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Abstract: Autonomous vehicles require high bandwidth, high sample rate, precision vehicle
and world relative state estimation, especially those such as automobiles that involve human
safety with a mixed set of vehicles operating in a complex environment containing humans. An
additional requirement is high reliability. Such systems will ultimately involve a multiplicity
of sensor modalities. Sensor fusion is critical to achieving these application requirements.
Several of the sensors (e.g., vision, radar, Lidar, ultrasound, Global Navigation Satellite Systems
(GNSS)) have various spurious measurement types. Standard Extended Kalman Filter (EKF)
approaches are not sufficiently reliable at removing the effects of such spurious measurements.
The EKF approach must decide at the time each measurement arrives whether it is valid.
If so, the measurement is used and discarded; otherwise it is not used and discarded. When
that decision is wrong, either measurement information is lost or the state and covariance
estimates are corrupted. Either situation can result in divergence of the EKF. An alternative is
to maintain all recent measurement data within a moving time-horizon. This window of data can
be processed within a Bayesian framework to extract the optimal state trajectory estimate over
the time-horizon, under various fault scenario assumptions. Because the time window of data
is maintained it is straightforward to change the assumptions as to which data are valid and
reprocess the data. Therefore, in prior articles, this approach was referred to as a Contemplative
Real-Time (CRT) estimator. It is closely related to Moving Horizon Estimation (MHE) and
Simultaneous Localization and Mapping (SLAM). This paper has tutorial content explaining
the interrelationships between the EKF, Iterated Extended Kalman Filter (IEKF), and CRT
within the Bayesian framework; discussion of the fault detection procedures, and comparative
experimental results.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Moving Horizon Estimation (MHE), Simultaneous Localization and Mapping
(SLAM), Extended Kalman Filter (EKF)

1. INTRODUCTION these factors, since the 1960’s, aided inertial approaches
typically implemented using an extended Kalman filter
(Brown and Hwang (1983); Jazwinski (1970); Kalman

Autonomous vehicles are rapidly transitioning toward (1960); Kalman and Bucy (1961); Maybeck (1979)), have

commercialization. Aircraft and quadcopters are already
available. Air and undersea vehicles are used in both
military and commercial applications. Land vehicles are
already used in mining, farming, warehouse, and harbor
applications. However, certain life-safety critical applica-
tions, e.g. roadway vehicles, are still in the research stage.

One critical challenge is reliable, high-rate, high band-
width estimation of the vehicle state at submeter, ide-
ally decimeter, accuracy. This is the main topic of this
article. The article will assume an aided inertial naviga-
tion approach (Farrell (2008)). Inertial navigation system
(INS) approaches integrate specific force and angular rate
measurements from an inertial measurement unit (IMU)
through the kinematic model of an instrument platform.
This approach continuously provides a full state estimate
(e.g., position, velocity, attitude) plus acceleration and
angular rate, with the system bandwidth and update rate
determined by the characteristics of the IMU and im-
plementation computer. Bandwidth and update rates in
the hundreds to thousands of Hertz are standard. Due to

been the standard approach for almost all military, com-
mercial, and space applications involving safety of human
life.

A few factors distinguish highway vehicle applications
from those applications cited above. One aspect is the
accuracy requirements. Typical lane widths in the US
are approximately 3.6m and a vehicle width can exceed
2m; therefore, to ensure worst-case control errors less
than a meter, lane relative position estimation accuracy
better than 0.1m is desirable. Another aspect for such
commercial applications is the requirement of low cost. Yet
another aspect is the challenging operational environment.
Highway vehicles will be expected to operate under foliage,
in dense urban canyons, feature devoid deserts or snow
covered terrain, and open sky rural environments.

Various different aspects of accuracy are important. The
class of sensors referred to herein as aiding sensors (e.g.,
GNSS, vision, Lidar, Radar) provide information for es-
timation of pose (position and/or attitude) at the sensor
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sample rate, with predictable uniform accuracy, when the
sensor data and processing is valid. When the sensor data
is unavailable or invalid, the pose estimate is not available.
Data availability and validity is affected by numerous
factors external to the sensor. When aiding sensor data is
available, differentiation is necessary to estimate velocity,
acceleration, and angular rate. Differentiation amplifies
high-frequency noise. Even if the aiding sensor sample rate
is increased, the bandwidth of the estimate may be limited
by factors within the sensor, such that the bandwidth
of the state estimate does not increase with the sample
rate. Inertial navigation has the opposite characteristics.
The IMU data availability is completely independent of
external factors. The IMU data provides the full state
estimate through an integrative process, such that the
error covariance of the state estimation process grows
continuously, but in a smooth and very predictable fashion.
The motivation for combining these sensors together in the
state estimation process is to achieve the best aspects of
both types of sensors.

