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Fast high-resolution prediction of multi-phase flow in fractured 
formations

George Shu Heng Paua  ,  ∗  , Stefan Finsterle b  , Yingqi Zhangb
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a  r  t  i  c  l  e i n  f  o a  b  s  t  r  a  c  t  

Keywords: Multiphase flow Fracture network Reduced order model Downscaling

The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of the geometrical and hydraulic properties of the
fracture network, which induces discrete, channelized flow behavior. The resulting high-resolution model is typically computationally very demanding. Here,
we use the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on e cient low-resolution solutions. Theffi
method requires training a reduced order model (ROM) using high- and low-resolution solutions determined for a relatively short simulation time. For a cyclic
EOR operation, the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even after  105  cycles, reducing the
computational cost by at least 85%. The method described is general and can be potentially utilized with any multiphase flow model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

E cient numerical approaches are needed to lower the com- putational barrier for performing optimization and uncertainty quantification usingffi
models that accurately represent complex multi-phase flow processes in fracture networks, with considerable impact on our ability to sustainably
manage and optimize energy and water resource systems, and to effectively remediate contaminated sites. For example, a  reliable  evaluation  of  the
economic   viability   of  thermal  water  flood—a  common enhanced oil  recovery (EOR) technique—depends  on whether  we can predict  the  oil
production rate accurately. Prediction of the oil production rate is typically obtained by constructing a numerical model that accurately cap-  tures the
geometrical and hydraulic  details of  the fracture network,  which induces discrete,  channelized flow behavior.  The network also determines the
effectiveness with which heat and brine penetrates the rock matrix, mobilizing and displacing the  oil.  Simulating  an  EOR operation using a discrete
fracture network embedded in a low-permeability matrix is computationally very demanding, mainly because the detailed representation of  the
fracture  network  and  the complex geometry of the matrix blocks bounded by randomly oriented fracture planes require high-resolution meshes.

In this paper, we apply a reduced order modeling (ROM) technique

known  as  the  Proper  Orthogonal  Decomposition  Mapping   Method
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 (PODMM)—first proposed by Robinson et al. [1]—which allows us to reconstruct the solutions from a high-resolution  model  represent- ing the
fracture network as a heterogeneous medium based on solu-  tions obtained using low-resolution models that only  have upscaled,  effective
properties of the fracture network and thus can be e - ciently simulated. This technique was recently enhanced and applied to land surfaceffi
models to accurately reconstruct hydrological states, heat fluxes, and carbon fluxes  [2,3].  However,  the suitability of the method for modeling
multiphase non-isothermal subsurface prob- lems with significant nonlinear temporal and spatial dynamics has yet  to be demonstrated. This
work evaluates the accuracy of PODMM for a multiphase problem (an enhanced oil recovery problem).

PODMM can be viewed as a regression-based downscaling
technique. Overviews of empirical downscaling  techniques  have been presented before (see, e.g., Wilby et al. [4], Fowler et al. [5], Gutmann et al.
[6]). Previous work on regression-based down-  scaling methods focuses on constructing empirical parametric  models between the predictors
and  variables  of  interest  [7,8]. In the context of reduced order  models  (ROMs),  regression  models  can also be constructed between model
parameters and the vari- ables of interest [9,10]. PODMM differs from the above regression approaches in that proper orthogonal decomposition
(POD) is  not just used to obtain a dimensionally reduced representation of the high-dimensional data. Instead, a least-square minimization
problem that utilizes portions of the singular vectors obtained through the POD procedure  [11] is solved to directly map low-resolution solu-
tions to the high-resolution solutions. More details are provided in Section         2.2.

http://dx.doi.org/10.1016/j.advwatres.2015.12.008
0309-1708/© 2015 Elsevier Ltd. All rights reserved.

PODMM also differs from the projection-based POD methods that were previously applied to subsurface flow problems  [12–15] and other
engineering fields [16–18].  Specifically, the projection-based POD method is an intrusive approach that requires projecting the governing partial
differential equations onto a linear space spanned by the singular vectors, and implementing the resulting discrete equations. For a multiphase
non-isothermal model, the complicated nonlinear terms require additional approximations [19–21] in order to obtain a set of discrete equations
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that can be solved e ciently. PODMM is considerably simpler since it only requires solving the low-resolution models once the ROMs have beenffi
trained. Thus, it does not require intrusive changes to the simulation software,  mak-  ing it an attractive method for complex multiphase flow
problems.

