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Diagnostic advances in synovial fluid analysis and radiographic 
identification for crystalline arthritis.

Monica Zell, MD1,*, Dawen Zhang, MD1,*, and John FitzGerald, MD, PhD1

1David Geffen School of Medicine, University of California at Los Angeles, Department of 
Medicine

Abstract

Purpose of review: This review addresses diagnostic methods for crystalline arthritis including 

synovial fluid analysis, ultrasound and dual energy CT scan (DECT).

Recent findings: There are new technologies on the horizon to improve the ease, sensitivity and 

specificity of synovial fluid analysis. Raman spectroscopy uses the spectral signature that results 

from a material’s unique energy absorption and scatter for crystal identification. Lens-free 

microscopy directly images synovial fluid aspirate on to a complementary metal-oxide 

semiconductor (CMOS) chip, providing a high-resolution, wide field of view (~20 mm2) image. 

Raman spectroscopy and lens-free microscopy may provide additional benefit over compensated 

polarized light microscopy (CPLM) synovial fluid analysis by quantifying crystal density in 

synovial fluid samples. Ultrasound and DECT have good sensitivity and specificity for the 

identification of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals. However, 

both have limitations in patients with recent onset gout and low urate burdens.

Summary: New technologies promise improved methods for detection of MSU and CPP 

crystals. At this time, limitations of these technologies do not replace the need for synovial fluid 

aspiration for confirmation of crystal detection. None of these technologies address the often 

concomitant indication to rule out infectious arthritis.

Keywords

Synovial fluid analysis; crystalline arthritis; monosodium urate; calcium pyrophosphate; dual 
energy CT

Introduction:

Demonstration of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals in 

synovial fluid using compensated polarized light microscopy (CPLM) has been the primary 
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method of diagnosing gout and calcium pyrophosphate deposition disease (CPPD) since 

1969. However, CPLM is infrequently available at point-of-care, particularly outside of 

rheumatology clinics. User experience and other factors affect the sensitivity and specificity 

of the methodology, particularly for the smaller, less birefringent CPP crystals. Basic 

calcium phosphate (BCP) crystals cannot be visualized using CPLM, and reliable methods 

for identifying them are lacking. Newer methodologies of synovial fluid analysis, including 

Raman spectroscopy and lens-free microscopy, may improve detection of micro-scale 

crystals in synovial fluid aspirates. Ultrasound and dual energy CT are non-invasive methods 

for identifying evidence of MSU crystals and data on utility for identifying CPP crystals are 

emerging.

Synovial fluid preparation for analysis by compensated polarized light 

microscopy:

Synovial fluid analysis is ideally performed using freshly aspirated synovial fluid and 

examination within 24 hours, allowing for observation of intracellular crystals by 

minimizing cellular decay.[1] However, several studies and a small systematic review[2] 

have evaluated the impact of synovial fluid storage methods and duration on the stability of 

MSU and CPP crystal number and morphology.[3–9] These concluded that crystal 

concentration is better preserved with frozen or refrigerated samples than at room 

temperature over extended periods of time.[5,8] Crystal morphology is stable and false-

positive crystallization generally does not occur.[3] Crystals are stable at room temperature 

if examined within 1–3 days.[4,9] This is clinically relevant when a synovial fluid sample is 

initially tested for infection but not crystal analysis; if gram stain and culture are negative, 

crystal analysis may be requested in the subsequent days. Storage of synovial fluid in vials 

containing anticoagulants (e.g. heparin or EDTA) provides no benefit in crystal preservation. 

Sensitivity of MSU[10] and CPP[11] crystal analysis in aspirates with low leukocyte counts 

can be enhanced by first centrifuging or cytospinning the aspirate to concentrate the 

particular matters.

