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SUMMARY

Energetic metabolism reprogramming is critical for cancer and immune responses. Current 

methods to functionally profile the global metabolic capacities and dependencies of cells are 
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performed in bulk. We designed a simple method for complex metabolic profiling called 

SCENITH, for Single Cell ENergetIc metabolism by profilIng Translation inHibition. SCENITH 

allows for the study of metabolic responses in multiple cell types in parallel by flow cytometry. 

SCENITH is designed to perform metabolic studies ex vivo, particularly for rare cells in whole 

blood samples, avoiding metabolic biases introduced by culture media. We analyzed myeloid 

cells in solid tumors from patients and identified variable metabolic profiles, in ways that are not 

linked to their lineage nor their activation phenotype. SCENITH ability to reveal global metabolic 

functions and determine complex and linked immune-phenotypes in rare cell subpopulations will 

contribute to the information needed for evaluating therapeutic responses or patient stratification.

Graphical abstract

In Brief

Argüello R.J. et al. develop a functional assay to quantify global metabolic dependencies and 

capacities of multiple cell types in parallel with single cell resolution. Applying SCENITH 

directly to whole blood and human tumor samples they identify metabolic differences between 

tumor and juxta-tumor associated immune cells.

INTRODUCTION

Energetic metabolism comprises a series of interconnected biochemical pathways capable 

of using energy rich molecules to produce ATP. Cells can produce ATP either by 

oxidative phosphorylation (OXPHOS) and/or by performing glycolysis. Aerobic glycolysis 

not only supports proliferation but also cell survival in hypoxic conditions. Immune cells 

are specially equipped to migrate into peripheral tissues and to adapt to the change in 

microenvironment. Their energetic metabolism profile is known to correlate with their 

microanatomical localization, activation, proliferation or functional state (O’Sullivan et al., 

2019; Russell et al., 2019). Activation of T cells is generally linked to a metabolic switch 
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from OXPHOS to aerobic glycolysis (Pearce et al., 2009; Roos and Loos, 1973; Warburg et 

al., 1958; Wieman et al., 2007).

Competition for glucose within the tumor microenvironment influences cancer progression 

and the anti-tumoral immune response by regulating metabolism and function in both 

tumoral cells and tumor-infiltrating lymphocytes (TILs) (Chang et al., 2015). The presence 

of effector immune cells into the target tissue is a predictive marker of response to 

cancer immunotherapy (Galon et al., 2006). The success of immunotherapies is restricted 

to a relatively small proportion of patients, as it requires a functional and metabolically 

competent immune system to respond to treament (Antonia et al., 2018; Wolchok et al., 

2017). Consequently, there is a great need for a simple immuno-metabolic profiling method 

for complex samples that can be utilized to stratify patients before treatment and to monitor 

responses after immunotherapies.

Current methods to determine metabolic profiles can be classified into three groups. 

The first group epitomized by Seahorse (Agilent technologies), uses metabolic inhibitors 

(i.e. 2-Deoxy-D-Glucose/”DG” and Oligomycin A/”O”) while monitoring the extracellular 

acidification rate (ECAR), as well as oxygen consumption rate (OCR). This method requires 

a large amount of purified cells to be incubated with special culture media for several hours 

and allows the user to establish different parameters and to determine global metabolic 

dependencies and capacities of the cells (Zhang et al., 2012). The second group, quantifies 

the maximal activities of enzymes, such as the maximal dehydrogenase activity by adding 

high concentrations of substrates to single cells using histochemistry (Miller et al., 2017) 

or to cell lysates. Finally, the third group uses mass spectometry (MS) and MS-imaging to 

measure the levels of metabolites produced by metabolic pathways (Palmer et al., 2016). 

Recently, three cytometry-based (FACS and CyTOF) phenotypic characterization of cells, 

using a panel of anti-human or mouse antibodies recognizing transporters and metabolic 

enzymes, have been used in parallel with histology to correlate their expression with the 

microanatomical localization of T cells (Ahl et al., 2020a; Hartmann et al., 2020; Levine et 

al., 2020).

Cell sorting and incubation with cell culture media can change the metabolic activity of the 

cells (Llufrio et al., 2018) and thus they cannot be applied to establish metabolic profiles 

of heterogenous and scarce living cell populations obtained from human blood samples or 

biopsies, ex vivo (Table 1 and S1). Predicting the state of global metabolism by phenotyping 

the level of certain metabolic markers (Ahl et al., 2020b; Hartmann et al., 2020; Levine et 

al., 2020; Wculek et al., 2019) or characterizing the maximal potential activity of a small 

subset of enzymes in situ (Miller et al., 2017) is very challenging. We aimed to complement 

the toolbox for metabolic studies in the single cell era (Artyomov and Van den Bossche, 

2020) by developing a method that functionally determines the overall metabolic capacities 

and dependencies of cells independent of their phenotype.

Approximatively half of the total energy that mammalian cells produce by degrading 

glucose, aminoacids and/or lipids is immediately consumed by the protein synthesis 

(PS) machinery (Buttgereit and Brand, 1995; Lindqvist et al., 2018; Schimmel, 1993). 

The tremendous energetic cost associated with this essential metabolic process offers a 
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methodological opportunity to determine the PS levels as a measure of global metabolic 

activity. We took advantage of the drug puromycin (puro), whose incorporation is a reliable 

readout for measuring PS levels in vitro and in vivo (Andrews and Tata, 1971; Aviner, 

2020; Hidalgo San Jose and Signer, 2019; Miyamoto-Sato et al., 2000; Nemoto et al., 1999; 

Rangaraju et al., 2019; Schmidt et al., 2009; Seedhom et al., 2016; Wool and Kurihara, 

1967), combined with a novel anti-puro monoclonal antibody, to develop a simple method 

for complex metabolic profiling with single cell resolution based on PS levels as the 

readout. We termed this method SCENITH, (Single Cell ENergetIc metabolism by profilIng 

Translation inHibition), with reference to our previous SUnSET (Schmidt et al., 2009) and 

SunRiSE (Argüello et al., 2018) methods for studying protein synthesis. SCENITH was used 

directly in whole blood, in primary and secondary lymphoid organs and in human tumor 

samples, to deconvolve the complex functional energetics of immune and stromal cells 

with single cell resolution. Our results demonstrate that our method is ideal for analyzing 

heterogenous samples, from which the details of metabolism, particularly amongst rare 

immune cell subsets, has remained inaccessible.

DESIGN

Characterizing the energetic metabolism profile by monitoring changes in protein 
synthesis (PS) levels in response to metabolic inhibitors.

To test whether the kinetics of the levels of PS and of ATP are tightly coupled, we 

measured in mouse embryonic fibroblasts (MEF), both ATP and PS levels after blocking 

ATP production (Figure 1A). To inhibit ATP production, we treated cells with a mix of 

inhibitors that block both glycolysis and OXPHOS; (Figure 1A). To optimize the signal 

to noise ratio of puro intracellular detection, we developed a novel monoclonal anti-puro 

antibody (clone R4743L-E8) specifically adapted for intracellular flow cytometry. Both 

PS levels (Figures 1B and 1D) and ATP levels (Figure 1C) dropped within 5-10 minutes 

after blocking ATP synthesis, with a strikingly similar slope, showing that changes in ATP 

levels and PS levels are tighly correlated (Figure 1E; r 0.985; P<0.0001). For increasing 

the sensitivity of the translation measurement, the time of incubation with puro can be 

experimentally determined and increased if the cells of interest have very low metabolic 

activity (i.e. naïve T cells) (Figure S1 and Table S2). Indeed, we tested the optimal time 

of incubation for whole blood and determined that 40 minutes of puro treatment is optimal 

for detecting translation in T cells, monocytes and neutrophils in whole blood samples of 

mice (Figure S1C). To test the relationship between ATP consumption and transcriptional or 

translational activities, we treated metabolically active cells with the same inhibitors to block 

de novo ATP synthesis, together with translation and/or transcription inhibitors. Altogether, 

our results confirmed that PS is one of the most energy consuming metabolic activities 

(Buttgereit and Brand, 1995; Lindqvist et al., 2018) (Figure S1), and most importantly, it 

represents a stable and reliable readout to evaluate rapidly the impact of metabolic pathways 

inhibition on the cell.

