
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Using Random Forest to Classify Raman Spectra of Brain Tissues

Permalink
https://escholarship.org/uc/item/3475c9b1

Author
Zhang, Weiyi

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/3475c9b1#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3475c9b1
https://escholarship.org/uc/item/3475c9b1#supplemental
https://escholarship.org
http://www.cdlib.org/


 

 

 

 

UNIVERSITY OF CALIFORNIA 

RIVERSIDE 

 

 

 

 

Using Random Forest to Classify Raman Spectra of Brain Tissues 

 

 

 

 

A Thesis submitted in partial satisfaction 

of the requirements for the degree of 

 

 

Master of Science 

 

in 

 

Mechanical Engineering 

 

by 

 

Weiyi Zhang 

 

 

December 2022 

 

 

 

 

 

 

 

Thesis Committee: 

Dr. Chen Li, Chairperson 

Dr. Jun Sheng 

Dr. Peter Greaney 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Weiyi Zhang 

2022 

 



 

The Thesis of Weiyi Zhang is approved: 

 

 

            

 

 

            

         

 

            

           Committee Chairperson 

 

 

 

 

University of California, Riverside 

 



iv 

 

Acknowledgements 

I would like to express my deep and sincere gratitude to my advisor, Prof. Chen Li, for his 

professional and kind guidance on my studies and research, giving me this precious opportunity to 

participate in such interesting research and experience the joy of accomplishment that doing 

research brings to me. I would like to thank the members of my defense committee – Prof. Chen 

Li, Prof. Jun Sheng and Prof. Peter Greaney, for their time and advice on the thesis. I am grateful 

to Qingan Cai for teaching me how to use the equipment for Raman spectroscopy, to Chau Minh 

Giang for measuring the Raman spectra, and to everyone who gives me valuable advice on writing. 

I would also like to thank my family for their support in all aspects. To my husband, Yongda: 

In the vastness of space and the immensity of time, it is my joy to share a planet and an epoch with 

you.  

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Table of Contents 

 

Acknowledgements .........................................................................................................................iv 

List of Figures..................................................................................................................................vi 

List of Tables..................................................................................................................................vii 

Introduction.......................................................................................................................................1 

Materials and Raman Spectroscopy..................................................................................................3 

Construction of the Pipeline............................................................................................................11 

Results and Discussion...................................................................................................................18 

Conclusion and Future Work..........................................................................................................22 

References.......................................................................................................................................24 

Appendix.........................................................................................................................................28 

 

 

 

 

 

 

 

 

 

 

 

  



vi 

 

List of Figures 

Figure 1  .............................................................................................................................. 4 

Figure 2  .............................................................................................................................. 4 

Figure 3  .............................................................................................................................. 5 

Figure 4  .............................................................................................................................. 7 

Figure 5  .............................................................................................................................. 7 

Figure 6  .............................................................................................................................. 8 

Figure 7  .............................................................................................................................. 9 

Figure 8  ............................................................................................................................ 11 

Figure 9  ............................................................................................................................ 12 

Figure 10  .......................................................................................................................... 12 

Figure 11  .......................................................................................................................... 13 

Figure 12  .......................................................................................................................... 13 

Figure 13  .......................................................................................................................... 14 

Figure 14  .......................................................................................................................... 15 

Figure 15  .......................................................................................................................... 16 

Figure 16  .......................................................................................................................... 17 

Figure 17  .......................................................................................................................... 18 

 

 

 

 

 



vii 

 

List of Tables 

 

Table 1  ............................................................................................................................... 8 

Table 2  ............................................................................................................................. 19 

Table 3  ............................................................................................................................. 20 

Table 4  ............................................................................................................................. 21 

 

 

 

 

 

 

 

 



1 

 

1. Introduction 

Tissue identification plays an important role in a variety of applications. For example, in many 

forensic cases, the identification of biological materials found at crime scenes can be very 

informative [1]. In the biomedical field, the identification of abnormal tissues in patients allows 

clinicians to analyze diseases and provide appropriate treatments [2] [3]. In particular, tumor 

identification is essential for early detection and prevention of tumor deterioration and expansion. 