Compensated polarized light microscopy:

McCarty and colleagues first introduced CPLM as a method to visualize MSU[12] and 

CPP[13] crystals in synovial fluid, which has remained the primary technique for the 

diagnosis of crystal-induced arthropathies over the last fifty years. Recent reviews [14,15] 

and guidelines [16–18] still consider MSU and CPP crystal identification the gold standard 

practice for the diagnosis of gout or CPPD, respectively. However, multiple reports suggest 

that CPLM has variable reliability as a diagnostic tool in the clinical setting,[19,20] with 

poor inter-rater reliability,[21–24] sensitivity and specificity,[25] particularly for the 

identification of CPP crystals, which are smaller and less birefringent than MSU crystals. 

Some of these difficulties stem from inherent challenges of the microscopic system itself. 

For example, the concentration of crystals necessary for CPLM detection may be higher than 

clinically relevant in vivo crystal concentrations.[25] CPLM visualizes crystals larger than 1 

micrometer, meaning it may not detect very small crystals.[26,27] MSU crystals are 

typically 10 um in length (range 1 – 20 um) [28]. CPP crystals are smaller with median 
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length of 3.7 μm for rods (range, 1 – 10 μm) and for rhomboids, median lengths of long and 

short diagonals of 3.0 and 2.4 μm [29]. In the case of CPP crystals, identification by CPLM 

is further challenging as up to 20% may be nonbirefringent.[30] Experience with CPLM 

plays a large role, as one study demonstrated that accuracy of CPLM interpretation improves 

with examiner training,[31] supporting the call for further synovial fluid analysis training for 

rheumatology trainees and professionals.[32] While many of the above reports are from over 

ten years ago, a recent study by Berendsen et al.[33] highlighted the lack of progress in 

examiner competence in CPLM crystal identification. One hundred and ten highly motivated 

participants (rheumatologists, laboratory technicians, rheumatology trainees, and other 

physicians worldwide) with interest in crystal arthritis and diagnosis completed an online 

test of their ability to interpret CPLM images. Participants were asked to identify 30 images 

photographed from pathognomonic slides containing different types of crystals or artifacts. 

The primary outcome, which was the correct identification of all 8 MSU and all 8 clinically 

important non-MSU images, was achieved by only 39%. Whereas the correct identification 

of all MSU images was achieved by 81%, only 68% correctly identified all CPP crystals. 

While this study did not test the participants’ real-time microscopy and synovial fluid 

handling skills, these results underscore the persistent gap in crystal identification 

proficiency using CPLM.

Alizarin Red Staining:

There remains a lack of any reliable method for the detection of BCP crystals. Due to 

submicroscopic size (typically less than 1 micrometer as individual crystals), the amorphous 

appearance of BCP clumps easily mistaken for artifacts or debris, and their non-

birefringence, CPLM is an inadequate method for BCP crystal detection.[34] Alizarin red 

staining is a long-known technique[35] that uses the formation of a red chelation complex 

between calcium and alizarin to detect calcium-containing compounds. However, different 

calcium-containing compounds cannot be distinguished by the staining, thus CPP and BCP 

crystals must be discriminated based on morphologic aspects. While the sensitivity of 

Alizarin red staining depends on both the pH of the solution and concentration of the dye, 

there is considerable overlap in the optimal pH and dye concentration ranges for CPP and 

BCP detection.[34,36] Alizarin red dye must be freshly prepared to the appropriate 

concentration and pH before it can be added to the synovial fluid sample, complicating the 

practical use of this technique.

Raman Spectroscopy:

Raman spectroscopy (RS) is a powerful analytic tool with ample research and biologic 

applications due to its capacity to measure the chemical composition of a sample with 100% 

specificity.[37] The technique utilizes the principal that each material has an inherent 

absorption and light scatter when exposed to energy, producing a unique signature or 

“Raman spectrum”. RS can be performed in vivo, without synovial fluid aspiration, or ex 

vivo on synovial fluid aspirates. While RS was first used in a research setting to identify 

MSU[38] and CPP[39] crystals utilizing laborious methods, Akkus and colleagues have 

advanced the use of this technique towards a more clinically feasible approach to MSU and 