2. Methods

2.1. Mapped fracture network models

We  demonstrate  the  proposed PODMM  model-reduction  ap-  proach for an EOR operation conducted in a fractured hydrocarbon
reservoir with a single injection-extraction well. An individual cycle of the operation consists of four phases: (1) injection of hot water at 10
kg/s for 3 days, (2) an inactive soaking period of 4 days, (3) pro- duction of oil and water for 6 days at a total rate of 5 kg/s, and (4) an
inactive rest period of 1 day. This two-week cycle is repeated 105 times for a total simulation time of 1470 days. The distribution of oil in the
reservoir and the oil production rates are the key prediction variables of interest.

We  consider a discrete fracture network within a model domain  of dimensions  100  × 50  × 30 m. Fractures are generated by randomly
sampled values for size, orientation, and aperture from appropriate, truncated probability distributions. Two fracture sets with an average fracture
spacing of 4 m are generated using the code ThreeDFracMap  [22]. In our modeling approach, the fracture network is then repre- sented by a
heterogeneous continuum model. The fractures are first mapped onto a structured, uniform mesh, before upscaled, heteroge- neous, anisotropic
permeabilities are calculated based on the num- ber, aperture, and orientation of the fractures intersecting the given element. Elements that do not
contain any fractures are assigned a low matrix permeability of 10−18 m2. The procedure is described in detail in Parashar and Reeves (2011).

mate, e cient solutions for the entire simulation period; these solu-ffi  tions are then downscaled to provide high-resolution predictions of the
cyclic EOR operation based on the mapping procedure in PODMM. We examine three alternative LRMs: (1) an upscaled heteroge- neous model

(LRM-HET), using the  exact  same  conceptualization as the HRM with the exception that it uses  a  coarser  discretiza- tion, (2) a simple
homogeneous model (LRM-HOM) with a perme- ability of 10−13 m2, and (3) a dual-porosity model (LRM-DPM) [24] with fracture- and matrix-

continuum permeabilities of 10−13 m2 and 10–18 m2, respectively. Key parameters are summarized in Table 1. Note that the number of elements of
LRM-DPM is twice that of LRM- HOM and LRM-HET. The permeabilities of LRM-HOM and LRM-DPM are chosen to approximately represent the

fracture network perme- ability such that they produce some of the behaviors seen in the HRM. However, no rigorous upscaling technique is used
to determine the permeabilities of the LRMs, e.g., by matching the oil production rate obtained from the HRM through an inverse modeling
procedure. A calibrated LRM will likely improve the performance of the PODMM. However, the goal of this work is to demonstrate that the

accuracy of the PODMM is not due to the calibration of LRM model parameters to
fit the outputs of the HRM.

Fig. 1(b) shows the oil saturation after 3 days. The solutions ob- tained from LRM-HET is a smoother representation of the consider- ably
more intricate distribution obtained with the HRM. Fig. 1(c) and
(d) compares oil production rate (Qoil) determined using the HRM and  the 3  LRMs  at the  55th, and 105th  cycles,  respectively. For  the
parameters given in Table 1, LRM-HET over-predicts the Qoil while LRM-HOM and LRM-DPM under-predict the Qoil.

2.2. Proper orthogonal decomposition mapping method

We summarize the Proper Orthogonal Decomposition Mapping Method (PODMM) here; details can be found in [2]. The method con-
sists of a training stage and a prediction stage. During the training stage, we determine the solutions (e.g., oil saturations and fluxes at all
locations) to the low- and high-resolution models (denoted as  g  and f, respectively) at N time points. These N solutions constitute the
training set. In our example, snapshots are obtained at 1-day intervals from multiple consecutive EOR cycles. We then perform a singular
value decomposition (SVD) of the following matrix W:

