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Executive Summary 
Local transportation agencies have typically relied on traditional travel demand forecasting 
models that focus on highway and roadway improvements to optimize vehicular traffic. These 
models are not well-suited for evaluating newer active transportation strategies aimed at 
addressing current State of California policies such as reducing vehicle miles traveled to cut 
greenhouse gas emissions and fostering active transportation modes. Such strategies include: 
changing the composition and mix of land uses, building new sidewalks, reducing roadway 
speed, increasing the number of bus stops, and providing new bicycle lanes.  

In this context, ITS at UC Irvine (ITS Irvine) was invited by Orange County Transportation 
Authority (OCTA) to propose, develop, and apply an approach to better model active 
transportation. This new active transportation model will support efforts to understand the 
travel behavior impacts of active transportation improvements and it will help OCTA prepare 
strategies to meet State of California requirements to reduce household vehicle travel and 
greenhouse gases emissions as part of SB 743. This report represents the first phase of this 
work, which is a review of the recent literature on how to model demand for active 
transportation and an examination of OCTAM’s (OCTA’s own regional travel demand model) 
Active Transportation (AT) modeling tool to evaluate its potential for modification or 
incorporation into a new active transportation model.  

In light of the literature review and of general considerations about people’s mode choices, we 
offer the following observations/suggestions: 

1. First, we note that OCTAM AT does not include variables that could impact people’s 

decision to leave their vehicles at home in favor of transit. These variables relate to 

economic conditions (such as gasoline prices, the median wage and the unemployment 

rate), perceptions (such as safety both from traffic and from crime), and the quality of both 

the biking network (e.g., see Broach & Dill, 2017), and walking routes (including pedestrian 

signals at major crossings) (Broach and Dill, 2016); 

2. Second, a number of conditions need to be jointly met for people to walk or bike (e.g., 

existence of continuous sidewalks or a dense enough network of bike lanes, safety from 

both traffic and crime); in isolation, these conditions would not lead to people walking. 

One way to represent this dependence in statistical models is to use interaction terms; and 

3. Third, OCTAM AT does not capture residential self-selection, which could be important 

here as people who do not plan to walk/bike self-select into car-oriented neighborhoods. 

One convenient tool to tackle this issue is generalized structural equations modeling 

(GSEM) (Kline, 2015). A well-specified GSEM model could incorporate a multinomial or a 

count model and include latent factors characterizing people’s attitudes based on 

additional information while controlling for residential self-selection. 
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1. Introduction 
In an effort to better understand demand for active transportation and to cost-effectively plan 
for related investments, the Orange County Transportation Authority (OCTA) has partnered 
with the Institute of Transportation Studies (ITS) at the University of California, Irvine, (UCI) to 
propose, develop, and apply an approach to model active transportation. Local transportation 
agencies have typically relied on traditional travel demand forecasting models that focus on 
highway and roadway improvements to optimize vehicular traffic. These models are not well-
suited for evaluating newer active transportation strategies aimed at addressing current State 
of California policies such as reducing vehicle miles traveled to cut greenhouse gas emissions 
and fostering active transportation modes. Such strategies include: changing the composition 
and mix of land uses, building new sidewalks, reducing roadway speed, increasing the number 
of bus stops, and providing new bicycle lanes. 

In this context, ITS at UCI has been invited by OCTA to propose, develop, and apply an approach 
to better model active transportation. This new active transportation model will support efforts 
to understand the travel behavior impacts of active transportation improvements and it will 
help OCTA prepare strategies to meet State of California requirements to reduce household 
vehicle travel and greenhouse gases emissions as part of SB 743. 

This report covers work done during the first phase of this project, between the start of this 
project and June 2017. During that period, ITS conducted a selected review of the recent 
literature on how to model demand for active transportation and examined OCTAM’s (OCTA’s 
own regional travel demand model) Active Transportation (AT) modeling tool to evaluate its 
potential for modification or incorporation into a new active transportation model.  This AT 
model was developed for OCTA by Fehr & Peers to increase OCTAM’s sensitivity to active 
transportation investments and to allow for a more dynamic assessment of the costs and 
benefits that could be achieved by applying active transportation strategies within a community 
or region. 

To conduct our literature review, we focused primarily on papers presented at the last two 
annual conferences of the Transportation Research Board (TRB) and we searched the Internet 
using Google Scholar for active transportation modeling studies that have become available on 
line over the past 4 years. We also used Google Scholar to trace studies that cited papers of 
interest to broaden our search. 

In Section II, we give a brief overview of key California laws (AB 32, SB3 75, and SB 743) to 
provide some background about the greenhouse gas emissions targets and sustainable forms of 
transportation goals that are driving OCTA’s efforts. 

In Section III, we review selected active transportation case studies. Our search returned three 
papers that focus on California – including two in Los Angeles County. We summarize findings 
and describe which of the strategies available to OCTA (land use change, new sidewalks, 
roadway speed restrictions, or new bicycle lanes) these papers focus on. The remaining papers 
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analyze other regions in the U.S. (i.e. Pacific Northwest, Rocky Mountains, Midwest, East Coast, 
and the South) or abroad. 

In Section IV, we review selected papers based on how they analyze and model active 
transportation. Our search returned five papers that use four-step models (or data derived 
from those models) to answer research questions related to active transportation. Since the 
OCTAM AT Module is a multinomial logit model, we paid particular attention to studies that use 
a similar approach and summarize six such studies. Other published papers use a range of 
models, including count models (such as the negative binomial model) or linear regression to 
estimate counts, and some hybrid or less common methodologies (such as qualitative 
interviews, structural equation models, or queueing models). Given space constraints, we focus 
on the types of questions answered by each method, and the relationship of each study to the 
four strategies available to OCTA. The research questions and findings of individual papers 
mentioned below are available in the paper summaries provided in Appendix A. 

In Section V, we give a brief overview of the active transportation module in OCTAM, discuss 
some input parameters, and explain why comparing the coefficients of the OCTAM AT Model 
with the California/multinomial logit case studies referenced in our literature review is not 
possible. A summary of the values of the coefficients in these comparison studies is available in 
Appendix B. 

Finally, Section VI concludes and presents some suggesting for moving forward, contingent on 
funding for the second phase of this project. 
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2. California Legislation Summary 
In this section, we very briefly review three California laws – AB 32, SB 375 and SB 764 - that 
impact how sustainability can be incorporated in transportation policy. 

2.1 AB 32: The Global Warming Solutions Act of 2006 

Assembly Bill 32 (AB 32) was signed into law on September 27, 2006 and mandates that 
California reaches 1990 levels of greenhouse gas (GHG) emissions by 2020, which represents a 
twenty-five percent decrease from current GHG levels (Center for Climate and Energy 
Solutions). 

The main components of AB 32 are: 1) the creation of a cap-and-trade mechanism; 2) an 
increase in fuel efficiency of motor vehicles; 3) a decrease in the carbon content of fuels; and 4) 
measures to motivate communities to become more energy efficient. Since its implementation 
in 2006, AB 32 has facilitated the passage of a cap and trade program in 2010, which placed an 
upper limit on GHG levels emitted in the state of California. 

AB 32 covers the major GHGs emitted into the atmosphere (California Air Resources Board, 
2014). The scoping plan required by AB 32 outlines what actions will be taken to reduce the 
emissions of GHG from different sources and how particular regulations and strategies or plans 
can contribute to this goal. AB 32 also identifies the levels of emissions, sets feasible limits, and 
requires the mandatory reporting of these emissions. 

2.2 SB 375: Sustainable Communities and Climate Protection Act of 2008 

Senate Bill 375 (SB 375) was passed to help meet the environmental goals set out by AB 32. SB 
375 aims to reduce: the amount of carbon emitted by motor vehicles, the amount of carbon in 
fuel, and vehicle miles traveled (VMT). Under the SB 375, the Air Resources Board (ARB) sets 
regional targets for GHG emissions reductions from passenger vehicles.  In 2010, ARB 
established these targets for 2020 and 2035 for each region covered by one of the State's 
MPOs. 

Each of California’s MPOs must prepare a "sustainable communities strategy" (SCS) as an 
integral part of its regional transportation plan (RTP).  The SCS covers land use, housing, and 
transportation strategies. Its measures should allow each MPO to meet its GHG emission 
reduction targets (California Air Resources Board, 2016).  Once adopted by an MPO, the 
RTP/SCS guides transportation policies and investments.  ARB must review each SCS to confirm 
that the SCS, if implemented, would meet regional GHG targets.  If the combination of 
measures in the SCS will likely not meet regional targets, the MPO must prepare a separate 
“alternative planning strategy" (APS) to meet these targets. 

The Sustainable Communities Act also establishes incentives to encourage local governments 
and developers to implement their local SCS or APS. Developers can get relief from some 
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environmental review requirements under the California Environmental Quality Act (CEQA) if 
their new residential and mixed-use projects are consistent with a region’s SCS/APS. 

2.3 SB 743: Updating Transportation Metrics in CEQA 

Passed on September 27, 2013, Senate Bill (SB 743) requires the Governor’s Office of Planning 
and Research (OPR) to amend the CEQA Guidelines to provide an alternative to Level of Service 
(LOS) for evaluating transportation impacts. It directs OPR to recommend alternative metrics, 
such as vehicle miles traveled (VMT) or trip generation rates, as thresholds of significance. The 
overarching goal of SB 743 is to balance congestion management with statewide goals 
promoting infill development, public health through active transportation, and reductions of 
greenhouse gas emissions. 

Once the CEQA Guidelines are amended to include those alternative criteria, automobile delays 
will no longer be considered a significant impact under CEQA. However, transportation impacts 
related to air quality, noise, and safety must still be analyzed under CEQA where appropriate. 
SB 743 also amends congestion management law to allow cities and counties to opt out of LOS 
standards within certain infill areas. 

Aside from changes to transportation analysis, SB 743 includes several important changes to 
CEQA that apply to transit oriented developments, including aesthetics and parking. Parking 
impacts will not be considered significant impacts on the environment for select development 
projects within infill areas with nearby frequent transit service. 
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3. Summary of Selected Active Transportation Studies 

3.1 California 

Our literature search returned three papers dealing with California: Brozen et al. (2017), who 
focus on four California Metropolitan Planning Organizations (MPOs); Ravulaparthy et al. 
(2017), who analyze Los Angeles County, CA; and Macias (2016), who focus on the Expo Line in 
Los Angeles. 

The October 19, 2016 OCTA letter of understanding between OCTA and ITS mentions four 
strategies available to OCTA to promote active transportation: land use change, new sidewalks, 
roadway speed restrictions, and new bicycle lanes. Ravulaparthy et al. (2017) are concerned 
mostly with bicycle infrastructure. Their main goal is to create a toolbox of statistical models to 
1) estimate the propensity and frequency of recreational travel; and 2) allocate recreational 
trips to individual bicycle facilities. Their propensity model (a binary logit model) accounts for 
the density of different types of bike trails around transit stations, and their allocation model (a 
utility function) accounts for the type of bike trails. They report that both the incidence of 
treated bicycle facilities and the presence of a bike share program increase bicycling - a result 
that has implications for new bicycle lanes and for other facilities aiming at promoting active 
transportation. 

The other two studies do not model active transportation mode shares, but their research 
questions and results should be of interest to transit operators. 

Macias (2016) compares different methods to define catchment areas for rail stations. These 
methods have implications for exploring land use change as a strategy although this paper does 
not model mode shares. Macias (2016) compares three new approaches against two traditional 
approaches for 12 stations along the Expo Line in Los Angeles. The new approaches are the 
network grade, pedestrian speed, and pedestrian energy methods. The traditional approaches 
are the Euclidean distance and network distance methods. Macias applies spatial analysis tools 
in Geographic Information Systems (GIS) software, followed by single-factor ANOVA to compare 
these five approaches. Results show that these methods generate catchment areas of 
significantly different sizes. One consequence is that a simple Euclidian approach (Method 1) 
for pedestrian catchment can mislead planners into investing in streets not accessible by 
transit. 

Brozen et al. (2017) is the only paper in this review that uses long-form interviews (a qualitative 
methodology). Rather than modeling mode share for walking, the authors explore MPOs’ 
perceptions of their ability to model walking as a mode based on 45 minute interviews with two 
staff members (one directly involved with modeling and one who uses model output in 
planning applications) at four California MPOs to identify improvements for the next generation 
of activity-based regional travel demand models. They report four findings: 1) Household travel 
surveys tend to underestimate walking; 2) MPOs lack an inventory of the walking network and 
the quality of pedestrian infrastructure, and thus have difficulty pinpointing locations for 
pedestrian network improvements; 3) Regional travel demand models are not well suited to 
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understand the factors necessary to induce or improve walking; and 4) The limited data on the 
geography of walk trips inhibits model calibration and identification of walking volumes at 
specific intersections or corridors. 

3.2 Other US Studies 

3.2.1 Portland, OR and the Pacific Northwest 

Our literature search returned six papers whose study areas are either in Portland, OR, or in the 
Pacific Northwest. Of these, three papers estimate multinomial models: Broach & Dill (2016) to 
model bicycle route share, and Clifton et al. (2016a-b) to model pedestrian mode share. Clifton 
et al. (2016a-b) use data from four-step models. 

Zimmermann et al. (2017) propose a link-based bike route choice model that overcomes 
variability in estimating route choices in Eugene, OR. Their results emphasize the sensitivity of 
cyclists to distance, traffic volume, slope, crossings and presence of bike facilities. Fagnant and 
Kockelman (2016) develop a direct-demand model for estimating peak-period cyclist counts in 
the Seattle, WA, metropolitan area. Their results show that wider bike lanes and curb lanes, 
along with lower traffic volumes, create favorable conditions for a higher numbers of cyclists. 

