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Abstract

Ensemble modeling of the two-dimensional stochastic confined groundwater
flow through the evolution of the hydraulic head’s probability density

function

by

Joaquin Meza

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Davis

Levent Kavvas, Chair

Groundwater storage in aquifers has become a vital water source due to the water scarcity in

the last years. However, aquifer systems are full of uncertainties, which inevitably propagate

throughout the calculations, mainly reducing the reliability of the model output. This study

develops a novel two-dimensional stochastic confined groundwater flow model. The proposed

model is developed by linking the stochastic governing partial di↵erential equations through

their one-to-one correspondence to the nonlocal Lagrangian-Eulerian form of the Fokker-

Planck equation (LEFPE). In the form of the LEFPE, the resulting deterministic governing

equation describes the spatio-temporal evolution of the probability density function of the

state variables in the confined groundwater flow process. This probability evolution is per-

formed by one single numerical realization rather than requiring thousands of simulations in

the Monte Carlo simulation. Consequently, the ensemble groundwater flow process’s mean

and standard deviation behavior can be modeled under uncertainty in the transmissivity field

and recharge and/or pumping conditions. In addition, an appropriate numerical method for

its solution is subsequently devised. Then, LEFPE’s solution is presented, discussed, and

Joaquin Meza
ii

Joaquin Meza



illustrated through numerical examples. Furthermore, they are compared against the results

obtained through the Monte Carlo simulations to evaluate the performance of the LEFPE

framework. Results suggest that the proposed model appropriately characterizes the en-

semble behavior in confined groundwater systems under uncertainty in the transmissivity

field.

Key words: Groundwater modelling; Uncertainty quantification; Stochastic partial di↵er-

ential equation.
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Chapter 1

Introduction

Groundwater stored in aquifers has become a vital water source in the face of emerging

droughts in many world regions. Moreover, this water scarcity is expected to aggravate

due to both global population and economic growth. Therefore, the value of groundwa-

ter will increase as water availability decreases in various regions of the world with climate

change, making groundwater management a fundamental tool. Anderson and Woessner

(2015) stated that Groundwater Models are a well-suited tool for predicting complex aquifer

systems’ behavior. Nevertheless, groundwater modeling is challenging since its predictive

power predominantly depends on the input data representativity, commonly requiring large

samples to estimate the hydraulic parameters.

Improving the representativity of the input data and, consequently, groundwater models’

predictive power is complicated mainly for two reasons: first, there is always an incomplete

understanding of the site conceptual model (Xia et al., 2019). Second, limited knowledge

of the hydrogeological parameter values, typically due to the limited availability of suitable

observations (Li et al., 2003; Yeh et al., 1992). Beyond, these uncertainties inevitably prop-

agate throughout the model calculations, mainly reducing the reliability of the model output.

Joaquin Meza
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Groundwater systems are highly heterogeneous in space, resulting in significant hydraulic

parameter value variations. In particular, hydraulic conductivity is one of the most sensitive

to spatial variation (Lu and Zhang, 2005). Moreover, this parameter is the primary pa-

rameter a↵ecting the output accuracy of groundwater flow and hydraulic transport models

(Bakshevskaya and Pozdnyakov, 2013; Kitanidis, 1997; Zhu et al., 2016) since it controls

both advective and dispersive transport (Neuman, 1990). Hydraulic conductivity depends

on various factors such as the size of pores, geological structure, and connectivity. Further-

more, it is not easy to accurately estimate this parameter with commonly used methods

(Wu and Zeng, 2013). In addition, aquifer properties are scale-dependent, and can vary over

many orders of magnitude in typical aquifer systems (Dagan, 1986; Sudicky, 1986). Hence,

subsurface heterogeneity’s characterization needs to be incorporated into the modeling in

order to be able to predict groundwater flow and contaminant transport in groundwater

environments accurately.

To date, the uncertainty quantification in groundwater modeling has been carried out

mainly by two di↵erent techniques, (1) Monte Carlo simulations (Freeze, 1975; Refsgaard

et al., 2012; Tonkin and Doherty, 2009) and (2) perturbation methods (Connell, 1995; Li

et al., 2003; Ma et al., 2009; Smith and Freeze, 1979; Xia et al., 2019). The importance

of quantifying the uncertainty inherent to any groundwater system relies on evaluating the

risks coming from the heterogeneity and the lack of information on design and management

(Renard, 2007). Furthermore, stochastic approaches align with a typical decision-making

agency’s expectation that predictions should be accompanied by uncertainty measures that

allow risk assessment (Rajaram, 2016).

Monte Carlo (MC) simulations repeatedly solve the deterministic governing equations

2



for a large number of equally likely realizations of the model parameters (e.g., hydraulic

conductivity) to achieve multiple realizations. Then, the ensemble of solutions is further

used to make statistical estimations. Furthermore, the MC approach is well known as the

most robust approach for uncertainty evaluation, as well as the benchmark to validate other

methods (Schar↵enberg and Kavvas, 2011). While the MC method may o↵er a robust ap-

proach for estimating uncertainty in groundwater flow and transport, it is computationally

demanding, and therefore, its application is restricted (Connell, 1995).

Alternatively, the regular perturbation method incorporates variability into the model

using a di↵erent approach. This method decomposes the state variables into a mean plus

a perturbation. By design, the regular perturbation has a zero mean and a variance equal

to the original variable variance. Even though the regular perturbation method could o↵er

significant savings in computation over MC methods (Townley and Wilson, 1985; T. C. Yeh,

1992), its accuracy is directly related to the magnitude of the process variance (Connell,

1995). Therefore, solutions by the regular perturbation approach may be poor approxima-

tions for highly heterogeneous (�2
� 1) aquifers (Gotovac et al., 2009). Moreover, using

regular perturbation approaches results in a closure problem, where the equation for a spe-

cific moment requires information about higher moments’ behavior (Keese, 2003). Hence,

one can close the system of equations only by employing some ad-hoc assumptions.

Even though stochastic groundwater modeling has developed considerably in the last fifty

years, these techniques are not standard tools in practice. Why the market has not adopted

stochastic analysis is of substantial debate (Dagan, 2002; Gelhar, 1986; Renard, 2007; Rubin

et al., 2018). The gap between theory and practice in stochastic modeling of groundwater is

attributed to diverse factors, such as (1) economic constraints and lack of regulations (Rubin

3



et al., 2018), (2) the need to construct statistical models for heterogeneity fields from limited

data (Dagan, 2002), (3) the assumptions and simplifications adopted in most theoretical

analyses (Renard, 2007). However, all authors agree that (4) the excessive computational

requirement of available stochastic numerical methods is one of the primary factors limiting

these techniques’ application.

Meanwhile, in order to avoid the drawbacks of Monte Carlo Simulations and regular

perturbation methods, this study proposes a novel methodology to solve the expected sys-

tem behavior in a single simulation. This proposed methodology upscales the governing

stochastic di↵erential equations from a point-scale (at which they are valid) to a field scale.

Thus, the conservation equations describing the groundwater flow in confined aquifers are

consistent with the scale of the grid areas over which they describe the hydrologic process.

Furthermore, through this general framework, not only the mean and the variance of the

targeted state random variable/function can be estimated, but also the probability density

function (PDF) of the process, which evolves in space and time.

Ensemble averaging has been a popular approach in hydrology to upscale both linear

(Gelhar and Axness, 1983; Rubin and Dagan, 1989; Wood and Kavvas, 1999) and non-linear

(Dogrul et al., 1998; Mantoglou and Gelhar, 1987; Tayfur and Kavvas, 1994) hydrologic

processes. To upscale the stochastic governing equations, they are averaged to become de-

terministic. Thus, statistical descriptions are used to represent the values of the stochastic

parameters. However, most studies performing the ensemble averaging technique used the

regular perturbation method, which only works for small fluctuations in the dependent vari-

ables.
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A general ensemble average conservation equation was developed by Kavvas (2003) to up-

scale the point-scale conservation equations to the scale of computational grid areas. Thus,

the hydrologic processes’ probabilistic and mean behavior can be estimated. To carry out this

task, the one-to-one correspondence between the governing equation under uncertainty (that

represents a hydrologic process) and a mixed Eulerian-Lagrangian form of the Fokker-Planck

equation (LEFPE) to the second-order was employed (Kavvas, 2003). The resulting ”master

key” equation allows dealing with uncertainties in the parameters and the forcing terms in

their corresponding point-scale governing equations. Therefore, employing this approach, it

is possible to estimate the probability density function’s (PDF) time-space evolution for any

nonlinear or linear hydrologic process.

Within this framework, the proposed methodology has been successfully applied to many

hydrologic processes. Kim et al., (2005) used the methodology to model the one-dimensional

root-water uptake under uncertainty in the saturated soil vadose zone. Cayar and Kavvas

(2009) modeled the e↵ect of uncertainty in the hydraulic conductivity for the one-dimensional

horizontal confined groundwater flow. They transformed the governing PDE into an ordi-

nary di↵erential equation using the Boltzmann transformation and Lie Group theory. Ercan

and Kavvas (2012) used this methodology to explore variability in the channel properties

and lateral flow conditions to upscale the kinematic open-channel flow governing equation.

Tu et al. (2019, 2020) applied the methodology for describing the ensemble behavior for the

1D and 2D solute transport in open channel flow under uncertain flow and solute loading

conditions. Even though this stochastic framework was initially developed to tackle uncer-

tainties for hydrologic processes, it has also been used in the geomechanics field. Jeremić et

al. (2007) and Sett et al., (2007) used the “master key” equation for the 1-D elastic-plastic

constitutive rate equations to quantify the uncertainty in material parameters. Later, Kara-
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piperis et al. (2016) applied this stochastic upscaling framework together with stochastic

Garlekin techniques to solve 1-D elastoplastic boundary value problems with non-Gaussian

parametric uncertainty.

Even though MC and Perturbation methods have been widely used to tackle groundwa-

ter flow in confined aquifers, they present relevant drawbacks regarding their computational

time and their coe�cient of variation, respectively. Thus, the proposed method has the goal

of overcoming these mentioned issues. To the authors’ knowledge, this is the first study

to attempt to estimate the ensemble behavior in a confined aquifer based on the cumulant

expansion of the stochastic governing partial di↵erential equation. This novel approach es-

timates the ensemble mean and variance in one shot, instead of multiple simulations, by

considering the stochasticity in multiple parameters.

In this study, a stochastic model for confined aquifer flow is proposed, motivated by

the probabilistic responses of aquifers to the influence of spatial uncertainties. This gen-

eral framework was carried out using the above-discussed methodology proposed by Kavvas

(2003). Thus, the e↵ect of uncertainties in the transmissivity field and the source term are

accounted for. Consequently, the ensemble average for this dynamical system is estimated,

determining its probabilistic behavior. In the form of a deterministic partial di↵erential

equation, the resulting expression illustrates the complete description of the spatio-temporal

evolution of the hydraulic head’s PDF in confined aquifers in one single simulation. Fur-

thermore, the derived LEFPE corresponding to the confined groundwater flow process is

described by employing illustrative examples.
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Chapter 2

Governing equations for unsteady

confined groundwater flow

This chapter describes the governing equation which controls the subsurface flow in confined

aquifers, including the assumptions used for its derivation. Under the specified initial and

boundary conditions, this governing equation at the point scale can be solved. Later on,

employing the method of characteristics, the governing PDE is recast into a system of ordi-

nary di↵erential equations (ODEs). This ODE system will be crucial in the next section to

upscale the governing groundwater flow equation from the point scale to the field scale and

then obtain its ensemble behavior.

At the end of this chapter, a numerical discretization of the resulting Groundwater flow

equation is presented, followed by the details of the numerical scheme used for solving this

problem.