Based on this  heterogeneous,  high-resolution  continuum model  representing  a  network of  discrete features  embedded into  a  low-
permeability matrix, we use the “dead-oil” (EOS8) module of TOUGH2 [23] to simulate the response of the reservoir to cyclic in-
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jection of hot water and production of a multi-phase mixture of oil and water. Simulating a long sequence of injection-production cycles is
computationally expensive, especially if a high-resolution contin-

where fi, and gi are the high- and low-resolution solutions at the ith time point,
uum representation of the discrete network is needed to capture the

exchange of fluids between the reservoir rock (which contains most
of the oil) and a network of discrete fractures (whose main role is
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i= i=to provide the pathways  for  oil  extraction) embedded in  that  ma- trix.  Moreover,  the resolution also affects  the system behavior and
computational costs. The PODMM approach described below pre-
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The POD bases, ζi, i = 1,... M, are given by the resulting singular vectors and can be decomposed into
dicts the high-resolution behavior using a computationally e cientffi
low-resolution model (LRM), combined with a mapping  procedure for downscaling the simulation results. Two basic grids with different

f

ζi
i
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 (3)
resolutions are thus developed: a high-resolution model (HRM) with
where ζ f and ζ g are components associated with the HRM and LRMs,

i i
an element size of 2 m, and a low-resolution model (LRM) with an
element size of 5 m (see Fig. 1(a)). The LRM thus has about 15 times fewer elements than the HRM, making it significantly more e cient  at theffi
expense of loss of accuracy in representing discrete flow behav- ior in the fractures and fluid exchange with the matrix. The HRM pro-
respectively, and M is the chosen number of POD bases to use in an approximation.

During the prediction stage, we first determine a coarse- resolution solution g, and solve
vides simulation data for a relatively short training phase; it is also used in this study as the reference solution needed to demonstrate the  accuracy
of the proposed approach. The LRM provides approxi-

α(g) = arg  min1g − g¯  −

M
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Fig. 1. Discrete fracture network mapped onto TOUGH2 continuum grid using (a) a low resolution of 5 m (LRM-HET) (top) , and a high resolution of 2 m (HRM) (bottom). Oil 

saturation after 3 days of hot water injection, calculated with (b) LRM-HET (top), and HRM (bottom). The comparison of oil production rate (Qoil) curves at the (c) 55th cycle, and
(d) 105th cycle for the HRM and the LRMs.

Table 1

Summary of key geometric, hydraulic, and thermal model parameters.
Parameter HRM LRM

Domain size, m 100×50×30

LRM-HOM LRM-DPM LRM-HET
Element size, m 2 5 5 5
Number of elements 18,750 1,200 2,400 1,200

Matrix permeability, m2
10−18 N/A 10−18 10−18

Mapped fracture network permeability, m2 Heterogeneous, anisotropic 10−13 isotropic 10−13 isotropic Heterogeneous, anisotropic
porosity, % 4 4 4 4

heat conductivity, W m−1 K−1 2.5 2.5 2.5 2.5
heat capacity, J kg−1 K−1 1000 1000 1000 1000
pore compressibility, Pa−1

10−9 10−9 10−9 10−9

where 2 is the root mean square of a vector, and γ i is the mixing coe cientffi  of POD basis ζ g. The downscaled high-resolution solution fROM is

then given by f¯ + M αi(g)ζ f .
We can jointly consider multiple variables in a single ROM to take advantage of correlations between the variables by modifying matrix W

in Eq.     (1)   such that each column consists of concatenated solutions of these variables (from both low- and high-resolution models). See [3], for
a more complete description of the method. For the current study, we jointly predict all primary variables of the model, i.e., the oil

HRM and the LRMs and determine MR by finding M that minimizes  the absolute error between f and fROM within that cycle.

2.3. Quantifying and estimating error

To measure the accuracy of fROM relative to f, we define the aver- aged root mean square error (RMSE) of the ROM approximation over a cycle
as ERMSE:

1 14

saturation (Soil
), pressure (P) and temperature (T); g, and f in Eq. (1)
ERMSE = 

14eRMSE(fROM, fi) (5)
are then given by [Soil; P; T] of the low-, and high-resolution models,
respectively. Since these variables have disparate magnitudes, they are first rescaled by their means. Similarly, we create a ROM for the fluxes by
jointly predicting the flux distributions of oil (Foil), water (Fwater) and heat (Fheat) over the entire domain.