CPP crystal detection.[40–42] To achieve this goal, they developed a protocol to improve 
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crystal extraction by digesting hyaluronic acid and organic debris in synovial fluid, allowing 

for a concentrated target of crystals for “point-and-shoot” RS rather than extensively 

searching for individual crystals [40]. The group then laid the foundation for bringing RS 

from the research bench to the clinic by a) developing a disposable syringe-filtration 

technique for crystal isolation and concentration, b) downsizing the system to a less 

expensive, shoebox-sized apparatus, and c) developing an automated data acquisition and 

processing protocol for the spectral identification of crystals[41]. The novel shoebox-sized 

point-of-care RS system (POCRS) can detect MSU and CPP crystals at clinically relevant 

concentrations of 0.1 microgram/mL and 1 microgram/mL, respectively.

Akkus and colleagues recently evaluated the performance of their POCRS technique 

compared to CPLM for the detection of MSU and CPP crystals in 174 synovial fluid 

samples.[42] (See Figure 1) Presence or absence of characteristic spectral peaks for MSU 

and CPP was used to determine the presence or absence of these crystals using POCRS. The 

study found notably high overall concordance between POCRS and CPLM (89.7%), with 

stronger agreement for the detection of MSU crystals than for CPP crystals (kappa 

coefficients (95% CI) of 0.84 (0.75–0.94) and 0.61 (0.42–0.81), respectively). However, 8 

MSU-positive samples were detected by CPLM but not POCRS, which were confirmed as 

POCRS false negative findings by research-grade (non-point-of-care) RS. POCRS was better 

at detecting CPP crystals than CPLM: 22 CPP-positive samples were identified by POCRS 

versus 12 by CPLM, with only one POCRS false negative. Akkus and colleagues concluded 

that POCRS should not be a replacement for but in conjunction with CPLM, particularly in 

situations where a trained microscopist is not available or when there is high index of 

suspicion but ambiguity in crystal identification; a recent systematic review also 

recommended this strategy [43]. Rosenthal and Pascual’s editorial of the study[44] elegantly 

reviewed some of the method’s potential advantages, including the ability to measure crystal 

concentrations in synovial fluid and increased accuracy of crystal identification leading to 

more accurate diagnoses. Currently, little is known about the relationship between crystal 

concentration and clinical presentation of crystal arthropathies, thus POCRS has the 

potential to enhance our understanding of a potential relationship. However, POCRS does 

not provide information on whether crystals are intracellular (phagocytosed by white blood 

cells) or extracellular due to the processing technique.

Rosenthal and Pascual also highlighted some of the shortcomings of POCRS and areas for 

future research [44]. While no basic calcium phosphate (BCP) crystals were detected in this 

study of POCRS, Rosenthal and Pascual postulated that they should be detectable by this 

method, potentially by modifying the synovial fluid sample preparation. Current limitations 

of this methodology include the multistep procedure for synovial fluid sample preparation 

prior to POCRS, and unclear cost and clinical feasibility. Finally, further comparison of 

POCRS results with conventional confirmatory crystal identification methods will be useful.

Two recent pilot studies examined the ability of RS to detect MSU crystals in vivo from the 

first metatarsophalangeal (MTP) joint using a non-invasive technique in which the Raman 

spectroscope was placed on the ground to image the medial aspect of the 1st MTP joint.

[45,46] While both studies reported detection of several known MSU spectral peaks in 

known gout patients, there was significant noise interference and overlap with peaks found 

Zell et al. Page 4

Curr Opin Rheumatol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in healthy controls, as well as logistical barriers with the noninvasive method. For example, 

RS was unable to evaluate the dorsal aspect of the 1st MTP joint due to patient and 

equipment positioning, and therefore false negative results in gout patients may have been 

due to inability to assess all aspects of the 1st MTP.