As both ATP and PS levels are tightly coupled, puro fluorescence (measuring PS) 

can act as a surrogate for energetic pathway inhibition and can be monitored by flow 

cytometry. The principle of SCENITH is thus to incubate a given sample in parallel with 
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specific inhibitors of metabolic pathways. If a cell population is energetically dependent 

on the inhibited metabolic pathway, its ATP concentration will drop as well as its PS 

levels. The latter will be established using puro incorporation detected by direct immuno

fluorescence (Figures 1F and S1B). SCENITH allows metabolic profiles to be measured in 

heterogenous cell populations at single cell resolution by combining cell identification and 

puromycinylation detection by multiparametric flow cytometry (FACS) (Figure 1G). Using 

PS levels, the level of glucose dependence is calculated to quantify the proportion of the 

PS, and therefore of ATP/GTP production, dependent on glucose oxidation (Figure 1F and 

Materials and Methods). The mitochondrial dependence (mito dep), namely the proportion 

of PS dependent on OXPHOS, is similarly established. Two additional derived parameters, 

“glycolytic capacity” (Glyc. cap) and “fatty acids and amino acids oxidation capacity” (FAO 

and AAO cap) is also calculated. Glycolytic capacity is defined as the maximum capacity 

to sustain PS when mitochondrial OXPHOS is inhibited (Figure 1F and Materials and 

Methods section). Conversely, FAO and AAO cap is defined as the capacity to use fatty acids 

and aminoacids as sources for ATP production, when glucose oxidation is inhibited (i.e. 

glycolysis and glucose derived acetyl-CoA by OXPHOS) (Figures 1F and S1B).

RESULTS

SCENITH recapitulates Seahorse metabolic profiling of steady state and activated T cells.

The metabolic switch of T cells to aerobic glycolysis upon activation was originally 

documented in the 1970s (Roos and Loos, 1973; Warburg et al., 1958) and recently 

confirmed using the Seahorse technology (van der Windt et al., 2012; Van Der Windt et al., 

2013). To benchmark our method, we monitored the energy metabolism in isolated human 

blood T cells at steady state or upon activation using Seahorse and SCENITH in parallel 

(Figure 2A). Upon activation, an increase in the glycolytic capacity of T cells was measured 

with both methods in excellent agreement (Figures 2B and 2C, respectively) (Spearman 

r squared 0.85, P<0.01) (Figure 2D). We observed a statistically significant decrease in 

the spare respiratory capacity in bulk T cells upon activation with Seahorse (Figures S2A 

and S2B). Interestingly, an increase in oxygen consumption rate (OCR) by Seahorse, was 

paralleled with an increase in the global level of PS measured by SCENITH although to 

a larger extent (Figures 2E and 2F, respectively). Overall, the metabolic profiles of T cells 

upon activation obtained by Seahorse and by SCENITH were very consistent. The level of 

translation (Figure 2F) correlated with the global metabolic activity of the cells, and changes 

in the response to inhibitors confirmed the metabolic switch towards aerobic glycolysis 

that occurs upon T cell activation. However, SCENITH showed two main advantages over 

Seahorse measurements. First, the magnitude of the change in the glycolytic capacity and 

the standard error of the measurements with SCENITH were superior (Figures 2A, 2C, 

2E, 2F). Second, SCENITH analysis was performed with 10 fold fewer T cells. Moreover, 

SCENITH could incorporate a full spectrum of T cell markers in the analysis allowing us to 

study in parallel the CD3+ T cells subpopulations present in the bulk sample.
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Metabolic deconvolution of blood T cell subsets by SCENITH identifies a memory CD8+ T 
cells subset constitutively displaying high glycolytic capacity.

We next applied SCENITH to mixed populations, which due to their heterogeneity 

are relatively inaccessible to metabolic monitoring by Seahorse. We took advantage 

of CD45RA, IL7RA (CD127), CCR7, CD45RO, CD57, PD1, and perforin expression 

to identify and analyze T cell subsets present in human blood draws. Briefly, naïve 

T cells show expression of both CD45RA and IL-7 receptor alpha (CD127) and the 

chemokine receptor CCR7. The lack of expression of CD45RA is a known marker 

of antigenic stimulation experience (memory and effector cells). early effector memory 

(EEM) CD8+ T cells do not express CD45RA and CD57, and do not yet express 

cytotoxic markers like perforin. Monitoring the expression levels of these nine markers 

and analysis by dimensionality reduction, using t-distributed stochastic neighbor embedding 

(t-SNE), yielded six phenotypically distinct clusters/subpopulations (Figure 3A and 3B). 

The metabolic profiles of non-activated naïve T cells, as well as memory (effector memory 

and central memory) CD4+ and highly differentiated CD8+ (HDE) showed a medium to high 

degree of mitochondrial dependence (Figure 3C), consistent with previous reports on their 

metabolic activity (Pearce et al., 2009). In contrast, the less abundant cell subsets such as 

EEM CD8+ T and Natural Killer (NK) cells (a small fraction that co-purfied with T cells) 

showed higher glycolytic capacity. To determine if similar metabolic trends are observed 

in other species and preparations, we performed SCENITH on resting and activated mouse 

splenic T cells (Figures S3A and S3B) and human blood central memory CD4+ T cell 

subsets (Figure S3C). Our results consistently demonstrated a switch towards high glycolytic 

capacity and high glucose dependence in both mouse and human T cells upon activation 

(Figure S3). In bulk analysis, naïve CD4+ and CD8+ T cells represented the most abundant 

subsets and thus likely dominated the energy metabolism monitoring performed by Seahorse 

(Figures 2E and 3C). Consequently, Seahorse measurements indicate a rather low “mean” 

glycolytic rate/capacity and high “mean” oxygen consumtion rate (Figure 2B) and are thus 

in accordance with the metabolism of naïve T cells determined by SCENITH (Figure 3C, 

3D). However, the presence of CD8+ EEM, which display high glycolytic capacity, but 

represent no more that 5% of the T cells present in the sample (2000 cells) remained 

completely masked during Seahorse analysis.

Another feature of SCENITH’s resolutive power is the possibility to characterize single 

cell behaviors according to their sensitivity to metabolic inhibitors independently of their 

phenotype. This allows for the identification of functional metabolic heterogeneity first, and 

for the determination of the phenotype or sorting cells afterwards. As a proof of concept, 

resting purified T cells were treated with oligomycin prior to translation monitoring. The 

histogram of translation levels showed two T cell subpopulations upon mitochondrial 

inhibition, one with high and one with low levels of translation (Figure 3D). The population 

with blocked translation were labeled as “mitochondrial dependent” and the cells with 

a high level of translation were labeled as “glycolytic” (Figure 3D). As shown in the 

t-SNE, the phenotype of glycolytic and respiratory T cells recapitulated our previous results 

(Figure 3A-C) and showed that the expression of CD45RA, mostly present in naïve T cells, 

correlated well with the level of mitochondrial dependence (Figure 3D). In conclusion, we 

found that SCENITH allows for both the measurement of the metabolic profile of known 
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non-abundant cell subsets of interest, but also the sorting and identification of “unknown” 

cells with specific metabolic dependencies present within an heterogenous sample.

Cellular energy metabolism is affected by nutrient availability and Seahorse measurements 

typically require special unbuffered media and incubation in culture media over several 

hours. Comparatively, SCENITH can be performed directly on whole blood. To investigate 

the effect of media, we tested whether short term incubation of blood with cell culture media 

would impact the metabolic profile of immune cells. Freshly isolated blood, was directly 

treated with Control, DG, O or DGO and puro or treated after pre-dilution and incubation 

for 0 or 3 hours in DMEM 10% FCS. Incubation of blood for three hours with culture 

media induced a statistically significant increase in the glycolytic capacity of NK cells and 

monocytes (Figure 3E and S3D). In contrast, it had no impact on the metabolic parameters 

of both naïve and effector CD4+ and CD8+ T cells, B cells and neutrophils.

Metabolic profiling of mouse and human myeloid cell subsets.

Compared to T cell subsets, the metabolic profile of myeloid cell subsets from human 

and mouse tissue origin has been far less studied (Saha et al., 2017). Among myeloid 

cell subsets, dendritic cells (i.e. DC1, DC2, DC3 and pDCs) are non-abundant professional 

antigen presenting cells (APCs) which serve as sentinels for the immune system. Each 

subset expresses a particular set of microbial pattern recognition receptors and is specialized 

in activation of CD8+ (i.e. DC1), CD4+ (i.e. DC2 and DC3) T cells and antiviral cytokine 

production (pDCs). For instance, lipopolysaccharide (LPS) detection by TLR4 on DC2 

and DC3 results in changes in gene expression, in membrane traffic and in energetic 

metabolism (Amiel et al., 2012; Everts et al., 2012; Krawczyk et al., 2010). DCs patrol 

all tissues emanating from the blood stream where they represent a very small fraction of 

the PBMCs, making the isolation of millions of DC1s, DC2s or pDCs from the same donor 

very challenging. We therefore used SCENITH to profile the energy metabolism of human 

blood myeloid cell subsets from heathly donors as well as of mouse bone marrow- and 

spleen-derived DCs stimulated or not to generate a detailed metabolic atlas of the myeloid 

cell populations.