In aided inertial navigation approaches, the INS integrates
the IMU data continuously, always providing the full
state estimate (plus acceleration and angular rate) with
bandwidth and frequency as determined by the IMU. As
the aiding sensor data becomes available, it is incorporated
through a sensor fusion process to correct the INS state
(Farrell et al. (2000)). This combined approach achieves
the bandwidth, sample rate, and continuity specifications
of the INS approach together with the predictable and
uniform accuracy of the aiding sensors. The entire process
only involves integration, not differentiation.

Also critical is the reliability of the state estimation process
to erroneous sensor data. This topic is a main focus of this
article. This article is not concerned with failures of the
sensors. It is concerned with preventing invalid or incorrect
measurements from significantly affecting the vehicle state
estimate in real-time.

2. BACKGROUND AND NOTATION
This section introduces notation and INS background.
2.1 Aided Inertial Navigation

Let € R™ denote the rover state vector. The kinematic
equations for the rover state are

w(t) = f(x(t), u(t)), (1)
where u € RS is the specific force and angular rate vector
and f : R x R — R™. Typical values of n exceed 15.
The function f is the kinematic model which is accurately
known (e.g., see eqns. (11.31-11.33) in Farrell (2008) or
Farrell et al. (2000)).

Given a distribution for the state initial condition x(0) ~
N(z(0), P(0)) and measurements @ of u, an Inertial
Navigation System (INS) propagates an estimate of the
vehicle state between aiding measurement times as a

solution of )

o(t) = f(z(t), u(t)), 2)
where &(t) denotes the estimate of x(t). The INS numer-
ically solves eqn. (2) in discrete-time at the (high-rate)
IMU sample times:
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Z(Ti41) = 4’(59(71')7 ﬁ(n))
B(m) + / @) amydr @)

i

where 7; represents the i-th IMU sample time. The result
of the numeric integration! of eqn. (3) is the INS state
estimate for &(7;41) given &(7;) and @(7;). The numeric
integration repeats at each IMU sample time to maintain
the real-time state estimate between the times of aiding
measurements. The aiding measurement times can be un-
equally spaced in time without causing any complications.

Let Uy, = {a(n;), 7 € [tk,tk+1]}, where t represents the
time of the k-th aiding measurement. Eqn. (3) can be used
recursively to compute &1 = &(tg41) from & = &(tx)
and Uj. Denote this as

Zjq1 = P (T, Uy)). 4)
Due to initial condition errors, system calibration errors,
and measurement noise, the state estimation error dx(t) =
x(t) — &(t) develops over time. Over any time interval
[tk, ti+1], the linearized error growth model is

0L g1 = ProTy + wi (5)
where wy, ~ N(0,Qy) and @5 = 8%75:) . The INS

(@, 0%)
provides both Qj and ®y, see §7.2.5.2 in (Farrell (2008)).

2.2 Aiding Sensor Model

The aiding sensor measurements are modeled as

Zi = h(zk) + 0k + ey, (6)
where h : R” — R™ is a known function, n; ~ N(0, Ry)
represents a normally distributed measurement noise vec-
tor, and ey, represents other measurement inaccuracies. At
most measurement time instants t;, e = 0 and the sensor
data at that time is said to be valid. At those time instants
when e # 0 and is large relative to the covariance Ry,
the aiding sensor data 2 is considered to be an outlier.

The linearized measurement model for the residual mea-
surement 0z, = 2 — h(&y) is
0z = Hypoxy + ny + ey, (7)

where H;, = g—g o

In the theoretical portions of this article, to simplify the
notation and discussion, we assumed that aiding measure-
ments are aligned with IMU times and consider my = m
to be constant with ¢, = kT where T is the aiding sensor
sample rate, and (7541 —7;) < T'. The experimental results
later in the paper accommodate the typical realities that
sensor measurement times are not aligned and that my is
not constant.

