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ABSTRACT 

Building energy audits are time-consuming and labor-intensive. This paper describes a new 

method using machine learning (ML) techniques on novel data sources (drone images) to 

improve the identification of building characteristics and retrofit opportunities, and thereby 

reduce the effort for audits. The new ML method includes: (1) Building footprint extraction 

using line extraction, polygonization, and polygon-merging, (2) Building envelope extraction 

using PIX4d modeling software to reconstruct a building 3D model, (3) Visualization tool for 

viewing images from the 3D model, (4) Window-to-wall ratio (WWR) using state-of-art deep 

neural network semantic segmentation, (5) Envelope thermal anomaly detection using an 

unsupervised machine learning clustering algorithm, and (6) Rooftop energy equipment 

detection based on an object detection algorithm. The testing of this method involved a 

comparison of additional ML-generated information overlaid on current ‘state-of-practice’ audit 

and remote assessment baselines using evaluation metrics: labor time and associated cost, 

marginal benefits of using ML-generated information in workflows for audits and remote 

assessments, integration potential with existing processes and tools, and replicability/scalability 

of the method. In two test buildings in California that had comprehensive drawings and meter 

data available, the ML method effectively generated a building footprint, envelope, rooftop 

equipment, WWR, and locations of envelope thermal anomalies. Projected target segments of the 

ML method are sites with minimal drawings and energy data, and underserved sectors such as 

multistoried housing, disadvantaged communities, and schools for which the ML method can 

enable identification of building asset characteristics and prioritization of envelope retrofits and 

decentralized energy equipment retrofits. 

 

Introduction 

Important capital-intensive building energy efficiency measures (EEMs) remain largely 

unaddressed in today’s building energy audit and meter analytics technologies. Two such key 

EEMs are (1) Envelope retrofits, and (2) Equipment efficiency, installation, and replacement. 

This gap primarily exists due to limited access to envelope and asset information inputs, and the 

time and labor required to acquire, process, and assess these data. These EEMs are detailed 

below.  

Envelope retrofits: A building envelope modulates its interaction between the indoor and 

outdoor environment. It plays an essential role in the building’s energy performance, since a 

third of a typical building’s energy use is directed towards indoor heating and cooling 
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requirements (DOE, 2015).  However, the identification of energy efficiency measures for 

envelopes is not typically done because the human and analytical resources to identify these 

EEMs can be costly, so the return on investment is not well-quantified. There is a lack of 

physical access to the extents and interior of a building's expansive envelope and absence of 

automated data acquisition from the envelope to be able to detect envelope anomalies (Harris 

2021). Auditors express the reservation that in milder climates envelope EEMs are difficult to 

detect and may not have economic payback for their services. Hence, auditors tend to spend their 

limited budget on items that are likely to be more fruitful. However, they note that even in non-

mild climate zones (such as ASHRAE climate zones 1-3, and 5-7 in the U.S. shown in Figure 2) 

where envelope retrofits may have significant benefits, they are not usually conducted due to 

lack of data and analysis.  

  

      

Figure 1. International Energy Conservation Code (IECC) climate regions of the United States.     

Source: ASHRAE, 2011. 

Equipment efficiency, installation, and replacement: Heating, ventilation, and cooling 

(HVAC) is typically the most significant load in a commercial building, and one of the leading 

causes of inefficient operations (DOE 2015). Remote assessments using smart meter data 

typically have little information on the installed HVAC assets unless drawings are made 

available. Hence, the focus of remote assessments is almost entirely on HVAC controls and 

operations. A gap in audits is to detect the presence and location (and potentially relative size) of 

rooftop HVAC units (RTUs), as well as solar panels, and solar capacity of the building envelope, 

both roof and walls, given the emphasis on net zero buildings.  

Existing literature has suggested the use of thermography for building performance 

diagnostic inspections and for accurate envelope characterization (Rakha 2018, El Masri 2020).   