Clifton et al. (2016a-b) model destination choice behavior of pedestrians in an attempt to 
represent pedestrian activity more effectively with applications to Portland, OR. Clifton et al. 
(2016a) report that distance is a significant deterrent to pedestrian destination choice; although 
people in carless or childless households are less sensitive to distance for some trip purposes. 
Clifton et al. (2016b) include a proof-of-concept application for representing pedestrian activity. 

Broach and Dill (2017) develop linear regression models to predict the impact of various 
network and land-use changes on bicycling in the Portland, OR, area. They find evidence that 
network quality matters not only in deciding where to bike, but also whether to bike. In an 
earlier paper, Broach and Dill (2016) estimate a multinomial logit route choice model to 
approximate least-cost cycling paths for trips taken between 2010 and 2013.  For cycling, excess 
distance, upslope, motor vehicle traffic, and specific bicycle infrastructure all have significant 
and similar effects on route and mode choice decisions. For pedestrian choices, quality walking 
routes and pedestrian signals at major crossings attract pedestrians from alternative routes and 
increase the odds of walking on a trip. 

3.2.2 Rocky Mountains and the Midwest 

Five papers study areas in the Rocky Mountains or in the Midwest. Of these papers, Bernardin 
& Chen (2016) analyze data from the Salt Lake City, UT, area four-step model, while Marshall & 
Henao (2015) consider data from a Denver, CO, region activity-based model. In addition, 
Marshall & Henao (2015) estimate a multinomial logit discrete choice model. 

Bernardin & Chen (2016) aim to develop linear regression models that improve the accuracy 
and response properties of non-home-based trips in trip-based models. Using the Wasatch 
Front Regional Council (WFRC) four-step model, the authors achieve reasonable responses to 
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hypothetical new residential growth, and plausible mode shifts in response to hypothetical 
enhancements in transit service.  

Li et al. (2016) rely on a hybrid approach to model the impact of different land use types on 
pedestrian trip generation, frequency, and distance in the Salt Lake City metro area, They 
report that the following factors positively influence the propensity and frequency of 
pedestrian travel: household size, land use mix, the presence of non-residential destinations, 
and street connectivity. 

Marshall & Henao (2015) explore resiliency, vulnerability, and transportation affordability 
issues via a multinomial logit model estimated on data from the Denver, CO, metro area. Their 
model incorporates driving cost, distance to downtown or employment, transit infrastructure 
characteristics, and measures of traveler behavior. Their results suggest that while higher 
resilience is associated with proximity to employment, to compact and connected street 
networks, and to better transit infrastructure, merely being a public transit user is not as 
important to resilience as living near better transit infrastructure. 

Hankey & Lindsey (2016) present facility-demand models based on peak period (4 to 6 pm) 
counts of pedestrian and bicycle traffic in Minneapolis, Minnesota. They find that reduced-form 
models perform nearly as well as fully specified models and are easier to apply and interpret. In 
an earlier paper, Hankey et al. (2012) summarize counts of cyclists and pedestrians between 
2007 and 2010, also in Minneapolis, MN. Their results suggest that when controlling for factors 
such as land use mix and street (or bicycle facility) type, bicycle traffic increases over time and is 
higher on streets with bicycle facilities than without. 

3.2.3 East Coast and the South 

Six of the papers we found study areas on the East Coast or in the South. Reardon et al. (2017) 
estimate a multinomial logit model. Two other papers - Davis & Leven (2016) and Garikapati et 
al (2017) - analyze data from their respective regions’ four-step models. 

Garikapati et al. (2017) are interested in estimating household travel energy consumption in the 
Atlanta, GA, metropolitan area using information readily available from standard four-step 
travel demand models. Results show that a household’s travel energy footprint is strongly 
correlated with population density.  

In Blacksburg, VA (a small, rural college town), Lu et al. (2017) consider a comprehensive bicycle 
and pedestrian traffic monitoring campaign that could be scaled to monitor active 
transportation traffic flows across larger urban areas. Their models exhibit strong correlation 
with observed validation counts. 

Davis & Leven (2016) analyze six Washington, DC, metro region scenarios to explore whether 
land use and other regionally applied policies may be sufficient to handle projected growth. 
More details on the findings of this complex study are given in the subsection “Studies using 
four-step models or their data”. Meanwhile, Kim & Susilo (2013) analyze National Household 
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Travel Survey (NHTS) data to construct various pedestrian trip generation models for the 
nearby Baltimore region. Their results suggest that in practice, Poisson Regression Modeling 
(PRM) can provide a better model fit between the base and estimated models - despite the 
theoretical advantages of negative binomial regression models for handling over-dispersed 
data. 

Steinmetz-Wood et al. (2017) apply a cross-classified multilevel logistic regression to 14,773 
Massachusetts travel survey respondents, to investigate how the size and scale of census units 
influence the relationship between land-use mix and active transportation to work. Their 
results show that correcting the area consistently increases the odds ratio of using active 
transportation, although the size and significance of the land-use mix odds ratio varies with 
geographical scale.  

Meanwhile, Reardon et al. (2017) estimate latent demand for pedestrian and bicycle travel by 
calculating Network Utility Scores for the entire Massachusetts local roadway inventory (49,116 
miles). This metric could be a helpful tool for identifying links for new or improved pedestrian 
and bicycle facilities (two strategies available to OCTA). 

3.3 US National Datasets 

Two of the papers we found during our literature search analyze national (rather than regional) 
data: Jamali & Wang (2017), and Lugo & Srinivasan (2016). 

Jamali & Wang (2017) analyze National Household Travel Survey (NHTS) data with a focus on 
rural and small urban areas in nine states. They specify a negative binomial regression model to 
estimate household-level pedestrian exposure for rural and small urban settings. Their model 
accounts for household characteristics (e.g., income and vehicle ownership), region of the 
country, and block-group-level attributes (e.g., population density and school density). 

Lugo & Srinivasan (2016) use data fusion techniques to match American Time Use Survey Eating 
and Health Module (ATUS-EH) records with NHTS records. They estimate linear regression to 
model the relationship between health and multi-modal long-term travel choices. They find 
that biking has no statistically significant impact on either Body Mass Index (BMI) or Self-
Assessed Physical Health Score (SAPHS). They also report that pedestrians who walk 4-5 walking 
trips/week have a lower BMI and feel better than those with more than 6 walking trips/week. 
In comparison, transit users (2-3 trips/month) have a lower BMI compared to others, but those 
who take more than 2-3 trips transit trips/month are generally happier with their health than 
those with fewer than 2 transit trips / month. Finally, those who drive between 5,000-15,000 
miles a year have a lower BMI than those who drive more. 



 

9 

3.4 International Case Studies 

3.4.1 Canada 

We found seven papers whose study areas are in Canada. Four of these focus on the Greater 
Toronto area. Only Hasnine et al. (2017) use a multinomial logit discrete choice model. None of 
the other papers use four-step models. 

Hasnine et al. (2017) estimate multinomial, nested, and cross-nested logit models to describe 
the mode choice behavior of post-secondary students commuting to school in Toronto. Their 
results suggest that female students who travel towards downtown are more transit and active 
mode oriented than those who travel away from downtown. This study also shows that the 
ownership of mobility tools (i.e., transit pass, car, and bike ownership) and age groups are 
significant variables in a student’s mode choice. More details on this study can be found in 
Section IV. 

Colley & Buliung (2016) analyze Canadian Transportation Tomorrow Survey (TTS) data. They 
generate descriptive statistics on the gender gap in mode choice in the greater Toronto and 
Hamilton areas. They report that: 1) Female children are driven to school more frequently than 
males, although working-age males drive more than females; 2) The gender gap in active 
transportation, public transit, and automobile use appears to be smaller today than in the mid-
1980s; 3) The following factors are associated with the largest differences in driving between 
full time-employed women and men: having one vehicle per household, more than six 
household members, and living and working in the city of Toronto. 

Idris et al. (2015) estimate an unspecified discrete choice model to investigate the over-
prediction of public transit ridership by traditional mode choice models in the Toronto 
metropolitan area. Their primary contribution is to incorporate revealed preference (RP) data 
into their model. They report that traditional RP data-based mode choice model has a high 
tendency to over-predict transit ridership (by up to 134%). 

In another Toronto studies, Habib et al. (2014) estimate an ordered probit model to estimate 
trip generation for pedestrian commuting. They find that average auto ownership at the zonal 
level is more influential than household auto ownership. However, their paper is not optimistic 
about the application of land use changes: “The empirical models reveal that the baseline 
walking propensity and distance remain unchanged over the years despite significant efforts to 
encourage active transportation through mixed land-use policies in the Greater Toronto and 
Hamilton Area.” 

In Vancouver, BC, Osama et al. (2017) rely on Bayesian analysis to develop zone-level ridership 
models and evaluate the impacts of network indicators, land use, and road facility on bike 
kilometers traveled (BKT). They find that more connected, dense, flat, continuous, recreational, 
and off-street bike networks yield higher BKT. In addition, models that account for spatial 
effects fit better than those that do not, which underscores the importance of considering 
spatial effects for modeling BKT. 
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In Montreal, QC, Loong & El-Geneidy (2016) estimate log-linear regression models to 
understand the amount of additional time commuters allocate to travel time unreliability. Their 
results reveal that while drivers allocate the most extra time for their commute, users of other 
modes (including transit and active transportation modes) budget 29% to 66% less extra time 
than drivers. 

In Halifax, NS, Fatmi & Habib (2016) develop a panel-based random-parameters logit model to 
predict individuals’ commuting mode choice over their lifetime. Their model includes access to 
the nearest park area, and a land use mix index. Their results show that: 1) High-income 
individuals tend to be car loyal; 2) No car ownership over the lifetime and the addition of a job 
increase the probability of transit loyalty; 3) Individuals with no children and who reside in an 
area with high walking and bike use have a higher probability of being loyal to active 
transportation; 4) A decrease in household income and tenure transition from owned to rental 
are likely to trigger a transition from car to transit; however, 5) the presence of children and the 
addition of a car increase the transition propensity from transit to car use. 

3.4.2 Europe 

We found three European studies in our literature search. None of these analyzes mode choice 
or uses four-step models, but their results have potentially useful applications for modeling 
active transportation modes. 

For the Greater Copenhagen area, Ingvardson et al. (2017) estimate a Structural Equation 
Model for habitual travel behavior based on survey data. Their results support the hypothesis 
that habit formation derives from recurrent choices and from satisfying functional, relatedness 
and growth needs. For example, higher satisfaction with a mode (such as an active 
transportation mode) relates to a higher frequency of using that mode. Higher bicycle 
satisfaction relates positively to self-identification as a cyclist, and negatively as a driver. 
Greater car use satisfaction increases with self-identification as a driver and with perceived 
difficulties in using transit. Conversely, car use satisfaction decreases with difficulties in car use, 
and also decreases with the perception of oneself as being an effective cyclist. Higher transit 
satisfaction mainly relates to experiencing difficulties with other modes. 

Gast et al. (2015) study the difficulty of forecasting the future availability of bicycles in stations 
of the Paris (France) Vélib bike-sharing system (BSS). They estimate Markovian queueing 
models to generate forecasts for each station. This novel approach allows planners to construct 
a probability distribution of the state of a station, whereas previous work focused on point 
estimators only. 

In Dublin, Ireland, Doorley et al. (2014) examine a segregated bicycle lane in order to test the 
short-term forecasting accuracy of Bayesian structural time series models applied to continuous 
observations of cyclist traffic volumes. Their results show that peak period 1-step and multi-
step forecasts for morning and evening rush hour periods are relatively accurate. However, 
they note that further studies are required to test the prediction accuracy across different 
locations with varying traffic conditions. 
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3.4.3 International Datasets 

Our literature search returned a paper that analyzes an international dataset. Mjahed et al. 
(2015) estimate a structural equations model to analyze data from an online attitudinal survey 
fielded in July 2014 that received 207 responses from across the world Their results suggest 
that the determinants of walking differ based on the region of residence. The implication is that 
transportation policies may affect an individual’s mode choice not only during childhood, but 
throughout his/her life cycle. 
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4. Approaches to Model Active Transportation 

4.1 Studies Using Four-Step Models or their Data 

A review of the selected studies that use four-step models sheds insights on the potential for 
modifying or incorporating OCTAM into a new active transportation model. Our literature 
search found five studies which either use four-step models or analyze their data: Bernardin & 
Chen (2016) for Salt Lake City, UT; Garikapati et al. (2017) for Atlanta, GA; Davis & Leven (2016) 
for Washington, DC; and Clifton et al. (2016a-b) for Portland, OR. 

The October 19, 2016 OCTA letter of understanding mentions four strategies available to OCTA 
to promote active transportation: land use change, new sidewalks, roadway speed restrictions, 
and new bicycle lanes. The models in the studies above account for land use change and 
pedestrian infrastructure, but not roadway speed restrictions or bicycle infrastructure. None of 
these studies are in California. 

The linear regression models in Bernardin & Chen (2016) may be able to model changes in land 
use: among its four validation tests, two scenarios include new residential and new commercial 
development. Garikapati et al. (2017) use density of the built environment as an input to their 
household travel energy calculations. Davis & Leven (2016) model six scenarios that cover a 
range of policies: one scenario holds land use forecasts constant, another scenario allows land 
use to shift within jurisdictions, and another allows shifting across jurisdictions. The 
multinomial logit discrete models in Clifton et al. (2016a-b) both contain independent variables 
that relate to land use mix and pedestrian facilities. However, these models, while similar, are 
not identical. These studies explore a wide variety of research questions and yield different 
results. 