Joaquin Meza
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2.1 Derivation of the point-scale confined

groundwater flow equation

The groundwater flow equation in a confined aquifer is developed in this section to understand

the assumptions considered when this mathematical model is used. Hydraulic groundwater

flow theory in a fully saturated geologic porous media is based on the mass balance principle

combined with Darcy’s equation. Therefore, an elemental control volume in a porous medium

is considered (Figure 2.1) to define the mass that enters or leaves this control volume. Thus,

the mass balance principle can be used over this elemental control volume.

Figure 2.1: Fluid mass balance in a elementary volume with sides �x, �y and �z.

Therefore, the rate of change of fluid mass inside the control volume must equal the

di↵erence in the fluid mass flux into and out of the control volume. In mathematical terms,

this principle could be expressed as follows.

@(⇢qi)

@xi
=

@m

@t
(2.1)

Where,
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qi [LT�1] are fluxes in the i directions.

m=✓⇢�x�y�z [M ] is the fluid mass inside the control volume at any point in time.

✓ [1] represents the aquifer porosity.

⇢ [ML
�3] is the water density.

Then, by using the definition of fluid mass inside the control volume (m), the right side

of Equation (2.1) can be written as

@m

@t
=

@✓⇢

@t
= ⇢

@✓

@t
+ ✓

@⇢

@t
=

✓
⇢
@✓

@p
+ ✓

@⇢

@p

◆
@p

@t
(2.2)

Where p [ML
�1
T

�2] is the water pressure. It is then assumed that the grains’ volume

does not change, which means that the porosity must change in the elastic range instead. In

mathematical terms, this assumption is expressed as follows.

↵ = �
1

VT

@VT

@�
⇡ �

1

VT

@VV

@�
(2.3)

Where,

� is the static stress which in addition with the pressure must be balanced by the total

stress [ML
�1
T

�2].

VT represents the total volume, which is equal to VS + VV [L3].

VS and VV are grain an pore volume, respectively [L3].

↵ is the amount of water released from the vertical compression per unit bulk volume

per unit change in intergranular stress.

9



Then, considering the following equality VV = ✓ · VT , implies that

@VS

@�
= 0 )

1

VT

@VV

@�
=

1

1� ✓

@✓

@�
) ↵ =

1

1� ✓

@✓

@�
=

1

1� ✓

@✓

@p
(2.4)

On the other hand, it is assumed that the water in the aquifer is slightly compressible.

Thus, the coe�cient of compressibility of water, � (1) is defined as

� = �
1

VV

@VV

@p
= �

1

m/⇢

@m/⇢

@⇢
= �⇢

�
@⇢
@p

⇢2
=

1

⇢

@⇢

@p
(2.5)

Now, by using equation (2.4) and (2.5) into equation (2.2), we get

@(⇢✓)

@t
= ⇢(↵(1� ✓) + �✓)

@p

@t
= g⇢

2(↵(1� ✓) + �✓)
@h

@t
(2.6)

Where g is gravity [L1
T

�2] and h is the hydraulic head [L]. In addition to the assumptions

previously mentioned, the horizontal stresses are neglected. Thus, the right side of the

Equation (2.1) can be rewritten as.

@m

@t
= Ss

@h

@t
(2.7)

Where Ss = g⇢
2(↵(1 � ✓) + �✓) is defined as the specific storage [L�1]. Moreover, in

groundwater hydrology, Darcy’s law states that the flux of water q [LT�1] through a unit

surface [L2] is proportional to the gradient of the hydraulic head @h
@x and a physical parameter,

K [LT�1], termed hydraulic conductivity. The hydraulic conductivity depends on the fluid

and porous medium. Mathematically, Darcy’s law can be expressed as

10



qi = �Kij
@h

@xj
(2.8)

This expression, known as Darcy’s law, can be used to manipulate the left-hand side of

Equation (2.1). Assuming that spatial changes in density are negligible (i.e., terms of the

form ⇢
@qi
@xi

are much more significant than terms of the form qi
@⇢
@x . Additionally, incorpo-

rating a source or sink term Qs [L3
/(TL3)], which could be due to pumping/injection of a

volume flux [L3
/T ] per volume [L3], we can obtain the following Equation.

@

@xi

✓
Ki(x)

@h(x, t)

@xi

◆
+Qs(x) = SS(x)

@h(x, t)

@t
(2.9)

Subject to boundary conditions on � = �N [ �D, which are defined by

h(x) = hD(x) on �D (2.10)

✓
Ki(x, t)

@h(x, t)

@xi

◆
· n = qN(x) on �N (2.11)

where x = {x, y, z} is the position vector [L], t is time [T], hD(x) is the prescribed

head at boundary �D, qN(x) is the flux at boundary �N , and n is a unit vector normal to

�N . Equation (2.9) is the governing equation for transient flow through an anisotropic and

heterogeneous porous groundwater system with the hydraulic conductivity tensor oriented

along the principal directions.

Then, it is possible to model the three-dimensional aquifer’s flow as a horizontal two-

11



dimensional flow by neglecting vertical fluxes and averaging properties over the aquifer thick-

ness. These simplifications are called the Dupuit-Forchheimer approximation. Under this

assumption, the equation for two-dimensional horizontal flow in a confined aquifer can be

expressed as (Bear and Verruijt, 1987)

@

@xi

✓
Ti(x)

@h(x, t)

@xi

◆
+Qs(x) = S(x)

@h(x, t)

@t
(2.12)

where x = {x, y} is the two-dimensional position vector [L], S(x, t) = SS(x, t) · b(x) is

the storativity [1], b(x) is the confined aquifer thickness [L] and Ti(x) is the transmissivity

[L2
T

�1], which is defined by

Ti(x) =

Z b(x)

0

Ki(x, t)dz (2.13)

2.2 Transforming the point-scale groundwater flow

equation into the characteristic form

The previous section derived the governing equation that controls the groundwater flow

(equation 2.12). However, to obtain the ensemble behavior through the methodology pro-

posed, the governing equation needs to be recast into a system of ordinary di↵erential equa-

tions. For this analysis, the water table height h is considered a function of space and time.

Then, by expanding the spatial derivates, equation (2.12) can be expressed as

@Ti(x)

@xi

@h(x, t)

@xi| {z }
Convective terms

+ Ti(x)
@
2
h(x, t)

@x
2
i| {z }

Diffusive terms, DT (x,t)

+ Qs(x) = S(x)
@h(x, t)

@t
(2.14)

It assumed that at the regional scale, the stochasticity of the random groundwater field in

12



equation (2.14) is mainly due to the stochasticity in the convective term, while the di↵usive

terms DT (x, t), may contribute only to the mean behavior (Kavvas and Karakas, 1996; Tu

et al., 2019, 2020a). This assumption will be assessed later by comparing the results from

LEFPE against Monte Carlo solutions. Thus, equation (2.14) may be recast into the form

@h(x, t)

@t
�

1

S(x)

@Ti(x)

@xi

@h(x, t)

@xi
=

1

S(x)
[DT (x, t) +Qs(x)] (2.15)

Through the method of characteristics, the governing PDE (2.15) may be transformed

into a system of stochastic ordinary di↵erential equations (Pletcher et al., 1997). By following

this method, the characteristic equations for unsteady confined groundwater flow can be

expressed as

⌘1 =
@x(t)

@t
= �

1

S(x)

@Tx(x)

@x

@h(x, t)

@x
(2.16)

⌘2 =
@y(t)

@t
= �

1

S(x)

@Ty(x)

@y

@h(x, t)

@x
(2.17)

⌘3 =
@h(x, t)

@t
=

1

S(x)


DT (x, t) +Qs(x)

�
(2.18)

Equations (2.16) and (2.17) are known as the characteristic equations, which represent

two velocity expressions that can be used to determine the evolution of the stochastic char-

acteristic path x(t). On the other hand, equation (2.18) is called the compatibility equation,

which describes the process behavior of the state variable h(x, t) along x(t). In the x-t

domain, the characteristic equations will represent curves along x(t) where the informa-

tion propagates through the solution domain. For convenience, the Ordinary Di↵erential

Equation (ODE) system may be expressed.

13



@H(x, t)

@t
= ⌘(H,A, f) (2.19)

with an initial condition

H(x, t = 0) = H0 (2.20)

where H = {x, y, h}
T is the vector of all state variables of the hydrologic system of

equations, A is the tensor of parameters, f is the vector of forcing functions, and ⌘ =

{⌘1, ⌘2, ⌘3} is the governing function vector.

2.3 Numerical Solution of the deterministic confined

groundwater flow equation

A form of the di↵usion equation describes the groundwater flow governing equation for a

confined aquifer (Equation 2.9). This linear, second-order, and parabolic PDE has a limited

number of analytical solutions. Moreover, analytical solutions for real groundwater systems

are even more restricted. The main reason for the inadequacy of the analytical solutions is

the heterogeneity that characterizes this kind of natural system (Karatzas, 2017). There-

fore, numerical solutions are widely used to handle more complicated real aquifer systems

(Baalousha, 2008).

Finite Di↵erences Method (FDM) and Finite Element Method (FEM) are the most pop-

ular numerical techniques used to solve the governing equation (2.12). Even though some

authors support one or the other method, the choice between FDM and FEM relies mainly

on the user’s preference (Karatzas, 2017; Simpson and Clement, 2003). According to Gray
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(1984) , each method has its own unique features that could be desirable for a specific appli-

cation. This study uses a generalized control-volume finite-di↵erence (CVFD) method. This

method was chosen since it is the same approach used by the most widely used groundwater

flow model in consultancy and for research proposes, MODFLOW (Hughes et al., 2017).

2.3.1 Formulation and Solution of the Control-Volume

Finite-Di↵erence Equation

Flows Between Cells

In this numerical scheme, the flows between cells are estimated by a discrete form of Darcy’s

Law. Thus, the flow into cell n from cell m is given by

Qn,m =

✓
T n,m�wn,m

Ln,m + Lm,n

◆
(hm � hn) = Cn,m(hm � hn) (2.21)

where Qn,m is the flow rate into cell n from cell m (Figure 2.2.a), �wn,m is the width of

the face through which flow occurs, hi is the head at node i, Ln,m is the distance from the

center of cell n to its shared face with cell m, Cn,m is the conductance between cells n and m

and T n,m is the distance weighted harmonic mean of transmissivity of two half cells, which

is given by

T n,m =
Ln,m + Lm,n
Ln,m

Tn,m
+ Lm,n

Tm,n

Tn,m = Kn,m�vn,m (2.22)

In simple words, Tn,m represents the transmisivity in cell n in the direction of cell m,

Kn,m is the hydraulic conductivity of cell n in the direction of cell m and �vn,m is the height

of the face through which flow occurs (Figure 2.2.b).
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(a)
(b)

Figure 2.2: Schematic representation of fluxes between cells. (a) Diagram showing flows into cell

n from cell m. (b) A cross-section diagram shows cell n connected to vertically staggered cells,

including cell m. source: MODFLOW 6 Documentation

Water Balance on a Cell

To solve the governing groundwater flow equation (equation 2.9), the CVFD scheme is used.

To perform this task, equation (2.9) is solved in a discrete way, in which di↵erential control

volumes are approximated by cells with a finite volume.

In order to derive the CVFD discrete set of equations, a water balance on each cell must

be done. The balance considers groundwater flows between cells, flows from and to any

sources, sinks, and storage. Then, by considering a constant density of groundwater, the

continuity equation for the cell n is given by

X

m2⌘n

Qn,m +Qn,s = Qstorage (2.23)

where ⌘n are the number of cells connected to cell n, Qn,m is the flow rate into cell n

from cell m, Qn,s is the flow rate of sources and sinks into cell n, and Qstorage is the change
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in volume of water stored in cell n, which can be discretely approximated as follows

Qstorage = SSnVn
�hn

�t
(2.24)

where SSn is the specific storage of cell n, Vn is the volume of cell n, and �hn is the

change in the head in cell n over a time interval �t.

