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Abstract

Over the years, genetic studies have identified multiple genetic risk variants associated with 

neurodegenerative disorders and helped reveal new biological pathways and genes of interest. 

However, genetic risk variants commonly reside in non-coding regions and may regulate distant 

genes rather than the nearest gene, as well as a gene’s interaction partners in biological networks. 

Systems biology and functional genomics approaches provide the framework to unravel the 

functional significance of genetic risk variants in disease. In this review, we summarize the 

genetic and transcriptomic studies of Alzheimer’s disease and related tauopathies and focus 

on the advantages of performing systems-level analyses to interrogate the biological pathways 

underlying neurodegeneration. Finally, we highlight new avenues of multi-omics analysis with 

single-cell approaches, which provides unparalleled opportunities to systematically explore 

cellular heterogeneity, and present an example of how to integrate publicly available single-cell 

datasets. Systems-level analysis has illuminated the function of many disease risk genes, but much 

work remains to study tauopathies and to understand spatiotemporal gene expression changes of 

specific cell types.
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Introduction

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders and the 

most common form of dementia, marked by both amyloid beta (Aβ) and tau aggregates 

(Aβ plaques and neurofibrillary tangles, respectively). Other neurodegenerative disorders 

(termed “tauopathies”) also present pathological tau aggregates but have varied clinical 

manifestations, ranging from motor-related symptoms, similar to Parkinson’s disease (PD), 

to behavioral deficits. For AD and several tauopathies, we still do not have a clear 

understanding of their etiologies; however, we find shared neurological changes, such 

as extensive neuronal loss and glial dysfunction, suggesting that there may be shared 

underlying biological mechanisms across the different disorders.

Technological advancements in sequencing have provided the opportunity to uncover novel 

insights into the molecular bases of diseases, such as tauopathies. Genome-wide association 

studies (GWAS) empowered us to identify disease-associated genetic risk variants, revealing 

new genes of interest; however, many of these variants reside in non-coding regions, making 

it difficult to interpret their functional roles. Therefore, many studies have attempted to 

ascertain the functional significance of GWAS hits through other sequencing techniques, 

such as RNA-sequencing (RNA-seq) (Figure 1). In this review, we summarize recent 

findings from genetic and transcriptomic studies of AD and related tauopathies. In the 

future, meta-analysis of high-resolution sequencing datasets will allow us to uncover disease 

biology with much greater sensitivity than its constituent data sources, and as a proof of 

principle, we performed an integrative analysis of five published single-nucleus RNA-seq 

(snRNA-seq) studies of human AD totaling to over 300,000 nuclei. In addition, we highlight 

the advantages of integrating multiple data modalities and multiple model systems and 

performing systems-level analyses to understand the cascade of dysregulation initiated by a 

genetic risk variant to yield a disease phenotype.

Breakthroughs and barriers in genome-wide association studies of AD and 

related tauopathies

GWAS in European-descended populations have identified several genetic risk factors linked 

to AD and related tauopathies (Table 1). Out of these conditions, most of the work in this 

area has focused on uncovering the heritable risk factors underlying AD. Early research 

into the genetics of AD largely focused on familial mutations in APP and PSEN1/2, which 

account for a minority of AD cases, specifically early-onset familial AD (EOFAD). The 

majority of AD cases though are late-onset AD (LOAD) and do not appear to have a single 

casual gene (‘sporadic’). However, twin studies estimated that LOAD has a heritability 

between 60% to 80% (Gatz et al., 2006). APOE genotype was the first genetic risk factor 

identified for LOAD (Corder et al., 1993; Farrer et al., 1997; Saunders et al., 1993), 

accounting for about 35% of the genetic variance (Naj et al., 2011), where homozygotes 

for the ε4 allele exhibit 10- to 12-fold increased risk in comparison to those with the 

homozygous ε3 allele. On the other hand, the ε2 allele confers protection against AD with a 

40% reduction in risk (Corder et al., 1994). APOE remained the only identified genetic risk 
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factor for LOAD until the late 2000s with the first GWAS of AD, which revealed CLU as a 

novel AD risk gene (Harold et al., 2009; Lambert et al., 2009).

Large sample sizes are necessary in population genetic studies to discover disease associated 

risk signals. Therefore, large consortia of many different research groups have undertaken 

this challenge to unravel the genetic architecture of AD. For example, the International 

Genomics of Alzheimer’s Project (IGAP) performed large-scale GWAS meta-analyses 

using AD patients and cognitively normal controls (Kunkle et al., 2019; Lambert et al., 

2013) and has been at the forefront of AD genetics. In 2013, IGAP performed a two­

stage meta-analysis of four GWAS datasets (Alzheimer’s Disease Genetic Consortium, 

Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium, the European 

Alzheimer’s Disease Initiative, the Genetic and Environmental Risk in Alzheimer’s Disease) 

comprising 74,046 total individuals, finding a total of 20 significant loci, 11 of which were 

novel at the time (Lambert et al., 2013). Earlier studies had only identified the strongest 

risk signals, including variants at the APOE, BIN1, CLU, and PICALM loci. The most 

recent GWAS meta-analysis of AD from IGAP, using a larger discovery cohort than their 

previous study (n=21,982 cases, n=41,944 control, n=94,437 total in all stages), confirmed 

20 previously identified loci and identified five novel loci (ADAM10, IQCK, WWOX, ACE, 

ADAMTS1) for a total of 25 significantly associated loci (Kunkle et al., 2019). From AD 

GWAS, we now recognize microglia as a critical cell population in AD pathophysiology; 

many of the identified AD risk genes (MS46A, CD33, ABCA7, HLA-DRB1, APOE, 

TREM2, SPI1, for example) are related to the immune response and/or are expressed by 

microglia. One of the largest hurdles blocking advancement in GWAS of AD and other 

complex diseases is collecting a large number of cases, and more nationwide genetics efforts 

such as the UK BioBank may be required for the next generation of GWAS.

While there are several AD GWAS, there are much fewer GWAS of related tauopathies, 

which may be attributable in part to the relatively lower prevalence of these disorders, 

and these studies identified much fewer genetic variants compared to AD. Progressive 

supranuclear palsy (PSP), for example, is a tauopathy associated with movement 

impairments. Hoglinger et al. (2011) performed a two-stage GWAS (stage 1: n=1,114 

autopsy-confirmed PSP, n=3,247 controls; stage 2: n=1,051 clinically diagnosed PSP, 

n=3,560 controls) and identified three novel risk loci (STX6, EIF2AK3, and MOBP), in 

addition to MAPT, previously implicated in PSP risk. A GWAS meta-analysis of PSP 

found five loci reaching genome wide significance (MAPT, MOBP, STX6, RUNX2, and 

SLCO1A2) in a cohort of 1,646 cases and 10,662 controls, which included those from 

Hoglinger et al. (2011) (Chen et al., 2018). On the other hand, for corticobasal degeneration 

(CBD), which also presents motor-related symptoms, Kouri et al. (2015) examined 152 

autopsy-confirmed CBD cases and 3,311 controls, finding risk variants at lnc-KIF13B-1, 

SOS1, and MOBP, for example. Notably, both PSP and CBD have genetic risk variants at 

MAPT, consistent with a critical role of tau in these disorders, and at MOBP, suggesting 

oligodendrocyte dysfunction is involved in both disorders.