Following deconvolution, we first ranked myeloid cells by glucose dependence, finding that 

classical monocytes (Mono1, CD14+CD16−) were the most glucose dependent, whereas the 

DC precursors (DC5) were the least (Figure 4A). These populations lay near the extremes 

of mitochondrial dependence, where DC5 display high and Mono1 the lowest. However, 

we also observed examples of cell subsets (e.g. pDC and Mono2) that were dependent 

on glucose and mitochondrial respiration. In contrast, DC1 and DC2 displayed relatively 

high glycolytic capacity and moderate glucose dependence, suggesting a certain degree of 

metabolic plasticity. As expected, cells ranked in opposite order for FAO and AAO capacity 

compared to glucose dependence, consistent with the idea that cells with low glucose 

dependence can sustain translation and energy production by free-fatty and/or amino acid 

oxidation.

To test whether a rapid metabolic switch occurs upon TLR4 activation in human myeloid 

cells, we used an antibody panel for analyzing Mono1, Mono2, DC1, DC2 and pDCs in 

PBMCs treated with LPS. While the Mono1 subset increased their global level of translation 
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(Figure S4A) and the DC1 subset showed a mild increase in glucose dependence and a 

moderate decrease in mitochondrial dependence (Figure S4A), all other subsets did not 

change their metabolism.

We previously observed metabolic differences in human versus mouse blood monocytes. 

To gain insight into the metabolic profile of mouse DC populations, we analyzed bone 

marrow-derived DC1, DC2 and pDC (FLT3L-BMDC) subsets at steady state and upon 

activation with LPS (Figure 4B). As in human samples, the mouse DC2 subset showed the 

highest glycolytic capacity, followed by DC1 and pDC subsets. While glucose dependence 

was high in both DC1 and DC2 subsets from human (40% and 55%) and mouse (80 and 

100%) samples, a four fold lower glucose dependence was observed in mouse versus human 

pDCs (15% vs 60%). LPS treatment shifted the DC1 and DC2 metabolic profiles towards 

lower mitochondrial dependence. However only DC2, showed an increased global level of 

PS, probably reflecting the abundant TLR4 expression in this DC subset. Considering that 

we analyzed DCs isolated from human blood and derived in vitro from mouse bone marrow, 

their SCENITH metabolic profiles are surprisingly comparable. These results confirm that 

SCENITH allows the user to identify cell populations sharing similar metabolic profiles and 

that energy metabolism in DCs varies according to their state of activation.

Profiling the metabolic state of human tumor-associated myeloid cells.

Immunotherapies are a game changer in oncology yet only a fraction of patients show 

complete immune-mediated rejection of the tumor. The heterogeneous responses of patients 

to immunotherapies have created a strong need for understanding the functional state 

of tumor-associated immune cells (Galon et al., 2006). We thus used SCENITH to 

perform parallel phenotypic and metabolic profiling of blood and tumor samples, and 

to investigate the heterogeneity of immune cell subsets by comparing tumors of diverse 

origins. In particular, we analyzed PBMCs from healthy donors, explanted meningioma, 

brain metastasis (originated from a breast cancer), as well as renal carcinoma tumors and 

renal juxtatumoral tissue. In the case of kidney tissues, both SCENITH and single cell 

RNA-seq (scRNAseq) analysis were performed in parallel on the same samples.

We observed eight myeloid subsets in meningioma and six in renal carcinoma, in which 

the phenotype and metabolic profile was determined (Figures 5A-C, S5A-B). Upon 

clustering of all the cell subsets in all tumors based on their metabolic profile, two 

groups emerged, a “glycolytic cluster” and a “respiratory cluster” (Figures 5C and S5C). 

Mono1 and Neutrophils displayed glycolytic metabolism profiles in all blood samples and 

tumors tested (Figure 5D). In contrast, Mono2, DC1 and DC2 showed relatively high 

glycolytic capacity when isolated from kidney tumor and juxtatumoral tissues, while these 

subsets showed high respiratory metabolism profile in the two brain tumors. Conversely, 

tumor-associated macrophages (TAM), showed high mitochondrial dependence, while juxta

tumoral macrophages displayed higher glycolytic capacity (Figure 5D), suggesting that 

the tumor microenvironment modifies TAM metabolism. The decrease in the glycolytic 

capacity in TAMs as compared to juxta-tumoral macrophages was previously associated 

with increased immunosuppression, tumor progression and poor patient survival (Vitale 

et al., 2019). These SCENITH results reveal that the anatomical origin of the tumor 
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could influence the metabolism of immune subsets, introducing an additional layer of 

heterogeneity in the tumor environment.

Linking single cell RNA-seq and energetic metabolism profile in tumor-associated myeloid 
cells.

We decided to link the discriminative power of SCENITH with scRNAseq to support our 

results regarding the cellular complexity of the renal carcinoma tumor environment and to 

correlate metabolic profiling with gene expression. We compared the functional metabolic 

profile obtained by SCENITH with the metabolic gene expression pattern obtained by 

scRNAseq. We first identified expression signatures of glycolytic and respiratory genes 

that tighly correlated with the functional metabolism profiles of human blood myeloid 

cells (Figure S5D). Then, we tested the expression (mRNA) of these glycolytic and 

respiratory metabolic genes in the tumor-associated myeloid populations (CD45+Lin−HLA

DR+). Sorted cells from the renal carcinoma and juxtatumoral tissue were subjected to 

scRNAseq (Figures 5E and S5E). Analysis of 12,801 and 2,080 cells for the tumor and for 

the juxta tumoral tissue yielded 6 and 5 clusters respectively. To rigourously identify the 

populations, we used well-known signatures (Villani et al., 2017) and numbered cellular 

identities in the t-SNE representations (Figure S5E). We focused on 5 Mono/Mac clusters 

expressing MAFB and/or CSF1R, that were present both in tumor and juxta-tumoral 

tissue (Figure S5F). Expression of classical surface markers such as CD16 and CD14 

(Figure S5G), confirmed that clusters 0 and 1 represent classical monocytes (Mono1). 

Cluster 2 represents CD14−CD16+ non classical monocytes (Mono2), while co-expression 

of CD14 and CD16 for the clusters 3 and 4 corresponds to macrophage-like populations. 

We performed unsupervised differential gene expression (DGE) analysis and generated 

heatmaps for the top 5 most differentially expressed in the tumor (Figure S6A, left) and 

the juxta tumoral tissue (Figure S6A, right). In addition to highlighting key genes that 

contributed to the unbiased segregation of these populations in both tissue, we confirmed the 

high expression of macrophage specific genes by cluster 3 and 4, such as APOE, C1QC and 

RGS1. We next overlayed the t-SNE plots with our two metabolic gene signatures. Highly 

correlating with SCENITH profiles, monocyte clusters (0,1,2) presented an enrichement in 

glycolytic genes signature both in tumor and juxta tumoral tissue. Conversely macrophages 

(cluster 3) showed high expression of the respiratory signature in the tumor, while, as 

predicted by SCENITH, this was not detectable in juxta-tumoral tissue (Figure 5E). DCs, 

distinct from macrophages, presented an enrichment in a glycolytic gene signature both in 

tumor and juxta tumoral tissue (Figure S6B).

Altogether, these results indicate that tumor micro-environment specifically modifies the 

functional metabolism of macrophages by durably affecting metabolic gene expression. By 

correlating the results of scRNAseq analysis and SCENITH profiling on blood myeloid cell 

subsets (Figure 5F), we identified a functional gene signature (Figure S5D) that can be used 

to describe the metabolic profile using gene expression.
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Discussion

SCENITH is a simple method for complex immuno-metabolic profiling. It allows the user to 

simultaneously establish the phenotype and extract the global metabolic profile of multiple 

cell types in parallel ex vivo. This rapid and sensitive method is consistent and comparable 

to other established techniques, including Seahorse. As the treatments with inhibitory 

drugs are performed in parallel, SCENITH can be used to monitor cellular responses to a 

combination of multiple metabolites and inhibitors. Given that flow cytometers are available 

in most research institutes and hospitals, SCENITH represents an accessible method to 

study energy metabolism. Compared to other methods (Table 1 and S1), its sensitivity, 

accessibility, single cell resolution, requirement for only one fluorescent channel, stability of 

the readout, manipulation time, compatibility with fixation and sorting, makes of SCENITH, 

an unrivalled approach for studying the global metabolism in cells in tissue slices and 

complex populations, ex vivo (Artyomov and Van den Bossche, 2020).