Bernardin & Chen (2016) develop models to improve the accuracy and response properties of 
non-home-based (NHB) trips in trip-based models. Their models achieve reasonable responses 
and mode shifts in response to hypothetical residential growth and enhanced transit service, 
and better replicated observed NHB trip rates, mode shares, and OD patterns. 

One key research goal of Garikapati et al. (2017) is to use information readily available from 
standard four-step travel demand models in calculating TAZ-level household travel energy 
consumption. The authors also suggest procedures for calculating energy footprint in three 
situations: 1) when a four-step travel demand model exists; 2) when an activity-based model 
exists, and 3) when neither exists. Their key result is a strong correlation between travel energy 
footprint and the density of the built environment. 

Clifton et al. (2016a-b) create frameworks to incorporate pedestrian activity in four-step 
models. Clifton et al. (2016a), who are interested in the impact of destination choice on 
pedestrian travel behavior, find that a 1.0 mi (1.6 km) increase in network distance to a 
particular destination yields an ~80% decrease in the odds of choosing that destination. They 
also report that sensitivity to distance varies according to trip purpose, traveler characteristics, 
and built environment characteristics. In contrast, Clifton et al. (2016b) focus on a proof-of-
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concept application to forecast pedestrian demand across an entire metropolitan region. Their 
framework improves travel model sensitivity to pedestrian-relevant factors, socio-economic 
changes, and policy interventions such as smart-growth strategies and pedestrian infrastructure 
investments. 

Davis & Leven (2016) explore whether land use and other regional policies could handle 
projected forecast growth in the Washington, DC, metro region. To this end, they develop a 
somewhat unconventional methodology: they couple the regional four-step model with a 
postprocessor module, and iterate the two to achieve solutions on several measures of 
effectiveness including daily Metrorail ridership and daily transit mode share. Davis & Leven 
find that locating people and jobs in mixed-use areas with good transit access increases transit 
ridership and decreases vehicle miles traveled. Moreover, increasing the mix of uses in activity 
centers increases reverse commutes. Their findings also suggest that small changes (e.g. 
expanding park-&-ride capacity and walk & bike access, reducing fares for reverse commutes) 
do not significantly shift outcomes if land use is unchanged. In addition, while disincentives to 
driving (e.g. a cordon charge) positively affect a number of measures, they may not be 
necessary to increase transit ridership. 

4.2 Multinomial Logit Models 

The OCTAM Active Transportation Module is a multinomial logit discrete choice model (Fehr & 
Peers, 2016). Our literature search returned 6 studies that rely on multinomial logit discrete 
choice models: Hasnine et al. (2017) for Toronto, Canada; Reardon et al. (2017) for the 
Commonwealth of Massachusetts; Broach & Drill (2016) and Clifton et al. (2016a-b) for 
Portland, OR; and Marshall & Henao (2015) for Denver, CO. 

The models in Hasnine et al. (2017) do not have explanatory variables that relate to the four 
strategies available to OCTA, so their work is less of interest here. They build multiple types of 
logit models (multinomial, nested, and cross-nested) to describe the mode choice behavior of 
post-secondary students commuting to school in Toronto. 

The other five papers collectively cover three of the four strategies available to OCTA to 
promote active transportation: land use change, new sidewalks, and new bicycle lanes. 
Roadway speed restriction is not covered. Among these 6 studies, only Clifton et al. (2016a-b) 
use data from four-step models; their work should be of particular interest as they are primarily 
concerned with the destination choice behavior of pedestrians. 

The multinomial logit models in Clifton et al. (2016a-b) and Marshall & Henao (2015) include a 
number of land use explanatory variables: TAZ area size (employment by type, households), the 
presence of parks, and land uses that provide barriers to walking (e.g. industrial-type 
employment) in Clifton et al. (2016a); and network distances from the Denver Central Business 
District, the Denver Tech Center, and Downtown Boulder; as well as the ratio of employees to 
population in Marshall & Henao (2015). Marshall & Henao’s model also includes built 
environment variables such as intersection density, link-node ratio, population density, and 
employment density. 
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The models in Clifton et al. (2016a-b), Marshall & Henao (2015), and Reardon et al. (2017) 
incorporate variables related to sidewalks and pedestrian facilities. In Clifton et al. (2016a-b), 
these variables include an original Pedestrian Index of the Environment (aptly called “PIE”), 
walk trip distance, and terrain variables. Marshall & Henao (2015) is less direct: sidewalk 
improvements would have to be reflected by their built environment variables such as 
intersection density and link-node ratio. Reardon et al. (2017) also incorporate pedestrian 
facilities indirectly, via a WalkScore™ variable. However, their “network utility score” could be 
useful to OCTA for identifying and targeting links for new or improved pedestrian and bicycle 
facilities as it is a measure of latent demand for bicycle and pedestrian travel. 

For biking, the work of Broach & Dill (2016), who are interested in predicting bicycle mode 
share as a function of network connectivity and quality, should be of interest. Their model 
contains a “mean route quality index” where network distances are weighted by quality. Ideal 
routes in their model are made up of links with low traffic or with a bike lane, without 
intersection delays, and with separated facilities on any river crossings. Negative factors along a 
route increase the quality-weighted distance and thus make the route less desirable; these 
negative factors include steep grades, heavy mixed traffic, frequent turns, or difficult 
intersections. Other model variables are related to the presence of jobs within 1-5 miles of the 
route, and demographic variable such as education, age, and income. 

These five papers report a variety of findings. Broach & Dill (2017) find evidence that network 
quality matters not only in decisions of where to bike, but also whether to bike; network quality 
appears to have nearly 3 times the expected effect on bike commuting than does job access 
alone. Reardon et al. (2017) calculate network utility scores for the entire 49,116 miles of the 
local roadway inventory of the Commonwealth of Massachusetts. The findings of Clifton et al. 
(2016a-b) are discussed in sub-Section IV.1. Finally, Marshall & Henao (2015) find that being a 
public transit user does not seem to make as big a difference as does living near better transit 
infrastructure. Nonetheless, the authors find higher resilience in locations with proximity to 
high levels of employment, with more compact and connected street networks, and with better 
transit infrastructure. 

4.3 Other Methods 

This sub-Section provides a brief overview of the other methods that have been used to explore 
active transportation research questions. For brevity, we report mostly how each study relates 
to the four strategies available to OCTA to promote active transportation: land use change, new 
sidewalks, roadway speed restrictions, and new bicycle lanes. 

Our search returned two literature reviews on active transportation topics. Currans (2017) 
identifies gaps in the state-of-the-art trip generation methods. The author finds that the 
literature understands the influences of the built environment on vehicular trips, but not 
necessarily on multimodal trips. Additionally, the literature shows little understanding about 
the influences of the trip-maker sociodemographic variables on behavior. This may lead to 
over- or under-estimating vehicle travel on either end of the income distribution. 
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Jamali & Wang (2017) categorize pedestrian exposure metrics into four general categories: 
area-based measures, point-based measures, segment-based measures, and behavioral 
attitudes of walk trips. Their own negative binomial-based pedestrian exposure metric has the 
household as its unit of analysis. 

4.3.1 Other Discrete Choice Models 

Multinomial logit models are not the only type of discrete choice models used in the papers we 
found.  

Ravulaparthy et al. (2017) estimate a binary logit model to quantify riders’ propensity to choose 
biking as a transportation mode within Los Angeles County. This model includes independent 
variables for the density of different classes of bicycle facilities so it is sensitive to the 
introduction of new bike lanes (a strategy available to OCTA). 

Hasnine et al. (2017) compare a multinomial logit model with both a nested logit and a cross-
nested logit model. The authors are concerned with modeling mode choice among post-
secondary students commuting to four different Toronto area universities. Variables reflect 
more commuter characteristics than land use or infrastructure changes. 

In Halifax, Canada, Fatmi & Habib (2016) develop a panel-based random-parameters logit 
model to model commute mode choice of individuals dynamically over their lifetime. Their 
variables focus on individual characteristics rather than on land use or infrastructure. 

In an earlier study, Habib et al. (2014) build an ordered probit model to investigate trip 
generation for walking as a commuting mode. Their model variables include household 
characteristics, individual characteristics, nature of the trip, means of travel, and aggregate 
zonal land use and population data. While their model includes land use variables (and would 
thus be sensitive to any land use changes available to OCTA as a strategy), the authors are not 
optimistic about that approach. They note that “baseline walking propensity and distance 
remain unchanged over the years despite significant efforts to encourage active transportation 
through mixed land-use policies in the Greater Toronto and Hamilton Area.” 

Two other recent studies estimate logit models to study bike route choice rather than mode 
choice.  Zimmerman et al. (2017), in their recursive logit bike route choice model, demonstrate 
the sensitivity of cyclist route choice to their bike facilities, distance, traffic volume, slope, and 
crossings variables. In contrast, Steinmetz-Wood et al. (2017) estimate a cross-classified 
multilevel logistic regression model not only to model the relationship between land use mix 
and active transportation, but also to examine the influence of geographical size and scale of 
census units on this relationship. Their model includes an independent variable for land use 
mix, and it is thus potentially sensitive to changes in land use. 
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4.3.2 Negative Binomial Regression Models (NBRM) 

We found six studies that rely on negative binomial regression models tend to model trip 
generation and count pedestrians and/or bicycles. Unfortunately, none of these six studies 
focuses on California. 

The pedestrian count model in Jamali & Wang (2017) includes block-group-level variables for 
school density, roadway centerline-mile density, and intersection density. Li et al. (2016) 
estimate pedestrian trip choice and frequency models using detailed bike lane infrastructure 
data managed in GIS. In their pedestrian and bicycle count models, Lu et al. (2017) select sites 
by street functional class, centrality of origins and destinations, and future bicycle facility 
buildout plans. The bicycle count models of Fagnant & Kockelman (2016) account for bike lane 
width and the presence of curb lanes. 

Some NBRM studies also analyze land use policies. For example, Li et al. (2016) include a “land 
use mix” variable that positively influences the propensity and frequency of walk trips. Kim & 
Susilo (2013) use MD Property View 2001 and MD Transit View 2001 (programs published and 
managed by the Maryland Department of Planning) to obtain values for the land-use variables 
in their models. 

Meanwhile, models in Hankey et al. (2012) incorporate variables that cover land use and 
facilities for both bicycle and pedestrian travel. Their land use include area of paved parking, 
retail and industrial land use, population density, and residential addresses, as well as meters of 
sidewalk and meters of on-street bike lanes. 

4.3.3 Linear Regression Models 

The linear regression models in the seven papers we found in our literature search are mostly 
used to estimate trip frequency, for both walking and biking. Of these seven papers, only 
Ravulaparthy et al. (2017) study an area in California (Los Angeles County). 

Models in three papers include variables related to the composition and mix of land use. The 
land use variables in Broach & Dill (2017) mainly pertain to the number and proportion of jobs 
within 1-5 miles of a bicycle trip-generating Census Tract. The models in Bernardin & Chen 
(2016) underwent four sensitivity validation tests and include variables for new residential and 
commercial development. The stepwise linear regression models in Hankey & Lindsey (2016) 
(which are used for creating demand models for pedestrian and bicycle traffic) allow varying 
the spatial scale of land use variables in addition to transportation variables. 

Both pedestrian and bicycle count models in Hankey & Lindsey (2016) also include variables 
related to sidewalks and to bike lanes. In contrast, the “network changes” variables in Broach & 
Dill (2017) consider bike lanes, but not sidewalks. In Ravulaparthy et al. (2017), both the 
propensity and the allocation models include variables for the density and type of bike trails 
around transit stations. 
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The linear regression model for trip frequency in Lugo & Srinivasan (2016) relies on data from 
the National Household Travel Survey, and does not include variables related to land use mix or 
pedestrian and bike facilities. Li et al. (2016) rely on linear regression to estimate average 
walking distances but they estimate negative binomial regression for trip choice and frequency. 
Their models include both bike lane infrastructure and land use data such as employment and 
residential counts. 

Rather than using linear regression for counts (which would be a questionable choice), Loong & 
El-Geneidy (2016) use log-linear regression to estimate the amount of additional time that 
commuters around Montreal, Canada, allocate to account for travel time unreliability. Their 
log-linear model has variables for personal and trip characteristics, time, mode satisfaction, and 
home selection, but none relating to land use or to the presence of sidewalks and bike lanes. 

4.3.4 Structural Equation Models 

Two papers, both international case studies, estimate structural equation models (SEM). They 
are of interest for their strength in analyzing subjective experiences of preferred mode choices. 

Ingvardson et al. (2017) construct a model for habitual travel behavior and habit formation. 
Active transportation modes include both walking and biking. Their survey questions include 
rating statements such as “I feel good about contributing to the environment when I bike” on a 
scale. Mjahed et al. (2015) focus on the influence of childhood experiences on adult walking 
behavior. Their survey includes similar survey statements to be rated on a scale: “Before high 
school my parents felt it was unsafe for me to use public transport” and “Before high school my 
parents felt it was unsafe for me to walk to my destinations.” 

4.3.5 Hybrid Methods 

Four of the papers discussed so far use more than one method to study active transportation. 
Of these, only Ravulaparthy et al. (2017) focus in California. Ravulaparthy et al. (2017) estimate 
a binary logit model for their propensity model, a linear regression model for frequency, and a 
utility function for allocation. Lugo & Srinivasan (2016) use data fusion followed by a linear 
regression model. Li et al. (2016) estimate a negative binomial regression model for trip choice 
and frequency, and linear regression to model average walking distance. 

4.3.6 Miscellaneous Methods 

Six of the papers we found use methods that do not fit into the categories above. They are 
nonetheless of interest for the research questions they are answering. 