Frontotemporal dementia (FTD) is another common form of dementia, preferentially 

affecting the frontal and temporal lobes but is both clinically and pathologically 

heterogeneous. Pathologically, FTD is characterized by inclusions of TDP-43, FUS, or tau, 
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and clinical subtypes include behavioral variant FTD, semantic variant primary progressive 

aphasia (PPA), nonfluent agrammatic variant PPA, and FTD with motor neuron disease 

(Gorno-Tempini et al., 2011; Neary et al., 1998; Rascovsky et al., 2011). We discuss FTD 

in this review due to the subset of cases with tau pathology and similar clinical symptoms 

with AD. Prior to GWAS, we had only identified mutations in the MAPT, GRN, C9orf72, 

VCP, and CHMP2B genes in familial FTD cases (Baker et al., 2006; Cruts et al., 2006; 

DeJesus-Hernandez et al., 2011; Hutton et al., 1998; Rohrer and Rosen, 2013; Skibinski 

et al., 2005; Watts et al., 2004; Zee et al., 2013), but as in AD, a large proportion of 

cases are sporadic. The largest GWAS of sporadic FTD to date included 3,526 cases and 

9,402 controls in total to test for genetic association among the four clinical subtypes of 

FTD and performed a meta-analysis of all the samples together, finding significant signals 

at the HLA and BTNL2 loci (Ferrari et al., 2014). Notably, HLA is also an AD risk 

gene and implicates the immune response in both AD and FTD. However, in this study, 

FTD cases were determined primarily by clinical diagnoses, with only 3% pathologically 

confirmed, restricting analysis of FTD risk by its pathological subtypes, and similar to PSP 

and CBD, the sample numbers are substantially smaller than AD GWAS, thus impeding the 

identification of additional risk variants.

Due to the large heritable component of many complex traits, the analytical capability 

of GWAS can be expanded by including individuals with a family history of disease, 

in addition to primary cases. In 2017, Liu, Elrich, and Pickrell introduced an approach 

called genome-wide association study by proxy (GWAX), where they replaced cases with 

first-degree family members to analyze 12 common disorders using UK Biobank data, and 

the associations found in these GWAX were comparable to those of GWAS with primary 

cases (Liu et al., 2017). This may be especially useful for rarer disorders, such as PSP 

and CBD, where it may be more difficult to obtain large sample numbers with primary 

cases alone. Following this initial study, several groups have used this approach for AD 

GWAS meta-analysis including cases, controls, and familial proxy cases (Jansen et al., 

2019; Marioni et al., 2018; Schwartzentruber et al., 2021). The AD-by-proxy study from 

Jansen et al. (2019) identified 29 significant risk loci, including novel signals at ADAMTS4, 
KAT8, CLNK, and several other loci, while Schwartzentruber et al. (2021) identified a 

total of 37 loci, altogether expanding the catalog of known AD-associated genetic signals. 

Given its successful track record in many disorders, GWAX should be successful in further 

uncovering the genetic architecture of related tauopathies.

Researchers also have been particularly interested in investigating shared genetic risk across 

neurodegenerative disorders. Ferrari et al. (2017) examined the genetic overlap between 

sporadic FTD and AD or Parkinson’s disease and found one variant at APOE locus jointly 

associated with FTD and AD. Interestingly, they also identified variants at HLA and MAPT 
loci shared between FTD and PD but not AD, indicating a distinct genetic architecture of 

AD (Ferrari et al., 2017). Chen et al. (2018) also investigated the genetic correlation between 

PSP and AD or FTD but did not find a significant correlation for either disorder. Instead, 

they found significant overlaps between PSP and Amyotrophic Lateral Sclerosis (ALS) or 

PD genetic risk (Chen et al., 2018). Another study identified genetic overlap between ALS 

and FTD as well (Karch et al., 2018). ALS and PD are typically associated with TDP-43 

and alpha-synuclein inclusions, respectively, and thus these genetic studies imply that there 
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may be shared molecular mechanisms driving neurodegeneration independent of protein 

pathology and suggest new avenues for cross-disorder therapeutic development.

GWAS have illuminated many genetic risk signals for AD and related tauopathies thus 

strengthening our understanding of neurodegeneration, but there are some key limitations 

of these studies that need to be addressed in the future. To date, the majority of GWAS 

in AD and other disorders have only profiled European-descendant populations, which is 

problematic because different ethnic groups have distinct genetic risk profiles. For example, 

the APOE ε4 allele is associated with an increased risk of AD in Japanese populations but 

a diminished risk in African American populations in comparison to European populations 

(Graff-Radford et al., 2002; Miyashita et al., 2013). There is a clear need for the generation 

and analysis of more large-scale GWAS datasets of non-European populations to further our 

understanding of disease.

Additionally, while GWAS are useful for pinpointing variants that are likely causal for 

disease, this analysis is merely a starting point for the broader task of understanding how 

genetic variation disrupts the normal function of specific tissues and cell types that thereby 

contributes to the manifestation of a disease phenotype. Therefore, studies have leveraged 

expression quantitative trait loci and epigenetic datasets to try to functionally characterize 

genetic risk variants; however, these datasets are not necessarily from human brain tissue 

samples, potentially impeding accurate predictions. While deciphering the biology of 

genetic risk variants in humans remains a daunting task, biotechnological advances and 

systems genomics may lead us closer towards this goal.

Surveying the diseased brain using co-expression network analysis

To understand the genetic basis of neurodegenerative disorders, we require a comprehensive 

picture portraying the cascade of interactions between disease-risk signals and cis-regulatory 

elements, genes, and proteins. Integration of genetic studies with high-throughput functional 

genomics may lead us towards this goal. The next-generation genomics revolution has 

paved the way for neuroscientists to study genome-wide molecular signatures of the 

human brain, such as gene expression, at an unprecedented speed. Multiple studies have 

performed RNA-sequencing (RNA-seq) or microarray-based gene expression analysis on 

AD postmortem human brain tissue samples and to a lesser extent in FTD and PSP, and 

identified both upregulated and downregulated genes in the respective disorders (Allen et 

al., 2018; Berchtold et al., 2013; Jiang et al., 2018; Rexach et al., 2020; Wang et al., 

2016; Webster et al., 2009; Zhang et al., 2013). For example, it is now well established 

that AD GWAS gene BIN1 is upregulated in AD (Chapuis et al., 2013; Holler et al., 

2014; Karch et al., 2012; Martiskainen et al., 2015). Additionally, several studies have now 

identified disease-associated microRNAs (miRNAs) and splicing variants, improving our 

understanding of alterations in gene regulation with disease (Lau et al., 2013; Raj et al., 

2018; Swarup et al., 2019).