The contributions of this work are to develop methods based on machine learning (ML) 

and novel data sources to improve identification of building characteristics and energy efficiency 
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opportunities. An unmanned aerial vehicle (UAV) was used to capture thermal and 

red/green/blue (RGB) images of buildings, and novel ML algorithms were developed and 

applied to extract useful building asset information and energy efficiency opportunities from 

these images. The new ML methods were compared against existing audit and remote 

assessment approaches using evaluation metrics. Primary evaluation metrics included labor time 

and associated cost, and marginal benefits of using ML-generated outputs. Secondary evaluation 

metrics included potential integration with existing workflows and tools, and process 

replicability.  

Through the new ML methods, five building parameters were automatedly or semi-

automatedly extracted, i.e., building footprint, building envelope, window-to-wall ratio (WWR), 

envelope thermal anomalies, and rooftop assets/equipment.  

The objective of this study was to derive scalable data-driven techniques for asset 

identification and detecting potential thermal anomalies and demonstrate any marginal benefits 

of this ML method developed by incorporating the outputs it generated with the results of 

traditional in-person audits and remote assessments. Testing was conducted on two commercial 

buildings in California. 

Methodology 

A five-step approach was used to capture data from two test sites, develop and use ML 

algorithms, and integrate and compare the new method with audits and remote assessments, as 

described below: 

 

(1) Selected test sites and developed and implemented a field plan for the unmanned aerial 

vehicles (UAVs): Selected and obtained permits for two medium sized commercial 

buildings as test sites for UAV flights, and did detailed pre-flight, on-site, and post-flight 

planning for image and additional data collection from these sites.  

(2) Developed and used machine learning (ML) algorithms on the acquired data: Conducted 

ML-based analysis on the image (RGB and thermal) data and converted it into utilizable 

file formats and information. 

(3) Integrated and compared with audit data analysis (A1, A2): Performed an in-person audit 

of assets, characteristics, operations and measure opportunities in each building, using the 

following two sub-steps: 

Sub-step A1: Typical ASHRAE Level 2 (L2) audit  

○ Collected data through a typical request for information (RFI) sent to the buildings’ 

owners/managers: Historical Utility data (12 month electric bills, utility rate structure, 

Energy Star Portfolio Manager data, 15-minute interval data); On-site generation or 

storage; Drawings and documentation of site/architectural, mechanical, lighting 

systems; Occupancy: Estimated occupancy, occupied vs. unoccupied space, tenanted 

function of space use; HVAC system operations: Sequence of operations, BMS 15-

min trends for central plant, zone, and air side equipment; Operations & Maintenance: 

Lists for HVAC equipment, lighting and ballasts, other equipment, and any existing 

deficiencies or problems; Past audit or retro-commissioning report: what measures 

implemented, changes to equipment and controls 

○ Collected data through in-person visits through observation, instrumentation, and 

surveys: Site observations were based on typical audit checklists, forms, and tablet-

based software tools, including: identification of all major energy consuming systems; 
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observation of BMS setpoints, sequence of operations, and download of available 

trend data for the past year with the intent of identifying seasonal variations, any 

shifts/changes in operations, and if equipment is operating per plan; identification of 

zones with hot/cold calls, glare problems, or equipment with known maintenance 

issues through detailed interviews with operators. 

○ Developed a typical energy audit report package: This comprised annual energy usage 

data analysis including benchmarking the building performance against Energy Star, 

EIA’s Commercial Building Energy Consumption Survey, or California Commercial 

End-Use Survey; building energy balance, i.e., the energy use of the building by end 

use; description of the building, energy using systems, and efficiency measures. 

Sub-step A2: Overlaid eQuest simulation on the A1 ASHRAE L2 audit  

○ Developed a whole building simulation model calibrated to the historical annual 

energy use of the building and targeted analyses of individual systems compared 

against the baseline energy balance to estimate savings for the identified measures  

○ Used ML-generated information from Step 2 to enhance information for each test 

building as A1’and A2’ respectively and compared these to the original standard audit 

analysis A1 and A2. 