Two of these papers have study areas in California. Brozen et al. (2017) is the only paper we 
found that uses a qualitative method - long-form interviews - to identify challenges and 
opportunities based on interviews of modelers and representatives of various California MPOs. 
Moreover, Macias (2016) is the lone paper who relies exclusively on GIS. Focusing on the Expo 
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Line in Los Angeles Metro Rail System, the author compares three approaches for identifying 
pedestrian catchment areas to two traditional approaches.  

In the greater Toronto and Hamilton area, Colley & Buliung (2016) calculate descriptive 
statistics to investigate the gender gap in school and work travel. They do not estimate any of 
the other models discussed in this review. 

Moreover, three papers model facility demand using alternatives to the linear and negative 
binomial regressions discussed earlier. Gast et al. (2015) construct a Markovian queueing model 
to forecast the future availability of bicycles docked at stations of the Vélib bike-sharing system 
in Paris, France. Two other papers use Bayesian methods. In Vancouver, Canada, Osama et al. 
(2017) develop zone-level ridership models. They find that more connected, dense, flat, 
continuous, recreational, and off-street bike networks yield higher bicycle-kilometers-traveled 
(BKT). In Dublin, Ireland, Doorley et al. (2014) apply a Bayesian structural time series model to 
observations of cyclist traffic volumes in segregated bike lanes. 
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5. Active Transportation in the Orange County Transportation 
Analysis Model 

5.1 Background on OCTAM 

The Orange County Transportation Analysis Model (OCTAM) is a regional model that is based 
on the traditional four-step (i.e., trip generation, trip distribution, modal choice, and trip 
assignment) modeling methodology. OCTAM implements a multi-modal approach to analyze 
the following travel modes: local and express bus transit, urban rail, commuter rail, toll roads, 
carpools, truck traffic, as well as non-motorized transportation which includes pedestrian and 
bicycle trips. OCTAM accounts for land use types, household characteristics, state of the 
transportation infrastructure, and travel costs such as transit fares, parking costs, tolls, and 
automobile operating costs. OCTAM uses socioeconomic data to estimate trip generation and 
mode choice, as well as several sub-models to address complex travel behavior and multimodal 
transportation issues. Our focus here is on OCTAM’s active transportation modeling tool. 

5.2 Active Transportation Modeling Tool 

To help meet statewide GHG reduction goals, OCTA contracted with Fehr & Peers to develop an 
Active Transportation (AT) Modeling Tool that allows for a more robust analysis of the costs and 
benefits of various active transportation improvement scenarios throughout the region. The AT 
Modeling tool is an add-in module to the OCTAM TransCAD software. It is designed to evaluate 
the effects on travel demand of interventions used to promote active transportation, such as 
land use changes, new sidewalks, roadway speed restrictions, and new bicycle lanes. Table 1 
highlights the input variables used in the AT module. 

5.3 Comparing OCTAM AT Module’s Variables to Other Models 

During the course of this project, OCTA representatives requested a comparison of the OCTAM 
Active Transportation Module’s coefficients with the coefficients of other models. However, 
only one study – Marshall & Henao (2015) – has two variables (Intersection Density and Bus 
Stop Density) that are defined exactly as in the OCTAM AT Module. Unfortunately, that study’s 
authors declined to share any of the coefficients for their multinomial logit model. In other 
studies, differences in modes or independent variables make such direct comparisons 
inappropriate. Tables 2 and 3 illustrate the infeasibility of such a comparison. 
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Table 1. Active Transportation Modeling Tool Input Variables 

Variable Description 

TAZ Traffic Analysis Zone 
Place Type Group SCAG Place Type Group of the Scenario Planning Zones within the TAZ. 

worker Number of workers as a proportion of total TAZ population. 

kid Number of children as a proportion of total TAZ population. 
nw1824 Number of non‐workers aged 18 to 24 as a proportion of the total TAZ.  

nw6599 Number of non‐workers over 64 as a proportion of the total TAZ 
population.  

HHVEH Number of vehicles per household. 

HHSIZE Average household size. 
inc1 Proportion of households with an annual income under $35k. 

inc2 Proportion of households with an annual income between $35k & $50k. 

inc5 Proportion of households with an annual income between $100k & 
$150k. 

inc6 Proportion of households with an annual income over $150k. 
int_den Intersection density (intersections per square mile). 

mxd_den MXD model density: sum of population & employment divided by area 
(mi2). 

mxd_div MXD model diversity. 1 – ABS(empl. – 0.2 * pop.) / (empl. + 0.2 * pop.)  
Dmxd_den MXD model density (Destination). 

Dmxd_div MXD model diversity (Destination). 

Dint_den Intersection density (Destination). 

O_25mD Street density of roadways with speeds less than 25 mph (miles per 
acre). 

O_35mD Street density of roadways with speeds higher than 35 mph (miles per 
acre). 

O_BLden1 We bikeways density (miles/acre). Class weights: I=3, II=2, III=1 

D_25mD Street density of roadways with speeds under 25 mph (Destination). 

D_35mD Street density of roadways with speeds over 35 mph (Destination). 
D_BLden1 Weighted bikeways density (Destination). 

O_stopD Bus stop density at origin (per square mile). 

D_stopD Bus stop density at destination (per square mile). 
O_hrPC Parking cost. 

D_hrPC Parking cost (Destination). 
Walk_Infrastructure Level of pedestrian infrastructure (Low, Medium, or High). 
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Table 2. OCTAM AT Module Variables that Appear in Other Discrete Choice Models 

 

 

Study number (see notes): 

CA Multinomial logit Other 

1 2 3 4 5 6 7 8 9 

Modes          

Drive  X     X  X 

Transit  X     X  X 

Walk  X X  X X X X X 

Walk-to-Transit          

Bike X X X X   X  X 

Input Variables from OCTAM AT Module          

Place Type Group          

Workers per Population      X    

Children Per Population  X    X   X 

Non-Workers (Ages 18 to 24)          

Non-Workers (Ages 65 and Over)          

Vehicles Per Household X     X  X  

Average Household Size  X    X  X  

Income X   X   X  X 

Intersection Density (Per Square Mile)       X   

MXD Density  X  X X  X  X 

MXD Diversity    X X  X  X 

Street Density (Two Variables)          

(Weighted) Bike Lane Density X         

Bus Stop Density       X   

Parking Cost          

Pedestrian Infrastructure   X  X X    

Notes. The studies above are: 1. Ravulaparthy et al. (2017); 2. Hasnine et al. (2017) 
[multinomial logit, nested logit, & cross-nested logit]; 3. Reardon et al. (2017); 4. Broach & 
Drill (2016); 5. Clifton et al. (2016a); 6. Clifton et al. (2016b); 7. Marshall & Henao (2015); 8. 
Habib et al. (2014) [ordered probit]; 9. Fatmi & Habib (2016) [random parameters logit].   
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Table 2 shows which variables from the OCTAM Active Transportation Module have analogues 
in nine other discrete choice studies found during our review. One California study uses a 
binomial logit model. Studies 2-7 primarily estimate multinomial logit models, and studies 8 and 
9 consider other models. 

The first complication that arises in comparing coefficients across studies is that of all the 
variables in Table 2, only Intersection Density and Bus Stop Density are defined in another study 
in the same way as in the OCTAM AT Module. That study – Marshall & Henao (2015) – 
estimates a multinomial logit discrete choice model. Unfortunately, the study does not provide 
the coefficient of its multinomial logit model and its focus is different (it was to map the 
proportion of income that Denver -area households spent on transportation.) 

Another complication is that none of the studies in Table 2 model all five of the modes in the 
OCTAM AT Module. Only Hasnine et al. (2017), Marshall & Henao (2015), and Fatmi & Habib 
(2016) model four of these five modes: Drive, Transit, Walk, and Bike. Reardon et al. (2017) 
model walking and biking, but the remaining studies only consider either walking or biking. 
None of the 9 studies considers Walk-to-Transit separately. 

In the nine studies referenced in Table 2, there are no analogues for the OCTAM AT Module’s 
Place Type Group, Street Density, and Parking Cost variables. While other studies include 
variables related to specific land uses (e.g. retail, government, finance, and industrial 
employment in Clifton et al., 2016a), the Place Type Group is a fully developed and exhaustive 
categorization of land uses in OCTAM. (Note: The AT Module employs the Place Type Group 
variable to adjust an active transportation mode’s utility value according to the level of walking 
infrastructure.) 

The absence of an analogue to the Street Density variables is notable because in the OCTAM AT 
Module, these street densities correspond to two different street speeds: roadways with 
speeds under 25 mph, and roadways with speeds over 35 mph. This variable allows the OCTAM 
AT Module to model roadway speed reductions. In contrast, the other studies in Table 2are 
unable to model this strategy. 

For other variables from the OCTAM AT Module, the nine comparison studies have analogues 
but define them differently, which hampers comparisons. For example, the OCTAM AT Module 
has three variables related to the number of workers: Workers per Population (the proportion 
of a TAZ’s population who are workers), Non-Workers aged 18-24, and Non-Workers aged 65 
and over. All three are continuous variables. In contrast, other studies take different 
approaches. For example, Clifton et al. (2016b) use dummy variables: 1 worker (yes/no) or 2 
workers (yes/no). In addition, other models have dedicated age variables, whereas the OCTAM 
AT Module breaks its non-working population into age groups (18-24 and 65 & over). Some 
models, like Ravulaparthy et al. (2017), use a dummy variable to indicate a specific age group 
(in this case, people aged 44+) while other studies, like Fatmi & Habib (2016), use a continuous 
variable for age. 
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For income, the thresholds categories differ between studies. The OCTAM AT Module considers 
four categories: <$35k, $35k-$50k, $100k-$150k, and >$150k. In contrast, Broach & Dill (2017) 
use only one dummy variable for income - if an individual has a median income between $50k-
$100k. Fatmi & Habib (2016) use three dummy variables for income less than $50k, income 
greater than $75k, and income greater than $150k. 

Vehicles per Household is another variable treated differently by different studies. In the 
OCTAM AT Module, it is a continuous variable – HHVEH, the number of vehicles per household. 
In contrast, Clifton et al. (2016b) use dummy variables for owning no cars, 1 car, 2 cars, or 3+ 
cars. Such definitional differences make direct comparison difficult. 

While there are no direct analogues for the OCTAM AT Module’s MXD Density and MXD 
Diversity variables, the nine comparison studies in Table 2 use other means to incorporate 
employment and population data. For example, Hasnine et al. (2017) has an employment 
density variable, but it is not combined with population density. Fatmi & Habib (2016) create a 
land use index that includes both employment and population, but these variables are 
combined differently. Ultimately, the uniqueness of the MXD Density and Diversity variables 
makes any direct comparison of coefficients problematic. 

Pedestrian infrastructure is also defined differently in the comparison studies of Table 2. The 
Walk Infrastructure variable in the OCTAM AT Module is qualitative and can take on three 
values: “Low”, “Medium”, or “High”. In contrast, Clifton et al. (2016a-b) define a quantitative 
Pedestrian Index of the Environment (PIE) and Reardon et al. (2017) use the commercially 
available WalkScore™ in their multinomial logit model. 

Although comparison with models in papers listed in Table 2 is not possible, Appendix B 
compiles the coefficient values of these models for completeness. 
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Table 3. Other Modes and Variables in Selected Discrete Choice Studies 

Study Other Modes Other Variables 

Ravulaparthy 
et al. (2017) 

 Sociodemographic: age, gender, education 

Physical: average slope of tract 

Relation to alternative transport infrastructure: distance to nearest trail  

Alternative transport availability: presence of bike share, transit availability in home tract 

Hasnine et al. 
(2017) 

Auto Passenger 
Park-and-Ride 
Kiss-and-Ride 
Bike-and-Ride 

Sociodemographic: age  

Generalized costs: travel cost, distance, travel time 
Employment: employment density 

Ownership of mode: transit pass ownership, Presto card ownership, bike ownership 

Gender-destination combination: Female Students commuting to Downtown Campus, Female 
Students commuting to Suburban Campus 

Pedestrian environment: Area (sq. km) of 1000 m walk buffer 

Relation to alternative transport infrastructure: Number of transit trips departing w/in 400m 
walking distance; Distance to nearest bus stop, rail stop, & subway stop 

Other: Coefficient of the Expected Max Utility of Transit Nest, Coefficient of the Expected Max 
Utility of Active Transport Nest 

Reardon et al. 
(2017) 

By trip purpose: 
●Walk to school 
●Bike to school 
●Walk to shop 

Generalized costs: distance 

Pedestrian environment: walk score at origin and destination 
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Study Other Modes Other Variables 

●Bike to shop 
●Walk 
recreationally 
●Bike 
recreationally 

Broach & Dill 
(2016) 

Walking only, by 
trip purpose: 

● Home-based 
Work 
● Home-based 
shopping 
● Home-based 
recreation 
● Home-based 
other 
● Non-home-
based work 
● Non-home-
based work 

Sociodemographic: age, education 

Employment: jobs within 1 and 5 shortest path miles; proportion of jobs w/in 5 shortest path 
miles of CBD 

Biking Environment: route quality index 

Clifton et al. 
(2016a) 

 Generalized costs: distance 

Employment: retail, government, finance, and all other jobs; proportion of industrial jobs 

Population: number of households 

Physical: average slope of tract 
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Study Other Modes Other Variables 

Pedestrian environment: park available, pedestrian index of the environment (PIE), freeway 
present 

Clifton et al. 
(2016b) 

 Sociodemographic: age 

Origin-Destination related: trip end located beyond PIE extents, trip end located in 
Washington state 

Trip purposes: home-based shopping, home-based recreation 

Pedestrian environment: pedestrian index of the environment (PIE), miles of freeways within 
1/8 mile 

Marshall & 
Henao (2015) 

