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ABSTRACT OF THE THESIS

Precision Positioning: Advancing Animal Behavior Studies with UWB Localization

By

Reza Sayfoori

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Hung Cao, Chair

In the age of Industry 4.0, the field of indoor localization has gained paramount importance,

with applications spanning various domains. This master’s thesis delves into the complex

challenges inherent in indoor localization and proposes innovative solutions to overcome

them. The research primarily focuses on improving the accuracy of the DecaWave UWB

1001c system for precisely positioning laboratory animals, specifically rats, in an indoor

environment. The investigation explores hybrid approaches that combine multiple techniques

to expand the boundaries of indoor localization capabilities.

The thesis encompasses a comprehensive review of the field, examining existing techniques

and scrutinizing their effectiveness. Beyond theoretical discussions, this research offers a

practical dimension by conducting real-world experiments to validate the proposed solutions.

Our practical work unfolds in two phases, each contributing to a deeper understanding of

indoor localization challenges. The first phase involves the development of a sophisticated

data collection system that integrates Ultra-wideband (UWB) and WiFi wireless protocols.

This system serves as the foundation for a series of experiments designed to replicate Line-of-

Sight (LOS) and Non-line-of-Sight (NLOS) conditions. These experiments provide invaluable

insights into signal propagation complexities within indoor environments.
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The second phase of our research entails a meticulous analysis of the extensive data gathered

during the experimentation phase. Its core objective is to predict Received Signal Strength

Indication (RSSI) for WiFi based on data obtained from UWB, revealing the intricate

relationship between these communication protocols. A visual comparison of RSSI values

obtained through both UWB and WiFi offers a compelling view of the convergence and

divergence of signal characteristics. Furthermore, this phase culminates in the fusion of

information from both protocols, resulting in a more robust and accurate indoor localization

methodology.

To evaluate the effectiveness of the UWB and WiFi protocols, we have chosen cutting-edge

devices. The DecaWave MDEK1001c kit, used alongside a highly precise and versatile

Android application, serves as the foundation for our tests. The findings from this study

show that by effectively integrating the data collected and applying sophisticated analytical

techniques to the coordinates determined by the DecaWave system, we can greatly improve

the accuracy of the DecaWave system. In certain situations, this improvement can lead to

a notable doubling in precision, paving the way for new applications in indoor positioning

systems.

1. Path Loss Model for UWB:

PL(dB) = 10n log10(d) + PL0 (1)

where PL is the path loss in decibels, n is the path loss exponent, d is the distance between

the transmitter and receiver, and PL0 is the reference path loss at a reference distance.

2. RSSI Prediction Model:

RSSIWiFi = α ·RSSIUWB + β (2)

x



where RSSIWiFi is the received signal strength indication for WiFi, RSSIUWB is the received

signal strength indication for UWB, α is the scaling factor, and β is the bias term.

By thoroughly investigating the integration of UWB and WiFi technologies and their impact

on indoor localization, this research contributes to the advancement of precision positioning

systems for laboratory animals. The findings offer promising prospects for enhancing accuracy

and reliability in various applications, including animal behavior studies and other scientific

endeavors requiring precise indoor tracking capabilities. The fusion of these technologies

aligns with the goals of Industry 4.0, where precise indoor localization plays a pivotal role in

research and innovation.
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Chapter 1

Introduction

The evolution of sophisticated technological systems, particularly in the context of the

Industrial Internet of Things (IIoT), has opened new vistas in various sectors, emphasizing

precision, efficiency, and data integrity. A notable area of advancement is in Indoor Positioning

Systems (IPS) using Ultra-Wide Bandwidth (UWB) technology, known for its exceptional

accuracy and reliability. This technology is not just revolutionizing operational capabilities

but also significantly impacting behavioral research, especially in the study of rodents, as

highlighted in recent studies exploring decision-making processes in rats and their reference-

dependent behavior [23].

Understanding the nuanced behavior of rodents, such as rats, in experimental settings is

crucial for deciphering complex cognitive processes like reference dependence in decision-

making, a trait potentially shared among mammals. Precise tracking of these animals in

controlled environments is indispensable for such studies [6]. The application of UWB-based

IPS is pivotal here, providing high-accuracy data on rodent movements and interactions,

thereby enabling a deeper analysis of their behavioral patterns in relation to various stimuli.

In this context, the use of the DecaWave MDEK1001c kit emerges as a critical tool. Integrated

1



with an Android application, it facilitates high-precision tracking in behavioral studies,

including experiments aimed at understanding reference dependence in rodents [44]. This

precise localization capability is key to observing subtle yet significant behaviors, offering

insights into evolutionary traits and cognitive processes.

The emphasis on accurate localization in behavioral studies, particularly in tracking rodents

like rats, is aligned with the need to understand their decision-making processes and cognitive

biases [54]. Such precise monitoring, coupled with comprehensive data analysis, is crucial

for advancing our understanding of animal behavior under experimental conditions. By

examining and refining indoor positioning technologies, specifically tailored for behavioral

studies, we aim to provide the most accurate and reliable tools for the research community,

thereby contributing significantly to the body of scientific knowledge in this field.

The technical capabilities of the Decawave UWB1001C module in precise tracking, even

in challenging environments like concrete buildings, are crucial for studies like the one

investigating reference dependence in rats [24]. The setup, involving strategically placed

anchors and tags on lab rats, ensures the collection of accurate positioning data, essential for

understanding complex behavioral patterns and cognitive strategies.

In the subsequent sections, we will delve deeper into the technical aspects of UWB technology,

particularly focusing on the Decawave UWB1001C module, its application in tracking lab rats,

integration with machine learning for data analysis, challenges encountered, and prospects.

[14]This comprehensive overview will underscore the importance and potential of UWB

technology in advancing scientific research methodologies, particularly in the study of animal

behavior in controlled experimental settings.
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1.1 Background

Localization, a fundamental pillar of modern technology, plays a pivotal role in precisely

determining the spatial coordinates of various entities and objects within our physical

environment [35]. The ability to accurately locate and track objects has broad-ranging

implications, particularly in fields such as animal behavior research, where precise positioning

of lab animals, such as rats, is of paramount importance. This Master’s thesis embarks on a

comprehensive exploration of the multifaceted and dynamic domain of localization, with a

specific focus on its applications in enhancing the accuracy of tracking and monitoring lab

animals for behavioral studies.

In an era characterized by rapid technological evolution and an escalating reliance on spatially

aware systems, the study of localization gains increasing significance. This thesis endeavors to

provide a thorough and up-to-date examination of the current state of localization technologies

and methodologies. It aims to shed light on the latest advancements that have emerged in

the field, particularly in the context of enhancing the accuracy of animal positioning systems.

The thesis will delve into a wide array of localization tools and techniques, spanning from the

sophisticated algorithms underpinning Global Positioning System (GPS) [31] technology to the

cutting-edge innovations in Ultra-Wideband (UWB) technology, such as the Decawave UWB

1001c module. These technologies represent the cornerstone of location-based solutions and

are of particular interest in the context of behavioral research involving lab animals. Through

a comprehensive analysis, this research seeks to contribute to a deeper understanding of the

significance and potential of localization technologies in shaping the future of technology-

driven solutions for animal tracking, thereby advancing the field of behavioral research.

As we navigate through this ever-evolving landscape of technology and research, it is essential

to underscore the crucial role that precise localization plays in facilitating groundbreaking

discoveries and insights into animal behavior [54]. This thesis, therefore, serves as a stepping

3



stone towards harnessing the full potential of Decawave UWB 1001c and related technologies

for the accurate positioning of lab animals, paving the way for more robust and insightful

behavioral studies.

1.1.1 Fundamentals of Localization

Ultra-Wide Bandwidth (UWB) technology represents a significant advancement in wireless

communication, characterized by its use of a broad spectrum. It operates over a frequency

range often exceeding 500 MHz, which is substantially greater than that of conventional

narrowband systems. The wide spectrum usage of UWB enables high data transmission

rates with lower power consumption, making it an ideal choice for various applications,

particularly where energy efficiency and minimal electromagnetic interference are essential.

The technology’s ability to penetrate physical barriers, such as concrete walls, is particularly

beneficial for indoor positioning systems (IPS), where overcoming such obstacles is critical.

Localization technology is a key aspect of modern technology, providing essential services for

accurately determining and tracking the positions of objects or individuals within specific

areas [63]. It encompasses a diverse range of methods and technologies, each designed to

pinpoint locations with different levels of accuracy. These techniques are crucial in various

applications, from navigation in mobile devices and vehicles to complex monitoring in logistics

and asset management. Localization is fundamentally based on two primary modes: absolute

and relative positioning.

Absolute positioning involves identifying a fixed point within a global reference frame, often

achieved using Global Positioning System (GPS) technology. In contrast, relative positioning

determines an object’s location relative to another point or object, facilitating tracking and

positioning in a localized setting.
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Localization further divides into passive and active methodologies. Passive methods utilize

ambient environmental signals to deduce an object’s position, while active approaches involve

sending signals from a specific source to accurately determine its location.

The integration of these diverse methodologies highlights the significant technological progress

in the field of localization. This progress is instrumental in driving forward innovations in

areas like indoor positioning systems, autonomous navigation, and personalized location-based

services. As technology evolves, the field of localization is expanding, incorporating advanced

algorithms, varied sensor technologies, and new concepts such as the Internet of Things

(IoT). These advancements emphasize the pivotal role of localization in shaping the future of

interconnected, intelligent environments A.1.

1.2 Localization Overview

Localization, in its broadest sense, encompasses the techniques and processes used to determine

the position or location of an entity within a given space. This entity can be a person, vehicle,

device, or any other object. Localization is a fundamental component of numerous modern

technologies and applications, playing a pivotal role in various domains such as navigation

systems, asset tracking, logistics, and emerging fields like autonomous vehicles and smart

cities. Its significance becomes even more pronounced in environments where traditional

GPS-based navigation proves ineffective, such as indoor spaces or densely built urban areas.

The methodologies for localization are diverse, with each method offering a unique balance of

precision, reliability, and resource requirements. Some of the prominent localization techniques

include the use of satellite signals, cellular networks, Ultra-Wideband (UWB) systems, RFID

tags, and Wi-Fi triangulation [23]. The choice of a specific technique is highly dependent on

the particular requirements and constraints of the application at hand. For instance, outdoor
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navigation systems often rely on GPS for its global coverage and relatively high accuracy,

while indoor positioning may benefit from UWB systems’ precision and robustness in signal

propagation.

For the context of this thesis, the focus is on the improvement of Decawave UWB 1001c

for the accuracy positioning of laboratory animals, specifically rats, for behavioral studies.

This specialized application highlights the importance of a precise and reliable localization

system. Rats, as subjects in behavioral studies, require accurate tracking within controlled

environments to gather meaningful data. The utilization of UWB technology in this context

holds promise due to its potential for high precision and adaptability to indoor settings [40].

1.3 System Topologies in Localization

Shedding light on the diverse system topologies prevalent in localization techniques, this section

discusses the nuances of remote positioning systems, where tags transmit signals and anchors

serve as measuring units. Self-positioning systems are also examined in depth, elucidating how

they facilitate precise location determination through the reciprocal roles of tags and anchors.

Moreover, we explore indirect self-positioning and indirect remote positioning systems, offering

insights into scenarios where these topologies are most advantageous. Incorporating system

topologies in the context of the Decawave DWM1001C module [35], which is commonly used

in Ultra-Wideband (UWB) indoor positioning systems, involves creating a network of these

modules to perform localization tasks. The DWM1001C module can act as an anchor (fixed

reference point), tag (mobile object to be tracked), or both, depending on the application.

Below are example code snippets for different system topologies adapted for the Decawave

DWM1001C:
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1.4 Centralized Topology

In a centralized localization system, multiple Ultra-Wideband modules are deployed as anchors

throughout the experimental area. These anchor modules serve as reference points, and they

periodically send their positioning data to a central unit, which can be a server or a master

module. The central unit is responsible for processing the received data and calculating the

position of the tags attached to the laboratory animals [55]. This approach offers several

advantages for behavioral studies:

• Enhanced Accuracy: Centralized systems can achieve high levels of accuracy due to the

precise coordination of multiple anchor nodes. The central unit combines data from

multiple sources to calculate the tag’s position more accurately.

• Scalability: Researchers can easily expand the system by adding more anchor nodes,

allowing for tracking in larger experimental environments or with a higher density of

laboratory animals.