(4) Integrated and compared with remote assessments (R1, R2): Performed a remote 

assessment of energy usage and equipment operations from the two test buildings using 

the following two sub-steps 

Sub-step R1: Reviewed building data, utility data, and building management system 

(BMS) trend data (as available) with the following activities 

○ Collected data from the site contact over email and phone calls. Additional 

information included building envelope specific data to run ‘Asset Score’ software 

tool and remote BMS access to retrieve trend data (if available) for HVAC 

operation. 

○ Reviewed the obtained data  

­ Utilized Microsoft Excel® to review monthly energy consumption to identify 

seasonal variation in building energy consumption 

­ Examined the utility provided 15-minute kW interval data for daily, weekly 

and monthly consumption patterns on OpenEIS and Energy Charting and 

Metrics (ECAM) tool (Microsoft Excel®) open-source add-on). 

­ Reviewed trend data using the analysis tool in the BMS software (Automated 

Logic’s WebCTRL Building Analytics tool’s user interface).  

­ Used U.S. DOE’s BETTER tool to assess building performance energy 

efficiency and Asset Score Tool to assess the physical and structural energy 

efficiency of test buildings to identify potential retrofits. 

Sub-step R2: Overlaid eQuest simulation on the R1 Remote Assessment Study.  

Used ML-generated information from Step 2 to enhance information for each test 

building as R1’ and R2’ respectively, and compared to the original standard remote 

assessments R1 and R2. 

(5) Synthesized the results to determine the marginal cost and benefit of new information 

from this new ML method: Compared ‘standard’ analysis from Steps 3 (A1, A2) and 4 

(R1, R2) to the enhanced analysis with ML-generated information (A1’, A2’, R1’, R2’). 

(See Figure 2). Evaluated the efficacy and performance of the new methods overlaid on 

current remote assessments and traditional in-person audit techniques. 
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Figure 2. Nomenclature for “standard” analyses, and the “enhanced” analyses using   

additional ML-generated information 

Results 

Results of Step 1, Develop and Implement a Field Plan 

Two sites were selected (Figure 3) and aerial and oblique RGB and thermal images were 

acquired, as well as additional data such as outside air temperature. 
 

Site 1: Commercial Office 

A 77,361-conditioned square foot office building. Constructed in 1984, it has five floors and a 

basement (Figure 3a). The building envelope consists of concrete masonry unit walls, double 

paned windows, and glass exterior doors. The roof of the building is covered with roofing 

membrane and coated with white reflective paint. 
 

Site 2: Club House 

A 63,000 square foot clubhouse. Built in 1925, it has two stories with small offices, a restaurant, 

a bar, pool, assembly rooms, and a fitness room (Figure 3b). The building has a combination of 

operable and fixed windows. A large skylight dominates the roof. The building is served by 

seven 100% outside air package units. 

 

Results of Step 2, Use the machine learning algorithms on the acquired data 

The outputs of the machine learning workflows, that were integrated into the audit and remote 

assessment processes are described below (Figures 4-7). 
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Figure 3a (left): Commercial Office Site; Figure 3b (right): Club House Site 
 

First, the building footprint was extracted using 3 major steps: Line extraction, Polygonization 

and Polygon-merging, producing a geojson file with coordinates and text. An Aerial 3D Building 

Reconstruction (A3DBR)1 (Granderson 2021) building footprint extraction pipeline was 

developed, using UAV images to construct a building footprint (Figure 4). Details of the analysis 

pipeline can be found at Granderson et. al 2021.  
 

 
Figure 4. Left: An aerial view of the of Club House Building as seen on Google Earth; Center:  an intermediate 

output in the machine learning process to extract building footprint; Right: ML-derived final footprint output. Note: 

Coordinates are transposed in plotting, and not visualized in the same orientation. 

