramer et al., 2020). The auto-correction 355 

algorithms for this opportunity are closely related to ASHRAE High-Performance Sequences of 356 

Operation Guideline 36 (ASHRAE, 2018), but deployed via the FDD tool instead of the BAS (Lin 357 



13 

et al., 2020a). These algorithms determine the values of setpoints depending on the number of 358 

cooling “requests” generated by downstream zones that are served by the same AHU and write 359 

the improved setpoints into the BAS every five minutes. Details about their implementation are 360 

described in Lin et al. 2020a and Lin et al. 2020b. Table 3 summarizes the modifications 361 

necessary to their operation. These include creation of new points and new logic in the FDD tool 362 

and modification of interfaces and control sequences in the BAS. Heartbeat signals were also 363 

added in the FDD tool and sent to the BAS to constantly monitor connectivity between the two 364 

systems. If the BAS lost connection with the FDD tool it would revert back to the output of the old 365 

control sequence. 366 

4. Field testing results 367 

After implementing the routines and debugging them, each partner conducted formal field tests in 368 

real buildings, following the procedure highlighted in Section 2.3. The implementation partners 369 

successfully tested the algorithms, without adverse consequences, in at least one building and 370 

HVAC system. In two cases (algorithms #1 and #4) the code had to be modified to address 371 

problems identified during the field test. In seven cases, the faults were artificially imposed on the 372 

system, in order to test the procedure and in nine cases, the faults were successfully detected by 373 

the FDD tool. In two cases the FDD tool did not have the detection algorithms and the faults or 374 

opportunities were practically determined by the facility staff (N/A). The results of these field 375 

studies are summarized in Table 4 and described by type of algorithm in Section 4.1-4.3.  376 

Table 4: Summary of test results of field testing in four buildings  377 

# Algorithm Tested Site  Equipment Artificially 
imposed 

Fault 
detected  

Auto-correction 
without adverse impact 

1 HVAC schedules are 
incorrectly programmed 

Site C 1 FC Y Y Y 

Site D 1 AHU Y Y Y 

2 Override not released Site C 3 FCs and 1 

HRV 

Y Y Y 

Site D 3 VAVs Y Y Y 

3 Improve zone temp. 
setpoint setback 

Site C 3 FCs Y Y Y 

Site D 6 VAVs Y Y Y 

4 Control hunting Site A 1 VAV Y Y Y 

5 Rogue zone Site A 2 AHU, 48 VAV N Y Y 

Site B 2 AHU, 163 VAV N Y Y 

6 Improve AHU static 
pressure setpoint reset 

Site B 2 AHU, 163 VAV N N/A Y 

7 Improve AHU supply air 
temp. setpoint reset 

Site B 2 AHU, 163 VAV N N/A Y 

4.1 Testing results of one-time correction algorithms 378 

Partner 2 tested algorithm #1 on two pieces of equipment in two sites, algorithm #2 on seven 379 

pieces of equipment and algorithm #3 on nine pieces of equipment across two sites (Table 4). All 380 

the faults were artificially imposed on the equipment and then the facility manager executed 381 

corrections after the faults were flagged in the FDD tool. 382 

For algorithm #1: HVAC schedules are incorrectly programmed, two cases failed and two were 383 

successful in the two testing sites. The two early tests failed due to inconsistencies in the 384 
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implementation of the schedule object in the BAS. Two additional tests were successful after 385 

updates in the auto-correction code. An example of the successful results is presented in Figure 386 

4 (a). The equipment schedule was modified by purposely deleting Friday’s schedule set to 6:30 387 

AM - 5:00 PM on the BAS object property ‘TEMP_SCH’. The fault was correctly identified by the 388 

FDD tool on July 15. Figure 4 (a) shows the Friday schedule disappeared after the fault was 389 

implemented and reappeared on August 21 after the correction action was authorized by the user. 390 