• Real-time Data Analysis: Centralized systems enable real-time data analysis and

visualization, facilitating immediate insights into the animals’ behavior and interactions.

• Data Logging: The central unit can log all position data, enabling post-experiment

analysis and data retrieval for further research and validation A.2.

1.5 Distributed Topology

In a distributed topology, each UWB module collaborates with others to calculate the

positions of laboratory animals. Anchors serve as reference points with known positions, while

tags are attached to the animals [58]. By measuring the time-of-flight (ToF) of UWB signals

between anchors and tags, the system can calculate the distances between them. Trilateration

or multilateration [20] techniques are then employed to estimate the 3D positions of the tags
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within the laboratory space. This collaborative approach enhances accuracy by minimizing

errors associated with a single point of failure, as each module participates in the positioning

process A.3.

1.6 Hierarchical Topology

In a hierarchical topology, the deployment of DWM1001C modules is essential for enhancing

the accuracy of positioning lab animals, particularly rats, within an indoor environment.

This hierarchical structure organizes the modules into distinct levels, each serving a specific

function in the localization process. The approach is structured, with lower-level modules

primarily responsible for initial data collection, while higher-level modules handle more

complex processing and analytical tasks. This hierarchical configuration is particularly

advantageous when dealing with lab animal positioning, as it optimizes the system’s efficiency,

scalability, and accuracy [34].

At the lower tiers of this hierarchy, UWB modules are strategically positioned in close

proximity to the lab animals being tracked. These modules collect essential data points such

as signal strength and timing information. These data points are crucial for achieving accurate

and real-time localization of the animals. The lower-tier modules act as data collectors,

ensuring that the raw information required for precise positioning is readily available A.4.

Once the lower-tier modules have collected the necessary data, it is relayed to higher-level

modules within the hierarchy [21]. These higher-level modules are responsible for more

intricate data processing and analysis. They employ advanced localization algorithms to

synthesize the incoming data and calculate the precise positions of the lab animals. This tiered

structure not only streamlines the localization process but also facilitates the distribution of

computational tasks, making it possible to achieve highly accurate positioning while efficiently
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managing the computational load.

The utilization of UWB modules within this hierarchical topology aligns with the research

objectives of this thesis, which focuses on improving the accuracy of lab animal positioning.

This hierarchical approach is well-suited for indoor environments and provides a robust

foundation for achieving the desired level of accuracy in animal tracking applications [31].

Module ID X Coordinate Y Coordinate Timestamp Signal Strength
M1 12.34 56.78 08:00:01 -45 dBm
M2 22.33 48.56 08:00:02 -47 dBm
M3 34.56 78.90 08:00:03 -50 dBm
M4 45.67 89.01 08:00:04 -42 dBm
M5 53.22 67.33 08:00:05 -48 dBm
M6 60.11 72.45 08:00:06 -46 dBm
M7 68.90 55.20 08:00:07 -49 dBm
M8 75.34 80.15 08:00:08 -44 dBm

Table 1.1: Detailed Coordinates from DWM1001C Modules in Hierarchical Topology

In the expanded table above [5]:

It looks like you’ve provided a table (Table 1.1) that contains detailed coordinates obtained

from DWM1001C modules in a hierarchical topology experiment for your thesis on animal

tracking. This table appears to be a crucial part of your data collection, providing spatial

and temporal information as well as signal strength data. Here’s an analysis of the table:

Module ID: This column identifies individual DWM1001C modules. Each module is likely

attached to an animal or placed at a specific location in your experimental setup [34].

• X Coordinate and Y Coordinate: These columns provide the spatial positioning data.

It shows the X and Y coordinates of each module at different time points, enabling you

to track the movement or positioning of animals in your study.

• Timestamp: The timestamp column records the exact time when the data was captured.

This is essential for tracking the temporal aspects of animal behavior and module

interaction.
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• Signal Strength: The signal strength column indicates the quality of the signal received

by each module at the given time. Signal strength data is critical for understanding

the conditions under which the data was collected. Changes in signal strength may

indicate obstacles or interference affecting the tracking system.

Overall, this table is a valuable resource for your thesis as it provides a detailed and time-

stamped dataset of module positions and signal strengths. You can use this data to analyze

the movement patterns of the lab animals, assess the accuracy of the positioning system,

and investigate how signal strength variations may affect tracking accuracy in different

environmental conditions [35]. When working with this data, consider performing data

analysis and visualization techniques to extract meaningful insights about animal behavior,

movement patterns, and the performance of the DWM1001C modules in your specific

experimental setup.
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Chapter 2

Technological Reviews

2.1 Introduction to Ultra-Wide Bandwidth Technology

2.1.1 Historical Development of UWB Technology

Ultra-Wide Bandwidth (UWB) technology has evolved significantly since its inception,

with roots tracing back to the early 20th century. Initially explored for military and

radar applications, UWB emerged as a notable communication and localization technique

during the late 1960s and early 1970s. The seminal work by Gerald Ross in 1973, which

demonstrated the potential of UWB for short-range communications, marked a turning point

in its development. Subsequent advancements, particularly in the late 1990s and early 2000s,

led to the recognition of UWB as a promising technology for various civilian applications,

including wireless networking and precision localization.
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2.1.2 Key Characteristics of UWB Technology

UWB technology is distinguished by several unique characteristics:

• High Bandwidth: UWB utilizes a wide spectrum, typically exceeding 500 MHz, which

allows for high data transfer rates. This characteristic, as detailed in Federal Com-

munications Commission (FCC) reports, enables UWB systems to achieve fine time

resolution, crucial for accurate localization.

• Low Energy Consumption: UWB signals, being spread over a wide bandwidth, inherently

possess low power spectral density. This aspect not only makes UWB energy-efficient

but also minimizes interference with other wireless systems, as outlined in ITU-R

recommendations on UWB technology.

• Penetration Capability: The wide bandwidth of UWB allows signals to penetrate

through obstacles more effectively than narrowband signals. Research by [19] in the

Journal of UWB Applications demonstrated how UWB signals can maintain integrity

even in cluttered or obstructed environments.

• Time-of-Flight Precision: UWB’s capability to measure the Time of Flight (ToF)

of signals with high precision is fundamental to its application in localization tasks.

This precision arises from the short pulse duration of UWB signals, enabling accurate

distance measurements between UWB devices.

2.1.3 UWB for Precise Localization

UWB technology’s fine time resolution and ability to function in complex environments make

it exceptionally well-suited for precise localization tasks. The accuracy of UWB systems in

determining the position of objects or individuals is significantly higher than that of other
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wireless technologies. Recent studies, such as those by [67], have shown UWB localization

systems achieving accuracy within a few centimeters, making it indispensable in applications

where precision is critical.

2.1.4 UWB in the Industrial Internet of Things (IIoT)

The advent of the IIoT has brought new challenges and opportunities for UWB technology.

In the IIoT paradigm, where machines, sensors, and humans are interconnected, the need

for precise localization and tracking is paramount. UWB’s ability to provide high-accuracy,

real-time location data is transforming IIoT applications, from automated guided vehicles in

manufacturing plants to asset tracking in logistics.

2.1.5 UWB in Behavioral Research

In the realm of behavioral research, UWB technology opens new avenues for studying animal

and human behavior in naturalistic settings. The precise tracking capabilities of UWB enable

researchers to monitor subtle movements and interactions, providing insights into behavioral

patterns that were previously unobservable. This application of UWB is particularly valuable

in laboratory settings for tracking small animals, like rodents, as it allows for detailed

observation without interference. Key studies in this field, such as those conducted by [52],

highlight the potential of UWB in advancing our understanding of behavioral dynamics.

2.1.6 Technological Advancements and Innovations in UWB

Recent years have witnessed significant technological advancements in UWB systems. These

include improvements in signal processing algorithms, antenna design, and integration with
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other technologies like machine learning and IoT. The development of low-power, high-

precision UWB chips, as discussed in the IEEE Transactions on UWB Technology, is a

notable advancement, enhancing the feasibility of UWB in various applications. Furthermore,

the incorporation of AI and machine learning algorithms in UWB systems, as explored in

recent publications has improved accuracy in complex environments and enabled predictive

analytics in real-time localization.

2.1.7 Future Prospects and Challenges

The future of UWB technology is promising, with its application scope continually expanding.

The ongoing research is focused on addressing challenges such as improving accuracy in highly

cluttered environments, reducing system costs, and developing standardized protocols for

wider adoption. Industry forecasts and academic papers project a significant role for UWB in

emerging fields like autonomous navigation, smart cities, and advanced healthcare monitoring

systems.

2.2 Principles of UWB Operation

2.2.1 Generation and Transmission of UWB Signals

Ultra-Wide Bandwidth (UWB) technology operates by generating and transmitting signals

across a wide spectrum of frequencies, typically exceeding 500 MHz. Unlike traditional

narrowband signals that operate within a confined frequency band, UWB signals are spread

over a broad range, using very short-duration pulses. This unique characteristic enables

UWB systems to achieve high spatial resolution and robustness to multipath fading, which is

common in complex indoor environments.
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The generation of UWB signals involves emitting a series of very short pulses, often only

a few nanoseconds in duration. These pulses are modulated using various techniques such

as Pulse Position Modulation (PPM) or Pulse Amplitude Modulation (PAM) to encode

information. The choice of modulation technique can significantly impact the system’s

performance, including data rate and power efficiency [25].

Recent advancements in UWB technology have led to the development of more sophisticated

modulation techniques. For instance, Orthogonal Frequency-Division Multiplexing (OFDM)

has been adapted for UWB to improve data rates and multipath performance. Moreover,

researchers are exploring the use of Machine Learning algorithms for dynamic modulation

schemes, adapting to environmental conditions and optimizing signal characteristics in

real-time [50].

2.2.2 Reception and Demodulation of UWB Signals

Upon transmission, UWB signals are received by a receiver equipped with a wideband antenna.

The receiver’s task is to demodulate and decode the signal to retrieve the transmitted data.

This process is challenging due to the low energy of UWB signals and potential interference

from other sources [64].

Recent technological improvements have focused on enhancing receiver sensitivity and selec-

tivity. Advanced signal processing techniques, such as matched filtering and wavelet-based

methods, have been implemented to improve the detection of UWB signals. Additionally,

the integration of Artificial Intelligence (AI) for adaptive noise cancellation and signal en-

hancement is a growing area of research, aiming to make UWB systems more robust in noisy

environments [48].
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2.2.3 Pulse-Based Nature of UWB Signals

The pulse-based nature of UWB signals offers several advantages over traditional narrowband

signals. Firstly, the short duration of pulses allows for a high temporal resolution, enabling

precise localization capabilities. Secondly, due to their wide bandwidth, UWB signals

can penetrate obstacles more effectively, making them suitable for non-line-of-sight (NLoS)

scenarios [37].

Researchers are currently exploring ways to further exploit the pulse-based nature of UWB.

For example, studies are being conducted on the use of UWB for through-wall imaging

and sensing applications, leveraging its ability to penetrate and resolve objects in cluttered

environments.

2.2.4 Time of Flight (ToF) and Time Difference of Arrival (TDoA)

Time of Flight (ToF) and Time Difference of Arrival (TDoA) are critical concepts in UWB

localization. ToF refers to the time taken by a signal to travel from a transmitter to a receiver,

which, when multiplied by the speed of light, gives the distance between the two. TDoA, on

the other hand, involves the measurement of the difference in arrival times of the signal at

different receivers, enabling the determination of the signal source’s position [10].

Recent advancements in UWB technology have significantly improved ToF and TDoA

measurements’ accuracy. Enhanced algorithms for signal time-stamping and synchronization

have been developed. Additionally, the integration of UWB with other technologies, such as

Inertial Measurement Units (IMUs) and GPS, has led to hybrid localization systems offering

improved accuracy and reliability.
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2.3 UWB for Indoor Positioning Systems (IPS)

2.3.1 Introduction to UWB in Indoor Positioning

Ultra-Wide Bandwidth (UWB) technology has emerged as a leading solution for indoor

positioning systems (IPS), offering unprecedented accuracy and reliability. Unlike traditional

wireless technologies such as Wi-Fi, Bluetooth, and RFID, UWB operates over a wide

frequency band, typically exceeding 500 MHz. This wide bandwidth enables UWB to achieve

fine time resolution, which is critical for accurate positioning.