 

Further, the building envelope was derived from the images to reconstruct a 3D model of 

the building using PIX4d modeling software. The .las/.obj file was directly exported from the 

PIX4d software and contained the envelope information of the building as a 3D model. 
Next, the window-to-wall ratio was extracted. This entailed the construction of a 3D 

point-cloud of the building, using photogrammetry to detect features that overlapped across 

images (e.g., lines, edges, corners) in conjunction with GPS data. This 3D model was projected 

onto a 2D grid, by focus on grid cells corresponding to the building facades that had a very high 

point density. Next, supervised learning algorithm was trained to detect the windows from the 

building facades on 2D images. The supervised algorithm employed DeepLabv3+, a state-of-art 

deep neural network semantic segmentation approach2. The output of the windows detection 

 
1
 https://github.com/LBNL-ETA/a3dbr  

2
 https://github.com/VainF/DeepLabV3Plus-Pytorch  
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provided a predicted window mask (Figure 5a). Finally, the facade corner points of the extracted 

3D building model were projected onto the RGB UAV camera images that corresponded to the 

input images with the detected windows. Once the 3D coordinates for the window points were 

identified on the images, the WWR was computed for each orientation, and output as text files 

(Figure 5). 
 

 
Figure 5a: Flowchart for the WWR extraction process 

 

 
Figure 5b. Window detection outputs used to calculate window-to-wall ratio at the Office building test site 

 

Then, potential thermal anomalies were identified. Thermal images (Figure 6a) 

were converted to images showing the corresponding temperatures (Figure 6b), then a 

mask was applied from the AutoBFE software pipeline that identified the relevant 

building areas in the image. Once the building areas were identified, an unsupervised 

machine learning clustering algorithm (k=16 clusters exhibited optimal detection) was 

used to segment the temperature on building facades from the rest of the image. (Figure 

6c). Finally, the outside air temperature (OAT) on the day was used to set a threshold 

value (OAT+5 degrees, for example at the office building, 22+5=28 degC) to convert to a 

binary image using a non-adaptive thresholding technique. The yellow regions were 

potential anomalies as these parts of the segmented image were above the threshold. A 

contour was applied to the areas that had a potential thermal anomaly. This was output as 

jpeg files.  
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Figure 6a: Thermal image of the two buildings taken from the UAV flights 

 
Figure 6b: Temperatures seen in the image in degrees centigrade as a continuous scale 

 
Figure 6c: Use of a clustering algorithm for thermal image segmentation  

 

Finally, rooftop energy equipment detection was done. This was based on an 

object detection algorithm, and output as image with text label. An object detection 

algorithm was developed using Mask RCNN, a state-of-the-art computer vision 

algorithm. A model was trained after labeling roof top units (RTUs) on a training dataset 

and the model used to detect RTUs on the rooftops. (Figure 7). Note that while detecting 

the number of installed RTUs without requiring a visit to the roof is beneficial, a potential 

next step in this research may involve extracting sizing, age and other information about 

the RTUs (see the Conclusion section). 
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Figure 7. Depicts a rooftop unit detected with 89% certainty based on the Mask-RCNN machine learning algorithm. 

Left: An RTU labeled by the ML algorithm from the drone aerial image; Right: A zoomed-in image of the same 

 

In addition, semi-automated outputs were extracted as text files from the 3D point cloud model, 

i.e. floor area measurement, number of floors, and building height. 

Results of Step 3, Integrate and compare with audit data analysis 

Using the data collected from the site, four outputs were generated from this step as described 

below. (Note: The outputs of the ASHRAE level 2 (L2) audit have not been included as that was 

not the contribution of this work).  

First, an A1 output was generated from ASHRAE L2 Audit and EEM-specific 

calculations. Note that an A1’output was not generated since the high-level A1 methodology did 

not have a framework to incorporate outputs such as WWR or infiltration (however the footprint 

from the drawings was cross-checked with the ML-derived information). Next, an A2 output was 

generated using eQuest modeling-based calculations overlaid on the ASHRAE L2 Audit.  