Between the start of the test on July 1 and the successful correction on August 21, the first test 391 

failed due to an integration issue between the BAS and the FDD platform. This required changes 392 

in the FDD software that was resolved the second week of August. Following this software update, 393 

the correction operated as expected. 394 

For algorithm #2: Override not released, the correction succeeded in all test cases at the two test 395 

sites. The results of an example test case “The zone temperature setpoint mode of a FC was 396 

overridden from auto to manual” is presented in Figure 4 (b). The value of “zone temperature 397 

setpoint mode” was changed from 0 (auto) to 1 (manual) when the fault was imposed on August 398 

20. Auto-correction was executed at 18:00 on August 21 after the fault was detected, and 399 

successfully changed back the value from 1 (manual) to 0 (auto). In the other test cases, the 400 

mode of other setpoints (i.e., maximum, minimum, or actual space temperature setpoints, the 401 

night-heating setback enable temperature setpoint, and the CO2 differential setpoint) were 402 

overridden from auto to manual, and the algorithms also successfully converted them back to 403 

auto.  404 

For algorithm #3: Improve zone temperature setpoint setback, the values of zone temperature 405 

setpoints were changed to impose faults. All the faults were successfully corrected without 406 

adverse impact. For example, during the test of a FC in Site C, the actual zone temperature 407 

setpoint was changed from 21 °C to 19 °C at 5:00 PM August 20 to impose the fault. Figure 4 (c) 408 

shows the zone temperature and setpoint between August 20 and August 22. After the fault was 409 

imposed at 5:00 PM, the zone temperature setpoint was decreased from 21°C to 19°C. As a result, 410 

the zone temperature dropped until it reached the new setpoint of 19°C two hours later. The next 411 

day (i.e., August 21), the zone temperature tracked the wrong zone temperature setpoint until the 412 

correction action was executed at 11:00 AM August 21. Consequently, zone temperature reached 413 

the corrected setpoint value 21°C.  414 

 415 

 416 

(a) 417 
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 418 

(b) 419 

 420 

(c) 421 

Figure 4: Example auto-correction test results (a): #1 HVAC schedules are incorrectly programmed, (b): 422 
#2 Override not released, and (c): #3 Improve zone temperature setpoint setback (left: the fault was 423 

imposed on Aug. 20; right: the fault was corrected on Aug. 21) 424 

4.2 Testing results of active testing + one-time correction algorithm 425 

Partner 1 tested algorithm #4 Control hunting on a VAV box discharge air temperature control. In 426 

this control loop, the PID controller compares the setpoint to the discharge air temperature 427 

(process variable) to obtain the error, then the reheat valve command (control variable) is 428 

determined based on the error and PID parameters. The reheat valve command inputs to the 429 

actuators to generate actual control actions so that the discharge air temperature reaches the 430 

setpoint (Figure 5) 431 
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432 
Figure 5: Control loop, control variable and process variable for test of algorithm #4 433 

The successful test was conducted in January 2021. The behavior of the control and process 434 

variables on January 26th, 2021, before auto-correction, is displayed in Figure 6a. The top panel 435 

shows the Discharge Air Temperature (process variable, in blue) and the Discharge Air 436 

Temperature Setpoint (in red). The temperature oscillated more than 15 times per hour between 437 

2-3pm and between 5-6pm. The oscillations were caused by the control variable, the Reheat 438 

Valve Command, displayed in the bottom panel (in blue). This hunting behavior was caused by 439 

improper PID parameters. Figure 6b shows trends from the same points on January 29th, 2021, 440 

after the auto-correction routine was executed. The oscillations of control and process variables 441 

(i.e., hunting) disappeared after the update of the parameters, and a hunting fault was no longer 442 

detected by the FDD tool. 443 

To calculate the improved PID parameters for correction, the implementation team performed an 444 

active perturbation test, as described in Section 3.2.2. Figure 7 displays trends and the active test 445 

results. The results include proposed PID parameters - proportional and integral gains (Kp and 446 

Ki) determined from the test. To perform the open-loop step change test, the FDD tool increased 447 

the control variable (Reheat Valve Command of the VAV) from 45% to 65%. As a result, the 448 