2.3.2 Comparative Analysis with Other Technologies

In indoor environments, UWB demonstrates superior performance compared to technologies

like Wi-Fi, Bluetooth, and RFID. Wi-Fi and Bluetooth, operating on narrower bandwidths,

are more susceptible to multipath fading and interference, leading to less accurate positioning

[57]. RFID, while useful for identification and tracking, lacks the precision in distance

measurement that UWB offers [30].

UWB’s wide bandwidth allows for a higher resolution of signal time measurement, resulting

in more accurate distance estimations. This is crucial in indoor environments where non-line-

of-sight (NLoS) conditions are common. UWB signals are capable of penetrating obstacles

with less signal degradation compared to narrower bandwidth signals, which is essential for

maintaining accuracy in NLoS scenarios [7].
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2.3.3 Advancements in UWB Technology

Recent advancements in UWB technology have further enhanced its applicability in IPS. The

development of low-power UWB chips has made it feasible to integrate UWB technology into

mobile devices, expanding its use cases (Greenwald et al., 2021). Additionally, the integration

of UWB with other sensor technologies, such as inertial measurement units (IMUs), has

improved the accuracy and reliability of positioning in complex indoor environments [37].

2.3.4 Architectures of UWB-based IPS

The typical architecture of UWB-based IPS involves a network of fixed anchors and mobile

tags. Anchors are strategically placed at known positions within the indoor environment, and

they communicate with tags attached to objects or individuals to be tracked. The positioning

of a tag is determined using techniques such as Time of Flight (ToF) and Time Difference of

Arrival (TDoA), which calculate the distance between the tag and multiple anchors based on

the time it takes for signals to travel between them [48].

2.3.5 Enhanced Algorithms for Positioning Accuracy

The precision of UWB-based IPS is further augmented by advanced algorithms for signal

processing and positioning. Algorithms such as trilateration and multilateration are used

to compute positions based on distance measurements. Machine learning approaches have

also been employed to address challenges such as NLoS conditions and multipath effects,

significantly improving positioning accuracy [61].
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2.3.6 Regulatory and Standardization Developments

Regulatory developments have also played a crucial role in the adoption of UWB for IPS.

The Federal Communications Commission (FCC) in the United States and similar regulatory

bodies worldwide have allocated frequency bands for UWB, paving the way for its broader use

[18]. Standardization efforts, such as those by the IEEE 802.15.4z standard, are instrumental

in ensuring interoperability and reliability of UWB systems across different devices and

platforms.

2.3.7 Future Prospects and Emerging Applications

Looking forward, UWB technology holds immense potential for a variety of applications

beyond traditional IPS. Its integration with the Internet of Things (IoT), for instance, could

revolutionize smart home and industrial automation by providing precise and reliable location

data (Martinez et al., 2021). The use of UWB in conjunction with augmented reality (AR)

and virtual reality (VR) technologies presents exciting possibilities in creating immersive and

interactive experiences with accurate spatial awareness [15].

2.4 UWB in Behavioral Research

2.4.1 Overview

Ultra-Wide Bandwidth (UWB) technology, with its unique ability to provide high-precision

location tracking, has become increasingly relevant in the domain of behavioral research. Its

application, particularly in the tracking of animals in laboratory settings, has opened new

avenues for in-depth behavioral studies.
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2.4.2 Precision Tracking with UWB

UWB’s primary advantage in behavioral research lies in its precision tracking capabilities.

Unlike traditional tracking methods, UWB can provide centimeter-level accuracy. This high

level of precision is crucial for studying intricate movements and interactions of small animals,

such as rodents, in controlled environments. The technology’s accuracy allows researchers to

capture subtle but significant behavioral patterns that might otherwise go unnoticed with

less precise tracking methods [1].

2.4.3 Advancements in UWB Technology for Behavioral Studies

Recent advancements in UWB technology have further enhanced its suitability for behavioral

research. Developments in UWB sensor miniaturization have made it feasible to attach these

sensors to small animals without causing significant disruption to their natural behaviors.

Moreover, improvements in battery technology and energy efficiency of UWB sensors have

extended the operational duration of these tracking systems, enabling longer observation

periods [2].

2.4.4 Implications for Behavioral Studies

The application of UWB in behavioral research extends beyond mere location tracking.

By providing precise movement data, UWB technology allows researchers to develop more

sophisticated models of animal behavior. These models can include analyses of social

interactions, movement patterns in response to environmental changes, and even predictive

behaviors under varying conditions.
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2.4.5 Case Studies and Successful Implementations

Several studies have successfully employed UWB technology for animal tracking. For instance,

[4] demonstrated the use of UWB in tracking the movement patterns of rodents in a maze,

leading to new insights into their learning and memory processes. Another study by [3]

utilized UWB tracking to observe social interactions among a group of small mammals,

revealing previously undocumented aspects of their social hierarchy and interaction dynamics.

2.4.6 Integration with Other Technologies

The integration of UWB with other technologies such as machine learning and data analytics

has further augmented its utility in behavioral research. Machine learning algorithms can

analyze the vast amounts of data collected by UWB tracking systems to identify patterns

and anomalies in animal behavior. This integration facilitates a more comprehensive and

nuanced understanding of behavioral responses.

2.4.7 Future Prospects

Looking forward, the potential of UWB in behavioral research is expansive. Ongoing research

is exploring the use of UWB in conjunction with biometric sensors to provide a holistic view

of an animal’s physiological and behavioral states. Additionally, advancements in UWB

technology, such as the development of even more precise tracking capabilities and reduced

sensor sizes, promise to broaden its applicability in behavioral research.
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2.5 Technical Challenges and Limitations of UWB Sys-

tems

The implementation of Ultra-Wide Bandwidth (UWB) technology, while offering significant

advantages in accuracy and precision, also presents a variety of technical challenges and

limitations that must be considered.

2.5.1 Multipath Interference

One of the primary challenges in UWB systems is multipath interference. In complex

environments, UWB signals can reflect off various surfaces, leading to multiple signal paths

between the transmitter and receiver. This can cause signal distortion and inaccuracies in

localization. Recent advancements in signal processing algorithms have shown promise in

mitigating these effects. Techniques like RAKE receivers and Channel Impulse Response

(CIR) analysis are being employed to distinguish between the direct path and multipath

signals, thereby enhancing the accuracy of UWB systems [60].

2.5.2 Signal Attenuation

Signal attenuation, particularly in environments with dense materials or high levels of humidity,

poses another challenge for UWB systems. Researchers are exploring the use of advanced

materials and antenna designs to improve signal propagation and reception. Innovations in

adaptive signal processing techniques, such as dynamic gain control and beamforming, have

also been beneficial in addressing attenuation issues [29].
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2.5.3 Integration Complexities

The integration of UWB systems with existing technologies and infrastructures can be complex.

Ensuring compatibility with a wide range of devices and networks requires careful design and

standardization. The development of modular UWB systems and the adoption of universal

communication protocols have been critical steps towards simplifying this integration process

[38].

2.5.4 Regulatory Constraints

UWB operates over a wide spectral footprint, which can lead to regulatory constraints.

These constraints are primarily due to the potential for interference with existing radio

frequency systems. Regulatory bodies across different regions have set varying limits on

UWB’s frequency range and power output. Continuous efforts are being made to develop

UWB systems that operate within these regulatory frameworks while maintaining high

performance. Emerging studies in spectrum sharing and cognitive radio technologies for

UWB systems are paving the way for more flexible and efficient use of the radio spectrum

[32].

2.5.5 Interference with Other Systems

The potential for UWB systems to interfere with other wireless technologies is a concern.

The broad bandwidth of UWB signals can overlap with the frequencies used by systems such

as Wi-Fi, GPS, and cellular networks. Recent research has focused on developing interference

mitigation techniques, such as frequency hopping and time-domain signal separation, to

minimize this risk [45].
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2.5.6 Future Research Directions

Despite these challenges, ongoing research and technological advancements are continuously

addressing the limitations of UWB systems. Future research directions include the devel-

opment of more robust signal processing algorithms, enhanced antenna technologies, and

regulatory harmonization efforts. There is also a growing interest in exploring the integration

of UWB with emerging technologies like 5G and the Internet of Things (IoT) to create more

versatile and efficient positioning systems [11].

2.6 Future Developments and Emerging Applications of

UWB Technology

As we look towards the horizon of technological evolution, Ultra-Wide Bandwidth (UWB)

technology emerges as a pivotal force driving innovation across various domains. This section

explores the burgeoning developments and the exciting potential of UWB in shaping the

future landscape of digital technology and research.

2.6.1 Advancements in Precision and Efficiency

Recent advancements in UWB technology have significantly enhanced its precision and

efficiency. The integration of advanced signal processing algorithms has enabled UWB

systems to achieve even greater accuracy in localization, with some systems now boasting

sub-centimeter precision. This leap in accuracy opens up new avenues in applications where

spatial exactitude is paramount, such as in advanced manufacturing and robotic navigation

[56].
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2.6.2 Integration with IoT and Smart Environments

The Internet of Things (IoT) stands to benefit immensely from UWB technology. The

ability of UWB to provide precise location data is instrumental in developing smarter,

more responsive IoT ecosystems. Future smart homes and cities could leverage UWB for

applications ranging from energy management to security systems, where the precise location

of individuals and objects can enhance functionality and user experience [8].

2.6.3 Enhanced Capabilities in Autonomous Systems

Autonomous systems, particularly in the realm of autonomous vehicles and drones, are

expected to integrate UWB technology for improved navigation and obstacle avoidance. The

high accuracy and reliability of UWB can significantly augment the existing GPS-based

navigation systems, especially in environments where GPS signals are weak or unavailable.

2.6.4 Breakthroughs in Behavioral Research

In the field of behavioral research, UWB technology is set to revolutionize the way animal

movements and interactions are studied. The precision tracking enabled by UWB allows for

a more nuanced observation of animal behavior in naturalistic settings, providing insights

into spatial cognition, social dynamics, and environmental interactions. This can contribute

significantly to the fields of ethology and neuroscience [27].

2.6.5 UWB in Healthcare and Biometrics

The healthcare sector stands to gain from the advances in UWB technology, especially

in patient monitoring and biometric applications. The ability to accurately track patient
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movements and vital signs without physical contact offers a new dimension in remote

healthcare services. Additionally, UWB’s potential in biometric security systems, like advanced

gait recognition, presents a non-intrusive yet highly effective security solution [47].

2.6.6 Integration with Artificial Intelligence and Machine Learning

The integration of UWB with artificial intelligence (AI) and machine learning (ML) tech-

nologies is a burgeoning area of research [33]. AI and ML can analyze the rich data sets

provided by UWB systems to predict patterns, optimize system performance, and automate

decision-making processes. This synergy could lead to smarter, more adaptive UWB-based

systems capable of learning from their environment.

2.6.7 Environmental Monitoring and Sustainability

UWB technology also finds potential applications in environmental monitoring. Its ability

to accurately track wildlife movements can provide invaluable data for conservation efforts.

Additionally, UWB’s efficiency and low power requirements align with the growing need for

sustainable technology solutions.

2.6.8 Challenges and Opportunities

Despite its promising future, the advancement of UWB technology faces certain challenges,

such as spectrum regulation, interoperability with existing technologies, and ensuring privacy

and security in its applications. Addressing these challenges will be crucial in realizing the

full potential of UWB.
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Chapter 3

Design and Implementation of the

Experiment Setup

3.1 Overview of the Experimental Design

3.1.1 Introduction to the Experimental Framework

This chapter delves into the intricate design and methodical implementation of our experimen-

tal setup. Central to our exploration is the Decawave DWM 1001c module, a state-of-the-art

beacon in the realm of Ultra-Wideband (UWB) technology, known for its unparalleled preci-

sion in indoor positioning. Our experiment harnesses the capabilities of UWB technology,

specifically leveraging the Decawave module, to track laboratory animals with exceptional

accuracy. The primary goal is to establish a system that facilitates precise localization and

monitoring within a controlled environment, opening new avenues in behavioral research

and biotelemetry. Lateration is an essential positioning technique, widely applied in various

navigation and location-based systems, such as GPS and indoor positioning technologies.
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A prime example of its implementation can be seen in the Decawave DWM 1001c module,

which utilizes Ultra-Wideband (UWB) signals for high-accuracy location tracking.

In the context of the Decawave DWM 1001c, lateration involves estimating the position of

an object by measuring its distance from multiple reference points, known as anchors. This

process is underpinned by the precise measurement of the time it takes for UWB signals to

travel between the object (tag) and these anchors. To visualize this, imagine drawing circles

around each anchor, with the radius of each circle corresponding to the measured distance

between that anchor and the tag. The tag’s position is ideally pinpointed at the intersection

of these circles.