However, these studies primarily rely on a gene-level statistical analysis, such as differential 

expression testing, providing little knowledge about relationships between different genes. 

Therefore, it is important to also employ a more holistic analysis to achieve a systems-level 
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understanding of gene expression and a more comprehensive view of brain circuits and 

functions in health and disease. Co-expression network analysis is a powerful systems 

biology approach that can identify multi-scale gene expression patterns across brain region, 

cell-types, cortical layers, and neural circuits (Oldham et al., 2008; Parikshak et al., 

2013; Wang et al., 2016; Zhang et al., 2013). This hierarchical organization provides a 

platform for integrating different types of data, including multi-omics approaches, imaging, 

and behavioral studies. Network analysis complements differential expression analysis by 

providing structure to the underlying data, resembling the intricate organization inherent 

to biological systems. In addition, network analysis goes beyond pathway-based analysis 

approaches, which are inherently biased towards known biological perspectives and thus 

hamper discovery-centric data-driven research.

Although different analytical strategies have been used for co-expression network analysis 

(Chiu and Talhouk, 2018; Gaiteri et al., 2015; Langfelder and Horvath, 2008; Song and 

Zhang, 2015; Tesson et al., 2010), the general underlying principle is to organize gene (or 

protein) expression data into groups of modules or communities, comprising nodes (genes 

or gene-products) and edges, which can represent physical interactions (like protein-protein 

interactions) or more commonly correlation or mutual information. The connectivity of 

the edges can be leveraged to understand intra-network (also known as intra-modular) 

connectivity between different nodes and highlight the most connected genes (“hub” 

genes) in a network. Several in-silico and functional genomic analyses have shown that 

co-expression modules are functional biological units (Carter et al., 2013; Chandran et 

al., 2016; Geschwind and Konopka, 2009; Mitra et al., 2013), and studying the group 

properties of these modules in health and disease have helped us understand the molecular 

underpinnings of biological systems.

Co-expression network analysis performed on both microarray and RNA-sequencing 

datasets of human AD identified several biological pathways dysregulated with disease, 

such as those related to synaptic transmission, mitochondrial function, and immune response 

(Forabosco et al., 2013; Miller et al., 2008; Morabito et al., 2020; Mostafavi et al., 2018; 

Wang et al., 2016; Zhang et al., 2013). Although initial studies had small sample sizes 

of under or around 100 individuals, many of the identified biological pathways were also 

identified in studies of hundreds, if not a thousand individuals, indicating that network 

analysis identifies robust, disease-relevant gene networks. In addition, many AD-correlated 

modules are conserved across different brain regions (Forabosco et al., 2013; Morabito et 

al., 2020; Wang et al., 2016). Multiregional analyses also have indicated regional specificity 

of AD gene expression changes that reflect the pathological progression of AD; gene 

expression changes in regions with early tau deposition, such as the hippocampus, are 

more pronounced than those in regions later affected in the disease (Morabito et al., 2020; 

Wang et al., 2016). Altogether, these co-expression studies highlighted several genes as key 

regulators of these biological pathways, laying the groundwork for future studies in AD, and 

notably helped to clarify the role of microglial genes, such as TYROBP and TREM2, in AD 

genetic risk. For example, network analysis revealed TYROBP regulates an immune-related 

module correlated with AD (Zhang et al., 2013).
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Network analysis has also highlighted the importance of oligodendrocytes in AD 

pathophysiology. Oligodendrocytes have been relatively understudied in AD compared 

to astrocytes and microglia, despite multiple studies revealing AD-related white matter 

changes (Ihara et al., 2010; Nasrabady et al., 2018). PSEN1 mutations are known to 

result in EOFAD (Cacace et al., 2016), and co-expression network analysis identified 

PSEN1 is co-expressed with myelin-related genes (Miller et al., 2008; Zhang et al., 2013). 

Additionally, myelination-related modules are dysregulated in PSP, indicating cross-disorder 

oligodendrocyte dysfunction (Allen et al., 2018).

Many of these studies, however, have analyzed data from a single brain tissue repository, 

and differences in tissue processing can affect downstream results. In our previous study, 

we constructed co-expression modules from data generated by the Accelerating Medicines 

Partnership-Alzheimer’s Disease (AMP-AD) consortium, consisting of more than 1,000 

human AD and control samples from different brain regions across multiple brain banks 

(Morabito et al., 2020). We used consensus weighted gene co-expression network analysis 

(cWGCNA), a meta-analytical approach, to identify robust disease-specific co-expressed 

modules, which we identified as neuronal or non-neuronal (Figure 2a–b). These gene co­

expression changes were preserved in the normal human aging brain but were altered only 

with the progression of AD (Figure 2c–d). We also found that the co-expression modules 

were highly preserved across several additional human AD microarray datasets, and their 

trajectories similarly changed in these datasets, demonstrating that these gene co-expression 

changes are robust, despite technical differences. Additionally, we deeply characterized 

our consensus co-expression modules by integrating various orthogonal datasets including 

GWAS, DNA methylation, histone acetylation (H3K9ac), and expression and methylation 

quantitative loci (eQTLs and mQTLs), to provide a comprehensive picture of the genetic 

and transcriptomic alterations associated with AD. We identified a microglial module (CM8) 

that was significantly enriched in AD GWAS genes, supporting the key role of microglia in 

AD genetic risk, and our analysis revealed transcription factors, such as SPI1 and IRF8, as 

potential regulators of this module.

Moreover, co-expression network analysis approaches provide a platform for integrating 

data from different model systems of disease. This provides us the potential to find disease­

associated, evolutionary conserved changes. Notably, we found that the consensus glial 

modules, such as those related to TGFβ and TLR3 signaling, were not preserved in mouse 

models, such as the 5XFAD, a transgenic mouse model of AD expressing five human 

AD gene mutations (APP and PSEN1) that result in extensive amyloid deposition, and 

rTg4510, a tau mouse model with the human MAPT P301L mutation, associated with FTD 

(Figure 2c), possibly highlighting the lack of translatability from mouse models to human 

clinical trials (Drummond and Wisniewski, 2017; Onos et al., 2016; Vitek et al., 2020). 