Discharge Air Temperature increased from 38.4 °C to 40 °C. The improved PID parameters, 449 

calculated from Lambda open-loop tuning rules (Pruna et al, 2017), were proportional gain(Kp) = 450 

0.5 and integral gain (Ki) = 0.1. Derivative gain is zero for PI controls, frequently used in HVAC 451 

control systems. 452 
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 453 

Figure 6: Comparison of behavior of the Discharge Air Temperature (process variable) and Reheat Valve 454 

Command (control variable) in Site A before (Jan 21th 2021, a) and after (Jan 29th 2021, b) the update of 455 
the PID parameters. 456 

 457 

Figure 7: Process variable (Discharge Air Temperature), control variable (Reheat Valve Command) and 458 
derivative of the process variable for the test of algorithm #4. The bottom table shows the results of the 459 

calculation of improved PID parameters in the FDD interface (ALC Kp and Ki) 460 

4.3 Testing results of continuous optimization correction algorithms 461 

Partner 1 tested algorithm #5 in two buildings and #6 and #7 in a single building. For each building, 462 

the routines were implemented on two large AHUs serving tens to hundreds of VAV boxes. 463 
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Detailed results of the preliminary tests of algorithms #5, #6, #7 are presented in Lin et al., 2020a, 464 

and Lin et al., 2020b. The new control strategies have been permanently adopted by the site 465 

beyond the testing requirements of the project and have now been running for over a year. The 466 

new control sequence did not cause any occupant complaints, and it worked more efficiently than 467 

the previous ones, although precise savings estimates were beyond the scope of the test. Figure 468 

8 shows results when the FDD tool successfully changed the supply air temperature setpoint of 469 

one of two test AHUs based on the algorithms described in Section 3.2.3. The bottom of Figure 8 470 

describes the number of calculated requests R’, defined as: 471 

Calculated (Heating or Cooling) Requests (R’) = Incoming Requests (R) - Ignored 

Requests (I) 
(2) 

When the number of R’ became larger than zero starting at 10:05 a.m., the algorithm slowly 472 

reduced the SAT setpoint by 0.06 °C for each request every five minutes. Starting at 11:50 a.m., 473 

the requests remained at zero and the routine slowly increased the supply air temperature 474 

setpoint by 0.12 °C every five minutes until it reached a max value (SATmax=18.3 °C). The 475 

setpoint remained at SATmax until R’ was positive again at 14:50 p.m. Then, the supply air 476 

temperature setpoint again slowly decreased when R’ was positive and slowly increased when R’ 477 

became zero. The strategy saved energy compared to the legacy control algorithm as illustrated 478 

in Lin et al., 2020a.  479 

 480 

Figure 8: The SAT setpoint of an AHU after the execution of the auto-correction algorithm (Lin et al. 481 
2020a) 482 
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5. Benefits and challenges of fault auto-correction 483 

5.1 Technology benefits and market drivers 484 

Commercial FDD platforms help to continually identify operational inefficiencies in building 485 

equipment. However, these FDD tools generate recommendations that need to be implemented 486 

by service technicians or other staff, resulting in delays, operations and maintenance costs or lost 487 

opportunities. All the FDD providers and facility managers interviewed during the project (Section 488 

2.4) recognized these shortcomings and agreed that fault auto-correction integrating with 489 

commercial FDD technology offerings can close the loop between the passive diagnostics and 490 

active control. Several providers highlighted that many buildings with small operations teams may 491 

struggle to respond to FDD fault reports in a timely manner. The ability to auto-correct faults, even 492 

if it is only a subset of the total faults list identified by an FDD tool, can make a significant difference 493 

in the realized savings. One interviewee asserted that, for many organizations, auto-correction 494 

will be the primary way they can scale their ability to act on FDD findings. 495 

In particular, the interviewees identified several benefits of this technology: 496 

1. reducing the extent to which savings are dependent upon human intervention  497 