Glioma is one of the most common and life-threatening brain tumors and can occur in a variety of 

brain cells [4]. To predict the evolution of glioma and its response to different therapies, it is crucial 

to know its type and grade [5]. Since the symptoms of most types of gliomas are similar, tumor 

tissue classification becomes necessary.   

When patients report symptoms, several imaging-based diagnostic approaches are available for 

the preliminary diagnosis of brain tumors, such as computed tomography (CT) and magnetic 

resonance imaging (MRI). However, it is not always possible to identify brain tumors from medical 

images, and the process is usually time-consuming and requires a skilled radiologist [6]. Recently, 

image processing and machine learning algorithms have been developed to aid this process, such 

as random forest for MRI [7] and support vector machine (SVM) for optical coherence tomography 

(OCT) [8]. However, these techniques are still in the early development stage, and the current 

paradigm involves needle biopsy after imaging-based diagnosis for the definitive diagnosis of brain 

tumors. Although needle biopsy has been widely used in the diagnosis of a variety of medical 

conditions, it faces unique challenges in glioma diagnosis due to intratumor heterogeneity. Due to 

the finite resolution of medical images and the error in needle placement, tissue samples extracted 

by a biopsy needle could misrepresent the true condition of the glioma and misguide subsequent 

treatment. 
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To improve the diagnosis of glioma, our objective is ultimately to combine spectroscopy with 

needle biopsy to guide the selection of the tissue biopsy location. Among spectroscopic techniques, 

Raman spectroscopy is one of the most widely used to analyze materials [9], [10], [11] and has 

been applied to detect and classify several types of tumors in open procedures [12], [13], [14]. The 

peaks in Raman spectra indicate the feature of the measured material, allowing for the identification 

of different materials in a more quantitative way compared to the images [15]. However, manual 

identification of the spectra requires training and false identification can be common. Therefore, it 

is necessary to develop a reliable method to analyze spectra autonomously and to improve the 

efficiency and accuracy of spectral identification.  

In the medical field, the combination of Raman spectroscopy and machine learning algorithms 

is gaining popularity. For example, four machine learning methods (k-Nearest Neighbors 

algorithm, Decision Tree, Support Vector Machine, and Probabilistic Neural Network) combined 

with Raman spectroscopy were used to identify cerebral ischemia and cerebral infarction [16]. As 

reported in [17], partial least squares regression (PLS-DA) was used with Raman spectroscopy to 

identify the risk of Alzheimer's disease. In addition, the combination of artificial neural network 

(ANN) and Raman spectroscopy allows tracking of human neural stem cells [18].  

This work explores the random forest as a robust tool for the classification of brain tissue. As a 

supervised machine learning algorithm, the random forest is widely used for classification and 

regression problems [19]. A prominent benefit of using random forest is that it limits overfitting 

during training to some extent, as random forest is based on the aggregation of several decision 

trees [20] using bagging, which is more robust against overfitting[21]. Another benefit is that it 

allows one to train the model based on small data sets. Although random forest has been used to 

diagnose several types of cancer, such as lung cancer [22] and laryngeal carcinoma [23],  its 

efficacy in identifying various types of brain tissue and tumor tissue has not yet been explored. 
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The aim of this work is to validate the feasibility of combing the Raman spectroscopy and 

machine learning algorithm for a prediction task using tissues. Therefore, several critical questions 

were raised: i) How to decide a proper prediction objective? ii) How to optimize Raman 

spectroscopy to achieve sufficient data quality? iii) What is the appropriate procedure for data 

preprocessing? iv) How to build and train a reasonable model? v) What is an effective way to 

evaluate model performance? In this thesis, the mock spectra were used to decide the prediction 

task and machine learning algorithm used for predicting. The choice of configurations and the 

pipeline for training were elaborated. The training results were presented and discussed. 