 Sociodemographic: education score, ethnicity (White, Nonwhite, African-American, Hispanic, 
Asian, Native American) 

Employment: ratio employees/population; employment density 

Population: population density 

Income-related: % of household income spent on commuting 

Dwelling-related: year built for housing stock 

Network properties: link-node ratio 

Relation to alt transport infrastructure: distance from light rail, park-and-ride, bus stop, 
Denver CBD, Denver Tech Center, downtown Boulder 

Habib et al. 
(2014) 

 Sociodemographic: age, gender 
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Study Other Modes Other Variables 

Population: home zone population density 

Dwelling-related: living in Townhouse 

Student status: secondary school, post-secondary school 

Specific land uses: general office, other occupation category 

Fatmi & Habib 
(2016) 

Mode transitions 
modeled as well: 

● Car to transit 
● Car to active 
transportation 
● Transit to car 
● Transit to active 
transportation 
● Active 
Transportation to 
car 
● Active 
transportation to 
transit 

Sociodemographic: age, gender, education 

Household type: single-worker, full-time Dual-worker 
Income-related: increase/decrease in household income over previous year 

Ownership of mode: no car ownership, addition of car (same year) 

Dwelling-related: moved from rented to owned or reverse; increase / decrease in number of. 
Bedrooms; % single-family detached 

Life transition events: birth of a child (1 yr. lead), new household formation, addition of job (1 
& 2 year lead); lost job (1 & 2 year lead), lost job (2 year lead) 

Trip purpose-related: moved closer to work, Moved closer to school, Moved closer to CBD, 
Moved farther from CBD 

Land Use-Related: land Use Mix Index 

Relation to alt transport infrastructure: distance to nearest transit station, to nearest park, to 
CBD; moved closer to/farther from transit station; moved closer to park area, % transit trips, 
% active transportation trips 
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6. Conclusions and Suggestions for Next Steps 

In this report, we reviewed a selection of recent academic papers to understand the state-of-
the-art to model active transportation and we started exploring the capabilities of the OCTAM 
Active Transportation (AT) Module. Our literature search returned 34 papers published 
between 2012 and 2017. We analyzed these papers based on geography and on methodology, 
before attempting to compare the variables in the OCTAM AT Module with those in similar 
models. 

In terms of geography, the search returned three papers whose study areas are in California. Of 
the studies above, only one (Ravulaparthy et al., 2017) attempt to model mode choice – 
specifically, using a binary logit choice model. Elsewhere in the US, Portland, OR and Salt Lake 
City, UT are the two cities with the most relevant case studies. Internationally, Toronto, Canada, 
has attracted a lot of research attention recently with several case studies.  

In terms of methodology, our search returned five studies which either used four-step models 
or analyzed data from four step models. Our search also returned six studies that rely on 
multinomial logit models. Of these, two Portland (OR) area studies (Clifton et al., 2016a-b) 
estimated multinomial logit models using data from four-step models. The models in these 
papers – which are similar, but not identical – incorporate explanatory variables that relate to 
land use mix and pedestrian facilities. However, they do not include variables relating to bicycle 
lanes or roadway speed restrictions. 

The multinomial logit models mentioned in Section IV cover three of the four strategies 
available to OCTA: land use change, new sidewalks, and new bicycle lanes. However, variables 
relating to roadway speed (and, hence, the possibility of modeling roadway speed restrictions) 
are notably absent from the papers we found during our literature search. While our review 
focuses on four-step models and multinomial logit choice models, the largest other group of 
active transportation papers consisted of studies on modeling counts on pedestrian and bicycle 
facilities. These papers use primarily negative binomial regression or linear regression. 

We attempted to compare the coefficients of the OCTAM AT Module with those in other 
discrete mode choice studies (in California and elsewhere). Unfortunately, such direct 
comparisons are infeasible because the structure of published models (and therefore the 
interpretation of their variables) or the definition of variables of interest (continuous, binary, or 
corresponding to an interval) differ too much from the structure of the OCTAM AT Module or 
from its explanatory variables to allow comparison. Only one study – Marshall & Henao (2015) 
– has two variables (Intersection Density and Bus Stop Density) that are defined exactly as in 
the OCTAM AT Module. Unfortunately, that study’s authors did not share the coefficients of 
their multinomial logit model. 

The specification of the OCTAM AT seems reasonably in light of the recent studies reviewed in 
this document. One limitation is that we started working with the OCTAM AT module relatively 
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late during this phase of the study, so we did not have time to evaluate its performance on real 
case studies or to compare its predictions with observed behavior. In light of our literature 
review and of general considerations about people’s mode choices, however, we make the 
following observations/suggestions: 

1. First, we note that OCTAM AT does not include variables that could impact people’s 

decision to leave their vehicles at home in favor of transit. These variables relate to 

economic conditions (such as gasoline prices, the median wage and the unemployment 

rate), perceptions (such as safety both from traffic and from crime), and the quality of 

both the biking network (e.g., see Broach & Dill, 2017), and walking routes (including 

pedestrian signals at major crossings) (Broach and Dill, 2016); 

2. Second, a number of conditions need to be jointly met for people to walk or bike (e.g., 

existence of continuous sidewalks or a dense enough network of bike lanes, safety from 

both traffic and crime); in isolation, these conditions would not lead to people walking. 

One way to represent this dependence in statistical models is to use interaction terms; 

and 

3. Third, OCTAM AT does not capture residential self-selection, which could be important 

here as people who do not plan to walk/bike self-select into car-oriented 

neighborhoods. One convenient tool to tackle this issue is generalized structural 

equations modeling (GSEM) (Kline, 2015). A well-specified GSEM model could 

incorporate a multinomial or a count model and include latent factors characterizing 

people’s attitudes based on additional information while controlling for residential self-

selection. 

These ideas could be starting points for a more in-depth conversation with OCTA staff for the 
next phase of this project. 
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Appendix A: Paper Summary Matrix 
Author(s)  

(Date) 
Research 
Question Method(s) Dataset Key Findings 

2017 

Broach & Dill 
(2017) 

Predict the 
impact of various 
network and land-
use changes on 
bicycling using 
readily available 
data 

Linear 
regression 

Portland region, OR (4 
counties) 
• 1,200 to 8,000 people 
• Census Tracts from 5-year 
(2010-2014) American 
Community Survey (ACS). 
• Employment destination 
data from Census 
Longitudinal Employer-
Household Dynamics 
database. 

Network quality: 

• matters not only in 
decisions of where to bike, 
but also whether to bike. 
• has ~3 times the expected 
effect on bike commuting 
than job access alone. 

Brozen et al. 
(2017) 

Interview MPO 
representatives to 
identify 
improvements to 
incorporate into 
the next 
generation of 
activity-based 
regional travel 
demand models.  

In-depth 
interviews. 

Four Metropolitan Planning 
Organizations (MPOs) in 
California. 

• Two staff members for 
each MPO. 

• Seven of the eight 
interviews conducted in-
person. 

• Each interview approx. 45 
min. 

• Household travel surveys 
underrepresent walking. 

• MPOs have difficulty 
locating pedestrian network 
improvements without an 
inventory of walking network 
& the quality of pedestrian 
infrastructure. 

• Regional travel demand 
models not well suited to 
understand the factors that 
induce or improve walking. 

• Limited data on geography 
of walk trips inhibits model 
calibration and identification 
of walking volumes. 

Currans 
(2017) 

Identify 
problematic gaps 
in the state-of-
the-art trip 
generation 
methods. 

Literature 
Review. 

Google Scholar and library 
searches. 

Current literature shows... 

• understanding of the 
influences of the built 
environment on vehicular 
trips, but not necessarily on 
multimodal trips. 

• little understanding about 
the influences of trip-maker 
socio-demographics on 
behavior. 
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Author(s)  
(Date) 

Research 
Question Method(s) Dataset Key Findings 

Garikapati et 
al. (2017) 

Calculate 
household travel 
energy 
consumption at 
the TAZ level 
using information 
readily available 
from a standard 
four-step travel 
demand model 
system. 

Trip 
distribution 
algorithms. 

Greater Atlanta metro 
region. Atlanta Regional 
Commission (ARC) model 

• 2,024 TAZs. 

•5,231,307 people; 
1,835,786 households. 

• Total employment 
2,385,720. 

• National Household Travel 
Surveyfor socio-economic 
data & vehicle fleet mix. 

Travel energy footprint 
strongly correlated to 
density of the built 
environment. 

Hasnine et al. 
(2017) 

Investigate the 
mode choice 
behavior of post-
secondary 
students 
commuting to 
school in the city 
of Toronto. 

Multinomial 
logit, nested 
logit and 
cross-nested 
logit models 

Four universities in Toronto: 

a) Ontario College of Art 
and Design; 

b) Ryerson University; 

c) York University; and 

d) The University of 
Toronto. 

15226 complete responses 
in Fall 2015. 

• Female students who 
travel towards downtown 
are more transit and active 
mode oriented than those 
who travel away from 
downtown. 

• Mobility tool ownership 
(i.e., transit pass, car and 
bike ownership) and age 
groups influence students' 
mode choice behavior.  

Ingvardson et 
al. (2017) 

Model habitual 
travel behavior 
and represent 
habit formation. 

Structural 
Equation 
Model 

Greater Copenhagen area. 

1481 complete responses. 

• Higher bicycle satisfaction 
relates positively to cycling 
self-concepts and negatively 
to car self-concepts. 

• Greater car use satisfaction 
increases with car self-
concepts and transit use 
difficulties, and decreases 
with difficulties in car use 
and better cycling self-
efficacy. 

• Higher transit satisfaction 
relates to experiencing 
difficulties with other modes. 
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Author(s)  
(Date) 

Research 
Question Method(s) Dataset Key Findings 

Jamali & 
Wang (2017) 

1) Synthesize 
previous studies 
and offer best 
practices for 
estimating 
pedestrian 
exposure in rural 
and small urban 
areas; 2) Estimate 
a household-level 
pedestrian 
exposure 
measure for rural 
and small urban 
settings. 

Literature 
review for 
first goal. 
Negative 
binomial 
regression 
model for 
the second 
goal. 

US National Household 
Travel Survey (NHTS) data, 
focusing on rural and small 
urban areas. 11,692 home-
based walk-only trips in 
nine states (Montana, 
Oregon, Wyoming, 
California, Arizona, Texas, 
South Dakota, New York, 
and Florida) 

• Four general types of 
exposure metrics: area-
based measures, point-based 
measures, segment-based 
measures, and behavioral 
attributes of walk trips. 

• The regression model 
accounted for household 
characteristics, regional 
factors, and block-group-
level attributes (e.g., 
population density and 
school density). 

Lu et al. 
(2017) 

Study 
comprehensive 
bicycle and 
pedestrian traffic 
monitoring 
campaign in a 
small, rural 
college town. 

Negative 
Binomial 
Regression 
(NM) 

45,456 hours of bicycle and 
pedestrian traffic counts at 
101 locations 210 in 
Blacksburg, VA 

Strong correlation between 
validation counts and 
automated counts. 
Correction equations varied 
by the type of counter. 

Osama et al. 
(2017) 

Evaluate the 
impacts of 
network 
indicators, land 
use, and road 
facility on bike 
kilometers 
traveled (BKT) by 
developing zone-
level ridership 
models. 

Bayesian 
Analysis 

Land use and road facility 
data for 134 TAZs in 
Vancouver, Canada.  

Bike counts between 2005-
2011. 

Results suggest that more 
connected, dense, flat, 
continuous, recreational, and 
off-street bike networks 
yielded higher BKT. 
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Author(s)  
(Date) 

Research 
Question Method(s) Dataset Key Findings 

Ravulaparthy 
et al. (2017) 

Create a toolbox 
of statistical 
models to 
determine 
propensity and 
frequency of 
recreational 
travel, and to 
allocate 
recreational trips 
to individual 
bicycle facilities. 

• Binary 
logit for 
Propensity 
Model. 

• Linear 
regression 
for 
Frequency 
model. 

• Utility 
function for 
Allocation 
model. 

Los Angeles county, CA. 

• Propensity and Frequency 
models: 2009 NHTS 

• Allocation model: 2008 
National Survey of Bicyclist 
and Pedestrian Attitudes 
and Behavior 

• Southern California 
Association of Governments 
synthetic population for 
2008 base year. 

• Scenarios analyzed: 2015 
No Build, 2015 "Un-Build" 
(i.e. remove all bike 
treatments in the 2015 No 
Build scenario), and 2015 
Bike Share. 

• Demand generation: 2015 
Un-Build scenario has fewer 
riders and BMT compared to 
others. 

• Demand allocation: Both 
the incidence of treated 
bicycle facilities and the 
presence of a bike share 
program increase bicycling. 

Reardon et 
al. (2017) 

Examine the 
Network Utility 
approach 
developed by 
Boston’s 
Metropolitan 
Area Planning 
Council which 
seeks to produce 
roadway 
segment-level 
estimates of 
active 
transportation 
network utility 

Multinomial 
Logit  

Household and individual-
level responses from the 
2011- 2012 Massachusetts 
Travel Survey (MTS) 

Network Utility Scores can 
be combined with additional 
information to identify 
infrastructure gaps and 
improvement priorities 

Steinmetz-
Wood et al. 
(2017) 

Examine the 
influence of the 
geographical size 
and scale of 
census units on 
the relationship 
between land-use 
mix and route 
choice to work 
using active 
transportation. 

Cross-
classified 
multilevel 
logistic 
regression. 

2010-11 Massachusetts 
Travel Survey. Sample 
limited to adults aged 18 to 
65. Final sample size 14,773 
people. 

• Area correction increases 
the size of the odds ratio of 
using active transportation at 
all scales analyzed. 