The resolutive power of SCENITH highlighted variations amongst subsets of the same cell 

populations. Our results suggest that changes in metabolism are embedded in the myeloid 

differentiation program and that modulating metabolism in DCs precursors might influence 

the generation of DC subsets with potential clinical relevance. One surprising observation 

is the higher glycolytic capacity of human blood monocytes compared to the mouse blood 

counterpart (Figure 4C). This may be an inherent difference between human and mouse, 

or influenced by environmental factors, like circadian rhythms, diet and/or microbiota, 

and other factors. Interestingly, mouse monocytes increased their glycolytic capacity upon 

incubation with cell culture media, suggesting that the metabolic profile of these cells is 

sensitive to nutrient availability.

It has been previously shown by Marciano et al. that puromycinylation does not reveal a 

very strong decrease in PS levels in cell lines under mild conditions of starvation. This 

evidence, led the authors to conclude that puro is not reliable to monitor translation in 

cells upon starvation conditions. In contrast, we could reliably detect inhibition of PS upon 

treatment with metabolic inhibitors, reaching levels of inhibition (i.e. DGO) comparable 

to the treatment with a inhibitor of translation initiation (Figure S3D). The results from 

Marciano et al. and ours might be interpreted as contradictory, however, the experimental 

conditions of both studies are not comparable; the main difference being that they pulse cells 

with puro only after 3 hours of mild starvation and at this late time point cell lines might be 

simply recovering translation to some extent.

The metabolic profile of immune subsets in the blood correlates with migratory capacity and 

effector functions in the body. Neutrophils and monocytes migrate into hypoxic/damaged 

tissues and are already engaged in aerobic glycolysis in the blood. We confirmed this in 

human monocytes and neutrophils in the blood and within the tumor. In a similar fashion, 

the metabolic profile of naïve and effector CD8 T cell subsets supports the idea that the 

metabolic profile of cells in the blood is pre-adapted and related to the migratory capacity 

and function of the cells. This hypothesis will require further studies that may profit from 

SCENITH.
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Importantly, SCENITH can establish the metabolic profile of circulating early effector 

memory (EEM) CD8 T cells directly from 200ul of blood. EEM CD8 T cells represent 

around 5% of the total T cells (i.e. 500 cells per condition), and we consistently measured 

their metabolic profile. Of note, the same analysis would have required the purification of 

1.2 million EEM (400,000 EEM in triplicates) to be analyzed with the Seahorse XF24, 

thus representing a gain of sensitivity of aproximatively 800 fold. This gain was even 

more dramatic, when the metabolism profile of DC cell subsets was established from 

human tumor biopsies, in which they constituted aproximately 0.5% of the myeloid cell 

population. These results demonstrate the analytical capacity and discriminative power of 

SCENITH and its potential in analyzing how the diet, age and anatomical/tissue context 

could influence energetic metabolism of immune cell subsets. The metabolic profile of 

innate and adaptive immune cells correlates with the type of cytokines they produce, thus the 

metabolic profile represents a universal read-out for functional state (Buck et al., 2015). For 

these reasons SCENITH analysis could be used to define the ‘immune metabolic contexture’ 

and complement an ‘immunoscore’ that defines immune fitness of tumours and predicts 

and stratifies patients for tailored therapies, aiming at manipulating metabolic pathways to 

improve anti-tumoral immune effector functions.

Limitations of the study

As a consequence of having single cell resolution, SCENITH does not amplify the signal by 

increasing the number of total cells analyzed. For this reason, one of the limitations of our 

method is that it is not suitable for studying cells with undetectable levels of PS (i.e. mature 

spermatozoids, quiescent stem cells, acutely stressed cells, etc). Of note, the incubation time 

with inhibitors and puro can be increased when cells with very low metabolic activity are 

studied (i.e. circulating naïve T cells and others) (Figure S1C, Table S2). Another limitation 

of SCENITH is that at steady-state we assess one metabolic readout, (i.e. the global level of 

PS).

However, SCENITH may potentially be combined with a larger panel of phenotypic 

markers, fluorescent lipids or sugars and mitochondrial tracers. These additions will need to 

be properly tested to ensure that they do not interfere with the metabolic functions of the 

cells.

SCENITH is based on a fixable readout detected by immuno-histology, we envision the 

combination of our method, with ATAC-seq, Cite-seq, CyTOF, Mass-Spectrometry Imaging 

ex vivo and potentially also in vivo (Table 1 and S1). One limitation when combining 

SCENITH with sequencing technologies is that fixation and permeabilization is required for 

staining with anti-puro. For this reason, the scRNAseq, ATAC-seq or imaging method to be 

used needs to be compatible with this treatment (Attar et al., 2018; Rosenberg et al., 2018).

Translation levels by puromycinylation can be determined in vivo (Hidalgo San Jose and 

Signer, 2019; Seedhom et al., 2016). However, performing SCENITH in vivo has been 

until now challenging, in particular with regard to determining the time of treatment and 

concentrations of the inhibitors to ensure homogeneous distribution throughout the different 

tissues of a whole animal (e.g. 2-DG is rapidly excreted, and puro does not cross the blood

brain barrier). The implementation of SCENITH in vivo will require further investigation, 

Argüello et al. Page 11

Cell Metab. Author manuscript; available in PMC 2021 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



however, we show here that SCENITH can be efficiently applied to fresh whole blood 

(Figure S1, and Figure 3E) and in fresh tissue slices (Figure 5), avoiding interferences 

coming from cell culture conditions or cell isolation procedures. Our method allowed us to 

reveal the global metabolic capacities and dependencies of multiple cell types in parallel 

within their physiological context (i.e. physiological concentration of metabolites, growth 

factors, electrolytes and cellular interactions).

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Rafael J. Argüello 

(arguello@ciml.univ-mrs.fr).

Materials Availability—All the reagents, including a full panel of inhibitors and the 

monoclonal antibody clone R4743L-E8, conjugated with Alexa Fluor 647 or Alexa Fluor 

488 (SCENITH kit) are available upon reasonable request. Further information by email to 

the lead contact and at www.scenith.com.

Data and Code Availability—The accession number for the single cell RNA sequencing 

data reported in this paper is GEO: GEO Submission (GSE159913) [NCBI tracking system 

#21365922]

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse experiments

Wild type C57BL/6 mice were purchased from Jackson Laboratories and maintained in 

the animal facility of CIML under specific pathogen-free conditions and maintained at 21° 

C in a 12-hour light-dark cycle with water and food ad libitum. This study was carried 

out in strict accordance with the recommendations in the Guide for the Care and Use 

of Laboratory Animals the French Ministry of Agriculture and of the European Union. 

Animals were housed in the CIML animal facilities accredited by the French Ministry of 

Agriculture to perform experiments on alive mice. All animal experiments were approved 

by Direction Départementale des Services Vétérinaires des Bouches du Rhône (Approval 

number A13-543). All efforts were made to minimize animal suffering.

To obtain blood, six to eight week male mice where euthanized by CO2 and blood was 

collected by cardiac puncture in Heparin tubes. To obtain splenocytes, six to eight weeks old 

wild type C57BL/6J male mice were euthanized by cervical dislocation and splenectomized. 

Mouse splenocytes were cultured in DMEM containing 5% of Fetal Calf Serum (FCS) and 

50 μM of 2-Mercaptoethanol (Mouse cells culture media, MCCM) at 37 °C 5% of CO2. 

Single cells suspentions from the spleens were generated and cultured in MCCM.

For in vitro studies, FLT3L BM-derived DCs (FLT3L-bmDCs) were differentiated in vitro 
from the bone marrow of 6-8 week/old from the same male mice. Bone marrow were kept 

from femur and tibia and plate at 1.5 x 106 cells/mL with 4mL/well in 6-well plates in RPMI 
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(GIBCO), 10% of Fetal Calf Serum (FCS) and 50 μM of 2-Mercaptoethanol (Mouse cells 

culture media, MCCM) during 6 days at 37 °C 5% of CO2 culture. Differeciation has been 

done by adding directly FLT3L in culture at day 0.

Human experiments

The renal carcinoma patient enrolled in this study provided written and informed consent 

to tissue collection under a University of California, San Francisco (UCSF) institutional 

review board (IRB)-approved protocol (UCSF Committee on Human Research (CHR) no. 

13-12246). The meningioma and brain meastasis patients enroled in this study provided 

written and informed consent in accordance with institutional, national guidelines and 

the Declaration of Helsinki. This protocol was approved by institutional review board 

(AP-HM CRB-TBM tumor bank: authorization number AC-2018-31053, B-0033-00097). 

The identity, age (between 30 and 60) and sex of the adult cancer patients and healthy 

donors was kept confidential following the ethics comitee guidelines.