2. Materials and Raman Spectroscopy 

2.1 Mock Spectra Acquisition 

Mock spectra were used for the choice of configurations before acquiring Raman spectra of 

tissues. We synthesized 100,000 spectra with 1000 pixels. Each spectrum contains up to 10 peaks 

synthesized with Gaussian, adding a noise level of up to 0.2 of the maximum intensity to each pixel. 

Then the generated data were divided into three groups randomly, as the training set, validation set 

and test set, respectively. Figure 1 is an example of the mock spectrum. The distribution of the 

number of peaks generated in each spectrum was shown as Figure 2 to verify whether the mock 

spectra are as expected. 
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Figure 1 An example of the mock spectrum. 

 

Figure 2 the distribution of the number of peaks generated in each spectrum. 

2.2 Raman Spectra Acquisition 

Three types of biopsies were prepared, including ectocinerea (grey matter), alba (white matter), 

and blood vessels. The freshly dissected goat brain (Figure 3) was obtained from the 

slaughterhouse. As shown in, the brain was kept at -18°C for 24 hours, and cut to a thickness of 

about 2 mm (Figure 3). The samples were fixed on glass slide using super glue and acclimated to 

room temperature. Since the blood vessels contained in sliced tissue are very small, we developed 
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our method by slicing the goat aorta because the blood vessels contained in sliced tissue are very 

small. 

Raman spectra of the tissue samples were acquired under 532 nm laser excitation using a 

custom-built open bench Raman spectrometer. The tissue slide was mounted on a stage which can 

be adjusted precisely in three directions (Figure 3). A long working distance microscope objective 

was used in reflection geometry for focusing and light collection, and a notch filter was used for 

removing Rayleigh scattering. We manually adjusted the stage to obtain Raman spectrum on 

individual points. To ensure light focus on the tissue surface, the microscope objection was adjusted 

for each point. The ground truth of classification was manually observed from the microscope and 

recorded. The optimal equipment setting was determined by applying different setting 

combinations on a relatively small data quantity, including different wavenumber ranges and 

exposure time. 

 

Figure 3 Preparation of tissue samples and installation on an open-bench Raman spectrometer. 

2.3 Optimization of Data Pre-Processing and Choice of Configurations  

2.3.1 Feature Number Reduction 

We took Raman spectra from 21.43 to 3744.25 cm-1 (wavenumber) using white matter and grey 

matter mentioned above. Due to the characteristic of the instrument, four measurements with 

different wavenumber ranges were needed, which are 21.43 to 1324.25 cm-1, 886.72 to 2066.01 
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cm-1, 1856.37 to 2903.52 cm-1, and 2822.03 to 3744.25 cm-1. As shown in Figure 4, there is a 

wavenumber range overlap and an intensity gap between the two measurements in the raw spectrum.  

The data pre-processing process of the four-part spectrum includes stitching the four parts, 

averaging the overlap part, removing the sporadic signal, rebinning the wavenumber to 1 cm-1 

interval, cutting off the edge (i.e., wavenumber < 400 cm-1), and removing baseline. The latter three 

parts of the spectrum were shifted to the same intensity range to the first part of the spectrum. Then 

the intensity of the overlapped range was calculated using the mean of the two intensities. Generally, 

the sporadic signal is from a single pixel with high counts on the detector, and inevitable from 

background radiation. To remove the sporadic signal, the standard deviation of the intensity of each 

pixel was calculated using the 20 neighbouring pixels. Next, a threshold, which is the calculated 

standard deviation, was set for the detection of sporadic signals. The intensity of a pixel will be 

replaced by the average of its two adjacent pixels if it is greater than the threshold. Different 

multiples of the standard deviation were set as the threshold to test the reasonableness of threshold, 

but we find no significant differences in performance when using multiples of the standard 

deviation, i.e., two to five times of the standard deviation. This algorithm detected and removed 

most of the sporadic signals with negligible effects. Then, all spectral wavenumbers were rebinned 

into 1 cm-1 intervals using a weighted rebinning method, which is SpectRes, given that the original 

wavenumber intervals are not uniform [24].   