Temporal Discretization

The temporal rate of change of the hydraulic head is estimated discretely. Even though

it is only a first-order approximation, a backward-di↵erence approach was used to perform

this estimation. The scheme selected was chosen since it is always numerically stable, which

means that numerical errors do not grow and propagate through time (Hughes et al., 2017).

Thus, equation 2.24 can be expressed as

Qstorage = SSnVn
h
t+1
n � h

t
n

�t
(2.25)

Formulation of Control-Volume Finite-Di↵erence equations for Solution

Combining equations (2.21), (2.22), (2.23) and (2.25), the generalized CVFD flow equation

for cell n is obtained as follow

X

m2⌘n

Cn,m(h
k
m � h

k
n) +Qn,s = SSnVn

h
k
n � h

k�1
n

�t
(2.26)

Thus, an equation of this type (equation 2.26) can be written for each cell in the grid

where hn is unknown. Therefore, a system of N equations and N unknowns is obtained.

Then, the system can be solved simultaneously, subject to appropriate initial and boundary
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conditions.

Rewriting the equation (2.26) by grouping on the left-hand side of the equation all terms

containing unknown heads at the current time step, and on the right, all terms that are

independent of the unknown heads at the current time step. The resulting equation is

expressed as follows

 
X

m2⌘n

Cn,m +
SnVn

�t

!
h
k
n �

X

m2⌘n

Cn,mh
k
m = Qn,s +

SSnVn

�t
h
k�1
n (2.27)

Finally, the entire system of equations in the form of equation (2.27), which consist of one

equation for the head of each cell in the grid, can be written in a matrix form (Ah=b). This

system of equations implies that the matrix (A) must be inverted to obtain the hydraulic

head vector for future time steps.
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Chapter 3

Ensemble-averaged equations for the

stochastic unsteady confined

groundwater flow

In this section, we introduce a novel methodology to solve the stochastic confined groundwa-

ter flow equation and a well-suited numerical scheme to solve the resulting partial di↵erential

equation (PDE) in the form of a LEFPE. The proposed methodology will allow obtaining

the statistical properties of the hydraulic head for a confined groundwater system in only one

shot instead of multiple simulations through the Monte Carlo approach. Thus, the hydraulic

head’s time-space evolutionary probability density function (PDF) will be obtained. The

following derivation assumes uncertainty in the transmissivity random field and the source

term. Nevertheless, stochasticity in the storativity and the boundary conditions could be

also incorporated following similar steps.

Joaquin Meza
19
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3.1 Fokker-Planck equation overview

The classical Fokker-Planck equation (FPE) is a second-order di↵erential equation that de-

scribes the statistical behavior of the system under analysis. Meanwhile, solving stochastic

di↵erential equations gives the solution of the system’s state variable; the FPE is solved

for the probability density function (PDF) of the state variables. Therefore, this equation

governs the time evolution of the state variables’ PDF. For a multivariate process, the FPE

can be approximated locally by an Itô process driven by the standard Wiener process as

follows

dXt = µ(Xt, t) dt+ �(Xt, t) dWt, (3.1)

Where Xt and µ(Xt, t) are n�dimensional random vectors, �(Xt, t) is an n⇥m matrix

and Wt is an m � dimensional Wiener process. By considering that µ(Xt, t) and �(Xt, t)

satisfy a global Lipschitz and linear growth conditions, the corresponding FPE to the Itô

stochastic di↵erential equation (Equation 3.1) can be expresed as

@p(x, t)

@t
= �

NX

i=1

@

@xi
[µi(x, t)p(x, t)] +

NX

i=1

NX

j=1

@
2

@xi @xj
[Dij(x, t)p(x, t)]

@p(x, t)

@t
(3.2)

with drift vector µ (µ1, ..., µN) and di↵usion tensor represented by

Dij(x, t) =
1

2

MX

k=1

�ik(x, t)�jk(x, t). (3.3)

The FPE is intimately connected to the corresponding Ito stochastic di↵erential equation,
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being this correspondence unique (Gardiner, 2009). However, solving the FPE presents

advantages over their corresponding Ito SPE. The Ito SDE has stochastic parameters in the

first place, while in the FPE, the drift vector and the di↵usion tensor are deterministic.

Therefore, the resulting FPE is deterministic too. Secondly, the FPE is a linear equation,

which is more straightforward to solve than non-linear equations. Finally, the solution of

the FPE results in the state variables’ PDF, allowing us to estimate any statistical moment

and provide the ensemble behavior in one shot.

3.2 Derivation of the Fokker-Planck equation for

confined groundwater flow

Kavvas (2003) described a system of point-scale conservation equations, which can be ex-

pressed in mathematical terms for a dynamical system as

@H(x, t)

@t
= ⌘(H ,A,f ;x, t) (3.4)

Subject to the initial condition

H(x, 0) = H0 (3.5)

where H(x, t) is the vector of all state variables of the hydrologic system of equations,

A(x, t) is the tensor of parameters; f(x, t) is the vector of forcing functions; x is the vector

of spatial locations, and t is the time.

From a di↵erent point of view,H(x, t) could be interpreted as a point in the n-dimensional

H-space. Therefore, equation (3.4) would determine each point’s velocity in the mentioned
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space. Conceptually, this could be interpreted as the path describing equation (3.4)’s solu-

tion for a given deterministic initial condition H0. Nonetheless, the initial condition may

be described by a density ⇢(H , t = 0) in the H � phase space to describe a cloud of deter-

ministic initial conditions. Thus, the phase density ⇢(H , t) evolves according to a continuity

equation, representing the conservation of all these points in the H-space.

Then, by applying a second-order cumulant expansion, Kavvas (2003) developed the gen-

eral Lagrangian-Eulerian Fokker-Planck Equation (LEFPE) form of the dynamical system

established in equation (3.4) to the exact second-order as follows

@P [H(xt), t]

@t
= �

@

@Hj

(
P [H(xt), t]

 
h⌘j [H(xt, t),A(xt, t),f(xt, t)]i (3.6)

+

Z t

0

Cov0


@⌘j [H(xt, t),A(xt, t),f(xt, t)]

@Hi
; ⌘j [H(xt�s, t� s),A(xt�s, t� s),f(xt�s, t� s)]

�
ds

!)

+
1

2

@
2

@Hj@Hi

(
2P [H(xt), t]

Z t

0

Cov0


⌘j [H(xt, t),A(xt, t),f(xt, t)] ;

⌘i [H(xt�s, t� s),A(xt�s, t� s),f(xt�s, t� s)]

�
ds

!)

where P [H(xt), t] is the probability density of the vector of state variables at the location

xt and at time t, the operator h·i is the ensemble average operator, s is a time displacement

and Cov0[·] is the time-ordered covariance function (Van Kampen, 1974), which can be

expressed as

Cov0 [⌘i(x, t1); ⌘j(x, t2)] = h⌘i(x, t1); ⌘j(x, t2)i � h⌘i(x, t1)i ; h⌘j(x, t2)i (3.7)

Equation (3.6) is a mixed Eulerian-Lagrangian partial di↵erential equation. Note that
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while the real space location xt is known, the lagrangian location xt�s is unknown. However,

the lagrangian location can be calculated from the known location by using the Lie operator

(Kavvas and Karakas, 1996), as follows

xt�s =
 �
exp


�

Z t

t�s

hvl(x⌧ , ⌧)i d⌧

�
xt (3.8)

where  �exp is the time-ordered exponential, and vl is determined from the characteristics

curve equations corresponding to the system’s governing equation. However, Kavvas and

Karakas (1996) proposed a first-order approximation for equation (3.8), which is easier to

estimate. This approximation can be expressed as

xt�s = xt �

Z t

t�s

hvl(x⌧ , ⌧)i d⌧ (3.9)

By solving the LEFPE (equation 3.6), the quantitative description of the state variables’

probabilistic behavior of a system (e.g., hydraulic head for an aquifer system) can be ob-

tained under appropriate initial and boundary conditions. In order to estimate the state

variables’ ensemble behavior through the LEFPE for a confined groundwater system, the

general method detailed in Equation (3.6) is applied. Thus, this study will solve the prob-

ability density function of the hydraulic head h(xt, t), which can be written as shown in

Equation 3.10
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@P (xt, yt, h(xt), t)

@t
=�

@

@x

"
P (xt, h(xt), t)

(
h⌘1,ti+

Z t

0

Cov0


@⌘1,t

@x
; ⌘1,t�s

�
ds

+

Z t

0

Cov0


@⌘1,t

@y
; ⌘2,t�s

�
ds+

Z t

0

Cov0


@⌘1,t

@h
; ⌘3,t�s

�
ds

)#

�
@

@y

"
P (xt, h(xt), t)

(
h⌘2,ti+

Z t

0

Cov0


@⌘2,t

@y
; ⌘2,t�s

�
ds

+

Z t

0

Cov0


@⌘2,t

@x
; ⌘1,t�s

�
ds+

Z t

0

Cov0


@⌘2,t

@h
; ⌘3,t�s

�
ds

)#

�
@

@h

"
P (xt, h(xt), t)

(
h⌘3,ti+

Z t

0

Cov0


@⌘3,t

@h
; ⌘3,t�s

�
ds

+

Z t

0

Cov0


@⌘3,t

@x
; ⌘1,t�s

�
ds+

Z t

0

Cov0


@⌘3,t

@y
; ⌘2,t�s

�
ds

)#

+
1

2

@
2

@x2

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘1,t; ⌘1,t�s] ds

#
(3.10)

+
1

2

@
2

@y2

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘2,t; ⌘2,t�s] ds

#

+
1

2

@
2

@h2

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘3,t; ⌘3,t�s] ds

#

+
1

2

@
2

@x@y

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘1,t; ⌘2,t�s] ds

#

+
1

2

@
2

@x@h

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘1,t; ⌘3,t�s] ds

#

+
1

2

@
2

@y@x

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘2,t; ⌘1,t�s] ds

#

+
1

2

@
2

@y@h

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘2,t; ⌘3,t�s] ds

#

+
1

2

@
2

@h@x

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘3,t; ⌘1,t�s] ds

#

+
1

2

@
2

@h@y

"
2P (xt, h(xt), t)

Z t

0

Cov0 [⌘3,t; ⌘2,t�s] ds

#
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Equation (3.10) has the form of an advection-di↵usion equation. The first three terms are

advection terms, while the nine last expressions are the di↵usion terms. Liang and Kavvas

(2008) define the expected values of eta’s functions h⌘i,ti as the mean advection coe�cients

and the integrals of the ordered covariance eta’s functions ⌘ as the advection correction terms.