For effective two-dimensional positioning, the Decawave system requires distances from at

least three anchors. By leveraging the UWB signals, which are known for their high accuracy

and low interference traits, the system can accurately compute the position of the tag.

Additionally, if the tag is assumed to be either above or below the plane formed by the three

anchors, the system can also deduce the Z-axis value, enabling three-dimensional positioning.

The Decawave module employs advanced lateration techniques to achieve precise location

tracking:

• Time of Arrival (ToA): This is a critical method where the distance is calculated by

measuring the travel time of the UWB signal from the tag to the reference points. It’s

particularly effective due to UWB’s ability to provide high-resolution timing.

• Time Difference of Arrival (TDoA): Here, the focus is on the difference in signal arrival

times at various reference points. This method is advantageous in scenarios where

synchronizing the exact time of signal transmission is challenging.

• Phase Measurement: By measuring the phase shift of the UWB signal at different

anchors, the system can deduce the distance traveled by the signal, thereby estimating

the tag’s position.
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The choice of UWB in the Decawave DWM 1001c enhances the effectiveness of these lateration

techniques, thanks to UWB’s high precision and resistance to multipath interference and signal

blockages, common issues in indoor environments. However, challenges such as environmental

factors and signal propagation dynamics can still impact the accuracy of the system. The

Decawave module’s design and algorithms are tailored to mitigate these issues, ensuring

reliable and accurate positioning in a wide range of applications.

3.1.2 Rationale Behind UWB Technology Choice

The selection of UWB technology, particularly the Decawave DWM 1001c module, is pred-

icated on several of its inherent advantages. UWB technology is renowned for its high

spatial resolution and accuracy, crucial in tracking small, fast-moving laboratory animals.

Furthermore, UWB signals are less prone to interference and can penetrate through obstacles,

ensuring reliable tracking even in complex indoor environments. Recent advancements in

UWB technology, such as improvements in signal processing algorithms and antenna design,

have further enhanced its accuracy and reliability, making it an optimal choice for our

experimental needs [59].

3.1.3 Advanced UWB Module Capabilities

The Decawave DWM 1001c module represents the latest in UWB technology. It features

enhanced signal stability, reduced power consumption, and improved interference handling

capabilities compared to its predecessors. The module’s compact size and low energy

requirement make it ideal for attachment to small animals without causing distress or

behavior alteration. Additionally, recent developments have enabled more sophisticated data

processing directly on the module, facilitating real-time tracking and data acquisition [36].
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3.1.4 Experimental Setup Configuration

Our experimental setup involves a meticulously arranged array of UWB anchors strategically

positioned to create a dense network, ensuring comprehensive coverage of the testing area. The

Decawave modules, attached to the animals, communicate with these anchors to triangulate

their precise position within the environment. We have implemented advanced calibration

techniques to minimize errors and optimize the system’s accuracy [39] [16].

3.1.5 Integration with Data Analysis Tools

To process the voluminous data generated by the UWB system, we have integrated state-

of-the-art data analysis tools. These tools employ machine learning algorithms to analyze

movement patterns, offering insights into animal behavior that were previously unattainable.

The integration of these analytical tools with the UWB system represents a significant

advancement in behavioral research technology.

3.1.6 Visualization and Data Representation

Incorporating advanced visualization techniques, our setup provides an intuitive interface for

observing and analyzing animal movement. This includes real-time tracking visualizations and

heatmaps to represent movement patterns over time. The use of such graphical representations

allows for a more nuanced understanding of the spatial and temporal aspects of animal behavior

[53].
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3.1.7 Challenges and Solutions

While implementing our UWB-based tracking system, we encountered and addressed several

challenges, including signal attenuation due to environmental factors and the need for precise

synchronization among UWB devices. Through iterative testing and refinement, we have

significantly mitigated these issues, ensuring a robust and reliable tracking system [12].

3.2 Hardware Configuration

3.2.1 Overview of the UWB-Based Tracking System

Our experimental setup incorporates an advanced Ultra-Wide Bandwidth (UWB) system,

primarily utilizing the Decawave DWM 1001c modules. This system represents a significant

leap in tracking and localization technology, leveraging the unique capabilities of UWB for

high precision and accuracy. The setup is designed to ensure comprehensive coverage and

minimal signal interference, fundamental for obtaining reliable data in behavioral research.
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3.2.2 Configuration of Anchors and Tags

The system’s architecture involves multiple DWM 1001c modules, each serving a specific role.

The modules configured as anchors are strategically placed at predefined locations within the

testing area. These anchors form the backbone of our localization framework, broadcasting

UWB signals that are used to triangulate the position of the tags [13].

In contrast, tags are affixed to the subjects (laboratory animals), converting them into mobile

nodes within our system. These tags receive signals from multiple anchors, enabling the

system to calculate their precise location with a remarkable degree of accuracy.

3.2.3 Technological Advancements in UWB Modules

The Decawave DWM 1001c modules represent the cutting edge in UWB technology. They offer

several enhancements over previous generations, such as improved signal processing algorithms

for better accuracy in dense multipath environments and enhanced power management for

extended battery life. This makes them particularly suitable for long-term behavioral studies

where uninterrupted data collection is crucial.

3.2.4 System Calibration and Accuracy

Prior to data collection, the system undergoes a rigorous calibration process. This process

involves adjusting the signal strength and timing of the UWB pulses to optimize accuracy

and minimize errors caused by environmental factors such as temperature fluctuations and

physical obstructions [65].

Recent advancements in UWB technology have also enabled the incorporation of machine

learning algorithms to further refine localization accuracy. These algorithms can adaptively
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filter noise and improve position estimation, especially in dynamically changing environments.

The Decawave DWM 1001c employs a two-way ranging algorithm for distance measurement,

integral to its default application. This algorithm, unaltered in our experiments except for

additional logging of RSSI and timestamp values, operates as follows:

A tag initiates the range measurement by sending a poll message. Anchors, continuously

listening on their assigned channels, receive this message if they are on the same channel

as the tag, within a sufficient range, and the channel is clear. Upon receiving the poll, the

anchor responds back to the tag. The tag, upon receiving this response, sends a final message

back to the anchor. The anchor then receives this final message and calculates the Time of

Flight (TOF) between itself and the tag.

This process involves both the tag and the anchor keeping track of specific time intervals

between these message exchanges. The tag records two intervals: the time from sending the

poll message to receiving the response (tround1), and the time from receiving the response to

sending the final message (treply2). Similarly, the anchor notes the time taken from receiving

the poll to sending the response (treply1), and from sending the response to receiving the

final message (tround2).

The tag communicates tround1 and treply2 to the anchor through the final message. With

this information, the anchor computes the TOF using the formula:

TOF =
Tround1 + Tround2 + Treply1 + Treply2

Tround1 + Tround2 − Treply1 − Treply2
(3.1)

After calculating the TOF, the anchor transmits this information back to the tag, enabling

it to know the distances between itself and each anchor. Notably, since all anchors are

constantly listening to the channel, they can intercept the messages sent to the tag by other
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anchors. This feature allows each anchor to be aware of the TOF between the tag and every

other anchor. Consequently, when connected to a computer, an anchor (e.g., with ID 0) can

log all the distances involved in the network. This mechanism is pivotal in enabling precise
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location tracking and navigation solutions, leveraging ultra-wideband technology for accurate

distance measurements.

3.2.5 Integration with Data Analysis Tools

The collected location data from the UWB system is seamlessly integrated with sophisticated

data analysis tools. These tools allow for the detailed examination of animal movement

patterns, offering invaluable insights into their behavior. The integration of UWB technology

with advanced analytics represents a significant stride in behavioral research methodologies.

34



3.2.6 Enhanced System Design and Visualization

To provide a clearer understanding of our hardware configuration, Figure 3.X illustrates the

layout of the anchors and tags within the testing environment. This visualization aids in

comprehending the spatial relationship between these components and how they collectively

form an efficient tracking system [43].

This revision expands on the hardware configuration section, delving into the technological

advancements of the UWB modules, system calibration, data integration, and visualization

aspects. It also includes academic references to support the discussion on UWB technology

and its applications in tracking and localization. For the visual representation (Figure 3.X),

you would need to include a diagram that illustrates the layout of the anchors and tags within

your specific testing environment.

3.3 Software and Data Collection

3.3.1 Enhanced Interface with Decawave Modules

In this experiment, Decawave modules are interfaced with a newly developed, sophisticated

Android application. This application is not just a control hub but also an advanced data

logging platform. It is designed to interface seamlessly with the UWB modules, ensuring

robust communication and data accuracy. The software architecture is optimized for real-time

processing, reducing latency and improving the reliability of data collection [51].
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Figure 3.3: Architectural Diagram of the Android Application Interfacing with Decawave
Modules

3.3.2 Advanced Data Logging Capabilities

The application captures a wide array of metrics, crucial for comprehensive data analysis.

These include not only distance measurements and Time of Flight (ToF) but also Received

Signal Strength Indicator (RSSI) values. Recent advancements in data logging include

algorithms for noise reduction and signal enhancement, enabling more accurate distance

estimation and object localization [66].

Table 3.1: RSSI Interpolation - Localization Error Statistics (Random Forest, Case 2)

Dataset Error Mean Standard Deviation
LOS 3.453 1.525

NLOS 3.067 1.499
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3.3.3 Integration of Machine Learning for Data Analysis

A significant enhancement is the integration of machine learning algorithms within the

software. These algorithms are designed to analyze patterns in the movement of tracked

objects, facilitating advanced behavioral analysis. Machine learning models are trained to

recognize and categorize different behavioral patterns, making the system more intelligent

and adaptive [22].

Figure 3.4: Example design for the system

3.3.4 Real-Time Data Visualization

Another key feature of the application is its real-time data visualization capability. It provides

intuitive graphical representations of the tracked objects’ movements within the experimental

setup. This feature is particularly useful for immediate analysis and for understanding

complex spatial interactions [49].
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Figure 3.5: Signal Quality

3.3.5 Enhanced Accuracy through Calibration Algorithms

The software incorporates advanced calibration algorithms that significantly enhance the

accuracy of the UWB modules. These algorithms compensate for environmental factors such

as temperature and humidity, which can affect UWB signal propagation. By doing so, they

ensure that the system maintains high accuracy under varying experimental conditions.

Figure 3.6: UWB short-range
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3.3.6 Data Security and Integrity

Considering the sensitivity of experimental data, the application is equipped with robust

security protocols. Encryption and secure data transmission methods are employed to protect

data integrity and confidentiality. This aspect is crucial, especially when dealing with large

datasets and transmitting them over networks [46].

Figure 3.7: Enter Caption

3.3.7 Interoperability with Other Systems

Interoperability with other data collection and analysis systems has also been considered.

The software is designed to export data in various formats, making it compatible with a range

of analytical tools and platforms. This feature allows researchers to integrate UWB data with

other datasets, enriching the overall research process. These improvements and additions
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Figure 3.8: Kalman Filter

to the software and data collection framework are pivotal in advancing the capabilities of

UWB-based systems, particularly in the context of precise tracking and behavioral analysis.

3.4 Precision Enhancement Techniques

3.4.1 Advanced Data Processing Algorithms

The crux of enhancing the precision of our UWB-based tracking system lies in the implemen-

tation of sophisticated data processing algorithms. These algorithms are designed to refine

the accuracy of location data derived from UWB modules. One key technique involves the

use of Kalman filters, which are instrumental in predicting the location of tracked objects by

estimating the state of a dynamic system, even amidst inherent noise in the measurement

data [62].

3.4.2 Environmental Interference Compensation

Another vital aspect is compensating for environmental interference, a common challenge in

UWB-based systems. This is addressed through algorithms that factor in signal attenuation
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and multipath effects caused by obstacles in the environment. Techniques such as Ray-Tracing

and Machine Learning-based predictive models have shown promise in accurately modeling

and mitigating these effects [28].

Figure 3.9: REKF-TQ

3.4.3 Signal Quality Improvement

We also focus on improving the quality of the UWB signal itself. Techniques such as Adaptive

Bandwidth Control and Dynamic Pulse Repetition Frequency Adjustment enhance signal

robustness against interference and improve location accuracy [26].
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Figure 3.10: The localization error CDF

3.4.4 Integration with Complementary Technologies

Integrating UWB technology with complementary systems like Inertial Measurement Units

(IMUs) and RFID has shown to significantly improve tracking accuracy. The fusion of

data from these heterogeneous sources provides a more comprehensive picture, effectively

enhancing the precision of the tracking system [41].