Mononuclear cell enriched from blood of healthy donors (P1-P5) (3 Female, 2 Male; 

age between 30 and 60; mean 43) was submitted to Ficoll-paque plus (PBL Biomedical 

Laboratories). PBMCs and whole blood were cultured in the absense (non stimulated) or 

in the presence of LPS for 4hs. Immune cell stimulations were performed in the absence 

(Control) or presence of 0,1 μg/ml of extrapure Lipopolysacharide (Invivogen), 10 μg/ml 

Poly I:C (Invivogen) or PMA (5 ng/ml; Sigma) and ionomycin (500 ng/ml) over night for T 

cell stimulations and 4 hours for DCs. T cells from human donors (P1, P2, P3) were isolated 

using the RosetteSep™ negative isolation method and activated (using BD Human T cell 

activator beads coated with anti-CD3 and anti-CD28) or not.

Cell lines

Mouse Embryonic Fibroblast (MEF) cells derived from C57BL/6 background male and 

female sex mixed were used. For experiments, MEFs were cultured in DMEM culture media 

supplemented with 10% FCS at 37 °C 5% of CO2 culture.

METHOD DETAILS

ATP measurement

2 x 104 MEFs were seeded in 100ul of 5% FCS DMEM culture media ON in opaque 96 

well plates. Cells were incubated with the inhibitors for the times indicated in the Figure. 

After, 100ul of Cell titer-Glo luminiscence ATP reconstituted buffer and substrate (Promega) 

was added to each well and Luminiscence was measured after 10 minutes following 

manufacturer instructions. A standard curve with ATP was performed using the same kit 

and following manufacturer instructions.

Metabolic flux analysis (Seahorse)

OCR and ECAR were measured with the XF24 Extracellular Flux Analyzer (Seahorse 

Bioscience). 4 x 105 cells with αCD3/αCD28 beads or not, were placed in triplicates 

in XF medium (nonbuffered Dulbecco’s modified Eagle’s medium containing 2.5 mM 

glucose, 2 mM L-glutamine, and 1 mM sodium pyruvate) and monitored 25 min under 
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basal conditions and in response to 10mM glucose, 1 μM oligomycin, 100 mM 2-Deoxy

Glucose. Glycolytic capacity was measured by the difference between ECAR level after add 

oligomycin and before add glucose. OCR, ECAR and SRC parameters was analyzed and 

extract from Agilent Seahorse Wave Desktop software. Glycolytic capacity was obtained by 

the difference between ECAR level after add Oligomycin and before add Glucose.

SCENITH™

Fifty microliters of blood were seeded in 96 well plates for studying blood cells metabolism. 

Alternatively cells were plated at 1 x 106 cells/ml, 0.5 ml/well in 48-well plates. 

Experimental duplicates/triplicates were performed in all conditions. After differentiation, 

activation or harvesting of human of cells, wells were treated during 30-45 minutes with 

Control, 2-Deoxy-D-Glucose (DG, final concentration 100mM), Oligomycin (Oligo, final 

concentration 1μM), or a sequential combination of the drugs at the final concentrations 

before mentioned. As negative control, the translation initiation inhibitor Harringtonine was 

added 15 minutes before addition of puro (Harringtonine, 2 μg/ml). Puro (final concentration 

10 μg/ml) is added during the last 15-45 minutes of the metabolic inhibitors treatment. 

After puro treatment, cells were washed in cold PBS and stained with a combination of Fc 

receptors blockade and fluorescent cell viability marker, then primary conjugated antibodies 

against surface markers during 25 minutes at 4°C in PBS 1X5% FCS, 2mM EDTA (FACS 

wash buffer). After washing, cells were fixed and permeabilized using FOXP3 fixation and 

permeabilization buffer (Thermofisher eBioscience™) following manufacturer instructions. 

Intracellular staining of puro using our in house produced fluorescently labeled anti-Puro 

monoclonal antibody with Alexa Fluor 647 to obtain up to 10 times better signal to noise 

ratio than commercially available monoclonal antibodies was performed by incubating cells 

during 1 hour at 4°C diluted in permeabilization buffer. For SCENITH troubleshooting see 

Table 2 in additional resources.

Processing of human solid tumors SCENITH

0.2-0.4 grams of solid tumor tissue was partially dissociated using chirurgical scissors or 

tissue chopper (McIlwain Tissue Chopper® Standard plate) to generate “tumor explant 

suspention”. Tissue explants suspention, containing tissue cubes of approximately 400μm 

of cross section, were put in suspention in complete RPMI media and incubated directly 

with control or metabolic inhibitors, and with puro following the SCENITH protocol. Next, 

tumor explants were dissociated using Tissue Liberase and DNAsel with the help of a 

Gentle Macs (Miltenyi biotec) following manufacturers instructions. Cell suspentions were 

washed, counted and 2-5 x 106 total cells were seed in triplicates before proceeding with 

lived dead and FC block staining. Next, cells were stained for surface makers, fixed and 

permeabilized with FOXP3 fixation and permeabilization kit and stained for nuclear and 

cytoplasmic markers as mentioned above.

Human single cell RNA-sequencing

Live CD3-CD19/20-CD56- cells were sorted from renal carcinoma tumor and juxta tumoral 

tissue using a BD FACSAria Fusion. After sorting, cells were pelleted and resuspended 

at 1 x 103 cells/μl in 0.04% BSA/PBA and loaded onto the Chromium Controller 
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(10X Genomics). Samples were processed for single-cell encapsulation and cDNA library 

generation using the Chromium Single Cell 3’ v2 Reagent Kits (10X Genomics). The library 

was subsequently sequenced on an lllumina HiSeq 4000 (Illumina).

Single cell data processing

Sequencing data was processed using 10X Genomics Cell Ranger V1.2 pipeline. The Cell 

Ranger subroutine mkfastq converted raw, Illumina bcl files to fastqs which were then 

passed to Cell Ranger’s count, which aligned all reads using the aligner STAR (Dobin et 

al., 2013)ref against GRCh38 genomes for human cells. After filtering reads with redundant 

unique molecular identifiers (UMI), count generated a final gene-cellular barcode matrix. 

Both mkfastq and count were run with default parameters.

Cellular Identification and Clustering of scRNAseq data

For each sample, the gene - barcode matrix was passed to the R (v. 3.6.0) software package 

Seurat (Satija et al., 2015) (http://satijalab.org/seurat) (v3.1.1) for all downstream analyses. 

We then filtered on cells that expressed a minimum of 200 genes and required that all genes 

be expressed in at least 3 cells. We also removed cells that contained > 5% reads associated 

with cell cycle genes (Kowalczyk et al., 2015; Macosko et al., 2015). Count data was then 

log2 transformed and scaled using each cell’s proportion of cell cycle genes as a nuisance 

factor (implemented in Seurat’s ScaleData function) to correct for any remaining cell cycle 

effect in downstream clustering and differential expression analyses. For each sample, 

principal component (PC) analysis was performed on a set of highly variable genes defined 

by Seurat’s FindVariableGenes function. Genes associated with the resulting PCs (chosen 

by visual inspection of scree plots) were then used for graph-based cluster identification 

and subsequent dimensionality reduction using t-distributed stochastic neighbor embedding 

(t-SNE). Cluster-based marker identification and differential expression were performed 

using Seurat’s FindAllMarkers for all between-cluster comparisons.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Statistical analysis was performed with GraphPad Prism software. When several conditions 

were to compare, we performed a one-way ANOVA, followed by Tukey range test to 

assess the significance among pairs of conditions. When only two conditions were to test, 

we performed Student’s t-test or Welch t-test, according the validity of homoscedasticity 

hypothesis (* P<0.05, ** P<0.01, *** P<0.005).

Quantification and meaning of SCENITH derived parameters

To quantify the energetic metabolism parameters that constitute the metabolic profile 

of a cell, such as pathways dependency, we used simple algorithms that quantifiy the 

relative impact of inhibiting a given pathway compared to a complete inhibition of ATP 

synthesis (Figure 1F). While SCENITH allow the use of any combination of metabolic or 

signalling inhibitors, herein we focused on inhibitors of glycolysis and of mitochondrial 

respiration to derive metabolic parameters. The percentual of glucose dependence (Gluc. 
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dep) quantifies how much the translation levels are dependent on glucose oxidation. Gluc. 

dep is calculated as the difference between PS levels in 2-Deoxy-D-Glucose (DG) treated 

cells compared to control (Co), divided by the difference in PS upon complete inhibition of 

ATP synthesis (DG, first and then Oligomycin A, combined; treatment DGO) compared to 

control cells (Figure 1F). In a similar fashion, percentual mitochondrial dependence (Mitoc. 

dep) quantifies how much translation is dependent on oxydative phosphorylation. Mitoc. dep 

is defined as the difference in PS levels in Oligomycin A (“O”, mitochondrial inhibitor) 

treated cells compared to control relative to the decreased in PS levels upon full inhibition 

of ATP synthesis inhibition (treatment DGO) also compared to control cells (Figure 1F). 