• Size and significance of the 
land-use mix odds ratio 
varied with geographical 
scale for both original and 
area corrected land-use mix. 

• Significant positive 
relationships in using active 
transportation for area 
corrected residential and 
workplace tract land-use 
mix. 
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Author(s)  
(Date) 

Research 
Question Method(s) Dataset Key Findings 

Zimmermann 
et al. (2017) 

Develop a link-
based route 
choice model that 
1) overcomes 
variability in 
estimation results 
and 2) 
incorporates non-
link additive 
attributes (e.g. 
slope). 

Recursive 
Logit and 
Nested 
Recursive 
Logit 

648 GPS-based path 
observations in Eugene, OR. 
Matched to route network 
of 16,352 nodes and 42,384 
links. 

Results demonstrate that 
cyclists are sensitive to 
distance, traffic volume, 
slope, crossings, and the 
presence of bike facilities. 

2016 

Bernardin & 
Chen (2016) 

Develop models 
to improve the 
accuracy and 
response 
properties of non-
home-based 
(NHB) trips in 

trip-based 
models. 

Linear 
regression 
models 

Salt Lake City, UT. Wasatch 
Front Regional Council 
(WFRC) model: 

• 2,200 TAZ 

• 6 trip purposes and 6 
modes 

• Auto ownership, mode 
choice, & feedback 

• 1.7 million population 

• Reasonable responses to 
hypothetical new residential 
growth 

• Plausible mode shifts in 
response to hypothetical 
enhanced transit service. • 
Better replication of 
observed NHB trip rates, 
mode shares and OD 
patterns with less 
calibration. 

Broach & Dill 
(2016) 

Test the effect of 
specific travel 
environment 
features on mode 
choice compared 
with route choice. 

Multinomial 
logit  

14,000 cycling trips taken in 
the city of Portland, OR 
from 2010 to 2013. 

For cycling, excess distance, 
upslope, motor vehicle 
traffic, and specific bicycle 
infrastructure all have 
significant and similar effects 
on route and mode choice 
decisions. 

Clifton et al. 
(2016a) 

First study to 
analyze and 
model the 
destination choice 
behaviors of 
pedestrians 
within an entire 
region 

Multinomial 
Logit 

4500 walk trips from 2011 
household travel survey in 
the Portland, OR region. 

Distance was a significant 
deterrent to pedestrian 
destination choice, and 
people in carless or childless 

households were less 
sensitive to distance for 
some purposes. 
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Question Method(s) Dataset Key Findings 

Clifton et al. 
(2016b) 

Represent 
pedestrian 
activity more 
effectively within 
four-step travel 
demand models 

Multinomial 
Logit 

4094 walk trips from 2011 
household 

travel survey in the 
Portland, OR region. 

Pedestrian demand model 
can forecast for an entire 
metropolitan region with 
spatial acuity and sensitivity 
to small-scale variations in 
the built environment. 
Improved travel model 
sensitivity to pedestrian-
relevant factors. Results are 
more responsive to socio-
economic changes and policy 
interventions. 

Colley & 
Buliung 
(2016) 

Investigate how 
the gender gap in 
school and work 
travel changes as 
individuals age. 
Investigate how 
household 
characteristics 
and factors such 
as distance and 
licensing 
associate with 
gender 
differences in 
commuter mode 
share. 

Descriptive 
statistics. 

Greater Toronto and 
Hamilton area, Canada's 
Transportation Tomorrow 
Survey (TTS). 

• Female children are driven 
to school more frequently 
than males. 

• Factors associated with the 
largest differences in driving 
between full time-employed 
women and men: having one 
vehicle per household, more 
than six household 
members, and living and 
working in Toronto. 

• The gender gap in active 
transportation, public transit, 
and automobile use appears 
to be lower today than in the 
mid-1980s. 

Davis & 
Leven (2016) 

Estimate if land 
use and other 
regionally applied 
policies (intended 
to make better 
use of the transit 
system or 
postpone the 
need for 
expansion) would 
be sufficient to 
handle the 
projected forecast 
growth in the 
Washington, DC 
metro region. 

Travel 
Demand 
Model 
coupled 
with the 
WMATA 
Postprocess
or Model. 

Washington, DC metro 
region. 

• 2040 baseline population 
and employment forecasts 
from the Metropolitan 
Washington Council of 
Governments (MWCOG) 

• Base travel model: 
Transportation Planning 
Board (TPB) Version 2.3.52. 

• Postprocessor model: 
Regional Transit System 
Plan (RTSP) 

Two scenarios with 3 
iterations each (six total). 

 

• Locating people and jobs in 
mixed-use areas with good 
transit increases transit 
ridership and decreases VMT 

• Regional approach to 
development provides 
greater impacts across a 
variety of measures. 

• Increasing the mix of uses 
in activity centers increases 
reverse commutes. 

• Small changes do not 
significantly shift outcomes if 
land use unchanged. 

• Disincentives to driving 
positively affects a number 
of measures, but may not be 
necessary to increase transit 
ridership. 
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Question Method(s) Dataset Key Findings 

Fagnant & 
Kockelman 
(2016) 

Develop a direct-
demand model 
for estimating 
peak-period 
cyclist counts 
based on trip 
generation and 
attraction factors 
(such as site-
based population 
and employment 
densities) 

Poisson 
regression 
and 

Negative 
Binomial 

 

 

Seattle metropolitan area 
cyclist count data from 251 
locations. Average Annual 
Daily Traffic (AADT) 
volumes (for automotive 
traffic) had to be obtained 
from numerous sources, 
covering cities across the 
State of Washington. 

 

Wider bike lanes and curb 
lanes, along with lower 
traffic volumes, create 
favorable conditions for 
higher numbers of cyclists. 
The two preferred models 
developed here indicate 
either the use of curb lane 
width or bike lane width or 
automotive traffic volume be 
used. 

Fatmi & 
Habib (2016)  

Develop a 
dynamic model 
for individuals’ 
commute mode 
choice over their 
lifetime by using 
retrospective 
survey data.  

Panel-based 
random-
parameters 
logit model 

Halifax, Canada. 
Retrospective Household 
Mobility and Travel Survey 
(HMTS), Sep 2012 to Apr 
2013. Sample size of 288 
households. 

• High-income individuals 
tend to be car loyal. 

• Probability of transit 
loyalty increases with no car 
ownership over the lifetime 
and the addition of a job. 

• Individuals with no children 
and residing in an area with 
high walk and bike usage 
more loyal to active 
transportation. 

• A decrease in household 
income and tenure transition 
from owned to rental are 
likely to trigger a transition 
from car to transit. 

• Children and the addition 
of a car increase the 
transition propensity from 
transit to car. 

Hankey & 
Lindsey 
(2016) 

Build on previous 
exploratory 
facility-demand 
models of 
pedestrian and 
bicycle traffic in 
Minneapolis. 
Employs a new, 
larger data set of 
peak period (4 to 
6 p.m.), volunteer 
based counts (n = 
954). 

Stepwise 
linear 
regression 

Peak period (4 to 6 p.m.) 
counts of pedestrian and 
bicycle traffic in 
Minneapolis, Minnesota. 
Count database (n=5954 
observations; 471 
locations). 

Results suggest that 
reduced-form models 
perform nearly as well as 
fully specified models and 
are easier to apply and 
interpret. 
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Li et al. 
(2016) 

Explore the 
impact of 
different land use 
types on 
pedestrian trip 
generation, 
frequency and 
distance. 

• Zero-
Inflated 
Negative 
Binomial 
Regression 
for the trip 
choice and 
frequency 
models. 

• Linear 
regression 
model for 
the average 
walking 
distance 
model. 

Salt Lake City-West Valley 
and Ogden-Layton 
urbanized areas (Utah). 

• Household 
Characteristics: 2012 Utah 
Household Travel Survey 
(5,071 responses). 

• Street data: UT 
Automated Geographic 
Reference Center. Bike 
lanes: County GIS depts. 
Parcel data: County 
Assessors. 

• Employment: UT Dept. of 
Workforce Services. 

• Natural Environment: UT 
Automated Geographic 
Reference Center. 

Factors that positively 
influence the propensity and 
frequency of walk trips: 

• size of household, 

• land use mix, 

• presence of non-residential 
destinations, 

• street connectivity  

Loong & El-
Geneidy 
(2016) 

Investigate the 
amount of 
additional time 
commuters 
allocate to 
account for travel 
time unreliability. 

Log-linear 
regression 
models. 

2013 McGill Commuter 
Survey (Montreal, Quebec). 
5,599 complete records 
(32% response rate). 

• Perception that the street 
network is unreliable (for 
either buses or cars). 

• Drivers allocate the most 
extra time for their 
commute. 

• Users of other modes 
(transit, bicycle, and 
pedestrian) budget ~29% to 
66% less than drivers. 

• Bus commuters add 14% 
more buffer time per bus 
taken. 

• Train users budget 11% less 
time for every commuter 
train taken.  
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Lugo & 
Srinivasan 
(2016) 

Demonstrate the 
feasibility of using 
data fusion in 
large-scale travel 
and health 
surveys. Then 
model the 
relationship 
between health 
and multi-modal 
(walking, biking, 
transit, and 
vehicle usage) 
long-term 
(weekly/monthly/
yearly) travel 
choices. 

Data fusion 
and linear 
regression 
model. 

Data Fusion compares 
“Receiver” dataset with 
records of a “Donor” 
dataset to identify the 
record from the “Donor” 
that best matches each 
record in the “Receiver” on 
a set of pre-defined 
attributes. 

• Donor dataset: 2006-2008 
American Time Use Survey 
Eating and Health Module 
(ATUS-EH). 

• Receiver dataset: 2009 
National Household Travel 
Survey (NHTS). 

• 36,000 donor records 
potentially matched with 
11,362 receivers. 

• Biking no statistically 
significant impact on Body 
Mass Index (BMI) or Self-
Assessed Physical Health 
Score (SAPHS). 

• Pedestrians have a lower 
BMI and feel better, but 
those who walk more than 6 
trips/week are in poorer 
health than those who walk 
4-5 trips. 

• Transit users (2-3 
trips/month) have a lower 
BMI than others. 

• Those who drive between 
5,000-15,000 miles a year 
have lower BMI than those 
who drive >15,000 miles. 

Macias 
(2016) 

Compare 3 new 
approaches for 
identifying 
pedestrian 
catchment areas 
(network grade, 
pedestrian speed, 
and pedestrian 
energy methods) 
to two traditional 
approaches 
(Euclidean 
distance and 
network distance 
methods). 

Spatial 
analysis in 
GIS and 
single-factor 
ANOVA to 
compare the 
five 
approaches. 

Expo Line in Los Angeles. 
8.8-mi (14.1-km) light rail 
corridor with 12 stations. 

• The study's methods 
generate catchment areas of 
significantly different sizes. 

• Euclidian approach 
(Method 1) can mislead 
planners into investing finite 
resources in streets not 
accessible by transit. 

2015 

Gast et al. 
(2015) 

Improve forecasts 
about the future 
availability of 
bicycles in 
stations of a bike-
sharing system 
(BSS) 

Markovian 
Model 

Data from the Vélib system 
in Paris collected between 1 
October 2013 and 31 
December 2014. 

Probabilistic forecasts may 
broaden the scope of the 
applicability of predictive 
models. They provide more 
direct user-centric quantities 
useful for journey planning, 
such as the probability of 
finding a bike at the origin 
station.  
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Idris et al. 
(2015) 

Investigate the 
over-prediction of 
public transit 
ridership by 
traditional mode 
choice models 
estimated using 
revealed 
preference data 

Four 
models: 

• RP 
(Revealed 
Preference) 
mode choice 
model w/ 
latent 
variable. 

• SP (Stated 
Preference) 
mode 
switching 
model.  

• Joint 
RP/SP mode 
switching 
model. 

• Hybrid 
mode 
switching 
model w/ 
latent 
variable. 

Census Metropolitan Area 
(CMA) of Toronto, Canada 
between April and May 
2012. 

 

Original dataset: 1211 
observations. 

Subset used: 774 
observations representing 
individuals who reported 
‘‘Car Driver’’ as their 
primary mode for daily 
work commute. 

• Models with latent habit 
outperformed the traditional 
mode choice model. 
However, mode shift models 
without latent habit 
outperformed mode shift 
models that had the latent 
habit variable. 

• Poorest forecasting: 
traditional RP data-based 
mode choice model. 

• Best forecasting: the SP 
data-based and the joint 
RP/SP mode shift models. 

• Traditional RP data-based 
mode choice model has 
tendency to over-predict 
transit ridership. 

Marshall & 
Henao (2015) 

Explore resiliency, 
vulnerability, and 
transportation 
affordability 
issues with the 
questions on 
driving cost, 
distance to 
downtown or 
employment, 
transit 
infrastructure, 
and current travel 
behavior. 

Multinomial 
logit 

Denver, CO metro area. 
Denver Regional Council of 
Governments (DRCOG) 
activity-based travel model. 
Final sample included 
1,154,673 home-to-work 
tours, comprising 654,762 
home TAZ to work TAZ 
combinations.  
Supplemented with data 
from the 2008 American 
Community Survey (ACS) 
(2,032 block groups). 

• Higher resilience found in 
locations with proximity to 
high levels of employment, 
with more compact and 
connected street networks, 
and with better transit 
infrastructure. 

• Being a public transit user 
not as important to 
resilience as living near 
better transit infrastructure. 

• Transportation choice 
creates network redundancy, 
facilitates adaptability under 
extreme conditions. 
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Mjahed et al. 
(2015) 

Explore the role 
of childhood 
experience on the 
underlying 
motives and 
determinants of 
walking behavior. 

Structural 
Equation 
Model. 