Even though equation (3.10) is a linear and deterministic PDE, it still presents substantial

challenges for its solution. Therefore, some simplifications without losing the prime physical

characteristics are examined. One of the complications arises in estimating the covariance

terms in the advection coe�cients. However, the advection correction terms can be consid-

ered negligible compared to the mean advection terms. This assumption is based on the

expected ⌘i magnitudes, which are much larger than those of the integral terms (Kavvas and

Wu, 2002; Liang and Kavvas, 2008; Tu et al., 2019). Mathematically, this can be expressed

as follows

h⌘1,ti >>

Z t

0

Cov0


@⌘1,t

@x
; ⌘1,t�s

�
ds h⌘1,ti >>

Z t

0

Cov0


@⌘1,t

@y
; ⌘2,t�s

�
ds

h⌘1,ti >>

Z t

0

Cov0


@⌘1,t

@h
; ⌘3,t�s

�
ds h⌘2,ti >>

Z t

0

Cov0


@⌘2,t

@y
; ⌘2,t�s

�
ds

h⌘2,ti >>

Z t

0

Cov0


@⌘2,t

@x
; ⌘1,t�s

�
ds h⌘2,ti >>

Z t

0

Cov0


@⌘2,t

@h
; ⌘3,t�s

�
ds

h⌘3,ti >>

Z t

0

Cov0


@⌘3,t

@h
; ⌘3,t�s

�
ds h⌘3,ti >>

Z t

0

Cov0


@⌘3,t

@x
; ⌘1,t�s

�
ds

h⌘3,ti >>

Z t

0

Cov0


@⌘3,t

@y
; ⌘2,t�s

�
ds
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Regarding di↵usion terms, they will be classified into two categories. The first is the

terms involving the ordered covariance between the same functions. The second one is the

terms that consider the ordered covariance between two di↵erent functions or also called

cross-covariance dispersion terms. Liang and Kavvas (2008) showed that the autocovari-

ance of the ⌘ function of one state variable is considerably larger in magnitude than the

covariance between any two di↵erent ⌘ functions. Therefore, all cross-covariance terms are

neglected from equation (3.10) to simplify calculations. However, this assumption could

break down depending on the behavior of the ⌘ functions. For ⌘ functions with similar

periodicity and close frequencies, the cross-covariance terms could become more comparable

in magnitude to the autocovariance values, contrary to the previous simplification (Dib and

Kavvas, 2018). The resulting nonlocal LEFPE after simplifications previously mentioned is

shown in equation (3.12) below

@P (h, x, y; t)

@t
=

1

S(x, y)

@

@x

"
P (h, x, y; t) ·

⌧
@Tx(xt)

@x

�#
+

1

S(x, y)

@

@y

"
P (h, x, y; t) ·

⌧
@Ty(xt)

@y(t)

�#

�
1

S(x, y)

@

@h

"
P (h, x, y; t)

⇢
[ DT (hh(x, y; t)i) + hG(x, y; t)i]

�#
(3.11)

+
1

S2(x, y)

@
2

@x2

"
P (h, x, y; t) ·

Z t

0

Cov0


@Tx(h, x, y; t)

@x
;
@Tx(h, x, y; t� s)

@x

�
ds

#

+
1

S2(x, y)

@
2

@y2

"
P (h, x, y; t) ·

Z t

0

Cov0


@Ty(h, x, y; t)

@y
;
@Ty(h, x, y; t� s)

@y

�
ds

#

+
1

S2(x, y)

@
2

@h2

"
P (h, x, y; t) ·

Z t

0

Cov0

⇥
G(h, x, y; t);G(h, x, y; t� s)

⇤
ds

#
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In equation (3.11), transmissivity and the source terms are treated as random functions,

while storativity is assumed deterministic. Accordingly, storativity was moved outside of the

expectations and ordered covariance terms. This assumption is in agreement with several

studies, which indicate that storativity has low variability (Castagna et al., 2011; Dagan and

Rubin, 1988; Freeze, 1975; Meier et al., 1998). Nonetheless, the inclusion of storativity as a

random function is straightforward.

Moreover, it is essential to note that the di↵usive term DT (h(x, y; t)) is not considered in

the last term, together with G(h, x, y; t). The previous assumption can explain this absence

that the di↵usive terms DT (h(x, y; t)) at the point-scale fundamentally contribute only to

the mean behavior. Therefore, since DT (h(x, y; t)) is deemed deterministic, it will imply a

null correlation against any random function.

Following the notation established by Garabedian (2009), the final form of the LEFPE

(equation 3.11) can be written as shown in equation (3.12). Di denotes the drift coe�cient,

while F i expresses di↵usion coe�cients. In addition, P (h, x, y; t) and S(x, y) are substituted

by P and S, respectively, to increase the readability and simplicity of large equations. The

final form of the LEFPE (equation 3.11) for a well-defined heterogeneous confined aquifer

can be written in a more concise form as follow

@P

@t
=+

1

Ss

@

@x
(Dx

P ) +
1

Ss

@

@y
(Dy

P ) +
1

Ss

@

@h
(Dh

P ) (3.12)

+
1

S2

@
2

@x2
(F x

P ) +
1

S2

@
2

@y2
(F y

P ) +
1

S2

@
2

@h2
(F h

P )
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where the coe�cients D’s and F ’s in equation (3.12) can be expressed by

D
x =

⌧
@Tx(xt)

@x(t)

�
(3.13)

D
y =

⌧
@Ty(xt)

@y(t)

�
(3.14)

D
h = �

1

Ss
[D(hh(xt)i) + hG(xt, t)i] (3.15)

F
x =

Z t

0

Cov0


@Tx(h, x, y; t)

@x
;
@Tx(h, x, y; t� s)

@x

�
ds (3.16)

F
y =

Z t

0

Cov0


@Ty(h, x, y; t)

@y
;
@Ty(h, x, y; t� s)

@y

�
ds (3.17)

F
h =

Z t

0

Cov0

⇥
G(h, x, y; t);G(h, x, y; t� s)

⇤
ds (3.18)

Equation (3.12) represents the resulting nonlocal Lagrangian-Eulerian Fokker-Planck

equation, which is a deterministic second-order PDE. The probability density function for

the hydraulic head in the h�x�y phase through time can be obtained based on the solution

of this nonlocal LEFPE. Hence, the spatio-temporal evolution of the hydraulic head’s mean

and standard deviation behavior (in the horizontal two-dimensional x-y space) can also be

easily obtained, as well as any statistical moment.
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3.3 Numerical solution for the of the

Lagrangian-Eulerian Extension of the

Fokker-Planck equation (LEFPE)

Once the LEFPE is derived (equation 3.12), it must be solved using a well-suited numerical

scheme. However, significant computational resources are required to solve this equation,

especially to compute the PDF, which has significant tails (Johnson et al., 1997). To date,

most of the studies have used the Finite Element Method (Galán et al., 2007; Král and

Náprstek, 2017; Masud and Bergman, 2005) and the Finite Di↵erence Method (Fok et al.,

2002; Qian et al., 2019; Sepehrian and Radpoor, 2015) to solve the conventional FPE nu-

merically.

According to Masud and Bergman (2005), solving the conventional FPE for high dimen-

sional problems (� 3) requires fine resolution in the time integration scheme. This require-

ment is even more critical at early times in the simulation to accurately resolve features in

the rapidly evolving probability flow. The di�culties at the beginning of the simulation are

associated with sharp changes occurring in small spatial regions, which can strongly influ-

ence the global properties of the system (Wei, 2000). Moreover, numerical algorithms can be

highly sensitive to sharp gradients and quickly lead to numerically induced spatial and/or

temporal chaos (Ablowitz et al., 1996).

Pichler et al. (2013) addressed comparative studies between the Finite Element Method

(FEM) and Finite Di↵erence Method (FDM), motivated by the high dimensionality in en-

gineering dynamical systems. In this study, four widely used Finite Element and Finite

Di↵erence schemes to solve the transient FPE were reviewed by means of various numerical

examples. They stated that FEM is preferable over FDM in terms of accuracy. However,
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the FEM is only suitable for dimension  3 due to the significant numerical e↵ort required.

Park and Petrosian (1996) examined six Finite Di↵erence Methods, three fully implicit and

three semi-implicit commonly used to solve the FPE. Each method was evaluated in terms

of its stability, accuracy, and e�ciency. They concluded that the most robust FDM was the

fully implicit Chang-Cooper method (Chang and Cooper, 1970).

Nowadays, the Chang-Cooper method is still considered one of the most popular tools

to tackle the FPE due to its desirable properties (Buet and Dellacherie, 2010; Buet and

Thanh, 2007; Butt, 2021; Larsen et al., 1985). This scheme ensures second-order accuracy,

the positiveness of the solution, the conservation of the probability mass, and the exact rep-

resentation of the analytical solution upon equilibration. While having the above-mentioned

good characteristics, the Chang-Cooper scheme is based on the drift coe�cients’ positiveness

(Di
> 0). Therefore, its solution is not guaranteed for the LEFPE derived in the previous

section. In equation (3.12), the drift coe�cients could take negative values for this particular

problem since their sign depends on the transmissivity field, the hydraulic head curvature,

flux conditions, and the source term. Hence, di↵erent from Chang and Cooper’s scheme, an

appropriate numerical scheme must be selected to tackle this problem.

The classical FPE closely resembles an advection-di↵usion equation (ADE), widely stud-

ied in the computational fluid dynamics (CFD) field. Hence, several researchers have used

common numerical schemes used in the CFD field to solve the conventional FPE. Even

though the ADE is a linear PDE, di�culties arise due to its dual nature. If the ADE is

di↵usion-dominated, the equation behaves as a second-order parabolic equation, while if

the ADE is advective-dominated, this equation behaves as a first-order hyperbolic equation.

Therefore, to accurately solve the ADE, the numerical scheme needs to handle the mixed
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parabolic-hyperbolic behavior of the physical system (Yeh et al., 1992). Further details about

the numerical method used to solve the advection-di↵usion equation can be found in Zheng

and Bennett (2002).

Motivated by the drift coe�cients’ negativity in their problem, Ohara et al. (2008)

used an explicit Finite Volume Method (FVM) to solve the FPE for the snowmelt process.

The FVM was used to handle the boundary conditions that present potential di�culty for

the snowmelt process. Ohara et al. (2008) pointed out that there is no universal scheme

to solve the LEFPE since the selected numerical scheme depends on each particular problem.

Ceyhan and Kavvas (2018) developed a one-dimensional local FPE for the transient con-

fined groundwater flow to a well. They used the explicit Lax-Wendro↵ scheme to solve the

advective term, which is a second-order FDM. Additionally, a flux delimiter was included to

mitigate artificial oscillation while preserving sharp concentration fronts using the upwind

method (Shu and LeVeque, 1991). In the case of the di↵usive term, an implicit second-order

centered di↵erence approximation was used, which resulted in a one-dimensional implicit-

explicit (IMEX) scheme.

Selecting implicit schemes for solving di↵usive terms and explicit schemes for advective

terms is a common practice in the CFD field (Ascher et al., 1995; Chaudhry et al., 2015).

This flexibility of mixing these schemes allows specialized numerical methods for systems

formed by operators with di↵erent time scales. Refer to Ascher et al. (2006) for additional

details about IMEX methods to solve PDEs.

ULTIMATE QUICKEST (Leonard, 1991) is another widely used explicit numerical
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scheme to tackle the advection-di↵usion equation in the CFD field. Cahyono (1993) tested

more than 30 schemes used for discretizing advection terms numerically. He concluded that

the ULTIMATE QUICKEST (UQ) was the most attractive since it was more general than

the other schemes considered. Moreover, this scheme has not just been successfully applied

in open-channel systems (Kashefipour and Zahiri, 2010; Yoshimura and Fujita, 2019) and

subsurface hydrology (B. Lin and Falconer, 1997; Neumann et al., 2011) but also for solving

the LEFPE (Tu et al., 2019). Tu et al. (2019) developed a LEFPE for a one-dimensional so-

lute transport model under uncertain open-channel flow conditions. The UQ and an explicit

second-order centered di↵erence approximation were used to discretize the advective and dif-

fusive terms. Their results suggest that the UQ numerical scheme can generally handle both

small and significant variability in the flow fields with satisfactory results. Therefore, this

numerical scheme could be used to solve advective-dominated as well as di↵usive-dominated

problems. While Leonard (1991) developed and applied the UQ scheme to a one-dimensional

problem, Tu et al. (2020) generalized it to solve a two-dimensional LEFPE.

The ULTIMATE QUICKEST is based on the QUICKEST (Quadratic Upwind Interpo-

lation for Convective Kinematics with Estimated Streaming Terms) scheme and the ULTI-

MATE (Universal Limiter for Transient Interpolation Modeling of the Advective Transport

Equation) limiter. The QUICKEST scheme (Leonard, 1979) is an explicit third-order accu-

rate upwind explicit scheme. Leonard (1979) designed this scheme for reducing numerical

oscillations and truncations problems on highly advective unsteady flows. This scheme was

derived using a finite di↵erence approach for temporal discretization and a control volume

approach for spatial discretization. This derivation implies calculating the discrete fluxes

entering and leaving the control volume, estimated using an average quadratic upstream in-

terpolation over a time increment. Even though the QUICKEST method has little numerical
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dispersion and a large stability region, even minimal oscillations can corrupt the solution,

especially near sharp gradients (Leonard, 1991; Neumann et al., 2011).