Neuronal modules though were generally preserved across both tau and Aβ mouse models 

(Figure 2c). A recent study also constructed co-expression modules from AMP-AD datasets 

but utilized 5 different co-expression network analysis approaches (MEGENA (Song and 

Zhang, 2015), WINA (Wang et al., 2016), rWGCNA (Parikshak et al., 2016), speakeasy 

(Gaiteri et al., 2015), and their own metanetwork), identifying similar modules across the 

different methods (Wan et al., 2020). Wan et al. (2020) integrated multiple AD and other 

neurodegeneration-associated mouse models at different stages of disease progression to 
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identify conserved gene co-expression changes. Importantly, they found overlaps between 

human AD co-expression modules and differentially expressed genes in mouse models of 

Huntington’s disease and spinocerebellar ataxia, disorders not typically associated with AD, 

suggesting a generalized transcriptomic signature of neurodegeneration, not specific to AD. 

Additionally, our own work (Swarup et al., 2019) used mouse models of AD and FTD, 

induced pluripotent stem cell (iPSC) derived neurons, and human postmortem samples to 

identify two co-expression modules a) neurodegeneration-associated synaptic (NAS) module 

and b) neurodegeneration-associated inflammatory (NAI) module, which were validated in 

a dozen other mouse models of disease. We identified a miRNA (miR-203) as a novel 

regulator of the NAS module.

Additionally, proteomic studies of AD and PSP have leveraged network analysis in order to 

define the disease-associated proteome and relate genetic risk to protein expression (Johnson 

et al., 2020; Seyfried et al., 2017; Swarup et al., 2020). These studies revealed that there 

are disease proteomic networks that are distinct from those found at the transcriptome level. 

In our previous work (Swarup et al., 2020), we integrated five different proteomic datasets 

using consensus WGCNA to robustly identify disease-associated proteomic modules, and 

we found enrichment of AD and PSP GWAS hits in separate modules, indicating that their 

etiologies are distinct, despite the presence of tau pathology in both disorders. Integration 

of different data modalities, such as transcriptomic, proteomic, and genetic data, provides a 

more comprehensive understanding of the molecular changes associated with disease.

Single-cell genomics has uncovered vast cellular dysregulation in 

Alzheimer’s Disease

Recent advances in sequencing methods have enabled us to profile single cells dissociated 

from whole tissues (Cao et al., 2017; Hashimshony et al., 2012; Jaitin et al., 2014; Klein 

et al., 2015; Macosko et al., 2015; Ramsköld et al., 2012; Rosenberg et al., 2018; Zheng et 

al., 2017). In “bulk-tissue” sequencing studies of whole tissue samples, the signal of interest 

is averaged across all the cells present in the sample. Thus, bulk sequencing techniques 

are limited in their capacity to faithfully characterize the biology of the brain, which is 

composed of many different types of neurons and glia with fine-grained regional specificity. 

Single-cell sequencing approaches employ nucleotide barcoding strategies that allow us 

to bioinformatically separate all the sequencing reads to their cell of origin. Where a bulk­

tissue RNA-seq experiment of one sample yields only one data point describing each gene, 

a single-cell RNA-seq (scRNA-seq) experiment of the same sample could yield hundreds up 

to tens of thousands of data points describing each cell, depending on the specific single-cell 

approach. This presents us with new opportunities for characterizing how specific cell types 

respond to disease, especially in the context of disease risk signals, as well as introducing 

many new challenges in terms of best practices for data analysis (Lähnemann et al., 2020; 

Luecken and Theis, 2019).

There are several different approaches for single-cell sequencing, each with their own 

advantages and disadvantages in terms of throughput and data quality (Ziegenhain et 

al., 2017). Over a decade ago, the first single-cell sequencing study (Tang et al., 2009) 
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was published, where a single mouse blastomere was manually picked and libraries 

were prepared for mRNA-seq. Fortunately, modern approaches do not require manual 

cell picking, rather they use specialized microfluidics devices or combinatorial nucleotide 

barcoding schemes to prepare single cells or single nuclei for sequencing. To date, scRNA­

seq is the most widely used single-cell genomics method, but other techniques, such as 

single-cell assay for transposase-accessible chromatin with high-throughput sequencing 

(scATAC-seq), are gaining traction as they are commercialized. A new method called split­

pool ligation-based transcriptome sequencing (SPLiT-seq) (Rosenberg et al., 2018) is an 

attractive cost-effective approach for neurobiologists that are interested in performing their 

own single-cell sequencing since it does not require a microfluidic device.

Several studies have used sc- or snRNA-seq to characterize the cellular heterogeneity of the 

AD brain in human patients and mouse models of disease (Grubman et al., 2019; Habib et 

al., 2020; Keren-Shaul et al., 2017; Lau et al., 2020; Leng et al., 2021; Mathys et al., 2019; 

Zhou et al., 2020). In general, while each of these studies have used different experimental 

designs and statistical approaches, all of them have contributed to our understanding of 

dysregulation of specific cell types and cell subpopulations in AD. The first transcriptomic 

study of the human AD brain at cellular resolution used the 10x Genomics platform 

to perform snRNA-seq in 48 prefrontal cortex (PFC) samples from the Religious Order 

Study (ROS) and the Rush Memory and Aging Project (MAP) (Mathys et al., 2019). This 

study resolved gene expression profiles of the major cell types of the PFC and identified 

differentially expressed genes between individuals with AD pathology versus those with 

no pathology for each of these cell types. Furthermore, this study identified several cell 

subpopulations that are overrepresented in certain pathological and biological conditions, 

such as Braak stage, cognitive status, or sex. For example, one subtype of excitatory neurons 

termed Ex6 (STMN1+, PARK7+, FBXO2+) was more common to male samples in Braak 

stages one and two, whereas excitatory cluster Ex4 (LINGO1+, RASGEF1B+, SLC26A3+) 

was enriched in female samples from Braak stage five. Additional sex-specific cell type 

responses to AD were found in this study, such as a distinct transcriptional activation 

of oligodendrocytes in males and a clear downregulation of neuronal gene expression in 

females with respect to pathological variables.

More snRNA-seq studies of AD have followed the initial study from Mathys & Davila­

Velderrain et al. (2019), one of which being a study that profiled the entorhinal 

cortex (EC) in six AD patients and six cognitively normal controls, where the authors 

specifically investigated cell-type-specific gene expression signatures of AD genetic risk 

genes (Grubman et al., 2019). For each of the major cell types, they identified significant 

differences in gene expression of AD risk genes across different cell subpopulations, 

highlighting BIN1 in a specific astrocyte population and CLU in an oligodendrocyte 

progenitor population, for example. Furthermore, selective vulnerability is a well-known 

feature of neurodegeneration, where different neuronal populations exhibit a range of 

susceptibility to disease. Another recent study used snRNA-seq to characterize the EC 

and the superior frontal gyrus (SFG) in postmortem tissue from male donors with varying 

Braak stages to investigate selective vulnerability of neurons in AD, revealing RORB as a 

marker gene for vulnerable excitatory neurons and noting a distinct lack of vulnerability 

among inhibitory neuron populations (Leng et al., 2021). A key lesson from these different 
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snRNA-seq studies of AD is that gene expression is widely dysregulated throughout disease 

progression across cell types and brain regions, but different subpopulations of cells are 

more responsive or resilient to disease.