The main model parameter for the ROM is the parameter M, the number of bases to use in the approximation. It controls the accuracy and
stability of the approximation. A common heuristic approach to determining an appropriate  M, denoted by  MR, is by specifying  a desired
percentage of variance explained, obtained by summing the normalized singular values associated with the MR selected POD bases [10,15].
However, this approach favors the use of large MR, which can be unsuitable in a PODMM approximation since it can lead to overfitting when
solving the minimization problem given by Eq.     (4). To ensure our approximation is stable, we have instead used an empirical approach: we
simulate an additional cycle using the
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where fROM is the ROM approximation of fi,  eRMSE(fROM, f)  is the RMSE between fROM and f, and ERMSE is averaged over the two-week cycle.

Similarly, we define the PODMM approximation on the coarse grid, given bygROM=g¯ +     M   αi(g)ζ g, and determine its RMSE error, denoted
as eRMSE(gROM, g), where αi(g) is determined from Eq. (4). We can then define an error estimator based on eRMSE(gROM, g):

eEST(g) = C0eRMSE(gROM, g), (6)

where C0  is a positive constant; C0  is typically greater than 1 because Eq. (4) minimizes the eRMSE  of gROM, and thus the eRMSE  of gROM will    be
smaller than the eRMSE  of fROM.  We determine C0  by computing the maximum ratio of the eRMSE  of fROM to the eRMSE  of  gROM for the days   in the
additional cycle used to determine MR.

The error estimator eEST serves two purposes. First, it can be used to determine time scales for which the ROM will be accurate when

i
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i
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Fig. 2. Comparison of the oil production rate (Qoil) obtained for the 55th (top), and 105th (bottom) cycles from the 3 different ROMs trained using (a) 5, and (b) 15 training
cycles; and oil saturation Soil in the entire system from (c) LRM-HET, (d) HRM, (e) ROM-HET with 5 training cycles, and (f) ROM-HET with 15 training cycles for the last day of the
55th (top), and 105th (bottom) cycles.

predicting into the future. Since theeEST is only a function of g, it can be e ciently evaluated when determining ffi fROM . For a desired level of
accuracy,  τ  tol,  we can evaluate time scales in which  eEST  ≤  τ  tol;  we demonstrate this in  Section 3.2. Second,  eEST  can also be used to
determine the length of the training period in a similar manner. By specifying a time scale in which we require eEST ≤ τ tol, we can adap-
tively increase the length of the training period until the requirement is fulfilled.

2.4. Training and validation datasets

The HRM described in  Section    2.1 serves as the reference model in this work. Based on this computationally demanding model,  we
simulate a relatively short period (i.e., the initial few injection- production cycles) to train the ROM. To distinguish between the var-  ious
ROMs,  we  use  ROM-HET,  ROM-HOM,  and ROM-DPM  to  denote ROMs constructed using the LRM-HET, LRM-HOM, and LRM-DPM, re-
spectively. We focus on the prediction of oil saturation Soil in the entire model domain and oil production rate (Qoil), which is com- puted by
integrating predicted Foil  over the boundaries of the well. We examined two training periods: 5 and 15 EOR cycles (i.e., 70 and 210 days).
Daily solutions from the low- and high-resolution models

within these periods are used to train the ROMs. Since the injection- production cycle consists of three distinct stages (injection, soak- ing/rest
and production), separate ROMs are constructed for the three stages because the solutions in each stage can have unique charac- teristics. For
example, Foil is close to zero during the soaking stage, and of different characteristics during the injection and production stages.  We note that MR

will be different for the three stages.
In the results section, we study the accuracy of the ROMs using validation sample sets consisting of the daily HRM solutions deter- mined up to

the 105th  cycle (Day 1470).  Depending on the training periods, the validation sample set starts from the 6th cycle (Day 71) for ROMs trained
using 5 cycles, and the 16th cycle (Day 211) for ROMs trained using 15 cycles.