Figure 3.1: Schematic grid cell representation used to solve the LEFPE. The probability density

function values P are defined at the cell center, whereas the probability fluxes are defined in the

cell faces.

Leonard (1991) proposed the ULTIMATE (the Universal Limiter for Transient Interpo-

lation Modeling of the Advective Transport Equations) to overcome the problem associated

with the numerical oscillations by the QUICKEST scheme. ULTIMATE is a total variation

diminution (TVD) algorithm that uses flux limiters to preserve the local monocity of the

solution, even close to the sharp discontinuities and shocks. Thus, the local monotonicity

is preserved, which is crucial for our problem since negative values would indicate negative

probabilities, losing our problem’s physical meaning. This scheme was derived using the

Normalized Variation Diagram (NVD) concept, based on normalized variables to set the

nodal boundaries to suppress oscillations. Several authors have indicated improved stability

near steep fronts due to non-oscillatory behavior and reduced numerical dispersion by using

ULTIMATE (Harris et al., 2002; B. Lin and Falconer, 1997; Neumann et al., 2011). In
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addition to the ULTIMATE limiter’s desirable characteristics, this algorithm involves mini-

mal extra computational load and is particularly attractive for point sources (deterministic

conditions) in the Lagrangian-Eulerian Fokker-Planck Equation.

The numerical method selected to solve the three-dimensional LEFPE shown by equa-

tion (3.12) needs to achieve two main objectives: (1) to have a potential to be parallelized,

and also (2) it needs to control the numerical di↵usion. The importance of parallelizing the

numerical scheme relies on the high computational times required to solve multidimensional

FPE (Masud and Bergman, 2005). In addition, parallelization will allow dealing with larger

domains in space and probability sense. Furthermore, the main goal of this study is to es-

timate the ensemble mean and variance of the hydraulic head under uncertain parameters.

Numerical schemes that cause numerical di↵usion would overestimate the variance. There-

fore, accurate numerical simulation without numerical dispersion plays a vital role in the

goodness of the results.

In this study, the UQ is adopted to solve the advective terms. Like Tu et al. (2020), who

generalized the UQ to solve a two-dimensional LEFPE, an attempt is made here to general-

ize this scheme to three-dimensional problems. An explicit scheme for advective terms was

preferred over an implicit scheme for mainly two reasons: (1) implicit schemes for advection

tend to be more numerically di↵usive than explicit schemes (Dawson, 1995), and (2) implicit

schemes for advection lead to a nonsymmetric matrix. In general terms, a nonsymmetric

matrix is more challenging to invert (Ascher et al., 1995), and convergence of many itera-

tive solvers will su↵er (Wang et al., 2015). However, the stability region imposed by the

Courant-Friedrich-Lewy (CFL) condition is a severe restriction of standard explicit numeri-

cal methods. This restriction implies a much smaller time step than permitted by accuracy
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considerations (Casulli, 1990; Dehghan, 2004).

A typical practice to rectify the CFL condition’s limitation consists of using an implicit

discretization for di↵usive terms in the ADE. Thus, the resulting implicit-explicit (IMEX)

scheme will be less restrictive regarding the time step required for stability (Bürger et al.,

2020). In addition to the desirable properties of IMEX schemes previously mentioned, it is

essential to mention that the resulting linear 7-diagonal system of equations is symmetric,

sparse, and strictly diagonally dominant, with positive elements on the main diagonal and

negative elements elsewhere (Ascher et al., 1995). Therefore, this system is positive define,

and it has a unique solution. Furthermore, a 7-diagonal sparse system of equations can be

solved very e�ciently by preconditioned conjugate gradient methods (Casulli, 1990).

Then, by applying forward finite di↵erence formulas for the time derivative and the pre-

viously discussed schemes for the first and second spatial derivatives on a staggered grid,

as shown in figure (3.1), the proposed LEFPE (equation 3.12) can be discretized by the

following IMEX scheme:
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where �t, �xi, �yj, and �hl are discretization intervals for t, x, y, h dimensions, respec-
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tively; the subscripts {i, j, l} denote the nodes in x, y, and h domains, while the superscript

t denotes the current time step of the probability density P , and t + 1 denotes the next

time step. Note that in Equation (3.19), each subscript {i, j, l} followed by a ±0.5 may be

interpreted as the probability flux or probability current, whereas P is considered as the

state variable.

It is important to note that while the drift coe�cients Dx,t, Dy,t, and di↵usion coe�cients

F
x,t, F y,t, and F

h,t depend on external input such as the transmissivity random field and

the source term, the drift coe�cient Dh,t depends on the curvature in the x� y space at the

current time t. Hence, we estimate this term in the current time ’t’ through the solution

obtained in the last time ’t�1’ by assuming that small changes in the curvature occur during

a time step �t. Then, the di↵usive term DT (h(x, y; t)) can be estimated as follows
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@
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(3.20)

Due to its control-volume formulation for spatial gradients, this scheme is sensitive to the

flow direction. Hence, the probability fluxes of each face consider the flux direction to carry

out the calculations. Thus, the probability fluxes in the advection terms, represented by

Pi�1/2,j,l, Pi+1/2,j,l, Pi,j�1/2,l, Pi,j+1/2,l, Pi,j,l�1/2 and Pi,j,l+1/2 are estimated based on the one-

dimensional ULTIMATE QUICKEST scheme. Assuming that the velocity in node {i, j, l} is

positive in the x�direction (F x,t
> 0), the flux at the face {i = 1/2, j, l} can be summarized

as follows
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1. Compute the upwind-biased second order di↵erence CURV and the normalization

di↵erence DEL as:

CURVj = Cj = P
t
i+1,j,l � 2P t

i,j,l + P
t
i�1,j,l (3.21)

DELj = Dj = P
t
i+1,j,l � P

t
i�1,j,l (3.22)

2. Set the probability flux as
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3. Compute the reference face value:

P
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t
i�1,j,l +

P
t
i,j,l � P

t
i�1,j,l

cx
(3.24)

4. If DELi > 0, limit the fluxes according to
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5. Similar to step (4), if DELi < 0, limit the fluxes according to

if P
t
i+1/2,j,l > P

t
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t
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Like the flux calculation at face Pi+0.5,j,l, the fluxes at the other five faces can be esti-

mated by following steps (1) to (5). Once all probability fluxes faces are estimated, they

need to be substituted into the discretized LEFPE (equation 3.19). Thus, the probability

density function at the next step can be calculated by solving the resulting system of linear

equations. Moreover, the probability mass in the x�y�h space must be conserved since the

proposed LEFPE is a transport equation of the evolutionary probability density function.

Therefore, reflecting boundary conditions are applied to the boundaries in the x � y � h

space. Furthermore, since an explicit numerical scheme is used to deal with the advective

terms, the Courant–Friedrich–Lewy (CFL) condition is required at each computational node

to achieve stable solutions. The CFL condition can be expressed in mathematical terms as

follows

Courant Number = C =
D

x
·�t

�xi
+

D
y
·�t

�yj
+

D
h
·�t

�hl
 Cmax  1 (3.29)

The solution of this LEFPE results in the joint PDF of the state variables in the x-y-h

space. Thus, it is possible to obtain a hydrologic system’s ensemble behavior and variability

defined by the point-scale stochastic confined groundwater flow equation under uncertainty

in the transmissivity field and the source term. However, the proposed methodology may

also be expanded to problems with uncertainties in storativity and boundary conditions.
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Chapter 4

Application to groundwater flow

problems

4.1 Statistical Characteristics of groundwater systems

Subsurface environments are complex natural systems that usually present a high degree of

spatial heterogeneity in their properties. They are influenced by meteorological conditions,

topography, geological structures, human activities, and vegetation, among others. Hence,

these systems are full of uncertainties that need to be considered in the modeling process to

obtain reliable solutions. The uncertainties in groundwater modeling are mainly attributed

to factors such as (1) errors in the conceptualization of the system (Bredehoeft, 2003; Rojas

et al., 2008), (2) uncertainty derived from observation error as well as the limited accuracy

of instruments (Wu and Zeng, 2013) and (3)uncertainties due to the scarcity or the lack of

measurements in space and time. Furthermore, an extra amount of uncertainty is inherent

in any modeling process.
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Soil system properties vary spatially and temporally, and direct or indirect techniques

are used to measure them. Unfortunately, the estimation obtained by di↵erent approaches

provides substantially di↵erent hydraulic parameter estimates (Morbidelli et al., 2017). The

discrepancy in the estimations using di↵erent methods can be explained due to the flow ge-

ometry, sample size, soil conditions, and installation procedures (Lai et al., 2012). Moreover,

it is well documented in the literature that groundwater parameters are scale-dependent (Mu

et al., 2020; Sudicky, 1986), making the measurements even more complex.

Not only has much attention been spent on measuring hydraulic properties in the field,

but also on estimating them in locations with no information due to observation technology

and cost constraints. To overcome these limitations, the restricted geological data available is

usually analyzed by employing geostatistical tools, such as semivariograms (Lin et al., 2017),

transition probabilities (Carle and Fogg, 1996), and patterns of geological heterogeneities

(Fleckenstein et al., 2006) to

4.1.1 Modeling uncertainty in the hydraulic conductivity

The geostatistical interpretation of the measured conductivity data is usually considered a

log-normal probability distribution with an assumed exponential correlation model (Alecsa

et al., 2020; Bohling et al., 2016; Woodbury and Sudicky, 1991). In addition, to represent

the correlation structure in the conductivity data, a common practice is to model the log-

conductivity transformed data with an exponential correlation structure (Baye et al., 2013).

However, other authors have considered the same correlation model just for conductivity

without applying the log transformation (de Brito Fontenele et al., 2014; Rahman et al.,

2008; Razack and Lasm, 2006; Rotzoll and El-Kadi, 2008).
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Stochastic hydrogeology’s common assumption is that log-conductivity data follows an

exponential correlation structure, and two factors could explain this supposition. The first

one came from the stochastic flow-transport theory (Dagan, 1982; Gelhar and Axness, 1983),

where the flow and transport equations are expanded by using power series, and then a first-

order approximation is attempted. The solutions obtained by this method take advantage of

the Gaussian properties of the ln(K) data, which depend only on the mean and the autocor-

relation of log-conductivity data. Furthermore, geostatistical techniques (e.g., kriging) also

have focused on the spatial structure of the log-transformed conductivity since prediction

performances by using kriging are generally worse when the sample distribution displays

a strong skewness (Ahmed and Marsily, 1987; Patriarche et al., 2005). However, Razack

and Lasm (2006) stated that variograms of hydraulic conductivity (which tend to follow a

lognormal distribution) are more structured than the variograms of log-conductivity (which

are normally distributed), raising the question of whether data normality is necessary or not

in the geostatistical characterization.

In this study, the method proposed by Zárate-Miñano and Milano (2016) is used to carry

out the transmissivity random field generation. This method was originally developed to

construct wind speed models, and it involves the use of stochastic di↵erential equations

(SDEs) by using the equivalence between the Langevin and the Fokker–Planck equations

and the regression theorem. This study considers a log-normal distribution for transmissivity

since this assumption is the most used to model transmissivity fields in subsurface hydrology.

To generate the transmissivity random field, the only information needed to build the models

is the mean and variance of the transmissivity as well as its correlation length. Thus,

it is possible to generate stochastic processes with a specific probability distribution and

exponentially decaying autocorrelation function. This model can be expressed as follows:
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dT (x) = a [T (x), x] · dx+ b [T (x), x] · dW (x) (4.1)

where the drift term a [T (x), x], and the di↵usion term b [T (x), x] are expressed as follows
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where W (x) represents a standard Wiener process, erf(·) is the error function, T is trans-

missivity, ↵ is the autocorrelation coe�cient, and µ and � are the mean and the standard

deviation of the natural logarithm of variable T, respectively.