3. PROBLEM STATEMENTS

For a known linear system with white normally distributed
process and measurement noise vectors with known covari-
ance, the Kalman filter (KF) is the optimal (linear or non-
linear) estimator. The KF can be derived from a variety

1 The error state that is estimated in the sensor fusion process will
include various sensor calibration parameters (e.g., biases or scale
factors). The symbol 4 in eqn. (3) represents the IMU measurements
after being corrected using the estimated calibration parameters.
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of perspectives (Maybeck (1979); Jazwinski (1970)), e.g.:
Maximum a Posteriori (MAP), or Minimum Mean Squared
Error. When the time propagation or measurement models
are nonlinear, a variety of methods are available to solve
the sensor fusion problem. The problem statement for
those of interest herein are defined in this section. We
present each within the Bayesian MAP framework.

3.1 Extended Kalman Filter (EKF)

Given the a posteriori state estimate €x_; and its error
covariance matrix Pj_1 from time t;_1, as the IMU data
arrives the INS iterates eqn. (3) until it has computed the a
priori state estimate &, = qb(:i:k,h ﬁk,l)), from which it
computes the a priori predicted measurement 2, = h(x; ).

The EKF uses the error state model eqn. (5) to propagate
the error covariance matrix

P, =%, P, 1® ; + Qi1 (8)

Considering x, ~ N(&,, P, ) and z; ~ N(2x, Ry), the
a priori distribution for dz) is N(0, P, ). Assuming the
absence of outliers (i.e., e, = 0), the a priori distribution
for the measurement residual is 6z ~ N(0,Sy), where
0z is modeled by eqn. (7) and Sy = HpP,H, + Ry.
Given these facts, the EKF error state estimate can be
formulated as

5§Ik = argé max (pnk (5zk|5:ck))p5wk (5.’1%)), (9)
Tk

where the measurement residual dzj is known. Dropping
the subscript k’s, the log-likelihood function is

(0z — Hoz)' R~ (6z — Héx) + 6z (P~) 'ox
which is minimized by the dx that solves
(H'R'H+ (P") Y)éz=H R '6z, (10)
which for a linear system is equivalent to the standard KF
(see §5.3.3-5.3.4 in Farrell (2008)).

Given this d&g, it is used to correct the a priori state
&, . We will write the correction as &) = &, + 0Zx;
however, the actual operations are more complicated
as the attitude corrections are multiplicative, not addi-
tive. The a posteriori error covariance matrix is P, =
(HTR'H + (P~)"!)"", where HT R\ H +(P~)"is

the corresponding information matrix.
Remark 1. Standard EKF assumptions are that:

e initially all states are uncertain (i.e., Py is positive
definite); and,

e the state is controllable from the driving noise wy
(i.e., Qy is positive definite).

These assumptions ensure that P, and P, are nonsingu-
lar; therefore, eqn. (10) has a unique solution. A

Remark 2. In the EKF, during the measurement update,
the prior £, and its distribution are unchangeable and
assumed to be without error. The measurement residuals
can be analyzed relative to their predicted covariance to
detect and remove outliers; however, if correct measure-
ments are removed, then measurement information is lost.
More critically, if outliers are missed, they corrupt @ such
that N (&g, Pg) is not a valid model for the state estimate
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. All future EKF processing after a missed outlier should
be suspect, but it is not, as the situation is undetected. A

Remark 3. For the EKF, once the residual §z; is com-
puted, the measurements 2 are discarded. This is because,
assuming that all outlier decisions are correct, the Markov
modeling assumptions underlying the derivation of eqn.
(9) render these measurements redundant. They have no
further utility. However, if the outlier decisions could later
be reconsidered, those measurements could have great
utility in reconstructing the state trajectory between the
time of the incorrect decisions and the present time. A

3.2 Iterated Extended Kalman Filter (IEKF)

Assuming that the a posteriori IEKF solution (Maybeck
(1979); Jazwinski (1970)) at tx_; provided @#p_; and
P;,_, such that ¢x_; ~ N(&x_1, Pi_1), the IEKF aiding
measurement update at time k solves

(11)

Tj, = arg max (pmk,l (Tp—1 — Tx—1)
L, L—1

P (@ — (-1, Up—1))pn, (2 — h(%))}

Dropping the Uy_1 from ¢(xy_1, Ug_1), the log-likelihood
function is

L(zi, 1) = (Zk — h(zy)) " By (2 — h(zy)  (12)
+(zh — d(mp_1) | Qi (h — Plas_1))

e Pl (zpo1 — ®5-1),
yielding a nonlinear least squares problem to be solved
at each measurement time instant. This can be solved
by various iterative methods. Let ¢} € (ti,tx41) denote
the time at which this nonlinear optimization process
concludes.