The classification might be misled by the background of Raman spectra. Figure 5 is the 

comparison of the Raman spectrum and the calculated baseline. The black spectrum is the pre-

processed spectrum except for removing baseline. The red curve is the baseline that will be 

subtracted. It was estimated using improved asymmetric least squares (IAsLS) [25], which is based 

on polynomial fitting. The optimal smoothing parameter 𝜆 and the penalizing weight factor 𝑝 were 

105 and 0.02, respectively.  
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Figure 4 an example of the raw Raman spectrum from the white matter with a wavenumber range of 21.43 to 3744.25. 

 

Figure 5 an example of the pre-processed Raman spectrum except for removing baseline. 

Reducing the number of features is necessary because irrelevant features may negatively affect 

the training and increase computation cost [26]. To determine if the desired training results can be 

achieved using a relatively small wavenumber range, the four parts of the spectrum were trained 

separately using Random Forest Classifier. Table 1 compares the training score and the test score 
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using the four parts of the spectrum separately. From the table, we can see that using the second 

part of the spectrum and the fourth part of the spectrum for training get a better test score. However, 

the fourth part of the spectrum contains only one peak with high intensity, while the second part of 

the spectrum contains multiple peaks, so the second part of the spectrum was used for a large 

amount of data acquisition to save the measuring time. 

Table 1 comparison of training score and the test score using four parts of the spectrum 

 Training score Test score 

Part 1 0.97 0.82 

Part 2 0.97 0.99 

Part 3 0.94 0.72 

Part 4 0.99 0.96 

 

Feature importance was used as another way to determine the narrowed wavenumber range. It 

is calculated as the mean and standard deviation of the accumulation of the Gini impurity decrease 

in each tree [27]. Figure 6 shows a semi-log plot of the feature importance of Raman spectra feature 

by the pixel index.  

 

Figure 6 The semi-log plot of feature importance. The mean decrease in impurity on the y-axis denotes the Gini impurity. 

2.3.2 Experiment Parameters Optimization 

The exposure time when measuring the Raman spectrum affects the data quality and the model 

performance. Figure 7 shows the test scores of grey matter and white matter using different 
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exposure times. The prediction accuracy of the testing set decreases with the shortening of exposure 

time. Furthermore, the scores are reasonably high (above 0.9) when the exposure time is higher 

than 60-s. When the exposure time is shorter than 10-s, the model performs poorly. An exposure 

time of 120-s with a wavenumber range of 892 - 2062 cm-1 was used for later data collection. The 

120-s exposure time guarantees the data quality, and the reduced feature number shortens the 

experimental measurement time of Raman spectra.  

 

Figure 7 Comparison of test scores between data sets based on different Raman collection time. The training in this plot 

denotes a data set with a 120-s exposure time. The blue error bar is the standard deviation of the test score. 

2.3.3 Spectral Augmentation 

To increase the data size, a spectral augmentation algorithm needs to be implemented. The data 

augmentation algorithm includes shifting each spectrum by a few pixels randomly based on a 

normal distribution, and adding a Gaussian noise to each pixel at 5% of the maximum intensity. 

Shifting was used to simulate small changes in alignment, and adding noise was used to simulate 

statistical fluctuations.  

For data augmentation, we also tried to combine two spectra after shifting and adding noise, and 

named this process as linear combination, which consists of four methods. The first method is to 

combine two spectra of the same label randomly, and then mix the two spectra at a random 
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combination factor ranging from 0 to 1. Compared with the first method, the second method mixes 

the two spectra at a fixed combination factor, which is 0.2. The third method randomly chooses one 

spectrum from the grey matter and one from the white matter, and then mixes the two spectra at a 

random combination factor ranging from 0 to 1. The fourth method mixes the two spectra at a 

combination factor of 0.2 compared with the third method.  