Finally, an A2’output was generated by augmenting the A2 output with ML-derived information. 

The savings summary was then revised utilizing the ML-derived information. The ML- 

augmented audit workflow (Figure 8) and savings summary were assessed to determine what, if 

any, marginal benefits were obtained. These audit outputs are shown in Table 2. 

 

Figure 8: Typical audit workflow (pink) and integration with ML-derived outputs (green) 
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Table 2: Audit outputs generated for the project 

A1  

ASHRAE L2 Audit 

+  

Excel based 

calculation tools  

 

A1’ 

A1 augmented with ML 

info (geometry, possible 

zones of infiltration/ 

exfiltration and WWR) 

(not generated) 

A2 

ASHRAE L2 audit 

 + 

 eQuest simulation 

model calibrated to 

annual energy use 

A2’ 

A2 augmented with 

ML info (geometry, 

possible zones of 

infiltration/ exfiltration 

and WWR) 

Results of Step 4, Integrate and compare with remote assessments data analysis 
 

Using the data collected from the site, four outputs were generated from this step as mentioned 

below (Note: The outputs of the remote assessment have not been included as that was not a 

contribution of this work). First, an R1 output was generated by conducting building envelope 

specific data assessments to develop a baseline building model in the Asset Score software tool. 

This included a smart meter-based utility data remote assessment to update the building 

occupancy schedule in the baseline building model and utilizing Asset Score software tool for 

assessing the energy efficiency. An R1’output was generated by augmenting R1 with reviewing 

the ML-derived information. Next, an R2 output was generated using eQUEST with the 

information collected and analyzed during the R1 remote assessment. This included parametric 

runs based on utility data review and BMS trend data review, anda savings summary based on 

proposed recommendations. An R2’output was generated by augmenting the eQUEST model 

with the ML-derived information. The savings summary was revised. The ML- augmented 

remote assessment workflow (Figure 9) and savings summary were assessed to determine what, 

if any, marginal benefits were obtained. The outputs are shown in Table 3. 

 
 

 
Figure 9: Typical remote assessment workflow (blue) and integration with ML-derived outputs (green) 
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Table 3: Remote assessment outputs generated for the project 

R1  

Envelope- specific data 

assessment + Smart 

meter-based remote 

assessment  

Tools: ECAM, Google 

Map, Asset Score) 

 

 

 

R1’  

R1, augmented with ML 

info geometry, possible 

zones of 

infiltration/exfiltration 

and WWR) 

Tools: ECAM, Asset 

Score 

 

 

R2 

Smart meter-based 

remote assessment + 

BMS data assessment + 

eQuest 

Tools:  BMS inbuilt 

analytics, MS Excel, 

Universal Translator-3, 

eQUEST Simulation  

 

R2’  

R2, augmented with 

ML info geometry, 

possible zones of 

infiltration/ exfiltration 

and WWR) 

Tools: BMS’ analytics, 

MS Excel, Universal 

Translator-3, eQUEST  

Results of Step 5, Synthesize the results to determine the value of new information 

The results from Steps 3 and 4 were compared. First, the labor time to provide the ML-derived 

asset information (Table 4) and to conduct the audit, the remote assessments and provide the 

respective reports (Table 5) was tracked. Second, additional ML-derived information and its 

contribution to the audit/remote assessment reports was analyzed (Table 6). Third, the 

replicability of the methodology was assessed. 
 

Tracking labor time and associated cost 

The machine learning process included field work for UAV flight-based data capture, and desk 

work to utilize the ML algorithms and generate a report with the outputs in the desired file 

formats. The total time was ~10-12 hours each for the two test sites, as shown in Table 4. It is 

expected that the time taken can be reduced through report automation. Additionally, since a 3D 

point cloud generated for a building does not need to be repeated unless there are 

transformations, that would reduce the total time for any future analysis activities. 
 