Throughout the time interval ¢ € [tx, tf] required to com-
plete the nonlinear optimization, the INS keeps integrating
the state estimate that it had started at t;_, based on
2;—1 which became available at ¢j_;. Once &, becomes
available at t;, the INS starts from that state and con-
tinues integrating. Therefore, the INS always maintains a
real-time state estimate. This estimate does have discon-
tinuous changes in value following measurement updates,
just as the KF and EKF do.

This formulation allows the IEKF to adjust both x; and
x,_1. At the conclusion of the iterative process, optimal
estimates for the state at both time instants are available
however, only & and its covariance P} are retained. The
improved estimate of xx_1, which is a smoothed estimate,
is old relative to real-time and is simply discarded.

The IEKF can yield improved performance relative to the
EKF in situations where the uncertainty in the prior state
is significant relative to the higher order terms in the
Taylor series representations of the nonlinearities h or ¢.

Remark 4. In the IEKF, &;_; and the covariance Py_;
are unchangeable and assumed to be without error. The
issues related to false detections and missed outliers as
stated in Remarks 2 and 3 still apply. A
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CRT Window of length L

Fig. 1. Timeline for a CRT window with L aiding mea-
surements.

3.3 Contemplative Real-time Estimator (CRT)

The CRT approach retains the prior at the start, and all
aiding and IMU measurement data over the CRT time
window (tx—r, tx], where the CRT window length L is a
positive integer (Ramanandan et al. (2011); Chen et al.
(2013)). This set of data includes:

e the prior distribution for the state:
x(ty—r1) ~ N(Zx—r, Pr—1);

e IMU measurements: U = U;‘f;]ﬁi 1 Uj; and
e Aiding measurements: Z = {Z; };?:,%LH.

The CRT objective is to estimate the optimal state trajec-
tory X = {:c(tj)}?:k_ ;. based upon sensor measurements
U and Z, and the prior density ps, , (x(tx—r)). This CRT
approach is closely related to the methods used in the
SLAM literature (Dellaert and Kaess (2006); Eustice et al.
(2006); Kuemmerle et al. (2011); Li and Mourikis (2013)).
The cost function that results is closely related to those
in the moving horizon estimation approach (Tenny and
Rawlings (2001); Haseltine and Rawlings (2005)).

Fig. 1 depicts a typical CRT window. The green dots on
the time-line indicate IMU measurement times 7;. The
state transition between these times (indicated as green
arcs) is constrained by the kinematic model of eqn. (2)
and the IMU data U. Additional constraints are imposed
by the initial state estimate (i.e., @&(tr_r), P(tx_z)) and
aiding measurements Z shown below the time-line. Each
of these constraints is quantified by a probability density
that enables the Bayesian problem formulation. While
Fig. 1 depicts all aiding measurements occurring at the
IMU measurement time, unaligned measurements can be
addressed by interpolation, and unknown latencies can be
calibrated (Li and Mourikis (2014)).

Given standard assumptions concerning the model being
Markov and the noise sources being mutually independent
and white, the joint density p(Xy, U, Z) simplifies to

k
p(kaUa Z) :pmka(a:k*L) H Dy (zj|wj)
j=k—L+1
k

I poc(@jla; 1, ;).
j=k—L+1

The corresponding log-likelihood function L(X}) is

Jay A. Farrell et al. / IFAC PapersOnLine 50-1 (2017) 15971-15976

(% — h(z;)" R;' (% — h(z;)) (13)

k
j=k—L+1
k
T -1
+ > (@ —o(xi) Qi (x5 — plx; )
j=k—L+1
. T o .
+(xh-r — ®k-1) Pl (Th-1 — Zp-1),
yielding a nonlinear least squares problem to be solved
iteratively at each measurement time instant. As discussed
relative to the IEKF, the CRT approach maintains a real-
time state estimate at all times. The CRT and IEKF

approaches are closely related, with the same results when
L=1.