According to the comparison of the training result of the four linear combination methods, it is 

found that most of the wrong predictions were predicting white as grey. This might be because of 

the huge intensity difference between the white and grey data. Therefore, the data normalization 

was added in the later data pre-processing process. Comparing with linear combination between 

two types of tissue, the overfitting problem was severe in same-label linear combination, which 

means linear combination is not feasible for data augmentation. For the linear combination using 

two types of spectra, Random Forest Classifier is not a suitable algorithm for training because the 

output of the Random Forest Classifier is the label of the spectrum, which are white matter and 

grey matter.  

2.3.4 Low-Quality Data Removal 

We remove noisy spectra using a custom Python routine automatically. It computes pixel to 

pixel fluctuation, the standard deviation of the fluctuation, and compares the median of the standard 

deviation with the median of overall intensity. The parameter and threshold are chosen based on 

our tests. Figure 8 is an example of the removed spectrum. 
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Figure 8 an example of the removed spectrum using a filter. 

3. Construction of the Pipeline 

3.1 Exploration of the Objectives and Machine Learning Algorithms 

Before deciding to use the Random Forest Classifier, we also explored other machine learning 

algorithms and experimented with different prediction objectives.  A naïve guess is that the number 

of peaks might be informative. Therefore, we first attempted to use Random Forest Regressor to 

identify the number of peaks in mock spectra. The average error between the number of peaks 

predicted by the model and the real peak numbers was calculated. As Figure 9 shows, the result is 

not satisfactory. One reasonable assumption is that the model assumes the vast majority of spectra 

contain five peaks, so the average error of five peaks is the smallest. When noise was removed, the 

averaged error decreases from 1.68 to 1.0, but no regular pattern can be found (as shown in Figure 

10).  

In order to figure out what influences the prediction result of the model, the number of peaks in 

each spectrum was decreased to 1, i.e., the task of the model was simplified to predict whether a 
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spectrum contains a peak or not. The averaged error decreased from 1.68 to 0.47 (as shown in 

Figure 11 the average error between the number of peaks predicted by the model and the 

real peak numbers when reducing the maximum number of peaks to 1.), which means the 

model predicted whether the spectrum contains peaks or not randomly, i.e., the model is not 

effective in predicting the number of peaks in the mock spectrum.  

 

Figure 9 the average error between the number of peaks predicted by the model and the real peak numbers. 

 

Figure 10 the average error between the number of peaks predicted by the model and the real peak numbers when 

removing noise. 
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Figure 11 the average error between the number of peaks predicted by the model and the real peak numbers when reducing 

the maximum number of peaks to 1. 

A Neural Network algorithm, which is MLPClassifier, was used for training as well. However, 

the model failed to achieve the desired result, i.e., a training score over 0.85. Then it came to mind 

that the method of generating mock spectrum might be unreasonable. When the intensity of the 

peaks in the spectrum was set to constant and no noise was added to the spectrum, the training 

results of the model were good. Figure 12 shows when the number of training examples increased, 

both the training score and the cross-validation score were reasonably high. A similar result was 

found when adding noise at a level of 5% of the maximum intensity.  

 

Figure 12 the plot of training score and the cross-validation score using MLPClassifier. The intensity of the peaks in the 

mock spectrum was set to constant and no noise was added. 
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Another way to generate mock spectra was to set the intensity and width of the peaks to obey a 

Gaussian distribution, make sure the width of the peaks is at least 5 pixels, and add no noise. The 

result in Figure 13 shows that the model performs well, with evidence that both scores are higher 

than 0.96.  