Two additional derived parameters, “glycolytic capacity” (Glyc. cap) and “fatty acids and 

amino acids oxidation capacity” (FAO and AAO cap) were also calculated. Glycolytic 

capacity is defined as the maximum capacity to sustain protein synthesis levels when 

mitochondrial OXPHOS is inhibited (Figure 1f, see statistic in Materials and Methods 

section). Converserly, FAO and AAO capacity is defined as the capacity to use fatty 

acids and aminoacids as sources for ATP production in the mitochondria when glucose 

oxidation is inhibited (Glycolysis and glucose-derived acetyl-CoA by OXPHOS) (Figure 

1F and S1B). While the total level of translation correlates with the global metabolic 

activity of the cells, the dependency parameters underline essential cellular pathways that 

cannot be compensated, while “capacity” as the inverse of dependency, shows the maximun 

compensatory capacity of a subpopulation of cells to exploit alternative pathway/s when 

one is inhibited (Figure 1F and S1C). For standard deviation calculation of SCENITH in 

different cell types of one sample (Figures 3 and 4), we followed the propagation of error 

that is required when the means of means are used into a formula.

For standard deviation calculation:

Co= GeoMFI of anti-Puro-Fluorochrome upon Control treatment

DG= GeoMFI of anti-Puro-Fluorochrome upon 2-Deoxy-D-Glucose treatment

O= GeoMFI of anti-Puro-Fluorochrome upon Oligomycin A treatment

DGO= GeoMFI of anti-Puro-Fluorochrome upon DG+O treatment

Glucose Dependence Gluc . dep = 100 Co − DG
Co − DGO

SDGluc dep = ∂
∂Co Gluc . dep .

2
× SDCo2 + ∂

∂DG Gluc . dep .
2

× SDDG2

+ ∂
∂DGO Gluc . dep .

2
× SDDGO2
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SDGluc dep = −100 DGO − DG
Co − DGO 2

2
× SDCo2 + 100

DGO − Co
2

× SDDG2

+ 100 Co − DG
Co − DGO 2

2
× SDDGO2

Mitocℎondrial dependence Mitoc . dep = 100 Co − O
Co − DGO

SDMito dep = −100 DGO − DG
Co − DGO 2

2
× SDCo2 + 100

DGO − O
2

× SDO2

+ 100 Co − DG
Co − DGO 2

2
× SDDGO2

Glycolytic capacity Glyco . cap = 100 − 100 Co − O
Co − DGO

SDGlyc . cap . = 100 DGO − DG
Co − DGO 2

2
× SDCo2 + 100

Co − DGO
2

× SDO2

+ 100 DG − Co
DGO − Co 2

2
× SDDGO2

FAO and AAO capacity FAO and AAO cap = 100 − 100 A − DG
A − DGO

SDFAO and AAO cap . = 100 DGO − DG
Co − DGO 2

2
× SDCo2 + 100

Co − DGO
2

× SDO2

+ 100 DG − Co
DGO − Co 2

2
× SDDGO2
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SCENITH is a simple method for complex metabolic profiling samples ex 
vivo.

• SCENITH monitors rapid changes in translation levels upon metabolic 

pathways inhibition.

• The profile of translation inhibition reveals metabolic capacities and 

dependencies.

• Is adapted for blood and tumors to profile abundant and non-abundant cells in 

parallel.
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Figure 1. SCENITH design based on dynamic changes in protein synthesis levels upon blockade 
of different metabolic pathways.
(A) Blocking ATP production and kinetics of ATP and Translation levels.

(B) Visualization of protein synthesis after puro incorporation and staining with a new 

monoclonal anti-puro (clone R4743L-E8). Histogram PS level by flow cytometry in MEFs 

after blocking both mitochondrial respiration and glucose oxidation for different amounts of 

time.
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(C, D and E) Measurement in MEFs upon blocking ATP synthesis versus time of ATP 

levels

(C), PS by flow cytometry (D) and correlation of both (E). Dot represents the means and bar 

the standard deviation (R=0.985, P<0.0001, N=3).

(F) Schematic representation of a sample that contains three cell types with different 

metabolism profiles (Aerobic glycolysis, Glycolysis/OXPHOS, FAO and AAO/OXPHOS). 

Treating the mix of cells with specific drugs (DG or O) will affect each cell subset in a 

different way.

(G) Examples of metabolic monitoring using SCENITH. The glucose dependence and 

FAO and AAO capacity; and the mitochondrial dependency and glycolytic capacity can be 

calculated from the MFI of puro in the different treatments following the formulas (see 

materials and methods).

(H) Description of SCENITH procedure. Extract the sample, divide it and treat each with the 

inhibitors (e.g. DG, O, DG+O, H) and puro. After staining and flow cytometry, the profile 

of response of the different cells subsets is analyzed. The profile reveals the metabolic 

capacities and dependencies of the cells (i.e. high glucose dependence “pop 1” and high 

glycolytic capacity profile “pop 2”).
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Figure 2. Parallel Seahorse and SCENITH metabolic analysis of resting and activated T cells.
(A) Scheme of the experiment for analysis of resting and activated T cells.

(B and C) Metabolic profile of T cells from three healthy donors (P1, P2, P3) analyzed with 

Seahorse (B) and SCENITH (C). ECAR and translation levels of non-activated and activated 

T cells (P1) and glycolytic capacity from both method is shown (*P<0.05; **P<0.01, 

***P<0.001, N=3 each in triplicates).

(D) Correlation between the changes in glycolytic capacity of steady state and activated T 

cells from three donors measured by Seahorse and SCENITH (Pearson r=0,92; R2=0,85; 

P<0.01, N=3).

(E) Basal Oxygen Consumption Rate (OCR) in non-activated (non-Act) and activated T 

cells. Each bar represents the mean of P1, P2, and P3 (in triplicates).
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(F) Basal translation levels (anti-Puro gMFI) in non-activated (non-Act) and activated T 

cells (aCD3/CD28). Bars represent the mean of P1, P2, and P3.

(G) SCENITH metabolic profile of whole blood directly treated with inhibitors with or 

without pre-incubation (1:4 V/V) in DMEM 10% FCS during 3hs. Data represents pooled 

whole blood from three mice (in duplicates) from three independent experiments. Two-way 

ANOVA, multiple comparisons.
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Figure 3. Metabolism profile of resting human blood T cells by SCENITH identifies different 
metabolic profile of human T cells subsets.
(A) SCENITH analysis pipeline of T cells purified from human blood (95% pure). 

Dimensionality reduction (t-SNE) based on phenotypic markers is performed to the 

concatenated treated cells (Co, DG, O, and DGO).

(B) Heatmap showing the level of expression of each marker (gMFI) in each cluster/subset 

from the t-SNE after dimensionality reduction.
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(C) Metabolic profile of the T cells subsets identified (Naïve CD4 and CD8 T cells in green, 

memory CD4 and HDE CD8 T cells in orange, EEM CD8 T cells in red and NK cells 

in blue) after SCENITH analysis. Representative translation level (anti-Puro gMFI) (P1) is 

shown (N=3). Black line represents background level obtained after DG+O treatment.

(D) Two distinct metabolic profiles in human blood T cells after O treatment (left panel) 

revealing glycolytic and mitochondrial dependent T cells subsets. Histogram show the level 

of translation in all T cells (light grey line) upon mitochondrial inhibition, indicating the 

presence of “glycolytic” cells subsets (in red) and “mitochondrial dependent” cells (in blue). 

Gating them into the t-SNE plot (right panel) to identify the phenotype of “glycolytic” and 

“mitochondrial dependent” cells (blue). The marker of antigen experience CD45RA, lost in 

cells that have been previously exposed to TCR stimulations correlates with the metabolic 

profile.

(E) Metabolic changes induced by short-term incubation of blood with cell culture media. 

Metabolic parameters of cell types when blood is pre-incubated with DMEM 10% FCS (0, 

or 3hs) or directly incubated with the inhibitors (i.e. Co, DG, O, DGO or Harringtonine) and 

puro. Data from pooled whole blood from three mice (in duplicates) from three independent 

experiments is shown (N=3). Statistical significance between both conditions T-test (** 

p<0.005).
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Figure 4. Metabolic profile of human blood DCs and monocytes, and mouse bone marrow 
derived DCs using SCENITH.
(A) Metabolic profile of human blood monocytes and DC subsets obtained by SCENITH. 