Lens-free microscopy:

Lens-free on-chip microscopy has developed over the past decade as a novel detection 

method with numerous emerging applications in global health, environmental fieldwork, and 

medical point-of-care settings.[47–49] The lens-free platform setup positions a transparent 

body fluid sample above a complementary metal-oxide semiconductor (CMOS) image 

sensor. The minimal sensor-to-sample distance results in a field of view (FOV) multiple 

orders of magnitude larger than a conventional lens-based microscope, allowing greater 

efficiency through analysis of a single digital image rather than the need to resample 

multiple CPLM small FOV. A hologram of the diffracted light pattern from the sample is 

taken in by an image sensor that utilizes reconstruction algorithms to generate an image of 

the sample.[50] For the analysis of birefringent crystals, a circular polarizer, λ/4 retardation 

plate and linear polarizer are added to the setup. (See Figure 2) This polarized microscope 

can perform wide-field (~20 mm2) imaging of birefringent objects with sub-micron 

resolution.[51] The reconstructed holograms show images of MSU and CPP crystals. (See 

Figure 3) The inexpensive platform and high-resolution wide FOV provides potential 

advantages over traditional CPLM including point-of-care implementation.

Other methods of crystal identification:

Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction are definitive methods 

for crystal characterization. [52] However, due to high cost, complex instrumentation and 

limited availabity outside the research setting they have limited clinical utility. Both 

techniques exploit the concept that each crystalline material possesses a unique material 

signature that can be elicited; FTIR evokes a crystal’s inherent infrared wavelength 

absorption pattern, whereas x-ray diffraction identifies a crystal’s characteristic diffraction 

pattern of incident x-rays. While these methods were originally included in McCarty’s 

diagnostic criteria for CPPD, they are not in regular use.[53]

Ultrasound evaluation of crystalline arthropathy:

Ultrasound (US) has become a valuable tool for the identification of MSU and CPP crystals. 

Crystalline deposition reflects ultrasound waves more intensely than surrounding soft tissues 

creating several unique ultrasound findings. Some of these findings have high sensitivity and 

specificity for either MSU or CPP crystals. The double contour sign (DCS) is a hyperechoic 

band over the superficial margin of cartilage (see Figure 4) and had good sensitivity (60.1%) 

and high specificity (91.3%) compared to gold-standard presence of MSU crystals identified 

by CPLM of synovial fluid aspirate in a recent large multicenter study [54]. While there are 

other US findings suggestive of MSU deposition, DCS is the only ultrasonographic imaging 

gout sign recognized in the 2015 ACR/EULAR gout classification criteria[16].
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Other studies have also supported high specificity (90% range) for DCS [55–57]. However, 

in patients with gout for less than 2 years, sensitivity (50%) is lower than for patients with 

established disease ≥ 2 years duration (63%). Still, even in patients with recent disease onset, 

the positive predictive value (79%) and negative predictive value (77%) for DCS is good.

[54] One study noted the median disease duration was 3.5 years in patients with a DCS. 

Other findings that are useful include US findings of tophus (presence of a hyperechoic, 

heterogeneous lesion surrounded by an anechoic rim) and “snowstorm” appearance.[54]

CPP crystal intra-hylalan or fibro cartilage deposition can be distinguished from MSU 

crystal more superficial hyalan cartilage deposition. The OMERACT CPPD Ultrasound Task 

Force described good intra-reader reliability (kappa = 0.81) and moderately good inter-

reader reliability (kappa = 0.66) across various joints [58] with better agreement for the 

hyaline cartilage and menisci of the knee than other structures of the knee (e.g. synovial 

fluid or tendon) or other joints (e.g. wrist) [59]. From this effort, they created an atlas to 

describe the locations (hyaline and fibrocartilage, tendon and synovial fluid) findings for 

CPP deposition in those regions [58]. Compared to conventional radiography (CR), US 

detection of CPP deposits has yielded equal or higher sensitivity (60–100%) and similar 

specificity (85–100%) in wrists, knees, and hips with CPP crystals in synovial fluid as a gold 

standard [60–63]. Ogdie et al. reported excellent specificity (92.9%) for the DCS for crystal-

proven gout compared to crystal-proven CPPD arthropathy controls [54]. However, Löffler 

et al. reported that it was difficult to distinguish between MSU and CPP deposition at the 

knees and ankles [64].