2. scaling building operators’ ability to act on FDD findings (especially for facilities with small 498 

operations teams),  499 

3. tracking the changes executed on the BAS  500 

4. applying consistent fixes for a subset of fault conditions,  501 

5. saving a significant amount of energy from the routines related to optimal controls 502 

To better understand how the different algorithms tested in this paper enable these benefits, the 503 

research team abstracted the workflow of each category of algorithm and compared them to the 504 

standard FDD workflow (Figure 9). Each box in Figure 9 represents a step in the process and the 505 

arrows indicate the data transferred between them. The steps that involve facility staff are 506 

indicated by a human icon, while the automated steps have no icon. The colored boxes represent 507 

changes compared to the standard workflows. The tasks in blue are automated by the algorithms, 508 

while tasks in red add a new step to the traditional process. The second and third group of 509 

algorithms show two parallel paths, because different options may fully automate the task or 510 

require human confirmation.  511 

In the traditional case, the FDD tool identifies the faults using data from the BAS (step B in Figure 512 

9). A human (e.g., facility manager) evaluates these faults and plans a set of actions to fix the 513 

identified issues (step C). After this phase, other actors fix physical problems in the underlying 514 

systems or reprogram the BAS (step F). The resulting actions are typically, but not always, 515 

recorded in a system different from the FDD tool (step G), for instance a computerized 516 

maintenance management system (CMMS) (Wireman, 1994). The manual steps in the 517 

implementation of the corrective actions and the difficulties in tracking their outcomes are often 518 

recognized as limitations of current FDD platforms (Granderson et al., 2017).  519 

The algorithms proposed in this paper improve over this base workflow through some degree of 520 

automation, but they differ in some of the steps. All the algorithms automate the correction of 521 

faults (step F: action execution), thus contributing to reducing the dependency of savings from 522 
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human intervention (benefit #1) and increasing the ability of the facility team to act on FDD findings 523 

(benefit #2). However, they also replace the manual evaluation of faults (step C, in the basic 524 

workflow) with additional steps that depend on the algorithm group. For the one-time correction 525 

algorithms, the detection of the fault triggers a proposed action. The user can manually approve 526 

it or decide to approve it automatically (step E). Partner 2 plans to implement options in the 527 

interface in future that allow users to auto-approve certain corrections, after gaining trust in the 528 

system (Step E, in blue). This feature will allow to apply consistent fixes to a subset of fault 529 

conditions (benefit #4). After this decision, the FDD tool generates a command, pushes it to the 530 

BAS (step F) and tracks it in a log (step G).  531 

 532 

 533 

Figure 9: Traditional FDD workflow and enhanced process with the three fault correction types 534 

The workflow for active testing + one-time correction algorithms add an additional step to the 535 

previous process, to gather additional information (step D, Figure 9) used to calculate parameters 536 

and recommend them to the user. Auto-correction routines that involve active testing have 537 

promising applications. For instance, automated tuning of PID loops could save operators the 538 

time to perform trial and error tests of parameters in the field. This is useful for control systems 539 

that don’t already have such functionality, or for which out-of-the-box results are not satisfactory. 540 
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The algorithms belonging to the continuous optimization category automate both fault evaluation 541 

(step C) and execution of the correction (step F). Since the correction takes place continuously, 542 

the operator is only involved in initial approval and periodic evaluations of the outcome of the 543 

strategy. Based on the interviews and preliminary test results (Lin et al, 2020a), these strategies 544 

have the highest potential for energy savings (benefit #5). Further, these routines may be 545 

especially cost-effective on sites where the underlying control infrastructure is obsolete and 546 

heterogeneous, because they allow the deployment of supervisory control algorithms more with 547 

less labor. 548 

In addition, all the algorithms log the corrections enacted by the FDD tool, tracking the changes 549 

executed on the BAS (benefit #3). 550 

The interviewees agreed that the drivers for market adoption of auto-correction features will be 551 

similar to those of FDD tools. For example, energy efficiency and conservation goals are likely to 552 