Prior to any of these human snRNA-seq studies, one of the first single-cell studies in 

an AD mouse model (Keren-Shaul et al., 2017) used massively parallel single-cell RNA­

seq (MARS-seq) to compare gene expression in brain immune cells between wild type 

and 5XFAD mice. Their analysis uncovered a subpopulation of microglia enriched in 

aged 5XFAD mice, which they termed “Disease Associated Microglia” (DAMs), and they 

revealed the genes that are dynamically expressed throughout the change from homeostatic 

to disease-associated cell states. The DAM state is marked by an increased expression 

of AD-associated risk genes, such as Apoe and Trem2, and a decreased expression of 

homeostatic markers, such as Cx3cr1 and P2ry12. Other studies identified a similar cell 

state distinct from homeostatic microglia and enriched in diseased samples, which have 

been termed “Activated Response Microglia” (ARMs) (Frigerio et al., 2019; Sierksma et al., 

2020).

Additionally, another group performed a snRNA-seq study of the PFC using samples from 

human AD patients, including those with the common variant of TREM2 (TREM2-CV) and 

those with the AD risk variant TREM2-R62H, and Trem2-deficient 5XFAD mice (Zhou et 

al., 2020). They found DAM genes, such as Apoe and Csf1, are upregulated in 5XFAD 

compared to Trem2-deficient 5XFAD mice, while homeostatic genes including Cxc3r1 were 

downregulated, providing support for the Trem2-dependent DAM hypothesis. In contrast, by 

comparing gene expression in microglia between human controls and AD (TREM2-CV) 

samples, only a handful of DAM genes, including TREM2, CD68, and APOE, were 

upregulated in human AD. This study also identified several key differences between human 

AD and the 5XFAD mouse model in astrocytes and oligodendrocytes.

Our group also recently performed a cross-species snRNA-seq analysis using three human 

AD datasets and one 5XFAD dataset, and we found one microglia sub-cluster that was 

enriched for the DAM gene signature (Morabito et al., 2021). By performing differential 

gene expression analysis comparing mouse and human microglia nuclei in this cluster, 

we found a distinct depletion of many DAM genes in human microglia. Despite the deep 

characterization of DAMs and DAM-like cells in mouse models, it is not clear whether 

these Trem2-dependent Aβ responsive microglia identified in mice directly correspond to 

disease responsive microglia in human AD brains. Furthermore, another study (Habib et al., 

2020) identified a population of Aβ-localized disease responsive astrocytes, termed “Disease 

Associated Astrocytes” (DAAs), and in our group’s single-cell analysis we found evidence 

that the DAA gene signature is present in human AD samples (Morabito et al., 2021).

Much work has been done to characterize the transcriptome of AD at cellular resolution; 

however, many key questions remain unanswered. For instance, while these studies have 

demonstrated cell type specific gene expression of AD risk genes, and while there is 

evidence for the role of some of these risk genes in the glial response to Aβ, it is not 

clear how these risk factors disrupt the gene regulatory networks in the healthy brain 

to contribute towards the molecular phenotypes of disease. Epigenetic data can aid in 
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clarifying the gene regulatory mechanisms in disease. For example, Nott et al. (2019) 

generated cell-type specific chromatin conformation and histone modification data from 

fluorescence-activated cell sorting (FACS) of human brain nuclei and identified a microglia­

specific BIN1 enhancer mapping to an AD risk variant. However, in this study, they were 

unable to distinguish epigenetic changes unique to specific cell subpopulations (Nott et 

al., 2019), and it is now possible to generate single-cell epigenetic data (without FACS). 

Similar to single-cell transcriptomic studies, single-cell chromatin accessibility studies have 

identified heterogeneous subsets of cells in the human brain (Corces et al., 2020; Lake 

et al., 2017; Morabito et al., 2021). Corces et al. (2020) predicted regulatory targets of 

AD risk variants in loci such as PICALM and BIN1 in specific cell types, but the data 

originated from only cognitively normal samples. Our recent study profiled single-cell 

chromatin accessibility from both late-stage pathology AD samples and cognitively normal 

samples, and we constructed cell type specific cis-gene regulatory networks (Morabito et 

al., 2021). We compared the chromatin accessibility landscape and predicted cis-regulatory 

interactions between cells from AD and control samples at selected GWAS loci, including 

APOE and BIN1, and found cell-type-specific differences flanking the likely causal SNPs, 

thus highlighting potential interactions between these non-coding SNPs and neighboring 

regulatory elements which may underlie disease. Furthermore, we integrated snATAC-seq 

and snRNA-seq data from the same samples to identify candidate cis-regulatory elements 

and their potential target genes by cell type, highlighting the strength of integrating 

single-cell transcriptomic and epigenetic datasets to interrogate the molecular mechanisms 

underlying neurodegeneration.

Integrating single-cell datasets for meta-analysis

Single-cell sequencing, however, is still rather expensive in comparison to whole tissue 

approaches, hindering our ability to associate cellular signatures to pathological features, 

given the small sample size in the present single-cell studies. For example, large-scale 

studies of bulk AD transcriptomics have jointly analyzed over 1,000 human samples, while 

to date the Mathys & Davila-Velderrain et al. study has the largest number of samples used 

in a single-cell study of human AD with 48 samples. However, it is possible to greatly 

increase the analytical power of an individual study by leveraging other published datasets 

in the form of a single-cell meta-analysis. Recent breakthroughs in single-cell integration 

techniques have made it possible to perform large-scale meta-analysis of single-cell data 

from multiple studies, species, or -omics modalities (Argelaguet et al., 2021). As an example 

of what can be done with these integration approaches, the BRAIN Initiative Cell Census 

Network (BICCN) has constructed a multimodal cross-species cell atlas of the motor cortex 

that combines data from snRNA-seq, scRNA-seq, single-cell DNA methylation (snmC-seq), 

snATAC-seq, spatial transcriptomics (MERFISH), and other technologies (Adkins et al., 

2020).