Remark 5. The standard EKF assumptions in Remark 1
ensure P,y and Q;_q for j = k—L+1,...,k are positive
definite; therefore, the linearized solution at each iteration
is well-defined. Having all the IMU and aiding measure-
ments available across the CRT window, the approach is
able to make and reconsider outlier decisions throughout
that window. AN

4. CRT IMPLEMENTATION

Research reported in the SLAM and field robotics litera-
ture present efficient approaches to solve likelihood func-
tions such as eqn. (13), even when L and m are large.

The algorithm will involve the following processes.

(1) Given a trajectory estimate at iteration I,
X} = {&} for j=k—L,... Kk},

which is treated as a vector in R™Z+1)  an optimiza-
tion algorithm computes a correction § X! € R*(E+1)
such that
XF =X 45X (14)
is an improved solution to the optimization problem.
(2) Evaluation of each measurement in Z to detect and
accommodate outliers.

Various alternative implementations are possible. The
following describes the implementation used in Section 5.

4.1 Initialization of iteration at ty

For the CRT measurement scenario depicted in Fig. 1.
Minimization of eqn. (13) at the last measurement time

tp—1 provided Xj_1 = {i'(tj)}?;/ifor In addition, P_;,
and Pj_71 can be computed using the approach of eqns.
(14-17) in (Kaess et al. (2008)). The error covariance Pj_p,
will be needed at t; to compute the third term of eqn.
(13). The error covariance Pj_; can be propagated to P,
using eqn. (8) which is useful for judging the measurement
validity of z(ty), when they arrive, before starting the
optimization iterations at tg.

INS integration in real-time starting from &(tx_1) over

the interval [tx_1, tx] provides &(ty). Therefore, when the

CRT optimization process starts when ¢t = ¢, an initial

trajectory for the iterative optimization can be defined
50

as X, = {Z(t;)}}__, over the CRT window. Vector

Z(tg—r—1) from X,_; is discarded.
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4.2 Preoptimization outlier detection

At time k, the aiding measurement z; and INS state
estimate &, = (t;) are available; therefore, the residual
measurement §z; can be computed. The null hypothesis is
that 6z, ~ N(0,Sy), where Sy, = Hy P, H; + Ry, This
hypothesis can be evaluate using standard statistical hy-
pothesis testing methods (Baarda (1968); Hewitson et al.
(2004)) to remove obvious outliers before they affect the
optimization process.

4.8 Optimization

For the IEKF and CRT approaches, equs. (12) and (13)
have the form ||[v(X)|% = v(X)TW~1v(X). The vector
v(X) is the concatenation of each of the vectors summed
in the log-likelihood function. The matrix W is block
diagonal and positive definite, formed by the positive
definite submatrices R;, Pr_r and Q;_; for j =k — L +
1,...,k.

Note that ||[v|w = ||r]ls where » £ Zyv and W1 =
E%Ew. In particular,

I 2Pk_L (mka - i'lch)
Y (@(@h-r,Ur—1) — Th—r41)

EQI;—I (¢(mk—1aUk—1) - ZEk)

Ri—r+1 h’(wk—L-‘rl) - wk—L-i—l)

L XRr, (h(zk) — Zk) i

With this notation, each log-likelihood minimization prob-
lem reduces to a nonlinear least square optimization

i r(X)|3.

e min (Xl

Let J represent the Jacobian matrix of r(X) with respect

to X evaluated at X. This Jacobian is sparse. The vector
60X is the solution of

(15)

JX =r, (16)

which can be solved efficiently for 6 X by Cholesky fac-
torization (Dellaert and Kaess (2006)) or Givens rotations
(Kaess et al. (2008)).

4.4 Outlier Detection during optimization

After the iteration converges, the residual vector r is
expected to be zero mean with unit variance. Each residual
is compared against a decision threshold to either accept
or reject the measurement. This is performed for all
aiding sensor residuals, but not for the INS or prior
residuals, which are assumed to be error free. If any aiding
sensor residuals are rejected, then the optimization is
performed again, followed by the residual check, until the
optimization completes and no additional measurements
are rejected.

5. EXPERIMENTAL RESULTS
This section compares the EKF, IEKF, and CRT (with

window length L) estimators. All algorithms are imple-
mented using exactly the same IMU and single frequency
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(L1) Global Positioning System (GPS) data in post-
processing, to enable direct comparison. Even though this
comparison is achieved in post-processing, each algorithm
is written in C++ to run in a real-time (Linux RT kernel).