Online attitudinal survey 
distributed July 2014 via 
social media and e-mail. 
International respondents. 
207 completed responses 
(response rate of 81.5%). 

• Results support the 
existence of a relationship 
between travel behavior 
during childhood and 
walking behavior during 
adulthood. 

• Determinants of walking 
differ based on region of 
residence. 

2014 

Doorley et al. 
(2014) 

Test the 
forecasting 
accuracy of 
structural time 
series models 
applied to 
continuous 
observations of 
cyclist traffic 
volumes 

Basic 
Structural 
Model 
(BSM) 

Hourly cyclist volumes 
recorded in both directions 
for segregated bicycle lane 
in Dublin, Ireland between 
Monday, October 3rd, 2011, 
00:00 and Thursday, August 
30th, 2012, 23:00 

Models can produce 
accurate peak period 
forecasts of cyclist traffic 
volumes at both 1 hour and 
fifteen-minute resolution 
and that the percentage 
errors are lower for hourly 
forecasts 

Habib et al. 
(2014) 

Investigates 
walking-trip 
generation for 
commuting 

Ordered 
probit 
model 

Household travel survey 
data collected in the 
Greater Toronto and 
Hamilton Area (GTHA) in 
1996, 2001 and 2006 

Zonal-level average auto 
ownership is more influential 
than household auto 
ownership. 

2013 

Kim & Susilo 
(2013) 

Construct various 
pedestrian trip 
generation 
models for the 
Baltimore region 
using National 
Household Travel 
Survey (NHTS) 
data 

Negative 
Binomial 
Regression 
(NM) 

Poisson 
regression 

 

National Household Travel 
Survey (NHTS) 2001 data for 
the Baltimore (USA) region 

MD Property View 2001 and 
MD Transit View 2001 (both 
published and managed by 
Maryland Department of 
Planning, MDP) were used 
to generate more detailed 
land-use variables. 

PRM gives better model 
improvements between base 
model and estimated model. 

PRM can be a better 
modeling technique than 
NBRM in practice despite the 
theoretical advantages of 
NBRM for dealing with over-
dispersed data 
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2012 

Hankey et al. 
(2012) 

Develop models 
to estimate non-
motorized traffic 
for streets where 
counts are 
unavailable or to 
estimate changes 

in non-motorized 
traffic associated 
with other 
changes in the 
built environment 

Negative 
binomial 
model 

Cyclists and pedestrians 
counts between 2007 and 
2010 at 259 locations in the 
city of Minneapolis, MN 

 

Bicycle traffic volumes in 
Minneapolis, MN are 
significantly increasing over 
time1 or 2 hr. bicycle and 
pedestrian counts can 
predict reasonable estimates 
of "daily’ (12 hr.) counts. 
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Appendix B: Coefficients of the OCTAM AT and Table 2 Models 
Appendix B contains the coefficients of the discrete choice models used in the OCTAM AT 
Module and the models in of this report. There are significant differences between the OCTA 
Active Transportation Module and the models found during our review in terms of the modes 
covered and the independent variables chosen. Consequently, we believe that in most cases, 
comparing coefficients between these models is unreasonable. Nonetheless, these coefficients 
are provided here for information. 

OCTAM Active Transportation Module 

These coefficients are reproduced here for comparison. 

Variables Constant worker Kid nw1624 nw6599 HHVEH HHSIZE 

Transit -5.150 -0.322 1.345 1.523 -0.281 -1.018 0.188 

Walk -2.250 -0.542 0.454 0.478 -0.149 -0.560 0.138 

Walk-Transit -4.150 0.000 -0.433 1.277 -0.496 -1.344 0.238 

Bike -3.750 0.000 0.541 1.059 -0.456 -0.486 0.075 

 

Variables inc1 inc2 inc5 inc6 int_den mxd_den 

Transit 0.873 0.305 0.000 0.000 0.000 0.000 

Walk 0.409 0.000 -0.126 0.136 0.001 0.000 

Walk-Transit 0.800 0.259 -0.453 0.000 0.001 0.000 

Bike 0.000 0.000 0.000 0.000 0.002 0.000 

 

Variables Dmxd_den Dmxd_div Dint_den O_25mD O_35mD O_BLden1 

Transit 0.000 0.000 0.000 -11.593 0.000  

Walk 0.000 0.225 0.001 3.429 -7.147  

Walk-Transit    0.000 0.000  

Bike 0.000 0.000 0.001 7.307 -8.018 6.113 

 

Variables D_25mD D_35mD D_BLden1 O_stopD D_stopD O_hrPC D_hrPC 

Transit -5.769 14.144  0.003 0.000 0.000 0.057 

Walk 6.923 -8.842    0.000 0.000 

Walk-Transit    0.001  0.024   

Bike 9.893 -8.732 5.333   0.000 0.000 

Ravulaparthy et al. (2017) 
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A binary logit discrete choice model for the propensity to travel by bicycle. 

Variables Constant Female 
Age 
(44+) 

Educ.: 
MS/MA+ 

Educ.: 
BS/BA 

Educ.: 
Vocational/ 
AA 

Educ.: High 
School/ GED 

Education: 
less than HS 

Bike -1.17 -1.04 -0.044 0.707 0.677 0.544 0.414 0.00 

 

Variables 

# 
vehicles 
in HH 

Density 
Class 1 
facilities 

Density 
Class 2 
facilities 

Density 
Class 3 
facilities 

Avg slope 
home 
tract 

Distance 
to 
nearest 
trail 

Transit 
availability 
in home 
tract 

Presence 
of bike-
share 

Bike -0.629 0.2 0.148 0.024 -7.79 -0.075 0.035 0.06 

Hasnine et al. (2017) 

This study presents three different discrete choice models (multinomial, nested, and cross-
nested logit) for eight separate modes: driving, riding a car as a passenger, using transit, park & 
ride, kiss & ride, bike & ride, walking, and biking. Blank cells in these tables indicate that the 
coefficient is not specified for a specific variable and mode for that model. However, the 
corresponding value in one of the other two models could be nonzero. 

Multinomial Logit 

Variables Const. 
Travel 
Cost 

Distance 
(km) 

Travel 
Time 

No. of 
household 
per # of 
members 

Transit 
Pass 
Ownership 

Presto Card 
Ownership 

Bike 
Ownership 

Auto Drive 0.000 -0.233   -0.001 3.744       

Auto Pass. 0.087 -0.233   -0.001         

Transit 1.770 -0.233   -0.001   1.649 0.808   

Park & Ride -2.583 -0.233 -5.443 -0.001 3.744 1.649 0.808   

Kiss & Ride -0.104 -0.233 -5.443 -0.001   1.649 0.808   

Bike & Ride -1.399 -0.233   -0.001   1.649 0.808   

Walk 6.185 -0.233 -1.820 -0.001         

Bike 2.172 -0.233 -0.546 -0.001       1.469 
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Variables 

Female 
Students 
Commuting 
Downtown 

Female 
Students 
Commuting 
Suburban 

Age 
18-22 

Age 
22-25 

Dependent 
children / # 
household 
members 

Area (km2) 
of 1000m 
walk 
buffer 

No. transit trips 
departing w/in 
400m walk dist. 

Auto Drive         0.806     

Auto Pass. 0.355   0.721 -0.440       

Transit 0.068   0.315 -0.133     0.003 

Park & Ride 0.654   -0.103 0.112       

Kiss & Ride 0.349   0.163 -0.549       

Bike & Ride -0.617   -1.622 -0.508       

Walk -0.374   0.165 0.469   0.048   

Bike -0.382   0.058 0.669 -1.355     

 

Nested Logit 

Variables Cons. 
Travel 
Cost 

Distance 
(km) 

Travel 
Time 

No. of HH 
per no. of 
members 

Transit 
Pass 
Ownership 

Presto Card 
Ownership 

Bike 
Ownership 

Auto Drive 0.000 -0.228   0.000 6.927       

Auto 
Passenger 

3.042 -0.228   0.000         

Transit 4.999 -0.228   0.000   2.213 0.912   

Park & Ride -1.083 -0.228 -3.892 0.000 6.927 2.213 0.912   

Kiss & Ride 3.273 -0.228 -3.892 0.000   2.213 0.912   

Bike & Ride 2.047 -0.228   0.000   2.213 0.912   

Walk 10.985 -0.228 -2.108 0.000         

Bike 7.844 -0.228 -0.622 0.000         

 

Variables 

Distance (km) 
to nearest bus 
stop 

Distance to 
nearest rail stop 

Distance to 
nearest subway 
stop 

Employment 
Density 

Coeff. Exp. 
Max. Utility of 
Transit Nest 

Auto Drive       -0.037   

Auto Passenger       -0.043   

Transit -0.067 -0.045 -0.032 -0.020   

Park & Ride       -0.020   

Kiss & Ride       -0.022   

Bike & Ride       -0.058   

Walk           

Bike           
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Variables 

Female 
Students 
Commuting 
Downtown 

Female 
Students 
Commuting 
Suburban 

Age 
18-22 

Age 
22-25 

Dependent 
children/ # 
household 
members 

Area (km2) 
of 1000m 
walk 
buffer 

No. transit trips 
departing w/in 
400m walk dist 

Auto Drive         2.039     

Auto 
Passenger 

-0.508   0.211 -0.615       

Transit 1.112 -0.590 0.244 -0.305     0.004 

Park & 
Ride 

1.987   -0.070         

Kiss & 
Ride 

1.627   0.170 -0.480       

Bike & 
Ride 

0.027   -1.498 -0.743       

Walk 0.757 -2.433 0.316 0.293       

Bike 0.823 -2.666 0.301 0.494 -1.683     

Variables 

Distance to 
nearest bus 
stop (km) 

Distance to 
nearest rail 
stop 

Distance to 
nearest 
subway stop 

Employment 
Density 

Coeff. Exp. Max. 
Utility of Transit 
Nest 

Auto Drive         0.810 

Auto 
Passenger 

        0.810 

Transit         0.810 

Park & Ride         0.810 

Kiss & Ride         0.810 

Bike & Ride         0.810 

Walk         0.810 

Bike         0.810 
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Cross-Nested Logit 

Variables Cons. 
Travel 
Cost 

Distance 
(km) 

Travel 
Time 

# of HH / # 
members 

Transit Pass 
Ownership 

Presto Card 
Ownership 

Bike 
Ownership 

Auto Drive 0.000 -0.258   -0.010 4.128       

Auto 
Passenger 

0.816 -0.258   -0.010         

Transit 2.626 -0.258   -0.010   2.071 1.034   

Park & Ride -2.517 -0.258 -3.799 -0.010 4.128 2.071 1.034   

Kiss & Ride -0.345 -0.258 -3.799 -0.010   2.071 1.034   

Bike & Ride -0.791 -0.258   -0.010   2.071 1.034   

Walk 9.274 -0.258 -1.831 -0.010         

Bike 5.580 -0.258 -0.642 -0.010       1.248 

 

Variables 

Female 
Students 
Commuting 
Downtown 

Female 
Students 
Commuting 
Suburban 

Age 
18-22 

Age 
22-25 

Dependent 
children 
per no. 
household 
members 

Area (km2) 
of 1000m 
walk 
buffer 

No. transit trips 
departing w/in 
400m walk dist 

Auto Drive         0.603     

Auto 
Passenger 

0.212   0.386 -0.548       

Transit 0.160   0.353 -0.381     0.004 

Park & 
Ride 

0.407   -0.069 -0.117       

Kiss & Ride 0.664   0.342 -0.772       

Bike & 
Ride 

-0.952   -2.068 -1.292       

Walk -0.199   0.127 0.175       

Bike -0.226   0.072 0.497 -1.419     
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Variables 

Distance 
(km) to 
nearest bus 
stop 

Distance to 
nearest rail 
stop 

Distance to 
nearest 
subway stop 

Employment 
Density 

Coeff. Exp. 
Max. Utility 
of Transit 
Nest 

Coeff. Exp. 
Max Utility 
of Active 
Transport 
Nest 

Auto Drive       0.019   0.893 

Auto 
Passenger 

      0.011   0.893 

Transit -0.412 -0.041 -0.030 0.024   0.893 

Park & Ride       0.030   0.893 

Kiss & Ride       0.028   0.893 

Bike & Ride       -0.233   0.893 

Walk           0.893 

Bike           0.893 

Reardon et al. (2017) 

A multinomial logit discrete model for two modes (walking and biking) and three trip purposes 
(school, shopping, recreation) 

Variables Constant 

Distance  

(Nat. Log) Walk Score @ Origin 
Walk Score @ 
Destination 

Walking to school -6.1047 -1.2565 0.0327 0.0255 

Biking to school -8.83973 -0.3864 0.0436 0.0256 

Walking to Shop -6.9397 -1.1514 0.0345 0.0311 

Biking to shopping -6.6096 -0.4451 0.0185 0.0234 

Walking recreationally -3.6973 -1.4086 0.0309  N/A 

Biking recreationally -3.5565 -0.8033 0.0198  N/A 

Broach & Drill (2016) 

A multinomial discrete choice model for one mode: bicycle. The authors created three models, 
of which Model 3 became the final model. 

Variable Const. 

Jobs w/in 
1 shortest 
path mi. 

Jobs 
w/in 5 
shortest 
path mi. 

Route 
Quality 
Index 

Proportion of 
jobs w/in 5 
shortest path 
miles of CBD 

% 25 & 
older w/ 
Bachelor's 

% Age 
15-34 

Median 
income 
$50k-$100k 

Biking -8.1 -0.08 0.1 3.67 1.36 0.004 0.011 0.04 
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Clifton et al. (2016a) 

A multinomial discrete choice model for one mode, and six trip purposes. 