Here we present a blueprint for constructing an integrated single-cell atlas of AD, and 

we note that this workflow is applicable to different meta-analysis approaches, which 

could include multiple species, data modalities, or different disease conditions (Figure 

3a). As an example of this integrative analysis, we curated six snRNA-seq datasets of 

human AD encompassing three brain regions and 124 samples (n=65 AD, n=59 control, 
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see Supplementary Methods). There are several different integration approaches that would 

be adequate for this task (Hie et al., 2019; Korsunsky et al., 2019; Stuart et al., 2019; 

Welch et al., 2019), but here we performed integration using single-cell Variational Inference 

(scVI), a deep neural network that models the biological information underlying measured 

gene expression values (Lopez et al., 2018). scVI is an ideal approach for creating a cell 

atlas of AD because it can be updated to incorporate new datasets after the initial training 

step. After training the scVI model, we performed dimensionality reduction using uniform 

manifold approximation and projection (UMAP), a standard tool for visualizing snRNA-seq 

data in two or three dimensions (Becht et al., 2019), and we grouped cells into clusters 

using Leiden community detection (Traag et al., 2019). Using this integrative framework, we 

recovered the same major cell lineages from the original studies (Figure 3b), and we found 

that the data was well integrated across different studies and brain regions (Figure 3c). As an 

example of what could be done with this integrated dataset, we wanted to track how the gene 

signature of each major cell type changes throughout the progression of AD. Using nuclei 

from control samples only (Braak stages 0, 1, 2), we used the trained scVI model to perform 

differential gene expression tests iteratively comparing each major cell type to all other cells, 

thus identifying a robust set of cell-type-specific marker genes (Figure 3d). We then took 

the top 20 marker genes, sorted by statistical significance in each cluster, and computed 

“gene module scores” for each cell in the dataset, which represent a common cell type 

signature present in non-AD brains (Figure 3e). Finally, we plotted the distributions of these 

cell-type gene signatures throughout different Braak stages using cells in their respective cell 

types, thus showing from a broad perspective that gene expression profiles of each cell type 

are dynamic throughout the progression of disease (Figure 3f). In this integrated dataset, 

we found both astrocyte and oligodendrocyte gene signatures increase from no pathology 

to mid-stage pathology before decreasing with advanced pathology, possibly reflecting an 

initial glial response to pathology that declines when the insult becomes too great in the late 

stages of disease. On the other hand, both excitatory and inhibitory neuron gene signatures 

are relatively stable across Braak stages. These gene signatures can also be dissected by 

brain region to determine region specificity of these gene expression changes, in addition to 

a subpopulation-level analysis.

This example analysis demonstrates how future single-cell transcriptomics studies of AD 

can take advantage of the previous work that has been done in this field through integration 

techniques to further study aspects of cellular dysfunction of AD that have not been 

explored in previous studies. In addition to these published datasets, there are several 

exciting pre-prints in this area, namely one study that developed a custom protocol to 

isolate NFT-bearing neurons for single-cell sequencing (Otero-Garcia et al., 2020), another 

that specifically profiled patients with monogenic AD (Marinaro et al., 2020), and a study 

that profiled the brain’s vasculature in AD (Yang et al., 2021). Tauopathies have not been 

investigated using single-cell genomics, but this integrative analysis approach could be used 

to identify shared and distinct patterns of cellular dysregulation across disorders. In sum, 

this analysis demonstrates the feasibility of using many different data sources to perform a 

unified single-cell meta-analysis.

Miyoshi et al. Page 12

Neurobiol Dis. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Future Directions

Our knowledge of the function of genetic risk factors for AD and related tauopathies has 

been greatly accelerated by innovation in high-throughput genomics methods. While there 

are many emerging -omics approaches that could be used to discover new insights into 

neurodegeneration, many of these techniques are only used by a small number of labs, since 

they are not commercially available. On the other hand, while some of these cutting-edge 

techniques, such as single-cell transcriptomics, have been used to study AD, there are still 

no published studies of tauopathies at cellular resolution. Furthermore, there are very few 

high-resolution epigenomics studies of AD or related tauopathies. Over the coming years, 

we can expect to learn more about the relationship between genetic risk and molecular 

dysfunction in tauopathies by using -omics and systems-level data analysis.

Transcriptomic dysregulation of the brain in disease can be better understood with spatial 

information, which is lost in sc- or snRNA-seq. A recent study used spatial transcriptomics 

to profile AD gene expression changes with spatial context in human patients and a mouse 

model, identifying gene expression patterns that are associated with the spatial organization 

of amyloid deposits (Chen et al., 2020). However, many spatial transcriptomics methods do 

not profile gene expression at cellular resolution, which can make it difficult to disentangle 

which cell type is driving a certain signal at any given location. High-resolution spatial 

approaches such as RNA seqFISH+ (Eng et al., 2019) and integrative bioinformatics 

approaches can now resolve transcriptional information in single cells (Kleshchevnikov et 

al., 2020), and a preliminary study has identified gene expression profiles of the dendrites 

and soma of individual neurons (Wang et al., 2020). Additionally, RNA splicing information 

is lost in many single-cell approaches that use Illumina sequencing, which does not 

sufficiently capture full length RNA transcripts. New methods for long-read single-cell 

sequencing can unravel transcript isoforms that are dysregulated with disease in a cell-type­

specific manner (Gupta et al., 2018; Joglekar et al., 2021; Rebboah et al., 2021).

High-resolution epigenomic sequencing methods are rapidly emerging, but to date very 

few have been used to study the diseased brain. Our group’s previous work (Morabito et 

al., 2021) was the first to use both snATAC-seq and snRNA-seq in the same samples to 

characterize disease-associated cellular dysregulation in AD, and one other study analyzed 

AD and Parkinson’s associated risk loci using snATAC-seq in control brains (Corces et 

al., 2020). Cell-type-specific histone modifications and DNA-protein interactions can be 

measured using single-cell CUT&Tag (Bartosovic et al., 2021). There are also methods 

to study DNA methylation (Luo et al., 2018) and 3D chromatin interactions in single 

cells (Ramani et al., 2017). Furthermore, there are now several sequencing approaches that 

profile more than one -omic modality in the same cell, such as Paired Tag for profiling 

the transcriptome and histone modifications (Zhu et al., 2021); SNARE-seq (Chen et al., 

2019) and 10X Genomics Multiome to profile the transcriptome and chromatin accessibility; 

and TEA-seq for profiling the transcriptome, chromatin accessibility, and epitopes (Swanson 

et al., 2021). In light of these new developments in biotechnology and bioinformatics, 

there are many opportunities to elucidate the underlying mechanisms of neurodegeneration 

in tauopathies, to systematically uncover how genetic risk factors play a role in the 
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dysregulation of specific cell types and develop new therapeutics targeting novel regulators 

of disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

Aβ Amyloid beta

AD Alzheimer’s disease

ALS Amyotrophic Lateral Sclerosis

AMP-AD Accelerating Medicines Partnership-Alzheimer’s disease

ARM Activated response microglia

ATAC-seq Assay for transposase accessible chromatin with 

sequencing

BICCN BRAIN Initiative Cell Census Network

CM Co-expression module

CBD Corticobasal degeneration

DAA Disease-associated astrocyte

DAM Disease-associated microglia

EC Entorhinal Cortex

EOFAD Early-onset familial Alzheimer’s disease

FACS Fluorescence-activated cell sorting

FTD Frontotemporal dementia

GWAS Genome-wide association study

GWAX Genome-wide association study by proxy

iPSC Induced pluripotent stem cell

IGAP International Genomics of Alzheimer’s Project

IQR Interquartile range
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LOAD Late-onset Alzheimer’s disease