3. Results

3.1. Oil production rate



The ROMs are able to reproduce the oil production rates (Qoil) very accurately (Fig. 2 (a) and (b)). The relative error between Qoil of HRM and
ROM-HET, constructed using 15 training cycles, is less than 6% averaged over the production stage during the 55th cycle. The
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Fig. 3. (a) The ERMSE of ROM-HET increases with number of cycles after the training period. Increasing the number of training cycles from 5 to 15 reduces ERMSE. (b) For ROM-HET 
trained using 15 cycles, EEST = 1 

},14 
eEST(gi) is close to ERMSE, indicating that eEST is a good error estimator.

error stays approximately the same even when predicting up to the 105th cycle. Compared to the Qoil obtained using LRMs, ROM-HET reduces
the LRM-HET’s errors by 83%, and 85% for the 55th, and 105th  cycles,  respectively.  If  a lower accuracy is acceptable,  for  example due to
underlying uncertainty in the HRM, 5 training cycles may be su cient since it leads to only slight increases in the error. By ffi per- forming only 6
cycles of HRM simulation instead of 105 cycles based on our proposed PODMM, we can reduce the computational cost by 94%; running the
LRM, and setting up and evaluating the ROM are computationally very e cient.ffi  We elaborate further on the condition under which a shorter
training period is possible in Section     3.3.

Comparing the three different ROMs (Fig. 2 (a) and (b)), ROM-HET is consistently more accurate than ROM-HOM and ROM-DPM. This is expected
because (1) LRM-HET is more accurate than LRM-HOM and LRM-DPM, and (2) the variation of the approximation error with in- creasing M has a
more well-defined minimum, resulting in a more accurate determination of MR. Both reasons can be attributed to the fact that LRM-HET is a better
approximation of the HRM since it re- tains some of the heterogeneous structure of the HRM.

When the ROMs are trained using 15 training cycles, ROM-DPM can be as accurate as ROM-HET. ROM-HOM, however, consistently
over-predicts Qoil. This over-prediction is likely due to overfitting. Since the approximation error increases with time, MR should de- crease over time
to avoid overfitting. We will study how  MR  should be reduced over time in the future. We note that if we have determined  MR  by minimizing the
absolute error of Qoil between the ROMs and
the HRM over the entire validation period, we are able to get good
approximations for all ROMs. However, determining the actual error of Qoil over the entire validation period is not practical since we want to avoid
simulating the HRM over an extended period of time.

3.2. Reproduction of fine-scale saturation distribution

We first determine how the accuracy of the ROMs in reproducing fine-scale saturation solutions changes over time. Initial tests suggest that ROM-
HOM and ROM-DPM cannot reproduce the heterogeneity   in the solution obtained using the HRM; therefore, we will only dis- cuss results obtained
using ROM-HET in this section. Fig. 3(a) shows that the error, ERMSE, increases with the number of cycles after the initial training period. The use of
15  instead of 5 training cycles re- duces  ERMSE by 35%. In addition,  ERMSE of ROM-HET trained with 5 cycles grows much faster than ROM-HET
trained with 15 cycles. The poorer performance of ROM-HET trained with 5 cycles indicates that the initial transient dynamics of the first 5 cycles are
poor represen- tations of the long-time behavior of Soil.  Subsequent slower growth  of ERMSE indicates that Soil changes more slowly at later times.

Since ERMSE increases with time, the ROM-HET we constructed is
only accurate for a finite number of cycles. To determine the range

of cycles for which the ROM-HET is valid without performing HRM simulation over an extended period, we will use the error estimator  eEST

defined in Eq.  (6).  For  the  ROM-HET  trained  with  15  cycles, C0, determined based on the   16th   cycle, is found to be   10.334.   Fig.         3(  b) shows
that    EEST =    1      14    eEST(  gi)  ,  the  mean  of    eEST  over  a  cycle, is a good predictor of ERMSE. We can thus determine a time scale for which the ROM-
HET has desired accuracy by specifying an appropriate tolerance for EEST. For example, if we specify a tolerance of 0.05, the ROM-HET that we
have constructed has the desired accuracy up to the 74th cycle for predicting Soil.

We now determine how well PODMM reproduces the Soil distribu- tion. Fig. 2(d) shows the heterogeneous structure in Soil at the end of
the 55th cycle (Day 770) and 105th cycle (Day 1470). Fig. 2 (f) shows that ROM-HET trained with 15  cycles is able to reproduce most of the
intricate structure of Soil on the 2 m scale. However, ROM-HET is not able to reproduce the very high Soil values; the approximated solu- tions are
smoother since only 9 POD bases are included in the approx-
imation. Although the ignored POD bases amount to only 0.04% of the variance in the solutions within the training period, they can have a
significant impact on the approximation of the solutions at later times,  especially if these solutions are significantly different from the
solutions in the training period. Consistent with the results in Fig.     3, ROM-HET trained with 5 cycles has poorer predictive capability (Fig.     2
(e)). Nonetheless, in both cases, ROM-HET added a significant amount of small-scale structure to the LRM results shown in Fig.     2(c). In this
respect, the PODMM can be viewed as a downscaling procedure. With 15 training cycles (plus one additional cycle for determining MR), the
computational cost of simulating 105 cycles is reduced by 85%.