 

Figure 13 the plot of training score and the cross-validation score using MLPClassifier. The intensity and width of the 

peaks obeyed a Gaussian distribution. The width of the peaks was at least 5 pixels, and no noise was added. 

 

When adding noise at a level of 5% of the maximum intensity, the training result stays 

satisfactory.  As Figure 14 shows, when reaching sufficient training examples, both the training 

score and the cross-validation score reached over 0.95.  
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Figure 14 the plot of training score and the cross-validation score using MLPClassifier. The intensity and width of the 

peaks obeyed a Gaussian distribution. The width of the peaks was at least 5 pixels, and noise at a level of 5% of the 

maximum intensity was added. 

We also used MLPClassifer to identify two different types of mock spectra. The main difference 

between the two kinds of spectra is the distance between two neighboring peaks in the spectrum. 

According to the comparison of different hyper-parameter configurations, the best configuration is 

to use tanh as the activation function for the hidden layer, lbfgs as the solver for weight 

optimization, and two hidden layers with the number of neurons as 100 and 2, respectively. As 

Figure 15 shows, the training score kept as 1, but the cross-validation score never exceeded 0.95. 

When the number of samples increased to about 380, the cross-validation score started to decrease. 

Although the explorations mentioned above did not reach satisfactory results, the result led us to 

consider using a new machine learning model to classify different types of spectra, i.e., Random 

Forest Classifier (see Section 3). 
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Figure 15 the plot of training score and the cross-validation score using MLPClassifier to identify two different types of 

mock spectra. 

 

3.2 Further Data Pre-Processing 

Data pre-processing can improve the accuracy of classification [29]. After the choice of 

configurations, data pre-processing includes sporadic signal removal, rebinning, background 

removal, data normalization, and data augmentation. To prevent high-count pixels from dominating 

the training, the Raman spectra were normalized to 0 to 1.To avoid leakage of the training example, 

which means the training data are used in the test set [30], all data were shuffled and then divided 

into the training set and test set in a ratio of 8: 2 before data preprocessing. Figure 16 shows the 

Raman spectrogram of data pre-processing in 892 to 2062 cm-1 wavenumber range, and 120-s 

exposure time. 
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Figure 16 Example data preprocessing of the Raman spectrum: (a) original Raman spectrum, (b) Raman spectrum after 

the sporadic signal is removed, (c) Raman spectrum after rebinning, (d) Raman spectrum after background removal, and 

(e) normalized Raman spectrum. After removing the spectra with insufficient statistics, 654 spectra were used for spectral 

augmentation. There are 269 Raman spectra from the grey matter, 264 from the white matter, and 121 from blood vessels. 

Data augmentation increased the number of the training and test data to 24300 and 8400, respectively. Finally, the Raman 

spectra of the white matter, grey matter, and blood vessels were labeled as 0, 1, 2, respectively. 

3.3 Hyperparameters Selection 

Hyperparameters (e.g., the number of trees in the forest , the maximum depth of each tree , etc.) 

are arguments passed to the constructor of the random forest classifier class [31]. The choice and 

values of the hyperparameters in the random forest will significantly influence the result [32]. The 

GridSearchCV algorithm, which  performs an exhaustive search within a specified range of 

parameter values [33], was used to determine the approximate hyperparameter range, and then we 

manually tune the hyperparameter combination for the best test score. The number of trees in the 

forest and the maximum depth of each tree were set to 12. The function that measures the quality 

of each split was Gini impurity, which is a criterion commonly used in random forest. 

3.4 Model Training  

Random Forest Classifier is an ensemble model for classification. When building the model, 

bootstrap is used as the criterion to divide the training data into each decision tree [34], which is a 

binary tree. At each node, Raman spectra are put into one of the two subgroups using a randomly 
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chosen feature [35]. The splitting criterion is to maximize the Gini impurity decrease from each 

node to its child node [36]. The decision tree grows until it reaches the maximum depth of the 

classifier, which can be set as a constant or none. If setting the maximum depth as none, the nodes 

will expand until all leaves are pure or contain less samples than the minimum number of samples 

required to split a node. The random forest algorithm combines classifiers by averaging their 

probabilistic prediction, rather than letting each classifier vote for a single class [31]. Figure 17 is 

a schematic showing how the random forest algorithm classifies a Raman spectrum.  