(N=5 independent healthy donors). Statistical significance two-way ANOVA comparing all 

columns was performed (* p<0.05; ** p<0.005; ****p<0.0001). The pDC, the Mono2 or 

Mono1, showed statistically significant differences against DC1 or DC5.
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(B) Metabolic profile of mouse bone marrow derived DCs (FLT3L-DC) obtained by 

SCENITH (N=3) in non-treated vs LPS treated cells two-way ANOVA * p<0.05; ** 

p<0.005; ****p<0.0001.

(C) Metabolic profile of blood monocytes from human (N=4) or mouse (N=9, 3 mice 

pooled, in duplicates, three independent experiments). Statistical significance between 

human and mouse monocytes by T-test (* p<0.05).
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Figure 5. Paralleled SCENITH and scRNAseq in human tumor and juxta-tumoral samples 
identifies conserved metabolic profiles.
(A and B) Myeloid subsets observed in the human meningioma tumor sample (A) 

and Renal carcinoma (B). Myeloid cells gated on CD45+/CD3−CD20−CD19−CD56−/Live

dead−/singlets. Number in the t-SNE represents the percentage of the population.

(C) Heatmap of the metabolic profile (columns) of each myeloid cell subset from each type 

of tissue (rows). Unsupervised hierarchal clustering of subsets by metabolic profile identifies 

respiratory (blue bar) and glycolytic (red bar) clusters.
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(D) Reordering of the rows by cell type based on (B) to identify changes in metabolism 

profile in the same cell subset in the blood, the tumors and juxta-tumoral tissue.

(E) Clusters of myeloid cells identified in the renal carcinoma and juxta-tumoral tissue by 

scRNAseq (left panel). Expression of glycolytic and respiratory gene signatures in all cells 

extracted from the tumor. Summary of the results obtained by SCENITH and scRNAseq in 

tumor and juxta-tumoral myeloid cells. Populations named with numbers in the t-SNE and 

described in table.
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Table 1.

Comparative table of methods to profile metabolism.

Method CyTOF (e.g. Met
Flow, scMEP) MSI Seahorse® SCENITH™

Output Metabolic phenotype Metabolomic profile 
(unbiased)

Metabolic capacities 
and dependencies

Metabolic capacities and 
dependencies

Functional profile of the cells 
(# of treatments) NO NO YES (4) YES (non-limited)

Cell purification required NO NO YES NO

Single cell resolution YES YES NO YES

Phenotypic analysis YES NO NO YES

Compatible with cell sorting NO NO NO YES
*

Ex vivo application YES YES NO YES

Metabolic Readout Levels of markers 
(min 10 channels) Metabolite levels

Changes in extracellular 
pH and [O2]

Changes in protein 
synthesis levels (one 

channel)

Time (Hs) from sampling to 
profiling 0-1 0-1 24 0-1

# cells required in subsets 500 200 1,000,000 2000

Equipment needed CyTOF cytometer Any Imaging Mass 
cytometer Seahorse Analyser Any Flow cytometer

#

*
Not shown

#
SCENITH has also the potential to be analyzed by CyTOF, MSI, Microscopy using heavy metal coupled and oligonucleotide labeled antibodies 

(not shown)
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Ant-human Axl Alexa Fluor 488 (Clone: 108724) R&D Biosystems Cat#FAB145G

Ant-human BDCA1 PE-Cy7 (Clone: L161) Biolegend Cat#331516

Ant-human BDCA3 FITC (Clone: AD5-14H12) Miltenyi Biotec Cat#130-113-317

Ant-human BDCA4 PE (Clone: 12C2) Biolegend Cat#354504

Ant-human CD1c PE (Clone: L161) Biolegend Cat#331506

Ant-human CD1c PE/Cy7 (Clone: L161) Biolegend Cat#331516

Ant-human CD3 BB700 (Clone: SK7) BD Bioscience Cat#566575

Ant-human CD3 BV711 (Clone: UCHT1) BD Bioscience Cat#563725

Ant-human CD3 BV510 (Clone: HIT3a) BD Bioscience Cat#564713

Ant-human CD4 PE-Dazzle 594 (Clone: RPA-T4) Biolegend Cat#300548

Ant-human CD8a BV605 (Clone: RPA-T8) Biolegend Cat#301040

Ant-human CD11b PE-Cy7 (Clone: ICRF44) eBioscience Cat#25-0118-42

Ant-human CD11c A700 (Clone: 3.9) eBioscience Cat#56-0116-42

Ant-human CD11c APD-R700 (Clone: 3.9) BD Bioscience Cat#566610

Ant-human CD11c BUV385 (Clone: B-ly6) BD Bioscience Cat#563797

Ant-human CD14 BUV805 (Clone: M5E2) BD Bioscience Cat#612902

Ant-human CD14 BV711 (Clone: M5E2) BD Bioscience Cat#740773

Ant-human CD14 BV711 (Clone: M5E2) Biolegend Cat#301838

Ant-human CD16 BV605 (Clone: 3G8) BD Bioscience Cat#563172

Ant-human CD16 BV605 (Clone: 3G8) Biolgend Cat#302040

Ant-human CD16 BV650 (Clone: 3G8) BD Bioscience Cat#563692

Ant-human CD16/CD32 Human TruStain FcX™ Biolegend Cat#422302

Ant-human CD19 BB700 (Clone: SJ25C1) BD Bioscience Cat#566396

Ant-human CD19 BV385 (Clone: HIB19) Biolegend Cat#302240

Ant-human CD19 BV510 (Clone: HIB19) BD Bioscience Cat#740164

Ant-human CD20 BB700 (Clone: 2H7) BD Bioscience Cat#745889

Ant-human CD20 BV785 (Clone: 2H7) Biolegend Cat#302355

Ant-human CD22 PE-Cy7 (Clone: HIB22) BD Bioscience Cat#563941

Ant-human CD25 APC (Clone: M-A251) BD Bioscience Cat#560987

Ant-human CD38 Alexa Fluor 488 (Clone: HIT-2) Biolegend Cat#303512

Ant-human CD38 APC-R700 (Clone: HIT-2) BD Bioscience Cat#564979

Ant-human CD38 BV786 (Clone: HIT-2) BD Bioscience Cat#563964

Ant-human CD44 BUV737 (Clone: G44-26) BD Bioscience Cat#564941

Ant-human CD45 APC-eFluor 780 (Clone: HI30) eBioscience Cat#47-0459-42

Ant-human CD45RA BV785 (Clone: HI100) Biolegend Cat#304140

Ant-human CD45RO PE (Clone: UCHL1) Biolegend Cat#304206
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REAGENT or RESOURCE SOURCE IDENTIFIER