3.3. Dependence of training period on fine-scale reproduction

Compared to Qoil, the estimation of Soil  requires a longer train-  ing period. Approximating Soil over the entire domain requires repro- ducing
a significant amount of fine-scale information and is thus a challenging problem. On the other hand,  Qoil  is a scalar, integrated quantity over a
smaller region of the domain near the well and does not need to accurately capture fine-scale information in the Foil over the entire domain. We
can thus obtain su ciently accurate predic- tion even with a shorter training period (ffi Fig. 2(a)). For the current problem where the goal is to

1
4

i=
1

4 i=
1

},



predict future solutions, we can con- clude that a longer training period is needed to accurately capture fine-scale features in a solution. If we are
interested in capturing the effects of operational parameters (e.g., injection rate, injection dura- tion, production rate and production duration)
and model parameters (e.g., rock properties), the training period will additionally depend on how the Soil  and Qoil  vary with these parameters
within the modeled parameter space.

4. Conclusions and future work

We have demonstrated that PODMM is capable of predicting long- time behavior of the oil production rate (Qoil) and oil saturation (Soil).
The main conclusions are

(1) The number of training cycles depends on  the properties of  the variables we are approximating.  We  showed that  Qoil  is ac- curately
approximated using only 5 training cycles while 15 training cycles are needed to reproduce the intricate structure

[4] Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, et al. Statisti-      cal downscaling of general circulation model output: a comparison of methods. Water Resour Res.
1998;34:2995–3008. http://dx.doi.org/10.1029/98WR02577.

[5] Fowler HJ, Blenkinsop S, Tebaldi C. Linking  climate  change  modelling  to  im-  pacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatology.
2007;27:1547–78.   http://dx.doi.org/10.1002/joc.   1556.

[6] Gutmann E, Pruitt T, Clark MP, Brekke L, Arnold JR, Raff DA, et al. An intercompar- ison of statistical downscaling methods used for water resource assessments in   the United States.
Water Resour Res.   2014;50:7167–86.   http://dx.doi.org/10.1002/   2014WR015559.

[7] von         Storch         H, Zorita         E, Cubasch         U. Downscaling of global climate change esti-

of Soil

using the PODMM method.
mates to regional scales: an application to Iberian rainfall in wintertime. J Cli-
mate. 1993;6:1161–71.

http://refhub.elsevier.com/S0309-1708(15)30001-4/sbref0005
http://refhub.elsevier.com/S0309-1708(15)30001-4/sbref0005
http://refhub.elsevier.com/S0309-1708(15)30001-4/sbref0005
http://refhub.elsevier.com/S0309-1708(15)30001-4/sbref0005
http://dx.doi.org/10.1002/2014WR015559
http://dx.doi.org/10.1002/2014WR015559
http://dx.doi.org/10.1002/joc.1556
http://dx.doi.org/10.1002/joc.1556
http://dx.doi.org/10.1029/98WR02577


(2) The approximation errors grow with time, indicating that the
resulting ROMs have a limit to how far they can predict into the future without significant loss of accuracy. We show that it is possible
to determine the limit through the use of an error estimator.

(3) Different LRMs can be used with PODMM. For some variables (e.g.,  Qoil), simpler LRMs (e.g., a dual-porosity model) can pro- duce a ROM
that is su ciently accurate for predictiveffi  pur-
poses. However, ROMs constructed using more complex LRMs that are better representations of the HRM will typically have more consistent
predictive capabilities.

For future work, we plan to study how PODMM can be used in cases where operational, and model parameters are varied. In addi- tion,
we will apply PODMM to higher-resolution models and more complex models (e.g., subsurface flow coupled to geomechanics) to study and
improve the robustness of PODMM.
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