be increasingly important in the future. Labor shortages within the operation and management 553 

industry, caused by many facility staff approaching retirement age, may also favor solutions that 554 

automate parts of the traditional operation workflows. With common experience of electronics and 555 

other consumer devices, facility staff may also expect a better user experience with HVAC 556 

controls. A new driver may also emerge as building occupancy patterns are more dynamic post-557 

pandemic, whereby auto-correction via the FDD tool can be a good option to implement the 558 

occupancy-based supervisory control strategies.  559 

An additional driver is that FDD adoption continues to increase, meaning there is a larger market 560 

of established FDD users who will be looking for ways to extend their benefits beyond one-way 561 

fault detection. 562 

5.2 Scalability challenges  563 

While the benefits of this technology are significant, several challenges have to be addressed in 564 

future research to enable scalable deployment of these algorithms. The first common challenge 565 

is enabling secure two-way communication between the FDD tool and the BAS, allowing the FDD 566 

tool to override the BAS. The required effort for this integration varies depending on the IT/BAS 567 

network architecture. During this project this step was successful on two FDD tools and three 568 

types of BAS in three office buildings and one university student center, as described in Section 569 

3.1. Additional field testing with more FDD tools and BAS types will be conducted in future to 570 

prove the generalizability of these solutions.  571 

The second common challenge is overcoming cybersecurity and accountability concerns, when 572 

systems are controlled by a third party. The building owners and operators interviewed indicated 573 

that, similar to other supervisory control software, they are concerned about remote changes to 574 

BAS settings, especially for some building segments like military and healthcare. Interviewees 575 

also noted that many owners may be reluctant to hand over any portion of their building’s control 576 

to a third party. The acceptability of this control overwritten will eventually be determined by the 577 

balance between risks and benefits perceived by the organizations using them. To mitigate this 578 

challenge, interviewees suggested ensuring the correction routines and corresponding control 579 

action be transparent, implementing proposed auto-correction routines only after the confirmation 580 

from onsite operations staff, enhancing auto-correction interface to build trust and confidence, 581 
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and starting with owners who are well established with using FDD and looking for additional 582 

benefits. Close attention should be paid to clearly communicating to all the facility staff so that 583 

they are aware of the changes to the BAS made by the FDD tool.  584 

The research team then evaluated each type of algorithm in relationship to the two dimensions of 585 

scalability, 1) required effort, 2) generalizability.  586 

The one-time fault correction algorithms require low effort (coding and integration) and has high 587 

generalizability. They were the simplest to implement, because they modify schedules, setpoints, 588 

commands and sensor values, most of which are standard BACnet objects. For the same reason, 589 

the implementation partners believe these routines will be easy to scale up across multiple 590 

buildings using different BAS, given the growing adoption of BACnet in the control industry. 591 

However, the field test demonstrated that even when BACnet is used, different versions of the 592 

protocol or proprietary/custom objects used by different BAS vendors may require customization 593 

of the code. For example, Partner 2 discovered different implementations of schedule objects in 594 

different buildings, some starting the week from Monday, while others from Sunday. These 595 

discrepancies in data formatting were found between different versions of BACnet devices as well 596 

as in different implementations of the BACnet protocol stack. To ensure user acceptability, Partner 597 

2 updated the user interfaces of the FDD tool to allow operators to revise the proposed corrections 598 

and to automate the process even further. During the tests, users provided positive feedback and 599 

seem to accept these algorithms without problems.  600 

The one-time correction + active testing algorithm requires high effort and has medium-low 601 

generalizability. Several interviewees highlighted the benefits of auto-correction of “control 602 

hunting”. Many PID loops in the buildings are out of tune, and it would take significant operator 603 

time to manually perform trial and error tests of parameters in the field. In spite of great potential, 604 

the effort required to develop this type of active testing algorithm was significant, since neither the 605 

FDD nor the BAS offered tools to manage the periodic tests needed. As described in Sections 606 