Ant-human CD56 BB700 (Clone: NCAM16.2) BD Bioscience Cat#566573

Ant-human CD56 BUV737 (Clone: NCAM16.2) BD Bioscience Cat#612767

Ant-human CD56 BV510 (Clone: B159) BD Bioscience Cat#740171

Ant-human CD64 BUV737 (Clone: 10.1) BD Biocience Cat#564425

Ant-human CD86 BUV737 (Clone: FUN-1) BD Bioscience Cat#564428

Ant-human CD90 PE (Clone: 5E10) Biolegend Cat#328110

Ant-human CD106 PE (Clone: 51-10C9) BD Bioscience Cat#555647

Ant-human CD117 BV785 (Clone: 104D2) Biolegend Cat#313238

Ant-human CD123 BV785 (Clone: 6H6) Biolegend Cat#306031

Ant-human CD127 BV650 (Clone: A019D5) Biolegend Cat#351326

Ant-human CD141 APC (Clone: 1A4) BD Bioscience Cat#564123

Ant-human CD163 AF647 (Clone: GHI/61) BD Bioscience Cat#562669

Ant-human CD163 BV650 (Clone: GHI/61) BD Bioscience Cat#563888

Ant-human CD197 BV421 (Clone: G043H7) Biolegend Cat#353208

Ant-human CD197 PE/Dazzle 594 (Clone: G043H7) Biolegend Cat#353236

Ant-human CD206 FITC (Clone: 15-2) Biolegend Cat#321104

Ant-human CD213a1 PE/Cy7 (Clone: SS12B) Biolegend Cat#360407

Ant-human CD326 (Ep-CAM) BV650 (Clone: 9C6) Biolegend Cat#324226

Ant-human CD370/Clec9A PE (Clone: 3A4) BD Bioscience Cat#563488

Ant-human CTLA4 BV421 (Clone: BNI3) Biolegend Cat#369606

Ant-human FcεRIα BV421 (Clone: AER-37) Biolegend Cat#334624

Ant-human FOXP3 PE-Cy7 (Clone: PCH101) eBiocience Cat#25-4776-42

Ant-human HLA-DR BV605 (Clone: L243) Biolegend Cat#307640

Ant-human HLA-DR BUV395 (Clone: G46-6) BD Bioscience Cat#564040

Ant-human ICOS BV711 (Clone: DX29) BD Bioscience Cat#563833

Ant-human Ki67 AF488 (Clone: B56) BD Bioscience Cat#558616

Ant-human PD-1 BV786 (Clone: EH12) BD Bioscience Cat#563789

Ant-human PD-L1 BV786 (Clone: MIH1) BD Bioscience Cat#563739

Ant-human PD-L2 BV650 (Clone: MIH18) BD Bioscience Cat#563844

Ant-mouse B220 BV421 (Clone: RA3-6B2) Biolegend Cat#103251

Ant-mouse CD3 BV421 (Clone: 145-2C11) Biolegend Cat#100335

Ant-mouse CD4 APC-eFluor 780 (Clone: RM4-5) eBioscience Cat#47-0042-82

Ant-mouse CD8 APC (Clone: 53-6.7) eBioscience Cat#17-0081-33

Ant-mouse CD11c BB515 (Clone: N418) DB Biosience Cat#565586

Ant-mouse CD16/CD32 Mouse BD Fc Block™(Clone: 2.4G2) BD Pharmigen Cat#553142

Anti-mouse CD44 PE (Clone: IM-7) Biolegend Cat#103023

Anti-mouse CD62L BV785 (Clone: MEL-14) Biolegend Cat#10440

Anti-mouse CD80 PerCP-Cy5.5 (Clone: 16-10A1) Biolegend Cat#104722

Anti-mouse Ki67 PE-eFluor-610 (Clone: SolA15) eBioscience Cat#61-5698-82
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-mouse Ly6C BV711 (Clone: HK1.4) Biolegend Cat#128037

Anti-mouse Ly6G PE-Cy7 (Clone: 1A8) Biolegend Cat#127618

Anti-mouse CD86 APC (Clone: GL1) BD Bioscience Cat#558703

Anti-mouse MHC II Alexa Fluor 700 (Clone:M5/114.15.2) eBioscience Cat#56-5321-82

Anti-mouse MHC II BUV805 (Clone M5/114.15.2) BD Bioscience Cat#748844

Anti-mouse NK1.1 BV510 (Clone PK136) Biolegend Cat#108373

Anti-Puromycin Alexa Fluor 647 (Clone: R4743L-E8) This paper N/A

Anti-Puromycin Alexa Fluor 488 (Clone: R4743L-E8) This paper N/A

Biological Samples

Human whole blood IFS (Institut Francais du Sang) Cat#311

Human renal carcinoma and Juxta tumoral tissue University of California, San 
Francisco (UCSF) institutional 
review board (IRB)-approved 
protocol (UCSF Committee on 
Human Research (CHR)

Trial protocol number: 13-12246 
UCSF IRB approved protocol 
(UCSF IRB# 14–15342)

Human meningioma La Timone hospital. Tumor bank Authorization number 
AC-2018-31053

Human brain metastasis La Timone hospital. Tumor bank Authorization number 
B-0033-00097

Chemicals, Peptides, and Recombinant Proteins

Actinomycin D (ActD) Merck Cat#A1410-2MG

2-Deoxy-Glucose (2DG) Merck Cat#D6134-25G

B-mercaptoethanoel VWR Cat#0482-100ML

Cycloheximide (CHX) Merck Cat#01810-1G

Dimethyl sulfoxide (DMSO) Merck Cat#D8418-100ML

DNAsel Merck Cat#11284932001

Extrapure LPS Invivogen Cat#tlrl-2216

FCCP Merck Cat#C2920-10MG

Gentamicin Merck Cat#G1272-10ML

Glucose Merck Cat#G7021

Harringtonine Abcam Cat#ab141941

Ionomycin Merck Cat#I-0634

L-glutamine Life technologies Cat#25030-024

Liberase TL research Grade Merck Cat#540102001

Oligomycin A Merck Cat#75351-5MG

PMA Merck Cat#P-8139

Poly I:C Invivogen Cat#tlrl-pic

Puromycin Merck Cat#P7255

Sodium pyruvate Life Technologies Cat#11360-039

Critical Commercial Assays

Brilliant Stain Buffer Plus BD Bioscience Cat#566385

CellTiter-Glo® Luminescent Cell Viability Assay Promega Cat#G7570
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chromium Single Cells 3’ Library & Gel Bead Kit v2 10X genomic Cat#120237

Chromium Single Cell A Chip Kit 10X Genomics Cat#120236

Chromium i7 Multiplex Kit 10X Genomics Cat#120262

Dynabeads Hum. T-Activator CD3/CD28 for T Cell Expansion 
and Activation

Life Technologies Cat#11131D

Fixation/Permeabilization Solution Kit BD Bioscience Cat#554714

Foxp3 / Transcription Factor Staining Buffer Set eBioscience Cat#00-5323-00

LIVE/DEAD™ Fixable Aqua Dead Cell Stain (BV510) Thermo Fisher Cat#L34957

RosetteSep Human T Cell Enrichment Cocktail Stem Cell Technologies Cat#15021

Zombie UV™ Fixable Viability kit Biolegend Cat#423107

Zombie Yellow™ Fixable Viability Kit Biolegend Cat#BLE423103

Experimental Models: Cell Lines

Mouse: MEF cells ATCC SCRC-1008

Deposited Data

Single cell RNA-seq data This paper The datasets generated during 
this study will be available at 
the Gene Expression Omnibus 
under accession number GEO: 
(GSE159913) [NCBI tracking 
system #21365922]

Experimental Models: Organisms/Strains

CellRanger (V3.02 and v3.1.0) 10X Genomics https://support.10xgenomics.com/
single-cell-gene-expression/
software/downloads/latest

Mouse: C57BL/6J The Jackson Laboratory Stock 000664

FlowJo Treestar V10.3

FlowR Guillaume VOISSINE https://github.com/VoisinneG/flowR

Ggplot2 (v3.2.1, R package) Wickham, 2016 https://ggplot2.tidyverse.org

Seahorse Wave Desktop Agilent V2.6

Prism8 GraphPad V8.3

R (v3.6.1) Cran, The R foundation https://www.r-project.org

R software package Seurat Satija et al., 2015 http://satijalab.org/seurat

Seurat (v3.1.0, R package) Stuart et al., 2019 https://github.com/satijalab/seurat

Software and Algorithms

FlowJo Treestar V10.3

FlowR Guillaume VOISSINE https://github.com/VoisinneG/flowR

Ggplot2 (v3.2.1, R package) Wickham, 2016 https://ggplot2.tidyverse.org

Seahorse Wave Desktop Agilent V2.6

Prism8 GraphPad V8.3

R (v3.6.1) Cran, The R foundation https://www.r-project.org

R software package Seurat Satija et al., 2015 http://satijalab.org/seurat

Seurat (v3.1.0, R package) Stuart et al., 2019 https://github.com/satijalab/seurat

Cell Metab. Author manuscript; available in PMC 2021 August 31.

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://github.com/VoisinneG/flowR
https://ggplot2.tidyverse.org
https://www.r-project.org
http://satijalab.org/seurat
https://github.com/satijalab/seurat
https://github.com/VoisinneG/flowR
https://ggplot2.tidyverse.org
https://www.r-project.org
http://satijalab.org/seurat
https://github.com/satijalab/seurat

	SUMMARY
	Graphical abstract
	In Brief
	INTRODUCTION
	DESIGN
	Characterizing the energetic metabolism profile by monitoring changes in protein synthesis (PS) levels in response to metabolic inhibitors.

	RESULTS
	SCENITH recapitulates Seahorse metabolic profiling of steady state and activated T cells.
	Metabolic deconvolution of blood T cell subsets by SCENITH identifies a memory CD8+ T cells subset constitutively displaying high glycolytic capacity.
	Metabolic profiling of mouse and human myeloid cell subsets.
	Profiling the metabolic state of human tumor-associated myeloid cells.
	Linking single cell RNA-seq and energetic metabolism profile in tumor-associated myeloid cells.

	Discussion
	Limitations of the study

	STAR METHODS
	RESOURCE AVAILABILITY
	Lead Contact
	Materials Availability
	Data and Code Availability


	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Mouse experiments
	Human experiments
	Cell lines

	METHOD DETAILS
	ATP measurement
	Metabolic flux analysis (Seahorse)

	SCENITH™
	Processing of human solid tumors SCENITH
	Human single cell RNA-sequencing
	Single cell data processing
	Cellular Identification and Clustering of scRNAseq data

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Statistical analysis

	Quantification and meaning of SCENITH derived parameters
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table T1