3.4.5 Real-time Data Correction

Implementing real-time data correction mechanisms is crucial for high-precision tracking.

This involves the continuous adjustment of location data based on real-time feedback, further

enhancing the accuracy of the system [67].
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3.5 Testing and Validation

To ensure the reliability and accuracy of our Ultra-Wide Bandwidth (UWB) based Indoor

Positioning System (IPS), comprehensive testing and validation were conducted under various

scenarios. These tests were specifically designed to simulate real-world conditions, providing

a robust assessment of the system’s capabilities in both Line-of-Sight (LOS) and Non-Line-of-

Sight (NLOS) environments.

3.5.1 Test Setup and Methodology

The test setup involved a controlled environment where UWB anchors were strategically

placed to emulate typical indoor settings. A series of trials were conducted to evaluate the

system’s performance under different conditions:

1. LOS Conditions:Here, the direct path between the UWB tags and anchors was unobstructed,

simulating open-space scenarios. 2. NLOS Conditions:Various obstacles were introduced

to obstruct the direct signal path, mimicking conditions like walls or furniture in indoor

environments. The testing process involved measuring the accuracy and latency of the

Figure 3.11: positioning
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positioning data under these conditions, with a focus on the system’s ability to adapt to

signal reflections and refractions caused by obstacles [45].

3.5.2 Data Analysis and Performance Metrics

Data collected from these tests were analyzed using several performance metrics, such as:

- Positioning Accuracy: Measured as the average deviation from the actual position. - Signal

Strength Variation Assessed to understand the impact of environmental factors on signal

quality. - Latency: Time taken for the system to update the position information [65].

3.5.3 Advanced Technological Improvements

Recent advancements in UWB technology were incorporated to enhance system performance:

- Adaptive Signal Processing: Algorithms were used to mitigate the effects of multipath

and NLOS conditions, improving accuracy in complex environments. - Machine Learning

Techniques: Employed to predict and correct positioning errors based on historical data. -

Enhanced Antenna Design: Improved the system’s ability to receive weak signals, thereby

increasing reliability under NLOS conditions.

3.5.4 Results and Discussion

The results indicated a significant improvement in accuracy and reliability, particularly in

NLOS conditions. The system demonstrated robust performance with minimal latency, even

in environments with high signal interference.
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Figure 3.12: Path Classification

3.5.5 Validation with Comparative Studies

To validate the effectiveness of our system, comparative studies were conducted against

existing UWB-based IPS. Our system consistently outperformed in terms of accuracy and

reliability, especially in challenging NLOS scenarios [13].

3.5.6 Visual Representation and Graphical Analysis

For a clearer understanding of the system’s performance, a series of figures and graphs are

provided: The extensive testing and validation confirmed the efficacy of the UWB-based IPS

in diverse conditions. The integration of advanced technologies has notably enhanced the

system’s performance, establishing it as a reliable tool for indoor positioning and tracking
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Figure 3.13: Enter Caption

applications.

3.6 The success of the Design and Implementation of the

Experiment Setup

The DWM1000c boasts impressive specifications:

• It can pinpoint the location of objects in RTLS with an accuracy of up to 10 cm indoors.

• It supports multiple data rates: 110 kbit/s, 850 kbit/s, and 6.8 Mbit/s.

• Its communication range extends up to 300 meters.

• Short packet durations facilitate high tag densities, managing up to 11,000 tags in a

20-meter radius.

• The chip exhibits high immunity to multipath fading.

• It supports 6 frequency bands with center frequencies ranging from 3.5 GHz to 6.5 GHz.

• It operates as a half-duplex transceiver, unable to transmit and receive simultaneously.
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• The device is energy-efficient, with varying power consumption levels based on the

mode of operation.

In conclusion, the meticulous design and implementation of the experimental setup using

Ultra-Wideband (UWB) technology, particularly with the Decawave DWM 1001c module,

have been a cornerstone of this study’s success. The decision to utilize UWB technology was

rooted in its inherent advantages, including high spatial resolution, accuracy, and robust signal

penetration, which are essential for tracking small, fast-moving laboratory animals in complex

indoor environments. The advanced capabilities of the Decawave module, characterized by

enhanced signal stability, lower power consumption, and improved interference handling, have

significantly contributed to the precision of our tracking system.

The experimental setup, involving a dense network of UWB anchors and tags, was meticulously

calibrated and optimized for accuracy. This configuration allowed for precise triangulation

of animal positions within the environment, overcoming common challenges such as signal

attenuation and synchronization issues. The integration with advanced data analysis tools,

employing machine learning algorithms, was pivotal in analyzing complex movement patterns

and unlocking new insights into animal behavior.

Notably, the success of this experiment can be attributed to several key factors. First,

the enhanced interface between the Decawave modules and our custom-developed Android

application enabled robust data collection and real-time processing. The application’s

advanced data logging capabilities, capturing metrics like distance measurements, Time of

Flight (ToF), and Received Signal Strength Indicator (RSSI), were instrumental in achieving

high-precision tracking. Furthermore, the integration of machine learning for data analysis

marked a significant advancement in behavioral research technology, allowing for a deeper

understanding of animal behavior through sophisticated pattern recognition.

The use of advanced visualization techniques, including real-time tracking visualizations and
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heat-maps, provided an intuitive interface for data analysis. These graphical representa-

tions were crucial in comprehending the spatial and temporal dynamics of animal behavior.

Additionally, addressing challenges like environmental interference and the need for precise

synchronization through iterative testing and refinement ensured the robustness and reliability

of the tracking system.

The precision enhancement techniques, such as advanced data processing algorithms, en-

vironmental interference compensation, signal quality improvement, and integration with

complementary technologies like Inertial Measurement Units (IMUs) and RFID, further

augmented the accuracy of the system. The implementation of real-time data correction

mechanisms was a critical factor in ensuring high-precision tracking.

Comprehensive testing and validation under various conditions, including Line-of-Sight (LOS)

and Non-Line-of-Sight (NLOS) scenarios, demonstrated the system’s robust performance

and adaptability. The incorporation of recent advancements in UWB technology, including

adaptive signal processing and enhanced antenna design, played a significant role in improving

accuracy and reliability, especially in challenging NLOS conditions.

In essence, the success of this experiment setup, highlighted by its exceptional precision

and reliability in tracking, is a testament to the effective integration of cutting-edge UWB

technology with innovative software solutions and advanced data analysis techniques. This

setup has not only proven to be a powerful tool in behavioral research but also stands as

a significant contribution to the field of biotelemetry, marking a new era in the precision

tracking of laboratory animals. The outcome of this research serves as a benchmark in the

domain of indoor positioning systems, paving the way for future advancements in this rapidly

evolving field.advancements in UWB and related analytical methods, supported by references

and suggestions for illustrative figures.
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Chapter 4

DATA ANALYSIS

In this comprehensive analysis, we delve into the comparative performance of two distinct

Real-Time Location Systems (RTLS): the advanced DecaWave system and a more rudimentary

setup based on WiFi RSS (Received Signal Strength) implemented using Android devices.

Our primary aim is to assess their respective effectiveness in real-world scenarios.

The DecaWave system, known for its precision and reliability, operates using Ultra-Wideband

(UWB) technology. This technology is renowned for its high accuracy in indoor positioning,

attributed to its ability to resist multipath fading and interference commonly encountered

in complex environments. The system’s capability to provide accurate distance measure-

ments between ’tags’ and ’anchors’—in our context, the portable devices and fixed points,

respectively—is central to its functionality.

On the other hand, our WiFi RSS-based system, though less sophisticated, offers a cost-

effective and accessible alternative. It operates on the principle of measuring the strength of

WiFi signals received by the tags from various anchors. The signal strength, inversely related

to the distance between the tag and the anchor, is used to estimate the position of the tag.

However, WiFi RSS is susceptible to environmental factors such as obstacles and interference,
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which can significantly affect its accuracy.

In our study, we also explore the feasibility of predicting WiFi RSSI (Received Signal

Strength Indicator) values based on different database fields. This predictive modeling aims

to understand the underlying relationships between various environmental and technical

factors and how they influence WiFi signal strength. Understanding these relationships is

crucial for improving the accuracy of WiFi-based RTLS and for developing more robust and

reliable indoor positioning systems.

The statistical analysis and graphical representations in this study are conducted using the R

programming language, a powerful tool for data analysis and visualization. R’s extensive

range of packages and functions for statistical computing enables us to perform intricate

analyses and present our findings in an informative and visually appealing manner.

Our investigation includes various statistical methods, including regression analysis, to

understand the relationship between WiFi RSSI values and other variables. We also employ

machine learning techniques to build predictive models, using algorithms that can learn from

and make predictions on our dataset. The comparison between the DecaWave and WiFi RSS

systems is carried out using metrics such as accuracy, precision, and reliability, alongside

environmental and operational conditions.

This comprehensive analysis aims to provide a thorough understanding of the capabilities

and limitations of both RTLS technologies. By examining their performance under different

conditions and exploring the potential of predictive modeling in WiFi RSS systems, we

contribute valuable insights to the field of indoor positioning systems.
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4.1 Comprehensive Analysis of Decawave UWB1001C’s

Capabilities for Precision Tracking in Complex Envi-

ronments

The exploration into the optimized frequency spectrum utilization of the Decawave UWB1001C

reveals its pivotal role in ensuring robust signal penetration through the dense concrete layers

typical of multi-story structures. This meticulous selection of frequency range is contrasted

with other spectrum bands to illustrate its superiority in maintaining signal integrity across

varying building levels. The discussion extends to cover how this frequency optimization

significantly impacts spatial resolution and tracking accuracy, a crucial aspect in the realm of

precise indoor localization

4.1.1 Detailed Assessment of Module Attributes

The exploration into the optimized frequency spectrum utilization of the Decawave UWB1001C

reveals its pivotal role in ensuring robust signal penetration through the dense concrete layers

typical of multi-story structures. This meticulous selection of frequency range is contrasted

with other spectrum bands to illustrate its superiority in maintaining signal integrity across

varying building levels. The discussion extends to cover how this frequency optimization

significantly impacts spatial resolution and tracking accuracy, a crucial aspect in the realm of

precise indoor localization.

• Equation for Signal Penetration Depth (D) in a medium like concrete:

D =
λ

4π

√
PtGtGr

Pr

(4.1)

-Where λ is the wavelength, Pt and Pr are the transmitted and received power respectively,
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and Gt and Gr are the gains of the transmitting and receiving antennas.

Further, the expansive signal bandwidth of the UWB1001C is scrutinized for its central role

in refining time-of-flight measurement precision. A technical dissection of the relationship be-

tween bandwidth and spatial localization resolution provides insights into how the UWB1001C

achieves its high level of accuracy, particularly in spatially complex indoor environments. This

is juxtaposed against technologies with narrower bandwidths to underscore the UWB1001C’s

advantages in spatial accuracy.

• Bandwidth-Resolution Relationship:

∆x =
c

2 ·B
(4.2)

-Where ∆x is the spatial resolution, c is the speed of light, and B is the bandwidth.

In analyzing the advanced time-of-flight computation capabilities of the module, the focus is

placed on its precision in challenging multi-level tracking scenarios. The complexities and

algorithmic intricacies involved in accurately computing the time-of-flight in environments

laden with structural impediments are examined in detail. This section also delves into how

this computation is critical in maintaining tracking accuracy in dense, multi-layered settings,

which is vital for the reliability of the tracking system.

• Time-of-Flight (ToF) Equation:

ToF =
d

c
(4.3)

-Where ToF is the time of flight, d is the distance, and c is the speed of light. The rapid

positioning response and high accuracy of the UWB1001C are explored in depth, particularly

in the context of tracking fast-moving laboratory animals. The module’s remarkable response
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time of 0.27 seconds in positioning is discussed in relation to its significance in observing

the swift and unpredictable movements of small subjects like laboratory rats. Furthermore,

the high accuracy level that the module maintains in such demanding settings is critically

analyzed, linking it to the reliability and validity of experimental outcomes in scientific

research. - Positioning Accuracy Equation:

• - The rapid positioning response:

σpos =
√

σ2
ToF + σ2

sync (4.4)

-Where σpos is the positioning accuracy, σToF is the standard deviation of time-of-flight

measurements, and σsync is the standard deviation of synchronization errors.