The classifier was implemented using Python 3.8.3 [37], Scikit-learn 0.23.1 [31], matplotlib 

v3.2.2 [38] and SciPy 1.0 [28].  

 

Figure 17 Schematic of random forest identification. The circles represent the nodes of the tree. The blue circles denote 

a possible trial when a piece of data is put in the model. 

4. Results and Discussion 

The performance of the training model is evaluated by confusion matrix, precision, recall, f1 

score, accuracy, and the probability of each prediction.  
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The confusion matrix helps to obtain detailed information about the performance of the model. 

When comparing the number between the predicted and actual labels, the confusion matrix not only 

determines the number of wrong predictions, but also exposes the distribution of errors [39]. As 

shown in Table 2, confusion matrix summarizes the amount of data between each true label and 

predicted label. The result indicates that the spectral difference between white matter and blood 

vessels is sufficient to achieve confident predictions with zero misidentification. The model tends 

to identify grey matter as white matter according to the misidentified results. 

Table 2 confusion matrix of the test set 

          Predicted 

    True 

White 

matter 

Grey 

matter 

Blood 

vessels  

White matter 3145 55 0 

Grey matter 220 3265 15 

Blood vessels 0 5 1695 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
precision × recall

precision + recall
 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TN + TP

TN + FP + FN + TP
 

 

Further analyses are available based on the confusion matrix. To be specific, precision provides 

the classifier’s ability not to predict a negative labelled sample as positive, and recall gives the 

ability of the classifier to find all positive samples. The f1 score is the weighted harmonic mean of 

precision and recall. Accuracy represents the predictive power of the model on the given test data 

and labels. The support is the gives the data volume of each class in the test set. The macro-average 

is the average of the unweighted mean of each label, while the weighted-average is the average of 
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the support-weighted mean of each label. In an imbalanced data set, the weighted average is more 

useful since it considers the influence of imbalanced data volume.  

The evaluation result in Table 3 shows that the model performance is satisfactory with high 

accuracy in classifying the Raman spectra of grey matter, white matter, and blood vessels. 

Furthermore, the result shows that the pre-processed data contain sufficient and significant 

information for building a reliable classification model.  

The above analysis is based on the output given by the model; however, it is also important to 

understand the model’s confidence level when making predictions. The predicted probabilities of 

one type of tissue are the mean predicted probabilities of trees in the forest for that type of tissue 

[31]. Table 4 provides the predicted probabilities of the three tissue types for part of the test set as 

an example. The values stand for the probabilities of the data being identified as one type of tissue. 

The class with the maximum value in each row indicates the model preference. 

Table 3 the main identification report. 

 precisio

n 

recall f1 - 

score 

support 

White 

matter 

0.928+/-

0.006 

0.981+/-

0.002 

0.954+/

-0.004 

3200 

Grey 

matter 

0.982+/-

0.002 

0.926+/-

0.007 

0.953+/

-0.004 

3500 

Blood 

vessels 

0.991+/-

0.003 

0.999+/-

0.001 

0.995+/

-0.002 

1700 

Accuracy   0.962+/

-0.003 

8400 

Macro 

avg 

0.967+/-

0.002 

0.969+/-

0.002 

0.967+/

-0.003 

8400 

Weighted 

avg 

0.963+/-

0.003 

0.962+/-

0.003 

0.962+/

-0.003 

8400 
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Table 4 examples of class probabilities predicted for the test set 

 White matter Grey matter Blood vessels  

Example 1 0.121 0.794 0.085 

Example 2 0.169 0.83 0.001 

Example 3 0.825 0.175 0 

Example 4 0.084 0.083 0.833 

Example 5 0 0.083 0.917 

 