3.2.2 and 4.2, three modules and a new interface were added in the FDD tool to understand and 607 

manage these tests. Timing and scope of the active testing were managed programmatically, by 608 

setting allowed testing times and other conditions based on available trends (e.g. zone 609 

temperature) in order to ensure that the desired perturbation of the system did not adversely affect 610 

occupant safety or comfort. The generalizability of the auto-correction of PID parameters is 611 

medium to low. While the single test with Lambda open-loop tuning rule was successful in a reheat 612 

valve - discharge air temperature VAV-box control loop in this study, further work has to be done 613 

to fully automate this procedure, prove its robustness, and make it applicable to additional types 614 

of equipment. Partner 1 reported that the BAS controller tested did not expose PID loop 615 

parameters via BACnet and exposing them required significant manual work. Without proper 616 

standardization of BACnet objects and properties describing PID parameters, implementing these 617 

routines will require customization to interface with different implementations of PID loops.  618 

The continuous optimization algorithms also require high effort and has medium-low 619 

generalizability. The development was time-intensive, because it required the modification of the 620 

BAS logic as well as the FDD tool. The BAS logic cannot be accessed via BACnet and its update 621 

currently requires dedicated and proprietary tools that depend on the BAS vendor. While recent 622 

research has been exploring how to digitize control sequences (Wetter et al, 2022), 623 

standardization of such workflows is still underway. Partner 1 successfully implemented these 624 
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algorithms in the FDD software which is hosted on a server within the site’s firewall protected 625 

internal networks. To scale up these algorithms in the cloud FDD software, FDD providers should 626 

develop methods to ensure the synchronization between the BAS and the FDD tool in controlling 627 

the equipment. Any loss of connectivity may cause delays in the control logic with negative 628 

consequences on occupant comfort and equipment safety. For example, partner 2 developed two 629 

new features “value validation” and “command expiration” to accommodate the asynchronous 630 

interaction of the data collection and the auto-correction devices. 631 

6. Conclusion and Future Work 632 

This paper presents the field study of seven fault auto-correction algorithms implemented in 633 

commercial FDD platforms. It puts the algorithms in their logical contexts, summarizes their 634 

objectives, describes the testing procedure, and shows the successful testing results. The 635 

algorithms automatically correct faults and improve the operation of large built-up HVAC systems, 636 

focusing on incorrectly programmed schedules, override not released, control hunting, rogue zone, 637 

and suboptimal setpoints in HVAC systems. These algorithms were integrated into two 638 

commercial FDD platforms and deployed across four buildings and three different building 639 

automation systems. The modifications of the FDD tool and the building BAS for auto-correction 640 

are summarized in the paper, including FDD-BAS infrastructure update and other software 641 

modifications. Each of the seven correction routines was tested in one or two buildings following 642 

a rigorous procedure. In general, the enhanced FDD tools were able to correct faults successfully 643 

without negatively impacting the system and building occupants. The control hunting correction 644 

was tested in a semi-automated way and the schedule correction was successful after some 645 

adjustments to the algorithms. Technology benefits, market drivers, and scalability changes are 646 

also discussed based on implementation and field testing results, as well as interviews with the 647 

FDD providers and facility managers. 648 

Future work will focus on more field testing of the auto-correction algorithms with additional FDD 649 

platforms in a larger cohort of buildings to prove their robustness. This will include the evaluation 650 

of the technical efficacy and the performance of each correction routine, the evaluation of the 651 

operations and maintenance benefits for each site in the cohort and the characterization of 652 

challenges and best practices. A second area of future work should enhance the auto-correction 653 

interface of these FDD tools. This is needed to overcome the natural concerns among end-users 654 

about accountability and loss of control, when the FDD routines correct BAS control parameters 655 

automatically. At last, the current testing of the auto-correction algorithms was decoupled from 656 

the FDD algorithms embedded in the FDD tools. Faults were artificially induced to validate the 657 

correction capability. In future, the FDD and auto-correction process needs to be tested together 658 

to mitigate the impact of false positives during fault detection. 659 
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