Because the data is available for post-processing, we are
also able to implement (as a batch process) a MAP esti-
mator for the entire trajectory using all the data, includ-
ing two-frequency GPS integer-resolved carrier phase (Vu
et al. (2013)). The output of this batch smoother is de-
clared as the “ground truth” trajectory and has accuracy
at the centimeter level.

The trajectory is frequently under trees and adjacent to
tall buildings, creating numerous outlier GPS measure-
ments. Note that this example implementation must ac-
commodate the reality that the number of measurements
m is time-varying, as discussed in the last paragraph of
Section 2.2.

While the vehicle is driven, the sensor data is time-
stamped and stored. The sensor data includes 200Hz
MEMS IMU data (NAVCN NV-IMU1000) and 1Hz L1/L2
Differential GPS data (NovAtel OEMV-3). For all the real-
time algorithm results to be discussed below, position is
initialized from GPS before the algorithm begins; roll and

Position Error vs. Cumulative sum of the probability

= EKF
—+— IFKF
CRT: L=5
== CRT: L-10
CRT: L-20
&0 CRT: L=30
—+— CRT:1-40

Cumulative sum of the probability (%)

. .
102 107" 10°
Semi-log of the position error (m)

Fig. 2. Cumulative distribution of position error for each
algorithm.

Attitude Error vs. Cumulative sum of the probability

100

= EKF
—+— IFKF
CRT: L=5
== CRT: L-10
CRT: L-20
&0 CRT: L=30
—4— CRT:1-40

Cumulative sum of the probability (%)

103 102
Semi-log of the attitude error (deg)

Fig. 3. Cumulative distribution of attitude error for each
algorithm.
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pitch are initialized from IMU data by standard methods;
velocity, yaw, and bias estimates are all initialized to zero.

The results of the real-time algorithms are compared to the
ground truth trajectory to enable quantifiable comparisons
of results between estimation approaches. For example,
the position error for algorithm * would be ||p.(tx) —
Dg(tr)|| where ‘g’ is the ground truth position and * can be
EKF, IEKF, or CRT (of length L). The trajectory is 495
seconds long, yielding the same number of error samples
per algorithm. The position and attitude error cumulative
distribution functions (CDF's) of each algorithm are shown
in Figs. 2 and 3. The figures indicate that accuracy
improves from the EKF to the IEKF to the CRT. Also,
CRT performance (generally) increases with the window
length L. The CRT algorithms with L > 20 each achieve
0.6m accuracy on 100% of the trajectory. Similarly, the
EKF and IEKF CDF plots do not reach 100% until the
accuracy is over 3.0m.

6. DISCUSSION

The EKF, IEKF, and CRT approaches are very closely
related. Each cost function can be represented in the form
of a normalized residual vector as in eqn. (15). For the
EKF, the argument would be 0X instead of X.

The EKF at each time step has n variables to estimate
(one state vector) and m = n + m constraints (GPS and
prior); therefore, the degrees of freedom (DOF) is m. For
the IEKF, the number of variables to be estimated is 2n
and the number of constraints is m + 2n; therefore, the
DOF is still m. The main advantage of the IEKF over
the EKF is its ability to perform a nonlinear iterative
correction.

For the CRT algorithm with window length L, the number
of variables to be estimated is (L + 1)n. The number of
constraints is (L + 1)n + Lm. The DOF is therefore, Lm.

Both the outlier detection capability and the amount of
required computation increase with L. For L = 1 the IEKF
and CRT approaches are the same. For L > 1 the CRT
is able to outperform the IEKF because the larger DOF
allows the CRT to more effectively remove the effects of
outlier measurements as long as they are within the CRT
window. Because there are far more measurements within
the window than are necessary for state observability (see
Remark 5) measurement rejection can be aggressive. The
goal of outlier rejection is to ensure that all measurements
used in the computation of ;_; and Px_j, be ensured to
be valid.

7. CONCLUSIONS

Often to achieve higher accuracy or better reliability for
autonomous vehicle state estimation the first impulse is
to consider upgrading the sensor suite. This article has
taken the opposite approach, looking at alternative algo-
rithms for state estimation, using exactly the same sensor
data, and demonstrating that significant (i.e., tenfold)
performance enhancements are possible. This motivates
the idea that investments in improved algorithms, and the
computers to implement them, could yield as significant
performance enhancements as investments in better sen-
SOrS.
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Additional research is required on computationally effi-
cient methods to effectively accommodate outlier measure-
ments.
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