When using MLPClassifier and mock spectra to identify peak numbers, two ways were used to 

generate the mock spectra to test the proper activation function. When setting the peak width 

ranging from 3 to 30 pixels randomly, with peak height at normal distribution, spectral intensity 

integrated into overall spectrum, only tanh works well as the activation function. When setting the 

peak width as a normal distribution, spectral intensity ranging from 3 to 30, and peak height 

associated with peak width and intensity, both relu and tanh work well in the predicting task. This 

is strong support for the importance of the way to generate mock spectra. The result reminds us of 

a reasonable result in mock spectra may not be effective in experimental Raman spectra. It is also 

found that there is not much difference in model performance between setting the noise level at 

0.05 and making it associated with intensity at normal distribution. It might be because the added 

noise level is not high relative to the intensity, regardless of which method is used.   

When using the mock spectra to identify two types of spectra, GaussianProcessClassifier was 

used but failed to achieve a reasonable result. It might be because this algorithm is restricted to 

using the logistic link function, which is not suitable for spectral classification.  

When using random forest for classifying the Raman spectra, it is not necessary to use too many 

decision trees to achieve the desired result. The default configuration of the maximum depth of the 

decision tree is none. The reason for tuning this hyper-parameter is that this will significantly 

decrease the running time without influencing the model performance.  
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As part of the data augmentation process, when the added noise level is increased, the 

performance of the model decreases. A similar result could be seen in shifting. The result shows 

that applying data augmentation on the training set gives better test scores comparing with not 

applying data augmentation for more than 3𝜎. Furthermore, the test score becomes less stable if 

not applying data augmentation, as evidenced by the standard deviation of 0.023, which is ~8 times 

higher than the augmented data. Therefore, it is believed that data augmentation can improve and 

stabilize model performance.  

By training different machine learning models, we believe the Raman spectra contain enough 

information to make a good classification result for a specific wavenumber range. Compared to 

other machine learning algorithms we have tried, Random Forest Classifier trains fast, with ~10 

seconds for each run. It is believed one of the reasons is that it does not require cross-validation to 

prevent overfitting due to its nature of assembling several decision trees.  

5. Conclusion and Future Work 

 

In this thesis, we started with using mock spectra to determine the machine leaning algorithm 

to be used in the classification objective. Then several approaches of data-preprocessing were tested 

for an optimal configuration. The results show that the pipeline to identify the preprocessed Raman 

spectra of the white matter, grey matter and blood vessels works well by using the Random Forest 

Classifier.  

However, according to the analysis of the incorrectly predicted data in the test set, Random 

Forest Classifier is sensitive to shifting. This may be because the model relies on individual pixels 

as features for identification. Therefore, future studies may consider using a convoluted model to 

avoid locating the feature importance to a single pixel. Furthermore, future experiments may use 

brain tumors to obtain Raman spectra for further study. In reality, the composition of the sample 
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may be complex and may not be a single type of tissue, so the main limitation of this study is that 

random forest does not support this case.  
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Appendix 

(a summary of the glossary associated with the model) 

MLPClassifier: Multi-layer Perceptron classifier. 

Tanh: the hyperbolic tan function used as activation function for the hidden layer in MLPClassifier. 

Relu: the rectified linear unit function used as activation function for the hidden layer in 

MLPClassifier. 

Lbfgs: an optimizer in the family of quasi-Newton methods used as the solver for weight 

optimization in MLPClassifier. 

GridSearchCV: This algorithm performs an exhaustive search for the specified parameter values of 

an estimator, such as Random Forest Classifier, MLPClassifier, etc. The parameters of the estimator 

used to apply these methods are optimized by cross-validated grid-search over a parameter grid. 

GaussianProcessClassifier: a classification algorithm based on Laplace approximation. 