To generate the transmissivity random field implies the numerical integration of the

stochastic partial di↵erential equation (4.1). To solve the SPDE (4.1) numerically, the im-

plicit Milstein scheme is used (Mil’shtejn, 1975). This scheme is based on the truncated

Ito-Taylor expansion, and it has a convergence error of order 1 (O(h)) in both the weak and

the strong sense. This scheme can be expressed as follows:
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where �h is the integration spatial step and �W (x) ⇠ N (0,�h) are random increments

of the Wiener process.

4.2 Application of the Monte Carlo Approach

Deterministic models are characterized by variables that are uniquely determined by specific

parameters. However, uncertainties inherent to any groundwater model render the deter-

ministic governing equation (equation 2.12) into a stochastic partial di↵erential equation

(SPDE), challenging to solve. Just a few of these SPDEs have an analytical solution. There-

fore, numerical techniques are standard tools to tackle this issue.

The Monte Carlo simulation is the most widely used approach to consider uncertainties

in the analysis. This approach consists in generating a series of samples from the statistical

distribution of the input parameters. Then, deterministic equations for each set of realized

parameter values need to be solved. Once a su�cient number of realizations are solved in a

deterministic fashion, those results can be used to determine the statistical properties of the

system (Hassan et al., 1998; Jafari et al., 2016).

The MC approach is accepted as the most robust technique used for benchmarking pur-

poses and for evaluating the system’s uncertainties (Schar↵enberg and Kavvas, 2011). How-

ever, this approach has a high computational cost. This limitation is more relevant for large
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and complex systems (Hayley, 2017). These complex systems are composed of an intensive

number of variables, and the inter-relationships between them increase the system’s mathe-

matical complexity.

This study uses the MC approach to assess the results obtained through the LEFPE

methodology. The main program, which solves the groundwater flow equation in a deter-

ministic fashion, was coded on Matlab. The number of realizations used in the MC simulation

varies for each case. A convergence criterion was adopted to establish the number of realiza-

tions needed for the MC simulation. The criterion evaluates the relative standard deviation

error for N and N+2000 realizations. If their relative error is more significant than 1%, other

2000 realizations are incorporated until satisfying a change of less than 1% in the standard

deviation. This analysis was performed over the standard deviation since the mean tends to

converge quickly.

Figure (4.1) shows the relative standard deviation error for Applications I and II, which

will be discussed in more detail in section 5. While Application I consider an uncorrelated

transmissivity field (blue line), Application II considers a correlated transmissivity field (red

line). Simulations indicate that around 90.000 and 110.000 samples are needed to satisfy the

criterion defined previously for the uncorrelated and correlated fields, respectively. Further-

more, the results suggest that a higher number of samples are needed for correlated fields

compared to the uncorrelated fields. This result is consistent with results in section 5 since

the ensemble standard deviation is higher for the correlated field. It is important to note

that this analysis was carried out on a one-dimensional problem. Therefore, this number for

higher-dimensional problems would increase considerably as well as its computational times.
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Figure 4.1: Relative standard deviation error for MC simulations by considering uncorrelated
and correlated transmissivity field for Application I and II.

4.2.1 Verification of the Deterministic Numerical Solution

In order to verificate the capabilities of the numerical scheme used to solve the governing

equation (2.9) in chapter 2, a set of three benchmark tests are performed. These numerical

tests include analytical solutions for the drawdown of two-dimensional radial flow towards

a discharge well in an infinite aquifer (Theis, 1935; Thiem, 1906) and a grid and time con-

vergence analysis. Thus, the numerical solution is compared against the analytical solution,

which is used as a reference.

Test 1

Theis (1935) presented an analytical expression for transient drawdown of two-dimensional

radial flow towards a discharge well in an infinite homogeneous aquifer. This solution gives
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the hydraulic head as function of the distance from the well (r) and time (t) as follows

h(r, t) = h0 �
Q

4⇡T
W (u) (4.7)

where,

u =
r
2
S

4Tt
W (u) = �0.577216� ln(u)�

1X

i=0

(�u)i

i · i!
(4.8)

where h0 is the initial hydraulic head, Q is the discharge rate of the well, T is the aquifer

transmissivity, W (u) is the well function, and S is the storativity. The domain used consists

of a square of 2500 [m] by 2500 [m], where each grid was 50 [m] by 50 [m].

Q 20 [m3
/d]

h0 20 [m]
T 1 [m2

/d]
S 0.001

Table 4.1: Parameter values for the MC numerical test 1 and 2.

Figures (4.2.a), (4.2.b) and (4.2.c) show the transient flow calculations for a distance r

equal to 100, 200 and 300 [m] from the well center respectively and the analytical solution

proposed by Theis (1935). Results suggest a near-perfect agreement for short discharge

times. As time increases, the hydraulic head computed by the numerical scheme proposed

reaches a steady-state value depending on the distance from the well’s center, while Theis’

solution indicates an ongoing drawdown. The di↵erence between the analytical and the nu-

merical solution for long-time simulations can be explained by the influence of boundaries in

the numerical simulation. Additionally, it is possible to note that observation points closer
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to the border ”feel” the boundary e↵ect earlier than observation points farther from the

boundary. This fact explains why Figure (4.2.a) has the best agreement in the water table

height between the analytical solution and the numerical scheme.

Test 2

Theis’ solution cannot reproduce the steady-state solution for long discharge times. However,

Thiem (1906) proposed an analytical formulation for steady-state radial flow conditions,

where the hydraulic head is given by

h(r) = h0 �
Q

2⇡T
ln

✓
R

r

◆
(4.9)

where R is the radius of influence, i.e. the distance at which the head equals h0. To

perform the numerical experiment, it was considered the same values used in test 1 (Table

4.1) and a radius of influence equal to 1300 [m]. The steady-state results obtained by the

numerical scheme proposed were compared to the result of the Thiem’s analytical formulation

in Figure 4.3. Results show a good agreement with Thiem’s solution along the whole model

domain.

Test 3

A grid and time convergence study is performed to verify the code and analyze the quantifi-

cation of errors introduced during its application. This numerical test considers a rectangular

domain with side lengths L and H. The mesh and the time step were successively refined,

according to table (4.3), until a su�cient level of accuracy was obtained. The analytical
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(a) r = 100 [m]

(b) r = 200 [m]

(c) r = 300 [m]

Figure 4.2: Test 1: Head variation over time at (a) r=100 [m], (b) r=200 [m] and (c) r=300 [m].
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Figure 4.3: Test 2: Head variation over distance from the well center at steady-state conditions.

solution used to carry out this analysis considers a unique transmissivity and storativity for

the whole domain. Thus, the governing equation (2.12) can be expressed as follows

@h

@t
=

T

S

@
2
h

@x2
+

T

S

@
2
h

@y2
0  x  L, 0  y  H (4.10)

with

h(0, y, t) = 0[m] = h(L, y, t), h(x, 0, t) = 0[m],
@h

@y
(x,H, t) = 0 h(x, y, 0) = 100[m]

which has an analytical solution given by

h(x, y, t) =
1X

m=1

1X

n=1

1600

(2n� 1)(2m� 1)⇡2
· sin

✓
(2n� 1)⇡x

L

◆
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2H

◆
(4.11)
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◆
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L 6 [m]
H 4 [m]
T/S 1 [m2

/d]

Table 4.2: Parameter values for the MC numerical test 3.

Parameters used to perform the numerical experiment are shown in Table 4.2. Numerical

results were compared to the analytical solution at t=1 [d] by monitoring maximum errors

versus mesh-time length scale shown in Table 4.3 and Figure 4.4.

dx = dy [m] 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
dt [d] 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

max error 21.892 13.588 7.788 4.209 2.195 1.121 0.567 0.285 0.143

Table 4.3: Discretization parameter values and maximum errors for the MC numerical test
3.

Results suggest that the discrete solution converges to the exact solution as the mesh

spacing and time step are reduced in calculations. Additionally, space and time order of

the scheme used in this study is two and one respectively. Therefore, an order one for this

numerical scheme is expected. That hypothesis can be verified in the Figure 4.4, where the

e↵ective order is one since it is possible to note that the slope of the plot (blue line) tends

to one as the grid size and time step decrease.
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Figure 4.4: Test 3: Maximum error as a function of space and time

4.3 Application of the Proposed Fokker-Planck

Equation Methodology

Unlike the MC approach, the proposed stochastic framework solves the PDF evolution of the

state variables in space and time in only one simulation. However, this particular LEFPE

has one extra dimension compared to the governing equation used to carry out the MC

simulation. This extra dimension needs to be handled appropriately to keep reasonable

computational times. For this reason, the numerical scheme presented in the previous section

to solve the FPE was implemented in C++, a low-level language. Furthermore, the OpenMP

library (Chandra et al., 2001) is used to parallelize part of the code, which explicitly solves

the advection terms. The parallelization is just applied to the advection term solver since

that part is the bottleneck in the code flow.
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4.3.1 Validation of the Numerical scheme proposed to solve the

LEFPE

In order to validate the scheme, an advection-dispersion problem in three dimensions was

carried out to assess the performance of the numerical solution. To perform the validation,

a unit Gauss impulse centered at (x0 = 0.3, y0 = 0.3, z0 = 0.3) was used as initial condition,

represented by

C(x, y, z, t = 0) = exp

 
�
(x� x0)

2

Cx
�

(y � y0)
2

Cy
�

(z � z0)
2

Ch

!
(4.12)

where the exact solution according to Shukla and Tamsir (2018) is given by

C(x, y, z, t) =
1

(1 + 4 · t)3/2
· exp

 
�
(x�Bxt� x0)

2

Cx(1 + 4t)
�

(y �Byt� y0)
2

Cy(1 + 4t)
�

�
z �Bht� z0

�2

Dh(1 + 4t)

!
(4.13)

The discretization of the spatial coordinates was established as �x = �y = �h =

0.025[m] and the simulation time between 0 and 1 seconds with a time step of �t = 0.025[s].

The numerical solution was obtained with parameters Bx = B
y = B

h = 0.2 and C
x = C

y =

C
h = 0.01.

A comparison between the scheme proposed and the theoretical values are shown in Fig-

ure (4.5). The comparison shows a good agreement between the exact analytical solution

and numerical solution, ensuring that the numerical scheme appropriately describes the evo-

lution of this advective-di↵usive problem.

Figure (4.5) illustrates that the mean location of the plume matches the theoretical values

given by the drift coe�cients, although a small presence of numerical di↵usion is observed

for the numerical scheme. The numerical di↵usion observed could be due to the mesh size
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(a) t = 0.25 [s] (b) t = 0.5 [s]

(c) t = 0.75 [s] (d) t = 1.0 [s]

Figure 4.5: Comparisons between numerical and exact analytical solutions along face x=y, z=0.5

[m] at di↵erent times.
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since the numerical scheme proposed is susceptible to this parameter. However, the results

show that the numerical scheme has the same shape-evolution as the theoretical value, where

the mean’s magnitudes are almost identical.

4.3.2 Initial and Boundary Conditions

The LEFPEs’ solution is numerically obtained by solving the partial di↵erential equation

(3.12). Therefore, the initial and boundary conditions of the problem need to be correctly

established to solve this PDE. These conditions must be translated from the real space x�h

to the probability space P � x� h.