MAP Rush Memory and Aging Project

MARS-seq Massively parallel single-cell RNA-seq

NFT Neurofibrillary tangle

PD Parkinson’s disease

PFC Prefrontal cortex

PPA Primary progressive aphasia

PSP Progressive supranuclear palsy

RNA-seq RNA-sequencing

ROS Religious orders study

scRNA-seq Single-cell RNA-seq

scATAC-seq Single-cell ATAC-seq

scVI Single-cell variational inference

SFG Superior frontal gyrus

snRNA-seq Single-nucleus RNA-seq

SPLiT-seq Split-pool ligation-based transcriptome sequencing

QTL Quantitative trait locus

UMAP Uniform manifold approximation and projection

WGCNA Weighted gene co-expression network analysis
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Figure 1: Sequencing techniques and analysis for understanding genetic variants
Schematic diagram for functional analysis of GWAS variants. Genome wide association 

studies use genotyping chips, whole-genome sequencing, and whole-exome sequencing to 

reveal genomic loci that are enriched for disease-risk signals, and subsequent genetic fine 

mapping analysis homes in on likely causal disease risk variants at a given GWAS locus. 

High-throughput genomics approaches at bulk-tissue or single-cell/nucleus resolution in 

relevant tissues provide functional annotations at disease risk loci. There are many different 

approaches to characterize different aspects of the genome; for example ChIP-seq reveals 

genomic sequences that are bound by a transcription factor or have a histone modification 

of interest, while ATAC-seq identifies sequences in accessible chromatin regions. RNA­

seq provides abundance information for all RNA transcripts in each sample. Integrative 
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bioinformatics approaches combining a variety of data modalities and model systems can 

elucidate the mechanisms underlying genetic risk variants. Multi-scale information from the 

epigenome, transcriptome, and proteome can be leveraged from different model systems in 

downstream bioinformatics analysis to prioritize disease-relevant signatures.
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Figure 2: AD consensus gene co-expression modules
a, b, Neuron-specific (a) and glia-specific (b) co-expression modules (CM) significantly 

correlated with AD diagnosis, annotated with their related biological functions. In these 

networks, each node represents a gene, colored by co-expression module (gene group), 

and each edge represents a link between a pair of genes based on co-expression and 

protein-protein interaction evidence. This visualization provides a general overview of the 

module size and relationships between genes in the modules. c, AD consensus co-expression 

modules are robust. Heatmap showing modules are preserved across human AD RNA-seq 

and microarray datasets, as well as datasets from human non-pathological controls (non­

path) and mouse models. d, AD co-expression changes are specific to disease. Scatterplot 

show module eigengenes CM1 (top) and CM9 (bottom) are not correlated with age.
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Figure 3: snRNA-seq meta-analysis of Alzheimer’s Disease
a, Schematic diagram for integrating multiple single-cell transcriptomics datasets. The 

general principles here can also be applied to other single-cell datasets. b, Cell populations 

from six AD snRNA-seq datasets (Grubman et al., 2019; Leng et al., 2021; Mathys et 

al., 2019; Morabito et al., 2021; Zhou et al., 2020) integrated with single-cell Variational 

Inference (scVI) are visualized with uniform manifold approximation and projection 

(UMAP). Each dot represents a single nucleus and is colored by cell subpopulation (cell 

cluster, Leiden cluster assignment). Major cell lineages are circled and annotated. c, UMAP 

plots as in (b), colored based on AD diagnosis and split by study of origin, show how the 

distributions of the cell populations may differ based on brain region, disease diagnosis, 

or other technical variables between the different datasets. Ideally, cell populations should 
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be mixed between the datasets, not originating from only one dataset. d, Gene expression 

signatures for each major cell type by identifying cell type marker genes. Volcano plots 

summarize iterative “one cell type versus rest” differential gene expression tests for each cell 

type in control brains only, showing log-scaled fold-change and Bayes factors for each gene. 

Genes with moderate significance are colored, using a threshold of ln(Bayes Factor) > 1.1), 

and the top three genes by significance are annotated. e, Cell type marker genes, identified 

through differential expression analysis, define transcriptionally distinct cell populations by 

major cell type. UMAP plots as in (b), colored by single cell gene signatures based on the 

top 20 marker genes from the tests in (d) for astrocytes (top) and microglia (bottom). f, Box 

and whisker plots show how the distribution of cell type signatures as in (e) change with 

increasing Braak stage. Distributions for these cell type signatures are visualized only for 

cells in the corresponding cell types, e.g. the astrocyte signature is plotted in astrocytes only. 

The range of the box corresponds to the inter-quartile range (IQR), the whiskers extend to 

the lowest or highest values at most 1.5 times the IQR, and the median is shown within the 

box. The underlying data points are plotted behind the box and whisker plots.

Miyoshi et al. Page 35

Neurobiol Dis. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miyoshi et al. Page 36

Table 1:

Summary of GWAS of AD and related tauopathies

Title (Author, 
Year)

Trait N cases N controls total 
loci

novel 
loci

nearest genes to risk loci Ancestry 
included

Meta-analysis 
of 74,046 
individuals 
identifies 11 
new 
susceptibility 
loci for 
Alzheimer’s 
disease 
(Lambert et al., 
2013)

Alzheimer’s 
Disease

Stage1: 
17,008
Stage 2: 
8,572

Stage 1: 
37,154
Stage 2: 
11,312

20 11 APOE, CR1, BIN1, CD2AP, EPHA1, 
CLU, MS4A6A, PICALM, ABCA7, 
CD33, HLA-DRB5/HLA-DRB1, PTK2B, 
SORL1, SLC24A5/RIN3, DSG2, 
INPP5D, MEF2C, NME8, ZCWPW1, 
ZELF1, FERMT2, CASS4

European

Variants in the 
ATP-Binding 
Cassette 
Transporter 
(ABCA7), 
Apolipoprotei 
n E ϵ4, and the 
Risk of Late-
Onset 
Alzheimer 
Disease in 
African 
Americans 
(Reitz et al., 
2013)

Alzheimer’s 
Disease

1,968 3,928 NR* 1 APOE,ELMO1, SOX13, ANCA7, 
GRIN3B, HMHA1, CR1, BIN1, 
PICALM, CLU, EPHA1, MS4A, CD2AP, 
CD33

African 
American

Transethnic 
genome-wide 
scan identifies 
novel 
Alzheimer’s 
disease loci 
(Jun et al., 
2017)