Table 4: Labor time for ML workflow  

Labor Time 

Approach 

Planning, 

permit, flight 
Data processing Report Total 

Person-hours/medium sized 

building 

5-6 hours  

(2 people, Pilot, 

Observer) 

3-4 hours*  

Labor time for 

A3dbr and AutoBFE 

pipelines 

2 hours 

 

10-12 hours 

 

Labor Cost3     

Total Cost/bldg $560-$675 $375-$500 $250 ~$1185-$1425 

 
3 Hourly rates: US $125 based on national average for an engineer, and US $100 for an observer.           

*Does not include 5-10 hours of Pix4D 3D reconstruction processing time, that does not need manual supervision. 
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The labor time and associated cost for the audits and remote assessments, without and with the 

input of ML-derived information, is shown in Table 5 below. For the two test sites, the effort 

incrementally increased for first-time integration of ML-derived information with audits (4%), 

and incrementally reduced for first-time integration of ML-derived information with remote 

assessments (9-20%).  
 

Table 5: Labor time for audit and remote assessments workflow 

Labor Time 
Approach 

Audit Audit + ML Remote Remote + ML 

Person-hours/bldg* 

A1 - 40 hrs 

 

A2 - 48 hrs 

A1’ - N/A 

 

A2’ - 50 hrs 

(4% increase) 

R1 - 20 hrs 

 

R2 - 44 hrs 

R1’ - 16 hrs 

(20% reduction) 

R2’ - 36 hrs 

(9% reduction) 

Labor Cost      

Total Cost/bldg** 
A1 - $5,800 

A2 - $6,720 

A1’ - N/A 

A2’ - $7,000 

R1 - $2,500 

R2 - $6,380 

R1’ - $2,000 

R2’ - $5,220 

* Assuming a medium sized building (50,000-70,000 sq.ft) 

**Rate for A1 is US $145/hr, A2 and A2’ are US $140/hr 

**Rate for R1 & R1’ is US $125/hr, R2 &R2’ is US $145/hr (based on engineer rates in California) 

 

We present an analysis of Table 5 and includes projections for cost and benefit of the ML 

method. A1 was a traditional audit (using excel spreadsheets) that typically does not include 

envelope measures. Hence, there was no A1’ output. It is projected that if the ML-derived high-

resolution data on envelopes and RTU be provided ahead of the audit (e.g., a “preliminary audit” 

before the site visit) that could provide high marginal benefit by helping guide the site visit to 

identify or prioritize data collection and save time and effort. The labor hour estimates for A2' 

show a 4% increase, and this included the additional time taken to assess and integrate the 

outputs from the ML data into the workflow for the first time. This is expected to reduce as the 

process is now understood and the workflow streamlined. It is also projected that potential 

features of ML data such as provision of the building footprint in CAD dwg format will reduce 

the time in creating the model.  

The labor hour estimates for R1' show a 20% reduction and that for R2’ show a 9% 

reduction, despite included the additional time taken to assess and integrate the information 

received from the ML-output report into the workflow for the first time. It is projected that ML-

derived outputs can potentially reduce labor hours for remote assessments by 50%. It is projected 

that if significant envelope-related measures are identified from ML extracted data (e.g., 

leakages, lack of insulation etc.), additional time may be required to assess the measure for 

quantification, and for generating these comprehensive reports. 
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Tracking usability and marginal benefit 
 

ML-derived information provided marginal benefits to the remote assessments and audits 

with inputs to asset information i.e., building 3D geometry, footprint, floor area, floor heights, 

number of floors, building height, WWR, presence of RTUs. Further, unprecedented EEM 

recommendations were enabled using the ML-derived thermal anomaly report. In this study, it 

was found that the WWR and potential thermal anomalies were the most valuable addition to the 

conventional audit and remote assessment. It was learned that a lack of diagnosis of the type of 

anomaly and associated metrics required the engineers to estimate the infiltration/ exfiltration of 

certain zones to incorporate these findings into the audit and assessment tools. Next steps also 

involve producing outputs that can be more readily integrated with existing audit and assessment 

tools and gaining more ground truth information on buildings such that more detailed 

performance metrics may be estimated. (See Conclusion section).  