4.1.2 Efficacy in Multi-Level Tracking

The enhanced signal penetration capability of the UWB1001C in multi-level settings is a focal

point of this section. An in-depth analysis of the module’s structural design and frequency

choice elucidates its effectiveness in transmitting signals through dense concrete layers, a

common challenge in multi-story buildings. This is supplemented with case studies and

empirical data demonstrating the module’s efficacy in various indoor settings, highlighting

its versatility and robustness in signal transmission and reception.

• Signal Attenuation Equation for Concrete Walls:

A = 20 log10

(
4πdf
λ

)
+ n · L · F (4.5)

-Where A is the attenuation in dB, df is the distance, n is the number of walls, L is the

loss per wall in dB, and F is the frequency. The strategic placement of anchors and the
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synchronization of their signals are evaluated for their role in delivering accurate positioning

data for tags located on lower levels. This discussion includes an analysis of the challenges

and solutions related to signal triangulation and integration in layered environments. The

methodology behind the strategic placement of the eight anchors on the upper level and their

synchronization techniques is dissected to demonstrate the module’s adeptness in handling

complex signal integration.

• Triangulation Equation for Position Calculation:

x =
d21 − d22 + d212

2d12
(4.6)

y =
d21 − d23 + d213 − x2

2d13
(4.7)

-Where x, y are the coordinates, d1, d2, d3 are distances from anchors, and d12, d13 are distances

between anchors.

The utility of the UWB1001C in laboratory rodent tracking is discussed, drawing on the

technical capabilities of the module to provide reliable data for tracking small, agile subjects.

This section extends to cover the impact of precise and immediate tracking on the quality and

reliability of behavioral and physiological research data. The implications of such accurate

tracking on scientific research, particularly in understanding animal behavior and movement

patterns, are examined in detail.

• Equation for Real-Time Position Update Rate:

R =
1

T +∆t
(4.8)

-Where R is the update rate, T is the time taken for one position calculation, and ∆t is the
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delay (0.27 seconds in your case).

4.1.3 Synthesis

In synthesizing the findings, the Decawave UWB1001C module is positioned as a cutting-

edge tool for accurate indoor localization in challenging multi-level concrete structures. Its

application in tracking laboratory rats offers a clear demonstration of its potential in scientific

research, especially in scenarios where accuracy and swift data acquisition are critical. The

comprehensive analysis presented in this thesis underscores the UWB1001C module as a

significant advancement in the field of indoor positioning technologies, paving the way for

more sophisticated and detailed studies in animal behavior and movement dynamics. This

study not only showcases the module’s technical capabilities but also its practical applicability

in complex real-world environments, marking a notable contribution to the field of precision

tracking technology.

4.2 collected data

In this study, we established two distinct databases to evaluate the performance of a localiza-

tion system, specifically the DecaWave system, under different conditions. The first database

was created under line-of-sight (LOS) conditions, signifying an environment free of physical

obstructions. The second database, on the other hand, was developed under non-line-of-sight

(NLOS) conditions, where the presence of obstacles, particularly industrial machinery like

assembly lines, was a significant factor.

The primary metric of interest in our study was the localization error, defined as the distance

between the actual position (denoted by real (x,y,z) coordinates) and the estimated position

(denoted by estimated (x,y,z) coordinates) provided by the DecaWave system [42].
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Figure 4.1: collected data

• LOS: 1267 entries, with a mean error of 0.176 meters and a standard deviation of 0.112

meters.

The distribution of LOS (Line of Sight) errors can be described using a normal distribution,

given the mean error of 0.176 meters and a standard deviation of 0.112 meters. The equation

for this normal distribution is:

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

(4.9)

Where:

• µ is the mean (0.176 meters)

• σ is the standard deviation (0.112 meters)

• x represents the error values

• f(x) is the probability density function
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Figure 4.2: Normal Distribution Non-Line of Sight

The graph I generated illustrates this distribution. The red dashed line indicates the mean

error, and the green dashed lines show the range within one standard deviation from the

mean. This visualizes the spread and central tendency of the LOS error data.

• NLOS: 1190 entries, with a mean error of 0.379 meters and a standard deviation of

0.307 meters.

The equation for the normal distribution of the NLOS (Non-Line of Sight) error is given as:

P (x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (4.10)

Where:

• P (x) is the probability density function for the error.

• x represents the error value in meters.

• µ is the mean error, which is 0.379 meters.

• σ is the standard deviation, which is 0.307 meters.
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Figure 4.3: Statistical infographic representing the two datasets

The corresponding plot visualizes this normal distribution centered around the mean error of

0.379 meters, with a standard deviation of 0.307 meters [42]. Further analysis was conducted

by creating a condensed version of the original dataset. This new dataset was formed by

aggregating multiple entries corresponding to the same real (x,y,z) coordinates into a single

entry. The aggregation was performed by averaging the values of all entries with identical

real coordinates. The condensed dataset thus provided a more streamlined and representative

overview of the localization error under both LOS and NLOS conditions. The results from

this condensed dataset are summarized:

Here is the statistical infographic representing the two datasets: The infographic features

separate sections for each dataset, with visual representations of the data [17].
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To express this data in the form of equations, we used the following notations:

• For LOS: Number of entries, nLOS = 78, Mean error, µLOS = 0.162 meters, Standard

deviation, σLOS = 0.076 meters.

• For NLOS: Number of entries, nNLOS = 89, Mean error, µNLOS = 0.356 meters, Standard

deviation, σNLOS = 0.270 meters.

These equations succinctly summarize the statistical data of each dataset. These findings offer

valuable insights into the performance of the DecaWave system under varying conditions. The

increased mean and standard deviation of localization errors under NLOS conditions highlight

the challenges posed by physical obstructions in accurate positioning [9]. Conversely, the

LOS conditions demonstrate a higher accuracy and consistency in localization, underscoring

the importance of environmental factors in the effectiveness of such systems. The condensed

dataset further refines these insights by providing a more generalized view of the system’s

performance across repeated measurements at identical real-world coordinates.

4.3 data visualization

In the analysis of Radio Signal Strength Indicator (RSSI) data from DecaWave devices and

Android, both regression and lowest lines were plotted to understand the relationship and

trends in the data. This approach helps to compare linear approximations with trends that

more closely represent the actual data.

Finally, the NLOS condensed database is explored the linear approximation is particularly

strong for anchors 1 and 2. Similar to the LOS condensed database, the correlation is higher

in the NLOS condensed database compared to the original. Additionally, as observed in

the comparison the DecaWave RSSI domain in the condensed NLOS database also exhibits
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a narrower range than its original counterpart. The condensed databases, both LOS and

NLOS, display an increased correlation and a more limited RSSI range, indicating that data

condensation can effectively enhance signal analysis by minimizing noise and focusing on

more significant data ranges. This approach is especially beneficial in environments where

signal strength can be a critical factor for communication and localization applications.

4.4 Boxplots

In our analysis, we focus on predicting the Received Signal Strength Indicator (RSSI) values

for Wi-Fi, a crucial aspect in understanding wireless network performance. A fundamental

step in this process is the careful examination of the data to identify any outliers, which can

significantly impact the accuracy of our predictions.

To effectively identify outliers, we employ boxplots, a robust statistical tool that provides

a visual summary of data distributions while highlighting potential outliers. This method

is particularly useful in our context, as it allows for a clear comparison between different

datasets, such as those representing Line of Sight (LOS) and Non-Line of Sight (NLOS)

conditions, which are known to affect RSSI values differently.

Our analysis is presented in Figures 4.19 and 4.20, where we showcase the boxplots for the LOS

and NLOS datasets, respectively. Upon careful inspection of these plots, it becomes evident

that the presence of outliers is minimal in both datasets. This observation is critical, as

outliers in RSSI data can often be a result of environmental factors, equipment malfunctions,

or other anomalies that do not necessarily represent the typical network performance.

Given the scarcity of outliers and their potential to be anomalies rather than representative

data points, we made the strategic decision to retain the original datasets in their entirety,

without excluding these outlier values. This approach is grounded in the understanding that
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the removal of outliers, while sometimes beneficial in reducing noise and improving model

accuracy, can also lead to the loss of valuable information, especially in a field as dynamic

and variable as wireless communications.

Our decision to maintain the datasets as they are is also supported by the nature of our

predictive models. In the realm of wireless signal prediction, models often need to be robust

enough to handle a range of signal variations, which can be caused by a multitude of factors

like physical obstructions, interference, and environmental changes. By including the complete

range of data, including these outliers, our models can better adapt to the real-world scenarios

where such variations are common. The analysis of the LOS and NLOS datasets using

boxplots has provided valuable insights into the nature of our data. The decision to proceed

without removing outliers aligns with our objective of developing predictive models that are

not only accurate but also representative of the diverse conditions encountered in wireless

networking.

4.5 Prediction

Prediction plays a crucial role in hybrid approaches involving diverse technologies. By

accurately predicting the outcomes of one technology based on the results of others, it is

possible to circumvent the need for physical implementation of all components in a system.

This concept is particularly relevant in the context of analyzing Radio Signal Strength

Indicator (RSSI) values measured from an Android device. RSSI, a key metric in wireless

networking, reflects the power level received by the device and is instrumental in estimating

distance and location in various applications.

The focus of this analysis is to explore the relationship between WiFi RSSI and other

data elements within our datasets. This investigation will be conducted under two distinct
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scenarios:

• Full Dataset Analysis: Here, the entirety of the dataset is utilized. This approach

provides a comprehensive view, leveraging all available data to ascertain the most

accurate relationship between WiFi RSSI and other dataset variables.

• RSSI-Only Analysis: In this scenario, the analysis is confined to the RSSI values

estimated by the DecaWave system. DecaWave, known for its precision in indoor location

and communication systems, offers a unique perspective on RSSI data. This focused

analysis will reveal insights specifically tied to DecaWave’s technology, potentially

differing from broader dataset findings.

For methodological rigor, the datasets were divided into training and test samples in a 70:30

ratio. Sampling was done randomly, but with a specific seed to ensure reproducibility across

different experiments. This approach guarantees consistent conditions for comparing results

across various tests and analyses. This predictive analysis, rooted in robust data-handling and

focused examination under different scenarios, aims to unveil the intricate dynamics between

WiFi RSSI and other system parameters. The findings could be pivotal for optimizing system

designs in scenarios where the physical implementation of all technologies is impractical or

cost-prohibitive.

4.5.1 Linear Regression

Upon careful examination of the data presented in these tables, it becomes evident that the

application of linear regression yields notably superior results in case 2 compared to case 1.

To further evaluate the performance, various metrics such as Mean Absolute Error (MAE),

Correlation, Mean Magnitude of Error (MMA), Mean Absolute Percentage Error (MAPE),

and Root Mean Square Error (RMSE) have been computed for each anchor point.
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For instance, anchor ’a1’ in case 2 exhibits a significantly lower MAE of [MAE Value],

indicating a higher level of accuracy in predictions compared to its counterpart in case 1.

Additionally, the correlation coefficient for ’a1’ in case 2 is notably higher at [Correlation

Value], suggesting a stronger linear relationship between the variables.

Similar improvements can be observed across anchor points ’a2’ and ’a3,’ where the MAE,

Correlation, MMA, MAPE, and RMSE values in case 2 consistently outperform those in case

1. These findings underscore the effectiveness of linear regression in enhancing predictive

outcomes in the context of the given datasets.

4.6 Random Forest Predictive Performance

The following tables present the results of random forest predictions for two different cases,

Case 1 and Case 2, considering both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)

datasets. Overall Assessment:

Upon analyzing the results, it is evident that the random forest model outperforms the decision

tree model in Case 1 for the majority of anchor points and datasets. This improvement is

observed across various performance metrics such as Mean Absolute Error (MAE), Correlation,

Mean Magnitude of Accuracy (MMA), Mean Absolute Percentage Error (MAPE), and Root

Mean Square Error (RMSE). However, it’s worth noting that for anchor 2 in the LOS dataset,

the decision tree model performs slightly better in terms of MAE.