Tendon and ligament MSU deposition are also commonly imaged by US. Naredo et al. 

described 133 patients (91 with gout, 42 with controls) that the MTP1 (57.1%), patello-

femoral (intra-articular femoral condyle surface) (41.8%), radiocarpal (38.5%), mid-carpal 

(28.6%), and knee (25.3%) were the most frequently affected articular surfaces with MSU 

deposition. Patellar tendon (60.4%), triceps tendon (47.3%), quadriceps (38.%) and Achilles 

(34.1%) were the most common tendons for MSU deposition[65]. The authors went on to 

note that imaging beyond the symptomatic joint may increase diagnostic yield. CPP 

deposition has been reported in the Achilles tendon and plantar fascia with US as well 

[66,67].

DECT (Dual Energy CT)

In place of a single energy source as used in conventional CT, DECT uses two different 

energies (80 or 100 kV and 140 kV) at orthogonal angles to each other to gather unique 

attenuation profiles for targets with varying densities. With post-processing software, low-

density urate deposition can be differentiated from other denser materials such as calcium 

based on spectral profiles. DECT has been widely studied in gout, though distinct post-

processing software packages have been developed for MSU as well as CPP crystals. The 

software assigns different color-codes to materials with different spectral profiles, and 

presents 3-dimensional renderings where volume of urate deposition can be calculated. (See 

Figure 5)
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Automated volumetric quantification of MSU by software results in very high inter-observer 

and intra-observer reliability with interclass correlation coefficient (ICC) 0.95–1.00[68,69]. 

Compared to gold standard MSU identification by CPLM in synovial fluid, DECT 

sensitivity ranges from 78–100% with a specificity between 76–93% [70–73]. As with US, 

sensitivity is lower in patients with recent onset gout[70,73]. The sensitivity for detection of 

MSU is lower in non-tophaceous gout compared to tophaceous gout,[74] which may 

partially explain the greater sensitivity in patients with longstanding disease. False negatives 

also occur in lower density targets including MSU positive synovial fluid or bursitis with 

soluble MSU “liquid tophus” [75]. By correlating DECT with histology, it has been 

demonstrated that early stage, unconcentrated tophi may be missed by DECT [76]. The limit 

of detection of DECT is frequently at < 2 mm, so false negatives may occur as microscopic 

tophi may be missed in the voxel[77].

DECT has been able to image rare locations of urate deposition. A case report described a 

patient with lumbar radicular symptoms who had extensive tophi seen on DECT in the 

lumbar intervertebral discs, posterior column, and facet joints. This was confirmed with 

positive MSU on histology after laminectomy and surgical removal of tophi[78]. Another 

case report noted a patient with cord compression of a thoracic vertebrae, with improvement 

of paraparesis after several months of urate lowering therapy[79]. Other novel areas of 

interest for detection of urate by DECT include the costal cartilages, intervertebral discs, 

sacroiliac joints, and coronary/aortic vasculature [80–82]. However, Bongartz et al reported 

false positive DECT signals in patients with severe knee osteoarthritis, and therefore 

confirmation with future studies is needed to determine if these locations truly represent 

urate deposition or imaging artifact [70].

A limitation to the widespread use of DECT as tool for routine identification of MSU 

crystals is that DECT scanners are not widely available. To overcome lack of access to 

hardware, single source DECT with rapid switching between the 80/100 and 140 kV 

energies has been studied, but its experience in gout has been limited to date [83].

The ability of DECT to identify CPP crystals has been studied in a radiographic phantom 

and ex vivo meniscus specimens; in vivo studies have not been published to date. In a small 

study involving subjects undergoing total knee arthroplasty, compared to gold standard CPP 

crystal identification in synovial fluid, DECT had a greater sensitivity than conventional 

radiography (77.8% vs 44.4%) for CPPD detection. Another study found CPPD on DECT 

co-localized with CPPD on meniscal histology[84]. A case report and a phantom model 

reported the ability of DECT to distinguish between urate and CPPD, but this requires 

further study[85,86].

Conclusion:

CPLM of synovial fluid has been the unchallenged diagnostic method for detecting MSU 

and CPP crystals for 60 years, though alternative methods are gaining scientific validity. 