From Table 5, ML-derived outputs were able to reduce the effort required for the remote 

assessment and projected for the in-person audit as well, if they were provided before the audit 

was conducted. The marginal benefits of this ML-derived information were deemed ‘high’ if no 

“as-built” drawings were available for a site. The value of this information was deemed 

‘medium’ if it was used to verify the “as-built” condition at site, even if design and construction 

drawings were available. The information could be even more valuable if (i) the accuracy was 

verifiable, and (ii) if the data were available during the preliminary audit to guide the site visit to 

identify potential envelope EEMs.  

Discussion 

Novel data used in ML techniques is typically hard to obtain from a site, due to issues 

like UAV flight permissions. Engineers performing the audit/remote assessment use default 

assumptions to complete their analysis such as ASHRAE 90.1 or California’s Title 24 defaults in 

eQUEST. However, since the ML output report provided more information about input 

parameters, the assessor used these new data to input validated information rather than using 

default eQuest values. ML methods improved both in-person and remote assessment processes 

through complementarity and verification.  

There is a high potential to accurately and cost effectively acquire unstructured data 

sources at scale. Once scale is achieved, the method can also become helpful to quickly identify 

what types of building facades (e.g., punched windows vs. curtain walls etc.) may be associated 

with certain thermal anomalies. At that point it will be possible to perform a direct comparison of 

measures recommended, measures installed, and eventually energy savings achieved by 

buildings that implement these new techniques - as well as the cost and time required to achieve 

these outcomes - relative to both existing remote assessment methods and in-person audits. 

The practical requirements to replicate the process include obtaining the requisite 

permissions to fly the UAVs and acquire data on the site, access to a pilot for a UAV equipped 

with an RGB and thermal cameras, and short trainings on image data acquisition and post-

processing using LBNL’s open-source algorithms to extract the relevant information. While the 

cost could be ~USD 1000 for a medium sized building, this process be streamlined to be made 

more cost effective using better camera types, pre-developing optimal flight path designs, 
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optimizing temperature step functions to reduce data acquisition costs, and optimizing training 

and analysis. 

The core benefits of this method are that it is a non-contact, non-destructive, and 

replicable, and can be utilized for verifying and/or augmenting information for current building 

energy analytics tools. Once adequate technology readiness levels have been achieved, the 

machine learning method can be highly replicable by identifying relevant business models for 

target market segments.  
 

Conclusions 

In this research, new ML-derived information extraction techniques were developed and 

tested for their potential to provide accurate new or complementary information streams for 

existing building energy analytics tools i.e., Level 2 audits and remote assessments. They were 

assessed for their likelihood to provide meaningful asset information and improved efficiency 

insights beyond the current state-of- the-practice, and the potential for at-scale cost effectiveness. 

Five parameters were extracted using new machine learning algorithms: (i) building footprint 

and floor area; (ii) 3-D building envelope including the total building height, number of floors 

and floor height; (iii) window-to-wall ratio; (iv) envelope thermal anomalies, and (v) the 

presence and number of rooftop energy equipment such as rooftop HVAC units.  

There are two key marginal benefits gained from ML-derived information. First, in 

augmenting information otherwise accessed through drawings and satellite images: This is 

through information about the “as-built”, i.e., current conditions at the sites that could help 

provide new information if there were no current site drawings/information available, as well as 

provide ground-truth to any available design drawings. At both test sites, ML-derived data 

helped to augment the design drawings when developing building simulation models during the 

audit process and for spreadsheet models during the remote assessments. ML-derived 

information was also better than just having regular site photographs– it helped inform/verify 

three parameters: the building footprint and floor area, heights, and number of floors. In addition, 

while information about window-to-wall ratio and rooftop units is currently extracted from 

google street view and satellite images, the new ML-derived information about the RTU units is 

much higher resolution and therefore more useful. The ML-derived information was verified 

through the existing drawings as exhibiting a high-level accuracy (+/-10%).  