Alzheimer’s 
Disease

Stage1: 
15,5798
Stage 2: 
5,813

Stage 1: 
17,690
Stage 2: 
20,474

20 9 PFDN1/HBEGF, USP6NL/
ECHDC3, BZRAP1-AS1, 
CR1,BIN1,PTK2B,CLU,MS4A4A,PICA 
LM,ABCA7, NFIC, TPBG, HBEGF, 
NME8, CASS4

European, 
African-
American, 
Japanese, 
Israeli-
Arabs

GWAS on 
family history 
of Alzheimer’s 
disease 
(Marioni et al., 
2018)

Family 
history of 
Alzheimer’s 
Disease

27,696 
Maternal 
AD; 14,338 
Paternal AD

260,980 26 6 CR1, BIN1, PILRA, PICALM, ZNF232, 
APOE, TOMM40,SCIMP, SPPL2A, 
IL-34, PLCG2, ADAM10, BCKDK/
KAT8, ACE, TREML2, VKORC1, 
BZRAP1, CNLK, ADAMTS4, CCDC6

European

Genetic meta-
analysis of 
diagnosed 
Alzheimer’s 
disease 
identifies new 
risk loci and 
implicates Aβ, 
tau, immunity 
and lipid 
processing 
(Kunkle et al., 
2019)

Alzheimer’s 
Disease

Stage 1: 
21,982
Stage 2: 
8,362
Stage 3A: 
4,930

Stage 1: 
41,944
Stage 2: 
10,483
Stage 3A: 
6,736

25 5 CR1, BIN1, INPP5D, HLA-DRB1, 
TREM2, CD2AP, NYAP1, EPHA1, 
PTK2B, CLU, SPI1, MS4A2, PICALM, 
SORL1, FERMT2, SLC24A4, ABCA7, 
APOE, CASS4, ECHDC3, ACE

European

Genome-wide 
meta-analysis 
identifies new 
loci and 
functional 
pathways 
influencing 
Alzheimer’s 
disease risk 

Alzheimer’s 
Disease, AD-
by-proxy

Phase 1: 
24,087
Phase 2 
(proxy): 
47,793
Replication: 
6,593

Phase 1: 
55,058
Phase 2 
(proxy): 
328,320
Replication: 
174,289

29 9 ADAMTS4, CR1, BIN1, INPPD5, 
HESX1, CLNK, HLA-DRB1, TREM2, 
CD2AP, ZCWPW1, EPHA1, CNTNAP2, 
CLU/PTK2B, ECHDC3, MS4A6A, 
PICALM, SORL1, SLC24A4, ADAM10, 
APH1B, KAT8, SCIMP, ABI3, ALPK2, 
ABCA7, AC074212.3, CD33, CASS4

European
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Title (Author, 
Year)

Trait N cases N controls total 
loci

novel 
loci

nearest genes to risk loci Ancestry 
included

(Jansen et al., 
2019)

Genome-wide 
meta-analysis, 
fine-mapping 
and integrative 
prioritization 
implicate new 
Alzheimer’s 
disease risk 
genes 
(Schwartzentr 
uber et al., 
2021)

Alzheimer’s 
Disease, AD-
by-proxy

53,042 355,900 37 4 ADAMTS4, CR1, SPRED2, NCK2, 
BIN1, TMEM163, INPP5D, CLNK, 
HLA-DRB1, UNC5CL, CD2AP, 
SPATA48, PILRA, EPHA1, CLU, 
ECHDC3, CCDC6, TSPAN14, SPI1, 
MS4A6E, PICALM, SORL1, FERMT2, 
SLC24A4, SPPL2A, ADAM10, APH1B, 
KAT8, PLCG2, SCIMP, TSPOAP1, 
ACE, ABCA7, APOE, CD33, CASS4, 
ADAMTS1

European

Novel 
Alzheimer 
Disease Risk 
Loci and 
Pathways in 
African 
American 
Individuals 
Using the 
African 
Genome 
Resources 
Panel: A Meta-
analysis 
(Kunkle et al., 
2021)

Alzheimer’s 
Disease

2,748 5,222 20 11 TRANK1, FABP2, LARP1B, 
TSRM, ARAP1, STARD10, SPHK1, 
SERPINB13, SIPA1L2, EDEM1, 
ALCAM, ACER3, PIK3C2G, IGF1R, 
RBFOX1, VRK3, WDR70

African 
American

Ethnic and 
trans-ethnic 
genome-wide 
association 
studies identify 
new loci 
influencing 
Japanese 
Alzheimer’s 
disease risk 
(Shigemizu et 
al., 2021)

Alzheimer’s 
Disease

3,692 4,074 9 1 APOE, SORL1, FAM47E, PAPOLG, 
RAB3C, BANK1, LINC01867, 
LINC00899, LOC101928561, APOE, 
PICALM, BIN1, CLU, CR1, MS4A4A, 
SORL1, MADD, HLA-DRA, CD2AP, 
OR2B2, EPHA1, ADAMTS1, SLC24A4, 
LACTB2, ELL, FERMT2,ZCWPW1, 
TSPOAP1

Japansese, 
European 
(trans-
ethnic 
meta-
analysis)

Frontotempor 
al dementia 
and its 
subtypes: a 
genome-wide 
association 
study (Ferrari 
et al., 2014)

Frontotempor 
al dementia

Stage 1: 
3,526

Stage 1: 
9,402

NR* 2 RAB38, CTSC, HLA-DRA/HLA-DRB5, 
BTNL2, MAPT, C9orf72/MOB3B, 
TMEM106B, TOMM40/APOE

European

Identification 
of common 
variants 
influencing 
risk of the 
tauopathy 
progressive 
supranuclear 
palsy 
(Höglinger et 
al., 2011)

Progressive 
supranuclear 
palsy

Stage 1: 
1,114
Stage 2: 
1,051

Stage 1: 
3,247 Stage 
2: 3,560

3 3 STX6, EIF2AK3, MOBP, MAPT European

Joint genome-
wide 
association 
study of 
progressive 
supranuclear 
palsy identifies 

Progressive 
supranuclear 
palsy

1,646 10,662 5 2 MAPT, MOBP, STX6, EIF2AK3, 
SEMA4D, DDX27, SP1, RUNX2, 
DUSP10, WDR63, MIR4423, SLCO1A2, 
ASAP1, AMHR2, CEP57, RPS6KL1

European
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Title (Author, 
Year)

Trait N cases N controls total 
loci

novel 
loci

nearest genes to risk loci Ancestry 
included

novel 
susceptibility 
loci and 
genetic 
correlation to 
neurodegener 
ative diseases 
(Chen et al., 
2018)

Genome-wide 
association 
study of 
corticobasal 
degeneration 
identifies risk 
variants shared 
with 
progressive 
supranuclear 
palsy (Kouri et 
al., 2015)

Corticobasal 
degeneration

Discovery: 
152

Replication: 
67

Discovery: 
3,311

Replication: 
439

4 3 MAPT, lnc-KIF13B-1, SOS1, MOBP European
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