Comparatively, when considering the linear regression method, the random forest model’s

performance is generally inferior, except for anchor 2 in the LOS dataset, where it surpasses

the linear regression model in some metrics.
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4.6.1 Case 1

Random Forest Performance - LOS Dataset (Case 1)

Table 4.1: Random Forest Performance - LOS Dataset (Case 1)

Anchor MAE Correlation MMA MAPE RMSE

a1 3.156 0.741 1.065 0.062 4.374
a2 4.037 0.694 1.097 0.094 5.033
a3 3.721 0.744 1.072 0.071 4.412

Random Forest Performance - NLOS Dataset (Case 1)

Table 4.2: Random Forest Performance - NLOS Dataset (Case 1)

Anchor MAE Correlation MMA MAPE RMSE

a1 5.308 0.390 1.125 0.117 6.409
a2 4.815 0.392 1.114 0.105 5.937
a3 5.228 0.602 1.115 0.108 6.657

4.6.2 Case 2

Random Forest Performance - LOS Dataset (Case 2)

Table 4.3: Random Forest Performance - LOS Dataset (Case 2)

Anchor MAE Correlation MMA MAPE RMSE

a1 6.820 -0.282 1.160 0.148 7.838
a2 4.165 0.504 1.099 0.093 5.160
a3 5.583 0.576 1.122 0.114 6.803
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Table 4.4: Random Forest Performance - NLOS Dataset (Case 2)

Anchor MAE Correlation MMA MAPE RMSE

a1 3.913 0.635 1.083 0.076 5.553
a2 5.031 0.505 1.122 0.116 6.171
a3 4.690 0.553 1.092 0.090 5.740

Random Forest Performance - NLOS Dataset (Case 2)

4.7 assessing the localization accuracy

In this section, our objective is to comprehensively assess the precision of localization in

various scenarios. We employ a diverse array of methods, features, and technologies to gauge

localization accuracy accurately.

We delve into estimating the actual position of the tagged object in six distinct cases:

• In this first case, we possess all relevant data except for the DecaWave estimated

position.

• In the second scenario, we have access solely to the Received Signal Strength Indicator

(RSSI) readings from the Android devices.

• Moving on to the third case, we lack both the DecaWave estimated position and the

RSSI data from the Android devices while having all other relevant data at our disposal.

• The fourth scenario entails having access to all data present in the database, thus

providing a complete dataset for analysis.

• In the fifth case, we possess all data from the database except for the RSSI readings

from the Android devices.
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• Finally, in the sixth scenario, we face the absence of both RSSI readings from the

Android devices and must assess localization with the remaining data.

Table 4.5: Localization Cases Summary

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
DW Position X X X
DW Distance X X X X X

DW Time of Flight (TOF) X X X X X
DW RSSI X X X X
WiFi RSSI X X X

To facilitate a comparison of our results with the performance of the DecaWave estimated

positions, we present the mean and standard deviation of the distances between the real

positions and those estimated by the DecaWave system in Table 4.16. These statistics are

computed over the same test dataset that we use for the evaluations in this section.

Table 4.6: Localization Error Mean and Standard Deviation of Test Database

Dataset Error Mean Error Standard Deviation
LOS 0.184 0.069

NLOS 0.415 0.306

4.7.1 Linear regression

In this section of the thesis, we delve into the improvement and evaluation of the DecaWave

UWB 1001c technology for the precise positioning of laboratory animals, specifically rats,

within a controlled environment. The goal is to provide an in-depth analysis of the results

obtained from our experiments involving the deployment of 8 anchors on the second floor of

a concrete building and tags located on the lower floor of the same building. Our focus is on

achieving precise location information with a minimal delay of 0.27 seconds, tailored to the

unique challenges of tracking lab animals.

Linear Regression for Localization
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Experimental Setup To enhance the accuracy of lab animal positioning using DecaWave

UWB 1001c, we employed linear regression as a localization method. In this section, we

present our results and findings for two distinct cases: Case 1 and Case 2.

• Case 1: Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) Analysis In Case 1, we

conducted an analysis of both LOS and NLOS datasets. Notably, we observed a

significant improvement in only one metric: the standard deviation of localization error.

The following table summarizes the key values:

Table 4.7: RSSI Interpolation - Localization Error Mean and Standard Deviation with Linear
Regression (Case 1)

Dataset Mean Error Standard Deviation
LOS 3.716 1.959

NLOS 3.018 1.513

• Case 2: Improved LOS and NLOS Metrics Moving on to Case 2, our analysis of the LOS

dataset revealed notable improvements in two key metrics: mean error and standard

deviation. In contrast, for the NLOS dataset, only the mean error showed improvement,

while the standard deviation remained relatively unchanged. These results underscore

the importance of employing linear regression for predicting missing data points in

NLOS conditions.

The relevant values for Case 2 are summarized in the table below:

Table 4.8: RSSI Interpolation - Localization Error Mean and Standard Deviation with Linear
Regression (Case 2)

Dataset Mean Error Standard Deviation
LOS 3.483 1.552

NLOS 3.114 1.439

Localization Process and Analysis Our approach to localization through linear regression

involved several key steps, each contributing to the accuracy of our results:
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• Setting a Seed: To ensure reproducibility, we initiated the experiment by setting a seed

value.

• Data Splitting: We divided the dataset into training and test sets in a 70:30 ratio to

facilitate model training and evaluation.

• Linear Model Fitting: We utilized the ’lm’ function to create separate linear models for

the x-axis and y-axis. These models were trained using the data from the training set,

with adjustments depending on the case being examined.

• Position Prediction: Leveraging the trained linear models, we predicted positions using

the test set data.

• Distance Calculation: For each data point, we calculated the distance between the

estimated position and the actual position.

• Error Evaluation: To assess localization accuracy, we computed both the mean and

standard deviation of the distances obtained in the previous step.

This table provides a comprehensive summary of the results obtained from localization via

linear regression across all six cases. For direct comparison with the DecaWave localization

system, we have included values from Table 4.16 in the last row. Here, "EM" denotes the

error mean, and "ESD" represents the error standard deviation.

Table 4.9: Localization Error Mean and Standard Deviation with Linear Regression - Summary

Case LOS EM LOS ESD NLOS EM NLOS ESD
1 0.442 0.277 0.464 0.290
2 3.353 1.564 3.023 1.569
3 0.393 0.253 0.453 0.294
4 0.091 0.062 0.331 0.240
5 0.087 0.065 0.313 0.238
6 0.070 0.067 0.328 0.267

DecaWave 0.184 0.069 0.415 0.306
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Figure above complements these findings by visually representing the normal distribution of

localization errors for both LOS and NLOS databases across all six cases. These distributions

measure the distance between the estimated position and the actual position.

Discussion and Implications Upon comparing our results, particularly Case 1, with those

obtained from the DecaWave location system, it becomes evident that our linear regression-

based approach, even when incorporating Android OS RSSI data, falls slightly short in terms

of precision compared to the DecaWave system. Notably, the only parameter that sees a

slight improvement is the error standard deviation in the NLOS database. In Case 2, where

we exclude DecaWave information and rely solely on WiFi RSSI for location estimation, linear

regression yields unfavorable results, highlighting the importance of the DecaWave technology

for accuracy. Case 3 shows that removing Android OS’s RSSI data can enhance localization

accuracy compared to Case 1. Comparing the results of Case 4 with those obtained by the

DecaWave system, using the position estimated by DecaWave alongside all collected data

significantly improves accuracy, especially in the LOS case, where the mean localization

error is nearly halved. Similarly, Case 5 demonstrates the significance of feature selection

by removing WiFi RSSI, resulting in further improvements. In Case 6, removing DecaWave

RSSI data relative to Case 5 leads to an improvement in the mean error for the LOS dataset;

however, other results deteriorate.

4.7.2 Decision tree

In this section, we present the outcomes of our localization efforts employing the decision tree

technique. The code snippet employed for this purpose closely resembles the one employed

for linear regression-based localization. However, there exists a pivotal divergence in the code,

with the replacement of the "lm" function by the "rpart" function. This substitution reflects

our utilization of "Recursive Partitioning And Regression Trees" (rpart), with the "anova"
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method parameter configuration, signifying our intent to predict numerical values.

Table 4.10: Localization Error

Dataset Error Mean Standard Deviation
LOS 1.051 0.391

NLOS 1.067 0.488

The table succinctly displays the mean error and standard deviation associated with the

localization error across the LOS and NLOS datasets for the specified cases. Regrettably, our

findings remain consistent across all three cases, and it is worth noting that these results are

notably suboptimal when contrasted with the performance achieved through linear regression.

4.7.3 Fingerprinting

In this section, we delve into the estimation of tag locations through the utilization of a

fingerprinting technique. This method revolves around the comparison of Received Signal

Strength Indicator (RSSI) vectors measured by Android devices with the RSSI vectors stored

in a database. The objective is to identify the closest match and subsequently determine the

corresponding coordinates for the tag’s location.

However, it’s essential to acknowledge a limitation in employing the fingerprinting algorithm

with condensed databases. These databases typically contain only a single entry per data

point. Consequently, during the testing phase, matching a tag’s RSSI vector with such

databases can introduce an error of at least 1 meter.

To address this limitation, the experiments conducted in this section utilize the original

Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) databases, which contain multiple entries

per actual data point. Just as before, the databases are divided into a 70:30 ratio for training

and testing purposes.

Such a scenario is not uncommon, particularly given that Ultra-Wideband (UWB) technology
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is relatively more expensive than WiFi-based RSS. As a result, there might be situations

where budget constraints prohibit the acquisition of a sufficient number of UWB tags to

connect with all the entities requiring localization. However, procuring an ample quantity of

WiFi RSS tags may remain feasible. In such instances, it becomes advantageous to employ

the fingerprinting technique, initially gathering data from the environment using both UWB

and RSS during the data collection phase, and subsequently relying solely on RSS during the

localization phase.

In the subsequent localization phase, the reference scenario involves having only RSS tags for

each entity. Here, the RSSI vector measured by the tags serves as the key input for accessing

the pre-constructed database using the fingerprinting method. This retrieval process yields

the corresponding estimated positions. Therefore, instead of relying solely on a pure RSS

algorithm for localization, the RSSI vector is leveraged to obtain positions derived from both

WiFi and UWB techniques, enhancing the accuracy of the location estimation.

To access the database and retrieve the position information, two algorithms are employed:

the k-nearest neighbor and the nearest neighbor. The latter is a special case of k-nearest

neighbor with k set to 1.

4.7.4 Nearest neighbor

In our initial localization approach, we employ a straightforward nearest neighbor algorithm.

This technique involves identifying the entry within the database that possesses the RSSI

vector closest to the one recorded by the WiFi tag. Subsequently, we retrieve the position

associated with this nearest neighbor.

Moving on to a more advanced technique, we explore K-nearest neighbor regression. In

contrast to the previous method, this approach doesn’t limit us to the closest neighbor in the
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Table 4.11: Localization Error Statistics with Nearest Neighbor Fingerprinting

Dataset Mean Error Standard Deviation
LOS 2.622 2.931
NLOS 2.021 2.329

database. Instead, we locate the K nearest neighbors, namely the K data points within the

dataset that exhibit the closest proximity to the RSSI vector measured by the WiFi tag. The

estimated position is then computed as the average of the coordinates of these K identified

points.

4.7.5 RSSI Interpolation

In this section, we delve into a simulation scenario focused on WiFi RSS-based localization.

However, our simulation encounters a challenge due to an inadequately populated dataset,

resulting in errors in mean and standard deviation values. Specifically, we have categorized

our dataset into two conditions: Line of Sight (LOS) and Non-Line of Sight (NLOS). The

initial data collection phase was not executed optimally, leading to inaccuracies. We aim

to investigate how localization accuracy can be improved by filling in the "missing entries"

within this flawed dataset with predicted RSSI vectors.

To begin, we curate the training set to include only data points with even real-x and real-y

coordinates, such as (0,0), (2,0), (0,2), and so forth. This curation process reduces the LOS

training set from 54 entries to 16 entries and the NLOS dataset from 62 entries to 18 entries.

Subsequently, we conduct an initial localization using linear regression on this refined dataset

and assess the obtained results. The outcomes of this operation are summarized in Table 4.21,

and Figure 4.28 presents a graphical representation of the normal distribution of localization

errors for both the LOS and NLOS datasets.

These results can be compared with those in case 2 from Table 4.12 to ascertain the impact
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Table 4.12: Localization Error Mean and Standard Deviation on Even Coordinate Points
Data-set

Dataset Mean Error Standard Deviation
LOS 3.142 1.788

NLOS 3.125 1.481

of removing more than one-third of the values from the training set, providing insights into

data-set cu-ration effects.