The second key benefit is in providing unprecedented information not available 

otherwise: This was through providing new information about thermal anomalies that could not 

otherwise be obtained. These data could be directly overlaid on the audit and remote assessment 

analyses and provide/ improve the envelope measure recommendations. This was the most 

significant gap addressed by the machine learning methods. As next steps, the engineers 

expressed an interest to obtain the type, precision of location, and magnitude of the thermal 

anomaly. Quantitative information (such as % affected area and insulation R-value etc.) could 

help them provide more specific, prioritized envelope retrofit recommendations. This could 

provide greater payback opportunities especially in non-mild climate zones. 

There are a few areas for potential future work, addressing technical and implementation 

aspects. First by enhancing envelope thermal anomalies detection and diagnosis with greater 

accuracy and precision: This includes accuracy of the magnitude, precision of the location, 

accuracy of the data as compared to the auditor's visual inspection or blower door tests (for 

residential buildings). The core of this future work would be diagnosing the thermal categories 

5-412©2022 Summer Study on Energy Efficiency in Buildings



such as air infiltration/exfiltration due to thermal bridges or breaks that lead to surface 

condensation enabling mold growth, deterioration of the building fabric caused by interstitial 

condensation, and occupant discomfort caused by draughts and cold rooms. Thermal bridges can 

typically occur at the junctions between the wall, floor, or roof, near windows and doors, by 

studs, and around holes for cables and pipes. Others include exterior surface temperature of the 

roof and glazing, and convection or conduction issues through wall insulation. 

Second, by extracting detailed information on asset and energy equipment. While in the 

scope of this study, identification of an RTU’s presence and general location was done, 

additional information about RTU and potentially solar equipment sizing (e.g. nameplate 

information extracted through closer UAV flights and optical character recognition and tonnage), 

and wear and tear could help with improved asset and EEM identification. Another aspect is to 

improve the model for the automating WWR extraction. Others include initiating an automated 

approach for extraction of the number of floors and materials. These aspects are relevant to 

identifying equipment efficiency, installation, and replacement that are a significant gap with 

remote assessments. 

Third, by potential improvement in the integration of ML-derived outputs: This includes 

pipelines through which outputs from the ML pipeline could be integrated with existing tools and 

methods. For example, how fully automated WWR and 3D building reconstruction could be 

'passed/input' to a simulation tool (Geojson and numeric values), or .dwg format of images 2D or 

3D that could be 'passed' for consumption by an EMIS or simulation tool 

Certain target segments, applications, and collaborations may be well-served by this new 

ML methodology. Since auditors’ experience shows that envelope measures rarely pay in mild 

climates, they tend to spend their limited budget on measures that are likely to be more fruitful. 

However, in non-mild climate zones that exist across broad swathes of the U.S. (say ASHRAE 

climate zones 1-3, and 5-8), envelope retrofits may be beneficial. Additionally, as code 

compliance and healthy buildings are becoming increasingly important, regular maintenance to 

help eliminate sub-par energy and/or health/ comfort-related performance has also become 

necessary especially in older, multifamily buildings. Providing specific information from 

machine learning based envelope retrofits could help prioritize energy and comfort measures 

such as simple weatherization. The methodology presented in this paper can also be applicable to 

a neighborhood of single family residential and multifamily buildings, reducing the time and 

effort required for characterizing the assets of each one separately. At the same time, privacy 

becomes a bigger concern when it comes to residential buildings and future work must 

incorporate scalable permits and practices for drone flights and image capture that address this. 

Funding that is otherwise used for audits or remote assessments may be re-allocated to actual 

envelope measures such as better shading and glazing, insulation, cool roofs etc.  
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