According to Kavvas (2003), deterministic boundary and initial conditions can be rep-

resented Dirac delta functions in the probabilistic space. This function is also known as

the unit impulse, infinitely peaked at one location while it is zero everywhere else. Since

it is impossible to numerically represent a Dirac delta pulse with infinite value at only one

position, it is estimated as a block that has a very high height with a small bottom base (in a

three-dimensional framework). Therefore, in the LEFPE approach, deterministic conditions

can be expressed by means of

P (x = x
⇤
, t = t

⇤) = �(h� h
⇤) =

8
><

>:

0 : h 6= h
⇤

1 : h = h
⇤

(4.14)

In this study, initial conditions are considered deterministic, which means a known hy-

draulic head at the beginning of the simulation. For the case of the boundary conditions, they

are also treated as deterministic. However, they can be represented by a known hydraulic

head (Dirichlet B.C.) or flux (Neumann B.C.) at the boundary. In the case of Dirichlet B.C,

the treatment is similar to the representation of the initial conditions. Nevertheless, the

case for Neuman B.C. in the LEFPE needs to be carefully analyzed in agreement with its
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governing PDE at that location (Diaz 2019).

4.3.3 Incorporation of the transmissivity random field statistics

into the LEFPE framework.

The variability in the hydraulic head generated by the transmissivity field is one of the critical

objectives of this study. Hence, the statistical characteristics of the transmissivity random

field need to be incorporated into the stochastic model proposed. Hence, the advection (Di)

and di↵usion (F i) terms from equation (3.12) need to be correctly estimated.

Application I considers an uncorrelated random field. Even though this is not realistic,

it will be helpful to compare it against a correlated one. Thus, exploring how the hydraulic

head behavior is modified by including a spatial correlation structure in the transmissivity

field will be possible. An uncorrelated random field means the process has a very short

memory. In other words, the values next to the point under analysis do not depend on

their neigh-borhood. Therefore, the transmissivity random field can be estimated as delta-

correlated. In mathematical terms, this assumption simplifies the estimation of the di↵usion

coe�cient (F i) in equation (3.12), which involves estimating the ordered covariance terms.

Then, the ordered-covariance term in the LEFPE is simplified as follows.

Z t
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;
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Through this assumption, the ordered covariance term associated with the di↵usion term

(F x) in equation (3.11) collapses to the variance. Therefore, the non-local LEFPE reduces

to a less complex local FPE. On the other hand, a correlated transmissivity field implies

calculating the covariance term in equation (). The incorporation of the correlation is made

by using the exponential model denoted by equation (4.1). By combining equation (4.1) into

(3.12), the di↵usion term (F i) is represented according to the following equation.

Z t

0

Cov


dT (xt)

dxt
;
dT (xt�s)

dxt�s

�
ds

=

Z t

0
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ds

=
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a [T (xt), xt] ; a [T (xt�s), xt�s]

�
ds+ smaller order terms (4.15)

⇡ ↵
2
· �

2
·

Z t
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�↵|xt�xt�s|ds

While the Eulerian location xt is known, the Lagrangian location xt�s is not. However, by

substituting equations (2.16), (2.17), (2.18) into (3.9) is possible to estimate the Lagrangian

unknown location xt�s numerically (Liang and Kavvas, 2008). In addition, from equation

(4.15) is possible to note that the integral converges to a certain value as the distance between

xt and xt�s increase. Mathematically speaking, this can be explained by limx!1 exp [�x] = 0
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Chapter 5

Numerical Results and Discussion

This chapter evaluates the performance of the proposed upscaling technique for the ground-

water flow process in confined aquifers by comparing results from corresponding Monte Carlo

simulations. To perform this task, three di↵erent numerical tests are carried out to illustrate

the potential and capabilities of the novel proposed stochastic model. Application I and II

are one-dimensional problems. While application I assumes an uncorrelated transmissivity

random field, application II considers the correlation structure. In addition, application III

corresponds to a two-dimensional extension of Application II.

5.1 Application I - One-dimensional uncorrelated

transmissivity case

The first application is performed on a one-dimensional problem. This hypothetical problem

involves an aquifer of 1000 [m] long and a width of 15 [m], as presented in Figure (5.1).

For this case, the transmissivity is taken as the only random field in the groundwater flow

equation (2.12), while the storativity is considered deterministic. On the other hand, both

initial and boundary conditions are taken as deterministic by following the steps described

in section 4.3.2.

Joaquin Meza

Joaquin Meza
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Figure 5.1: Hypothetical problem: One-dimensional confined aquifer.

This case assumes a lack of correlation structure in the transmissivity field. Even though

this assumption does not accurately represent reality, it is used to explore the capabilities

of the proposed methodology. In addition, application I will be used to compare against

application II, which includes the correlation structure in the transmissivity field for the

same problem.

In this case, the transmissivity random field was assumed as log-normal distributed. A

transmissivity mean equal to µT = 3 ·10�2 [m2
/s] is used, which is a representative hydraulic

conductivity value (Kx = 2 · 10�3[m/s]) for gravel aquifers (Domenico and Schwartz, 1998).

In terms of their variability, a coe�cient of variation equal to CV = 1.5 was considered.

According to Todd (1980), typical values for specific storage Ss in confined aquifers range

from 5 · 10�5 [1/m] to 5 · 10�3 [1/m]. Thus, numerical tests in this study consider a specific

storage SS equal to 10�4 [1/m], which is consistent with the range reported by Todd (1980)

.
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Boundary conditions were modeled as deterministic Dirichlet boundary conditions (or

first-type) along x = 0 and x = 1000 [m], equal to 22 [m] and 20 [m], respectively. The

initial condition is set as deterministic too, such as h(t = 0) is equal to 20 [m], which results

in a flux directed along the x�axis. The statistics of the physical parameters and the model

properties are presented in Table (5.1).

Parameter Symbol Value

Transmissivity mean µT 3 · 10�2[m2
/s]

Coe�cient of Variation CV 1.5

Specific storage Ss 10�4

Aquifer length L 1000 [m]

Aquifer width B 15 [m]

I.C. at t=0 h0 20 [m]

B.C. at x=0 h1 22 [m]

B.C. at x=L h2 20 [m]

x-grid size �x 2 [m]

h-grid size(1) �h
(1) 1 [cm]

correlation length(2)
L
(2)
x 100 [m]

Simulation time T 3 [hours]
(1) It just applies to the LEFPE methodology
(2) Application II

Table 5.1: Physical parameters values for applications I and II.

Regarding the numerical discretization for the MC and LEFPE, both models were im-

plemented using the same spatial grid �x = 2[m]. In the case of the time discretization,

while the time step in the MC simulation was fixed (�t = 1[s]), the FPE was variable to

satisfy the Courant constraint (Equation 3.29). This time step restriction is crucial at the

beginning of the simulation due to the high gradients in the probability domain P � x� h,

which add extra numerical di↵usion to the system. These high gradients are due to incorpo-
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rating deterministic conditions by means of Dirac delta pulses. However, as time goes, the

simulation tends to smooth the probability mass in the x�h plane, reducing the probability

gradients.

Moreover, this variable time step helps reduce the computation time since the LEFPE

has an extra dimension compared to the original groundwater flow equation, implying a

higher computational cost. This extra dimension is associated with the hydraulic head in

the probability space, and it shows up due to the probabilistic nature of the LEFPE. Since

the state variable in this equation is the PDF (P ) instead of the groundwater flow equation

in which the state variable is the hydraulic head (h).

(a) MC (b) FPE

Figure 5.2: Plan view of the mean Hydraulic head over position and time for the results obtained

by the LEFPE method and those obtained by the MC method for application I.

Figure (5.2) shows the ensemble average of the hydraulic head in time and space for

both the LEFPE methodology and the MC approach. In the comparison between figures

(5.2.a) and (5.2.b), it is clear that the ensemble average hydraulic head computed by the
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LEFPE method appropriately resembles the one obtained from the MC simulations, sharing

the same behavior in time and space.

In addition, to evaluate the performance of the LEFPE methodology, an assessment of

the ensemble standard deviation of the hydraulic head is performed. Figure (5.3) shows the

standard deviation in time and space for both approaches. Results suggest that the stan-

dard deviation has similar spatio-temporal behavior in both methodologies. However, they

show some discrepancies at early times, where the MC approach results in higher standard

deviation values compared to the results from the proposed stochastic framework.

(a) MC (b) FPE

Figure 5.3: Plan view of the standard deviation of the Hydraulic head over position and time for

the results obtained by the LEFPE method and those obtained by the MC method for application

I.

The combination of two factors could explain the high values for the standard deviation

obtained through the MC approach at early times. These factors are (1) the proximity to

B.C. and (2) the uncorrelated random field used in this case. Since we use an uncorrelated

transmissivity random field, the cell next to the boundary condition could significantly di↵er

61



in the transmissivity value with respect to its neighborhood. Therefore, the conductance

between those cells (estimated by equation 2.21) has high variability for MC simulations.

W� 
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Figure 5.4: Comparison of the ensemble average and variability by LEFPE method and the MC

approach as a function of location at di↵erent times for Application I.

In addition, at the beginning of the simulation (t = 0) the hydraulic gradient is the

highest (�h = 22[m] � 20[m] ) during the simulation and gradually decreases in time as

time goes on. Therefore, the flux obtained by the Darcy equation (equation 2.8) will also

have higher variability, decreasing gradually as the hydraulic gradient does. Therefore, the

resulting fluxes have a high variability too. This high variability in the fluxes produced

by these mentioned factors generates relevant discrepancies in the hydraulic head for early

times next to the B.C., resulting in a high standard deviation value. On the other hand, the

62



LEFPE approach cannot constrain these high standard deviation values at the beginning

of the simulation. Similar issues were faced by Diaz (2019), where the standard deviation

estimation su↵ers from a lack of accuracy next to the boundary condition.

Figure (5.4) shows the ensemble mean and standard deviation for application I at simula-

tion time t = {T/2;T}. The left panel in this figure indicates that the mean hydraulic head

computed by the LEFPE methodology matches the MC results, with a slight underestima-

tion in the area with the higher curvature. For the standard deviation, the general behavior

is well caught as well. However, the right panel of the figure (5.4), which shows the standard

deviation, confirms an overestimation of this parameter. Furthermore, a higher deviation

from the MC simulation occurs next to the boundary condition. The possible cause of these

di↵erences between both approaches is assessed in the following application, which includes

a correlation structure in its transmissivity field.

5.2 Application II - One-dimensional correlated

transmissivity case

For application II, a hypothetical problem similar to application one was chosen. Neverthe-

less, the only di↵erence is the correlation structure in the transmissivity random field. While

application I assumes a lack of correlation, application II includes the correlation structure

in the transmissivity field. This numerical experiment used an exponential model to include

this structure, with a correlation length equal to Lx = 100 [m], represented by equation (4.1).

Furthermore, the coe�cient of variation is the same in the experiment performed in ap-

plication I (CV = 1.5). Thus, it is possible to explore how di↵erent the aquifer’s probabilistic

behavior is under both correlated and uncorrelated transmissivity random fields. The statis-
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tics of the physical parameters and the model properties are presented in Table (5.1).

Figure (5.5) shows the computed hydraulic head’s mean of the LEFPE and MC ap-

proaches. These figures indicate a satisfactory agreement, similar to application I. However,

the estimation obtained from the LEFPE methodology tends to slightly overestimate the

hydraulic head (light blues) next to the boundary at x = 1000[m]. This overestimation

occurs due to the numerical di↵usion coming from that boundary, which moves the prob-

ability mass through the positive direction of the h � axis, since h domain is limited by

19.9 [m] < h < 22.1 [m].

(a) MC (b) FPE

Figure 5.5: Plan view of the mean hydraulic head over position and time for the results obtained

by the LEFPE method and those obtained by the MC method for application II.

The corresponding standard deviation profiles for this case are shown in figure (5.6).

The shapes of the standard deviation profiles by the LEFPE are spatially and temporally

consistent with those by the MC approach. However, the hydraulic head variability is over-

estimated by the LEFPE methodology, being this deviation more important next to the

boundaries. Even though the LEFPE was derived by employing a second-order cumulant
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expansion, it is essential to note that it tends to smooth its solutions (Ohara, 2003). This

behavior of the LEFPE reported by Ohara (2003) makes the PDF flatter, which artificially

increases the standard deviation estimation.