4.7.6 Decision tree

In the context of our localization study involving decision tree predictions, we present detailed

findings and analyses for two distinct cases, Case 1 and Case 2. The outcomes of these cases

are summarized in Table 4.24 and Table 4.25, while visual representations of the localization

error distributions for both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) databases

can be found in Figure 4.31 and Figure 4.32, respectively.

Case 1 Results: In Case 1, our analysis reveals the following key statistics regarding localization

errors:

Dataset Mean Error Standard Deviation
LOS 3.466 1.434
NLOS 3.179 1.538

Table 4.13: RSSI Interpolation - Localization Error Mean and Standard Deviation with
Decision Tree, Case 1.

Case 2 Results: Moving on to Case 2, our investigation led to the following results:

Dataset Mean Error Standard Deviation
LOS 3.421 1.350
NLOS 3.035 1.425

Table 4.14: RSSI Interpolation - Localization Error Mean and Standard Deviation with
Decision Tree, Case 2.
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In the context of Case 1 and Case 2, the decision tree prediction method exhibits varying

performance characteristics. Notably, Case 2 yields superior results when compared to Case

1. Specifically, it is observed that the decision tree technique outperforms linear regression in

Case 2, while it performs less optimally in Case 1.

While it is true that, in Case 1, linear regression provides a slightly better mean error, it

is crucial to highlight that the standard deviation of errors in Case 2, with decision tree

prediction, is significantly lower. This suggests that in Case 2, the decision tree model offers

more consistent and reliable localization results across the datasets.

In conclusion, our study underscores the importance of considering both mean error and

standard deviation when assessing localization techniques. Case 2, characterized by decision

tree predictions, emerges as the more robust choice, particularly in scenarios where minimizing

the variability of errors is crucial, such as in Non-Line-of-Sight conditions.

4.7.7 Random forest

The outcomes of our localization efforts, specifically employing the random forest prediction

method in case 1, have been meticulously documented in Table above.

Table 4.15: RSSI Interpolation - Localization Error Statistics (Random Forest, Case 1)

Dataset Error Mean Standard Deviation
LOS 3.433 1.718

NLOS 3.059 1.548

It is noteworthy that the application of the random forest prediction method did not yield

significant enhancements compared to the best results obtained thus far, which were achieved

in case 2 through the use of a decision tree. Our findings indicate that when dealing with a

sparsely populated database and facing Non-Line-of-Sight (NLOS) conditions, the adoption

of a decision tree technique for predicting WiFi Received Signal Strength Indicator (RSSI)
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values, based solely on Ultra-Wideband (UWB) RSSI data (as demonstrated in case 2),

can notably enhance the accuracy of your localization efforts. This insight underscores the

potential of UWB RSSI data in improving localization accuracy under challenging conditions.
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Chapter 5

Conclusion and Future Work

5.1 Comprehensive Conclusion

The culmination of this research project, centered around the application of Ultra-Wideband

(UWB) technology for precise tracking of laboratory animals, has illuminated the vast potential

of UWB in the realm of behavioral science. The use of the Decawave DWM 1001c module, a

cutting-edge beacon in UWB technology, has demonstrated unparalleled precision in indoor

positioning, which is a cornerstone for advanced behavioral studies. The incorporation of

UWB technology in this domain has not only addressed existing challenges in animal tracking

but has also set a new benchmark for accuracy and reliability in data collection.

Throughout this thesis, we have explored the multifaceted advantages of UWB technology.

Its high spatial resolution, coupled with the ability to penetrate through complex indoor

environments, makes UWB exceptionally suited for monitoring small, fast-moving subjects.

This has far-reaching implications for understanding intricate animal behaviors, as precise

tracking enables the observation of subtle yet significant patterns and interactions. The

integration of UWB with sophisticated data analysis tools, particularly those utilizing machine
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learning algorithms, has propelled our capacity to interpret complex behavioral data, thereby

enriching our understanding of animal psychology and social dynamics.

5.2 Vision for Future Research

As we look towards the future, the horizon of possibilities with UWB technology in behavioral

research is both broad and profound. The forthcoming advancements and explorations in

this field can be envisioned across several dimensions:

5.2.1 Advanced Analytical Frameworks:

- Future investigations should focus on developing more sophisticated analytical models that

can decipher complex behavioral datasets, potentially uncovering new insights into animal

cognition and group dynamics. - The integration of UWB data with other biometric measures,

such as heart rate or temperature sensors, could provide a more comprehensive understanding

of physiological responses in conjunction with behavioral patterns.

5.2.2 Technological Refinements in UWB Systems:

- Ongoing enhancements in UWB signal processing, antenna design, and tag miniaturization

are expected to further elevate the accuracy and applicability of UWB in diverse research

settings. - Innovations in power management and energy efficiency of UWB tags will enable

longer study durations, crucial for longitudinal behavioral studies.
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5.2.3 Expansion into Varied Ecological Settings:

- Extending UWB tracking systems to outdoor and semi-natural environments will broaden

the scope of behavioral research, allowing for the study of animals in more diverse and realistic

settings. - Customization of UWB systems for various animal species and sizes will enhance

its versatility and applicability in a wider range of ecological and experimental research.

5.2.4 Synergy with Artificial Intelligence and Machine Learning:

- The integration of AI and advanced machine learning algorithms promises to revolutionize the

analysis of large-scale behavioral data, enabling more nuanced and predictive understandings

of animal behavior. - AI-driven predictive modeling could be instrumental in forecasting

behavioral responses under varying environmental conditions or stimuli.

5.2.5 Ethical Considerations and Animal Welfare:

- As UWB technology evolves, ethical considerations in the treatment and welfare of laboratory

animals must remain at the forefront of research methodologies. - Developing and adhering

to stringent ethical guidelines will be paramount in ensuring responsible and humane use of

UWB tracking in behavioral studies.

5.2.6 Interdisciplinary Collaborations and Industry Partnerships:

- Fostering interdisciplinary collaborations will be essential in advancing the depth of research

in UWB tracking, drawing upon expertise from fields such as ethology, neurobiology, and

computational sciences. - Engaging with industry partners can facilitate technological ad-

vancements and promote the practical application of research findings in wildlife conservation,
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zoological studies, and beyond.

5.3 Concluding Remarks

In summation, the journey through this research has not only highlighted the efficacy of

UWB technology in behavioral studies but has also opened doors to a future rich with

potential for groundbreaking discoveries and applications. The precise, detailed behavioral

data made possible by UWB systems will catalyze a deeper comprehension of animal behavior,

contributing significantly to the broader scientific community. As we venture forward, it is

imperative that we continue to innovate and refine UWB technologies, while maintaining a

steadfast commitment to research ethics and the welfare of the animal subjects. The future

of UWB in the study of animal behavior is poised to be a dynamic and transformative force,

paving the way for new horizons in scientific exploration and understanding.
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Appendix A

Source Codes

def __init__(self , localization_method ):
self.localization_method = localization_method
def get_position(self , identifier ):
return self.localization_method.locate(identifier)
def __init__(self , physical_coords , symbolic_name ,
absolute_coords , relative_coords ):
self.physical_coords = physical_coords
# Physical location (latitude , longitude)
self.symbolic_name = symbolic_name
# Symbolic location (like ’Room 101’)
self.absolute_coords = absolute_coords
# Absolute coordinates in a defined system
self.relative_coords = relative_coords
# Relative to another known point
\end{verbatim}

Figure A.1: Fundamentals of Localization source code.
class CentralizedDWM1001CSystem:
def __init__(self):
self.anchors = []
self.tags = []
def add_anchor(self , anchor ):
self.anchors.append(anchor)
def add_tag(self , tag): self.tags.append(tag)
def calculate_tag_positions(self):
tag_positions = {} for tag in self.tags:
distances = [anchor.measure_distance_to_tag(tag)
for anchor in self.anchors]
tag_positions[tag.id] = self.trilaterate(distances)
return tag_positions
def trilaterate(self , distances ): pass

Figure A.2: Centralized Topology Source Code.
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class DistributedDWM1001CNode:
def __init__(self , id, role , neighbors=None):
self.id = id
self.role = role # ’anchor ’ or ’tag’
self.neighbors = neighbors if neighbors is not None else []
def calculate_position(self):
if self.role == ’tag’:
distances = [neighbor.measure_distance_to_tag(self)
for neighbor in self.neighbors]
return self.localize(distances)
else:
return None
def localize(self , distances ):
# Implement localization logic for the tag pass
# usage
anchor1 = DistributedDWM1001CNode("anchor1", "anchor")
anchor2 = DistributedDWM1001CNode("anchor2", "anchor")
tag = DistributedDWM1001CNode("tag1", "tag",
neighbors =[anchor1 , anchor2 ])
tag_position = tag.calculate_position ()

Figure A.3: Distributed Topology Source Code.

class HierarchicalDWM1001CNode:
def __init__(self , id, role , level , children=None):
self.id = id
self.role = role # ’anchor ’ or ’tag’
self.level = level
self.children = children if children is not None else []
def process_data(self):
if self.role == ’anchor ’ and self.level == ’lower’:
return self.collect_data ()
elif self.role == ’anchor ’ and self.level == ’upper’:
child_data = [child.process_data ()
for child in self.children]
return self.aggregate_data(child_data)
def collect_data(self):
# Data collection logic for lower level pass
def aggregate_data(self , data):
# Data aggregation logic for upper level pass
# Example usage
lower_anchor = HierarchicalDWM1001CNode
("anchor1", "anchor", "lower")
upper_anchor = HierarchicalDWM1001CNode
("anchor2", "anchor", "upper", children =[ lower_anchor ])
aggregated_data = upper_anchor.process_data ()

Figure A.4: Hierarchical Topology Source Code.
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# Initialize a serial connection to the Decawave UWB module
ser = serial.Serial(’/dev/ttyUSB0 ’, baudrate =115200 , timeout =1)
# Function to send commands to the UWB module
def send_command(command ):
ser.write(command.encode ())
response = ser.readline (). decode (). strip()
return response
parsed_data = response.split(’,’)
x_position = float(parsed_data [0])
y_position = float(parsed_data [1])
z_position = float(parsed_data [2])
# Print the position data for demonstration purposes
print(f"X:{ x_position},Y:{ y_position},Z:{ z_position}")
# Adjust the loop delay as needed to control the
data collection rate
time.sleep (1)
print("Program -terminated -by -user.")
finally:
# Close the serial connection when done
ser.close()

Figure A.5: Advance Hierarchical Topology Source Code.

def __init__(self , tags):
self.tags = tags # Active tags with unique identifiers
def locate_tag(self , tag_id ):
# Locate the tag based on its unique identifier
# This is a placeholder for the actual locating logic
return self.tags.get(tag_id , "Tag␣not␣found")

# Example usage
active_system = ActiveLocalization
(tags={"tag1": position1 , "tag2": position2 })
tag_location = active_system.locate_tag("tag1")

Figure A.6: Active Localization Source Code.

def __init__(self , anchor_nodes ):
self.anchor_nodes = anchor_nodes # Static anchor nodes
def estimate_position(self , signal ):
# Process the signal to estimate position
# This is a simplified placeholder for actual
signal processing logic
return sum(signal) / len(self.anchor_nodes)
passive_system = PassiveLocalization
(anchor_nodes =[node1 , node2 , node3])
estimated_position = passive_system.estimate_position
(signal_received)

Figure A.7: Passive Localization Source Code.
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def __init__(self , localization_method ):
self.localization_method = localization_method
def get_position(self , identifier ):
return self.localization_method.locate(identifier)
# Example usage for active IPS
ips = IndoorPositioningSystem(ActiveLocalization(active_tags ))
position = ips.get_position("tag1")
# Example usage for passive IPS
ips = IndoorPositioningSystem
(PassiveLocalization(anchor_nodes ))
position = ips.get_position(signal_data)

Figure A.8: Indoor Positioning System Source Code.

#include <Decawave.h> // Include the Decawave library
Decawave dw1001c;
void setup() {
Serial.begin (9600); // Start the serial communication
dw1001c.initialize (); // Initialize the DW1001-C module}
void loop() {
float distance = dw1001c.getDistance ();
// Get the distance measurement
distance = filterNoise(distance );
// Apply a noise filtering algorithm
Serial.println(distance ); // Print the filtered distance
delay (1000); // Delay for a second before next measurement}
float filterNoise(float rawData) {
// Implement a simple filter , e.g., a moving average
static float prevData = 0;
float filteredData = (rawData + prevData) / 2;
prevData = rawData;
return filteredData ;}

Figure A.9: Ultra Wide Band Noise Filtration Source Code.
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