Both improved methods of synovial fluid analysis (Raman spectroscopy and lens-free 

microscopy) and non-invasive methods (ultrasound, DECT, and in vivo Raman 

spectroscopy) show significant promise. Ultrasound, RS and lens-free microscopy are 
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relatively inexpensive and could be used for point-of-care diagnosis. However, challenges 

remain. Ultrasound and DECT are sensitive to sufficient crystal deposition but are less 

sensitive when needed most (e.g. first clinical presentation of an inflammatory mono-

arthritis suspicious for crystalline arthritis). None of these methods currently address the 

concomitant need to rule out infectious arthritis, but RS and lens-free methodologies could 

potentially be adapted to address this need.
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Key points:

• Delay in synovial fluid analysis up to three days does not hinder crystal 

detection.

• MSU and CPP crystal detection by CPLM remains challenging even by 

highly motivated and trained individuals.

• Novel methods for crystal detection are being developed that may enable 

point-of-care diagnosis.

• US and DECT are highly specific for crystal deposition.

• Sensitivity of US and DECT to detect urate deposition is dependent on 

duration and burden of disease.
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Figure 1: Point-of-care Raman spectroscopy.
The point-of-care Raman spectroscopy (POCRS) system consists of 2 parts: a syringe 

microfiltration kit for isolating and collecting arthritic crystals from synovial fluid (a–c) and 

a shoebox-sized optoelectromechanical system for acquiring diagnostic signals (d and e). To 

use the system, synovial fluid is loaded in a glass vial with digestive enzymes (a). After 30 

minutes of digestion at 408C, the uric acid–supplemented buffer (b) is used to dilute the 

digested synovial fluid. Following dilution, the synovial fluid is transferred into a standard 

syringe (c) and pushed through the disposable microfiltration cartridge for crystal collection. 

After microfiltration, the cartridge is directly inserted into the optoelectromechanical system 

(d) for diagnostic signal acquisition (e).
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Figure 2: Schematic set-up of lens-free polarized microscopy.
(a) Schematic setup of lens-free differential holographic polarized microscopy. (b) Design of 

the polarization in this system. The light, which is propagating from top to bottom, passes 

through a left-hand circular polarizer, the birefringent sample, a λ/4 retarder film, a linear 

polarizer and reaches the image sensor. The orientations of the polarizing components are 

illustrated with red arrows, and the polarization states of the light between components are 

illustrated with green arrows.
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Figure 3: High-resolution wide-field of view images of monosodium urate crystals using lens-free 
microscopy.
(a) The full FOV of the lens-free polarized image is 20.5 mm2 , approximately 2 orders of 

magnitude larger than the FOV of a typical 40×microscope objective lens (see yellow dashed 

circle). (b) A sub-region showing the lens-free polarized image. Crystals oriented along the 

45° axis (see orientation guide in the bottom left) appear brighter than the background, and 

those along the 135° axis appear darker. (c–e) Lens-free grayscale differential image of 3 

ROIs taken from (b). (f–h) Pseudo-colored images of (c–e) to approximate familiar CPLM 

images. (i–k) 40×0.75 numerical aperture CPLM images of the same regions as (f–h). White 

arrows: crystals that result in a weak signature have better contrast in the lens-free pseudo-

color images (f,g) than the CPLM images (i,j). Yellow arrows: thick MSU crystals in the 

lens-free pseudo-color image (h) have hollow appearances, slightly different from the CPLM 

image (k).
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Figure 4: Ultrasound image of double contour sign
(a) Double contour sign at the femoral condyle (arrowheads). (b) Double contour sign 

(arrowheads) at the metacarpophalangeal joint.
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Figure 5: Dual energy CT 3D image and quantification of monosodium urate deposition
Dual-energy computed tomography with three-dimensional reconstruction of the bilateral 

feet showing large green color mapping areas involving multiple joints, tendons, and soft 

tissue suggestive of monosodium urate crystals forming tophi. Approximate volume: 13.46 

cm3
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