(a) hydraulic head’ standard deviation - MC (b) hydraulic head’ standard deviation - FPE

Figure 5.6: Plan view of the standard deviation of the Hydraulic head over position and time for

the results obtained by the LEFPE method and those obtained by the MC method for application

II.

Figure (5.7) shows the hydraulic head’s ensemble average and standard deviation. These

plots show the mean and the standard deviation behavior at simulation time equal to

t = {T/2;T} across the space domain. The ensemble average behavior represented by

the left panel from the figure (5.7) indicates an overestimation by the LEFPE methodology

against the MC approach. This overestimation suggests higher water fluxes through the

x � direction. In the probability space P � x � h, the advection coe�cient B
h (Equation

3.15) in the h � direction could be overestimated. Advection correction terms (showed in

equation (3.10) could explain the increment of this parameter. Since they were neglected,

assuming low correlations between their variables, the advection correction term could be

slightly incremented. Hence, the artificial increments generated by this simplification could

explain the overestimation of the hydraulic head’s mean estimation.
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Figure 5.7: Comparison of the ensemble average and variability by LEFPE method and the MC

approach as a function of location at di↵erent times for Application II.

The right panel of figures (5.7) compares the standard deviations of hydraulic heads com-

puted by Monte Carlo and FPE approaches at two di↵erent times. These figures show that

LEFPE can constrain its evolution but overestimate this statistical parameter. Moreover,

the overestimation is exacerbated next to the boundaries. The increment in overestimation

at the boundaries can be attributed to the numerical scheme. Even though flux limiters

were used to solve the advection part of the LEFPE, there is still numerical di↵usion when

high gradients are faced. Since the boundary conditions in the probability domain were rep-

resented as a Dirac delta pulse, high gradients are inherent in the boundary neighborhood.
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The comparison between applications 1 and 2 results in interesting findings regarding

their ensemble hydraulic head. The correlated and uncorrelated random field presents a

similar behavior to their time and space evolution. This similarity indicates that the correla-

tion or lack of correlation in the transmissivity field does not considerably a↵ect the ensemble

behavior of the system. The LEFPE framework well captures this behavior. Nevertheless,

there are di↵erences in terms of their variability. Figures (5.3) and (5.6) show that the lack of

correlation structure in the transmissivity random field underestimates the hydraulic head’s

standard deviation.

This di↵erence can be qualitatively explained by the correlation structure in the transmis-

sivity field. Relative points in this field should be more similar in a correlated random field,

presenting more minor discrepancies between each other. If we think from a groundwater

perspective, every transmissivity sample field can be interpreted as ”preferential paths”, gen-

erating preferential flow. On the other hand, an uncorrelated transmissivity field, in which

values have no relation to their neighborhood, would smooth the conductance between cells,

averaging the flux between them. Therefore, the fluxes would be more uniform, reducing the

variability in the hydraulic head.

In general terms, results from figures (5.2) to (5.7) indicate that the proposed stochas-

tic framework performs satisfactorily in predicting the ensemble hydraulic head mean and

variability. Results from Applications I and II suggest that the spatio-temporal evolution

of these statistical parameters is well simulated. However, the LEFPE methodology tends

to overestimate the standard deviation. This overestimation is addressed in more detail in

Application III.
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5.3 Application III - Two-dimensional extension of

application II

Application III consists of a two-dimensional extension of application II, represented by figure

(5.8). The physical and statistical parameters have similar characteristics as application II

but are extended to the x�y domain. The boundary conditions at x = y = 0 are considered

deterministic Dirichlet B.C, while at x = y = 2000[m] are assumed as absorbing boundaries

to limit the area of computation. An exponential correlation model was used to represent

the transmissivity random field, shown in equation (4.1). Nevertheless, the correlation is

independent along each spatial dimension. This independence in the transmissivity field

occurs by the use of independent SPDE in the x and y direction, which is inconvenient for

the used transmissivity generation model. The parameters used to carry out this application

can be found in the table (5.2).

Figure 5.8: Illustration of the 2D physical domain for Application III.

Figure (5.10) show the hydraulic head’s ensemble average at the simulation time t =
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{T/3; 2T/3;T} for the two-dimensional case. These figures indicate water fluxes through

the x and y axes. Fluxes are due to the higher hydraulic gradient next to the boundaries at

x = 0 and y = 0. The comparison shows a good match in terms of the ensemble mean of the

hydraulic head. However, it is possible to note an overestimation next to x = y = 2000[m].

For t = 1 [h], the hydraulic head follows an ”L” pattern, but as time goes on, it changes to a

”C” pattern. This behavior is probably due to the influence of absorbing boundaries, which

tend to advect probability mass through the positive direction of the h-axis, increasing the

ensemble mean at the boundaries.

Parameter Symbol Value

Transmissivity mean µTx = µTy 3 · 10�2[m2
/s]

Coe�cient of Variation CV 1.5

correlation length(2)
Lx = Ly 100 [m]

Specific storage SS 10�4

Aquifer length Lx = Ly 2000 [m]

Aquifer width B 15 [m]

I.C. at t=0 h0 20 [m]

B.C. at x=0 �1 22 [m]

B.C. at y=0 �2 22 [m]

B.C. at y=L �3 absorbing

B.C. at x=L �4 absorbing

grid size �x = �y 5 [m]

h-grid size(1) �h
(1) 1 [cm]

Simulation time T 3 [hours]
(1) It just applies to the LEFPE methodology

Table 5.2: Physical parameters values for application III.

Regarding the hydraulic head variability, the standard deviation is shown in figure (5.10)

as a function of the location at specific times. This figure indicates that the LEFPE method-

ology correctly portrays the ensemble variability, providing a good representation of the
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patterns. Nevertheless, this statistical parameter is again overestimated next to the bound-

aries. Moreover, this simulation shows standard deviations close to 6 [cm]. Instead, the

one-dimensional case of application II shows values close to 45 [cm]. This global standard

deviation reduction is attributed to the increment of the spatial dimensions with respect to

application II. However, the inclusion of extra spatial dimensions implies an extra drift term,

which add extra numerical di↵usion to the system.

Figures (5.11) and (5.12) show the ensemble average and variability for the hydraulic

head at three di↵erent times at lines x = y and x = 2y, respectively. From the left panel of

both figures, it can be easily seen that the proposed stochastic framework’s mean behavior

of the hydraulic head and the Monte Carlo simulation indicate good matches, improving

this estimation considerably compared to application II. However, at line x = 2y, this dif-

ference is more important than the mean at line x = y. In the variability (right panel) case,

the LEFPE methodology shows excellent agreement with only light deviations concerning

the MC simulations. Moreover, it is possible to note how the variability decreases as time

goes on, and the LEFPE methodology predicts that behavior exceptionally. Therefore, the

proposed stochastic approach can constrain the standard deviation reduction in time for the

two-dimensional case. However, the excellent agreement loses quality as we walk away from

x = y through the boundaries. Indicating how sensitive is this method to the boundary

conditions.

The overestimation of the ensemble variability of the proposed LEFPE methodology over

the MC simulations can be attributed to three factors. The first one is associated with the

(1) derivation of the LEFPE. Even though a second-order cumulant expansion was used for

its derivation, the solution tends to be smooth (Ohara, 2003). Second, (2) the numerical
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di↵usion inherent to any numerical model, especially with advection schemes. The previous

factors mentioned di↵using the state variable P , making it flatter and consequently increas-

ing its variability. In addition, (3) modeling deterministic conditions as Dirac delta pulses

introduce high gradients into the system. These high gradients result in extra numerical

di↵usion in these areas compared to zones far from the boundaries.
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Figure 5.9: Plan view of the Hydraulic head’s ensemble average over position and time for the

results obtained by the LEFPE method and those obtained by the MC method for application III.
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Figure 5.10: Plan view of the Hydraulic head’s ensemble variability over position and time for the

results obtained by the LEFPE method and those obtained by the MC method for application III.
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Figure 5.11: Comparison of the ensemble average and variability by LEFPE method and the MC

approach at location x = y at di↵erent times.
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Figure 5.12: Comparison of the ensemble average and variability by LEFPE method and the MC

approach at location x = y at di↵erent times.
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Chapter 6

Summary and Conclusions

Due to the heterogeneity in geomaterials and the stochasticity of the source process, the gov-

erning subsurface flow equation in confined aquifers at the point-scale becomes a stochastic

PDE at the field scale. Therefore, this governing equation needs to be upscaled to the corre-

sponding field scale to predict its behavior correctly. One of the most popular approaches to

carry out this task has been developing their ensemble average forms. Although the MC and

Perturbation methods have been widely used for upscaling the groundwater flow equation

in confined aquifers, they have essential drawbacks regarding computational cost and small

variance constraints.

For this purpose, this study developed a second-order expression for the mean and prob-

abilistic behavior of the groundwater flow equation in confined aquifers. The resulting ex-

pression (equation 3.12) is a deterministic PDE in the form of a Lagrangian-Eulerian Fokker-

Planck equation (LEFPE), while the original governing equation, described by equation (9),

was a stochastic PDE. The solution of the LEFPE under the appropriate initial and bound-

ary conditions describes the time-space evolution of the hydraulic head’s PDF. Therefore, it

is possible to determine the ensemble averages and variances of the hydraulic head in con-

Joaquin Meza

Joaquin Meza
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fined aquifers in one shot, unlike numerical analysis based on a Monte Carlo approach. The

ensemble average is then obtained from a standard expectation operation using the system’s

already calculated PDF.

Obtaining the probabilistic ensemble behavior by a single simulation is one of the most

advantageous characteristics of the proposed methodology. This characteristic is fundamen-

tal in (1) high-dimensional problems and (2) simulations where tails’ responses are essential

to estimate accurately. Thus, the computational time could be reduced significantly in both

cases since larger sample sizes are required for Monte Carlo simulations. Furthermore, the

LEFPE approach does not su↵er from the ”closure problem” associated with the traditional

perturbation approach or limitations associated with high random parameter variability.

The resulting linear and deterministic LEFPE was discretized by using the explicit UL-

TIMATE QUICKEST algorithm (Leonard, 1991) for the advective terms, while an implicit

second-order centered di↵erence approximation was used for di↵usive terms. Thus, the

LEFPE is solved numerically using an implicit-explicit (IMEX) scheme to determine the

confined aquifer system’s ensemble behavior and variability. The election of the numerical

scheme was based on two points. The scheme needed the potential to be parallelized to

speed up the calculations and to model large domains. In addition, the numerical scheme

had to control the numerical dispersion. The latter is a crucial factor since extra di↵usion

in the system would artificially increase its variance estimation.

Results obtained by solving the LEFPE were compared against the Monte-Carlo solu-

tions to evaluate the performance of the proposed methodology. Despite minor di↵erences,

the comparison showed a good agreement in terms of the ensemble mean and variance in
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the solution domain, characterizing the first and second moments of the hydraulic head in

confined aquifers. Thus, the LEFPE solution gives a good representation of the general

patterns, the decreasing and increasing trend, and the ranges of the ensemble mean and

variability.

Even though the proposed stochastic framework can e↵ectively capture the shapes of

the standard deviation behavior, the ensemble variability tends to be overestimated by the

LEFPE methodology. Three reasons can explain the overestimation of this statistical param-

eter. (1) the second-order cumulant expansion used to derive the LEFPE, (2) the numerical

di↵usion inherent to any numerical model, and (3) the representation of deterministic con-

ditions by means of Delta pulses.

The developed methodology can also include variability in the storativity and boundary

conditions. Subsequently, this stochastic framework shows great promise in dealing with

high-dimensional problems and including correlated structures in the random field variables.
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