Variables Distance 
Retail 
Jobs 

Gov't 
Jobs 

Finance 
Jobs 

All Other 
Jobs 

No. 
House-
holds 

Pedestrian Index 
of the 
Environment 

Walking (home-
based work) 

-1.35 2 2 2 0   0.30 

Walking (home-
based shopping) 

-2.26 5.5 0 0 0   -0.01 

Walking (home-
based recreation) 

-1.75 6.5 17.1 0 0 -2.00 0.01 

Walking (Home-
based other) 

-1.94 3.8 3.8 0 0 0.12 0.03 

Walking (Non-home-
based work) 

-1.42 5.5 0 2.5 0   0.02 

Walking (Non-home 
based non-work) 

-1.45 5.5 3.4 0 0   0.02 

 

Variables Slope (degrees) Freeway Present 
Proportion of 
Industrial Jobs 

Walking (Home-Based Work) -0.12 -0.30 -0.99 

Walking (Home-Based Shopping) -0.20 -1.02 -1.74 

Walking (Home-Based Recreation) -0.05 -0.17 -0.09 

Walking (Home-Based Other) -0.43 0.10 -0.40 

Walking (Non-Home-Based Work) -0.16 -0.14 -1.65 

Walking (Non-Home Based Non-Work) -0.06 0.26 -0.24 
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Clifton et al. (2016b) 

A multinomial discrete choice model for one mode (walking). Trip purposes (Home-Based 
Shopping, Home-Based Recreation, and Home-Based School) are incorporated as variables. 

Variables Const. 

House-
hold 
Size 

Age 
(56-65) 

1 Worker 
in House-
hold 

2 Workers 
in House-
hold 

1 Child in 
Household 

2 Children 
in 
Household 

3+ 
Children 
in 
Household 

Walking -4.377 0.191 -0.242 0.208 0.301 0.295 0.455 0.479 

 

Variables 

0 autos 
owned by 
household 

2 autos 
owned by 
household 

3+ autos 
owned by 
household 

Pedestrian Index of 
the Environment 
(PIE) 

Trip end 
located beyond 
PIE Extents 

Miles of 
Freeway 
w/in 1/8 mi 

Walking 1.089 -0.463 -0.690 0.043 0.530 -1.093 

 

Variables 
Trip end located in 
Washington state 

Home-Based 
Shopping Purpose 

Home-Based 
Recreation Purpose 

Home-Based 
School Purpose 

Walking 0.792 -0.145 0.288 0.444 

Marshall & Henao (2015) 

This paper estimate a multinomial logit model for three modes (transit, walking, and biking). 
Unfortunately, it does not reveal the coefficients in its model.  

Habib et al. (2014) 

An ordered probit model that includes only one mode (Walking). Models were calculated for 
three separate years: 1996, 2001, and 2006. Only the latest model (2006) is shown below. Since 
the model is a probit model, the paper itself also includes a covariate matrix. 

Variables Constant 
Home zone 
pop density No car 

Own 1+ 
cars 

Zonal Avg 
household auto 
ownership 

Dwelling = 
townhouse 

Household 
size 

Walking -0.91 0.12 0.39 -0.22 -0.25 0 0.04 

 

Variables 

Age  

(25-35) 

Age  

(35-45) Female 

Secondary 
School 
Student 

Post 
secondary 
school 

Occupation 
category: Gen 
Office 

Occupation 
Category: 
Others 

Walking -0.09 -0.1 0.02 1.26 0.35 0.02 0.04 
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Fatmi & Habib (2016) 

This study estimates discrete mode loyalty models rather than discrete mode choice. It 
estimates both a multinomial logit model and a random parameters logit model. While the 
models include three modes (Car, Transit, Active Transportation), the paper models both loyalty 
to these modes (3 models) and transitions between these modes (6 models). 

Not all variables are used in all models. Blank cells in these tables indicate that the coefficient is 
not specified for that specific variable for that mode loyalty or transition. The original paper’s 
tables only list coefficients for those variables which exist for that specific mode loyalty model, 
which facilitates the comparison of the multinomial logit model to Fatmi & Habib’s preferred 
random parameters logit model.  

Multinomial Logit 

Variables Const. Male Age 
Income 
<$50k 

Income 
<$75k 

Income 
<$150k 

Loyalty to Car 5.1918  0.0154   1.356 

Loyalty to Transit 5.5217  -0.0226    

Loyalty to Active 
Transportation 

7.9432      

Transition from 
Car to Transit 

5.1063  -0.0167  1.0374  

Transition from Car to Active 
Transportation 

4.1731 -0.5508 0.0244    

Transition from 
Transit to Car 

Not given 0.6674     

Transition from Transit to 
Active Transportation 

2.0792   1.1607   

Transition from Active 
Transportation to Car 

1.7652      

Transition from Active 
Transportation to Transit 

2.8545 -1.2817  1.8354   

 



 

55 

Variables 
Children 
Present 

No 
Children 

Owned 
dwelling 

Education 
up to 
College 

Single-
worker 

Full-time 
dual-workers 

Loyalty to Car 0.2923  0.5313 0.5326  0.7011 

Loyalty to Transit    2.0185 0.7895  

Loyalty to Active 
Transportation 

 2.6984     

Transition from 
Car to Transit 

      

Transition from Car to 
Active Transportation 

      

Transition from 
Transit to Car 

0.9332     1.1215 

Transition from Transit to 
Active Transportation 

   1.2841   

Transition from Active 
Transportation to Car 

      

Transition from Active 
Transportation to Transit 

      

 

Variables 

Increase in 
household 
income 

Decrease in 
household 
income 

Decrease in 
household car 
ownership 

No car 
ownership 

Increase 
in no. 
bedrooms 

Decrease 
in no. 
bedrooms 

Loyalty to Car       

Loyalty to Transit    0.8779   

Loyalty to Active 
Transportation 

   0.6479   

Transition from 
Car to Transit 

 1.195     

Transition from Car to 
Active Transportation 

 0.8724 0.7858    

Transition from 
Transit to Car 

      

Transition from Transit 
to Active Transportation 

 1.6794    2.6557 

Transition from Active 
Transportation to Car 

2.253      

Transition from Active 
Transportation to Transit 

    1.6597  
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Variables Moved 
from rented 
to owned 

Moved 
from owned 
to rented 

Birth of a 
child 
(1 yr lead) 

New 
household 
formation 

Addition of 
job 
(1 yr lead) 

Addition of 
job 
(2 yr lead) 

Loyalty to Car       

Loyalty to Transit     0.8519  

Loyalty to Active 
Transportation 

    -0.288  

Transition from 
Car to Transit 

 1.647     

Transition from Car to 
Active Transportation 

      

Transition from 
Transit to Car 

1.416      

Transition from Transit to 
Active Transportation 

      

Transition from Active 
Transportation to Car 

1.7979  1.427 2.6468   

Transition from Active 
Transportation to Transit 

     0.6536 

 

Variables 
Lost job 
(1 yr lead) 

Lost job 
(2 yr lead) 

Add. of car 
(same yr) 

Traded car 
(same yr) 

Distance to 
nearest 
transit station 

Distance to 
nearest 
park 

Loyalty to Car    0.782   

Loyalty to Transit     -0.3139  

Loyalty to Active 
Transportation 

      

Transition from 
Car to Transit 

0.8313      

Transition from Car to 
Active Transportation 

      

Transition from 
Transit to Car 

  1.2939    

Transition from Transit to 
Active Transportation 

 2.5539    -4.9543 

Transition from Active 
Transportation to Car 

      

Transition from Active 
Transportation to Transit 
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Variables 
Distance 
to CBD 

Moved 
Closer to 
Work 

Moved 
Closer to 
School 

Moved 
Closer to 
Transit 

Moved 
Farther from 
Transit 

Moved 
Closer to 
Park Area 

Loyalty to Car  0.2625     

Loyalty to Transit       

Loyalty to Active 
Transportation 

-0.2859      

Transition from 
Car to Transit 

 0.5027     

Transition from Car to 
Active Transportation 

-0.2566     1.9056 

Transition from 
Transit to Car 

      

Transition from Transit to 
Active Transportation 

  2.3465  1.5473  

Transition from Active 
Transportation to Car 

      

Transition from Active 
Transportation to Transit 

   0.5071   

 

Variables 

Moved 
Closer to 
CBD 

Moved 
Farther 
from CBD 

% Single-
Family 
Detached 

Land Use 
Mix Index 

% Transit 
Trips 

% Active 
Transport 
Trips 

Loyalty to Car       

Loyalty to Transit       

Loyalty to Active 
Transportation 

     3.2395 

Transition from 
Car to Transit 

      

Transition from Car to 
Active Transportation 

1.2523      

Transition from 
Transit to Car 

1.4586  0.0183 4.229   

Transition from Transit to 
Active Transportation 

      

Transition from Active 
Transportation to Car 

 1.246     

Transition from Active 
Transportation to Transit 

    7.8969  
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Random Parameters Logit 

Variables Const. Male Age 
Income 
<$50k 

Income 
<$75k 

Income 
<$150k 

Loyalty to Car 9.824  0.0239   2.2741 

Loyalty to Transit 10.9956  -0.0277    

Loyalty to Active 
Transportation 

14.0003      

Transition from 
Car to Transit 

10.1496  -0.0159  1.1875  

Transition from Car to Active 
Transportation 

8.8482 -0.8945 0.0336    

Transition from 
Transit to Car 

Not given -4.326     

Transition from Transit to 
Active Transportation 

6.4415   1.4632   

Transition from Active 
Transportation to Car 

1.4161      

Transition from Active 
Transportation to Transit 

7.2663 -4.1596  2.1196   

 

Variables 
Children 
Present 

No 
Children 

Owned 
Dwelling 

Education up 
to College 

Single-
worker 

Full-time 
Dual-worker 

Loyalty to Car 0.7325  0.8985 0.8449  0.339 

Loyalty to Transit    2.5133 0.8512  

Loyalty to Active 
Transportation 

 3.5433     

Transition from 
Car to Transit 

      

Transition from Car to 
Active Transportation 

      

Transition from 
Transit to Car 

3.3878     1.5023 

Transition from Transit to 
Active Transportation 

   1.8856   

Transition from Active 
Transportation to Car 

      

Transition from Active 
Transportation to Transit 
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Variables 

Increase in 
household 
income 

Decrease in 
household 
income 

Decrease in 
household car 
ownership 

No car 
ownership 

Increase 
in no. 
bedrooms 

Decrease 
in no. 
bedrooms 

Loyalty to Car       

Loyalty to Transit    0.7883   

Loyalty to Active 
Transportation 

   0.6407   

Transition from 
Car to Transit 

 1.3222     

Transition from Car to 
Active Transportation 

 1.2154 1.2531    

Transition from 
Transit to Car 

      

Transition from Transit 
to Active Transportation 

 1.6389    3.0333 

Transition from Active 
Transportation to Car 

6.1449      

Transition from Active 
Transportation to Transit 

    2.0377  

 

Variables 

Moved 
from rented 
to owned 

Moved 
from owned 
to rented 

Birth of a 
child 
(1 yr lead) 

New 
household 
formation 

Addition of 
job 
(1 yr lead) 

Addition of 
job 
(2 yr lead) 

Loyalty to Car       

Loyalty to Transit     0.7627  

Loyalty to Active 
Transportation 

    -0.626  

Transition from 
Car to Transit 

 1.9581     

Transition from Car to 
Active Transportation 

      

Transition from 
Transit to Car 

4.6358      

Transition from Transit to 
Active Transportation 

      

Transition from Active 
Transportation to Car 

2.0658  5.5368 4.7371   

Transition from Active 
Transportation to Transit 

     0.8414 
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Variables 
Lost job 
(1 yr lead) 

Lost job 
(2 yr lead) 

Add. of car 
(same yr) 

Traded car 
(same yr) 

Distance to 
nearest 
transit station 

Distance to 
nearest 
park 

Loyalty to Car    0.999   

Loyalty to Transit     -0.3229  

Loyalty to Active 
Transportation 

      

Transition from 
Car to Transit 

1.0167      

Transition from Car to 
Active Transportation 

      

Transition from 
Transit to Car 

  2.2094    

Transition from Transit to 
Active Transportation 

 2.9367    -6.0247 

Transition from Active 
Transportation to Car 

      

Transition from Active 
Transportation to Transit 

      

 

Variables 
Distance 
to CBD 

Moved 
Closer to 
Work 

Moved 
Closer to 
School 

Moved 
Closer to 
Transit 

Moved 
Farther from 
Transit 

Moved 
Closer to 
Park Area 

Loyalty to Car  0.2965     

Loyalty to Transit       

Loyalty to Active 
Transportation 

-0.524      

Transition from 
Car to Transit 

 0.6934     

Transition from Car to 
Active Transportation 

-0.3523     1.2207 

Transition from 
Transit to Car 

      

Transition from Transit to 
Active Transportation 

  3.1335  1.4822  

Transition from Active 
Transportation to Car 

      

Transition from Active 
Transportation to Transit 

   0.8858   
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Variables 

Moved 
Closer to 
CBD 

Moved 
Farther 
from CBD 

% Single-
Family 
Detached 

Land Use 
Mix Index 

% Transit 
Trips 

% Active 
Transport 
Trips 

Loyalty to Car       

Loyalty to Transit       

Loyalty to Active 
Transportation 

     3.875 

Transition from 
Car to Transit 

      

Transition from Car to 
Active Transportation 

2.105      

Transition from 
Transit to Car 

2.5476  0.3543 1.3193   

Transition from Transit to 
Active Transportation 

      

Transition from Active 
Transportation to Car 

 3.2739     

Transition from Active 
Transportation to Transit 

    10.2416  
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