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Abstract 

The concept of chemical bonding is normally presented and simplified through two models: the 

covalent bond and the ionic bond. Expansion of the ideal covalent and ionic models leads 

chemists to the concepts of electronegativity and polarizability, and thus to the classification of 

polar and non-polar bonds. In addition, the intermolecular interactions are normally viewed as 

physical phenomena without direct correlation to the chemical bond in any simplistic model. 

Contrary to these traditional concepts of chemical bonding, recently developed canonical 

approaches demonstrate a unified perspective on the nature of binding in pairwise interatomic 

interactions. This new canonical model, which is a force-based approach with a basis in 

fundamental molecular quantum mechanics, confirms much earlier assertions that in fact there 

are not fundamental distinctions among covalent bonds, ionic bonds, and intermolecular 

interactions including the hydrogen bond, the halogen bond, and van der Waals interactions.  
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1. Introduction 

The chemical bond is one of the most fundamental concepts in chemistry taught to students 

in general chemistry courses even at the high school level. It is common to first teach students 

that the chemical bond consists of two extreme models: the covalent bond model and the ionic 

bond model. The covalent bond is described as a sharing of electrons; the ionic bond is described 

as a consequence of Coulombic attractions between opposite charges on the interacting atoms. 

These simplistic models are further refined by introducing the concepts of electronegativity and 

polarizability effects which lead to the classification of polar and non-polar bonds. The concept 

of intermolecular interaction, such as the hydrogen bond and van der Waals interactions, are 

normally viewed as physical phenomena with no direct correlation to the chemical bond. 

Intermolecular interactions are described as electrostatic, dispersion, and polarization effects 

between pair of atoms or molecules. 

However, in his classic book, The Nature of the Chemical Bond, L. Pauling defined the 

chemical bond as follows:1 “We shall say that there is a chemical bond between two atoms or 

groups of atoms in case that the forces acting between them are such as to lead to the formation 

of an aggregate with sufficient stability to make it convenient for the chemist to consider it as an 

independent molecular species.” This definition makes no distinction between a covalent or ionic 

bond, and states that it is the force acting between atoms or group of atoms that is responsible for 

binding. 	

Then, in 1972 J. C. Slater made the controversial statement:2 “The writer believes that there 

is no very fundamental distinction between the van der Waals binding and covalent binding.” 

This contention suggests that covalent bonds, ionic bonds, hydrogen bonds, halogen bonds, and 

van der Waals interactions are indeed fundamentally the same. In particular, Slater’s assertion 
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suggests that there is not a fundamental difference between the very weak van der Waals bond of 

argon dimer, say, and the strong triple covalent bond of carbon monoxide even though these two 

molecules have three orders of magnitude difference in their bond strength, 1.02 kJ/mol for 

argon dimer and 1,071.52 kJ/mol for CO. The idea that binding in these two systems have the 

same fundamental intrinsic nature is controversial. The nature of the chemical bond is still an oft-

debated subject.3-6 It is not within the scope of this work to enter into the binding controversy, 

but rather to describe a new point of view on molecular potentials and forces that might prove 

useful in discussions of binding. The central goal of the present contribution is to offer a 

perspective on binding that supports Slater’s assertion. In particular, we shall show from this 

perspective a sense in which argon dimer could be viewed as a diatomic molecule.  

 

2. Potential Energy Functions 

Empirical algebraic potential energy functions continue to play a prominent role in modeling 

pairwise interatomic interactions.7-9 Over 100 of those functions have now been proposed,10 

involving from two to significantly larger numbers of adjustable parameters. Considerable effort 

has gone into enhancing the effectiveness of the algebraic potential energy functions that have 

the minimum number of adjustable parameters and still have the most widespread applicability 

and predictability.11,12 Several studies have also focused on the determination of universal and 

reduced potentials10,13 with the objective of finding a fundamentally unifying approach to 

understanding interatomic interactions. There have also been studies that show a connection 

among the parameters of the generalized version of the Morse, Lennard-Jones, Rydberg, and 

Buckingham potentials functions.14,15 The Morse16,17 potential, a three-parameter model, has 

shown continued popularity for widespread applications in describing pairwise interatomic 
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covalent bonding. It had been shown that many hydrogen- and halogen-bonded complexes have 

binding energies directly proportional to the intermolecular stretching force constant and that 

both could therefore reasonably be described by the Morse potential.18 The Lennard-Jones19,20 

potential which can be regarded as a special case of the Mie potential,21 is the common choice 

for describing intermolecular interactions (such as van der Waals interactions, hydrogen 

bonding, and halogen bonding). The Lennard-Jones function offers computational advantages 

over other functions and it has only two adjustable parameters.  

One of the most elegant methods for determining accurate potential curves for diatomic 

molecules is the semi-classical Rydberg-Klein-Rees (RKR) procedure and its variants.22-27 

Previously, a canonical potential and a canonical force were constructed in the context of semi-

classical RKR potential methodology.28 The terms canonical potential and canonical force refer 

to dimensionless functions obtained from each molecule within the defined class by a readily 

invertible algebraic transformation. Furthermore, to be deemed canonical, the dimensionless 

potentials or forces obtained from all of the molecules within the defined class by the canonical 

transformation must agree to within a specified order of high accuracy. Once that explicit 

transformation was generated, there was no necessity for any adjustable parameters across a 

range of bonding types to which it was applied; which include the diatomic molecules N2, CO, 

H2
+, H2, HF, LiH, Mg2, Ca2, O2; argon dimer, and one-dimensional cuts through the 

intermolecular dissociative coordinates in the multidimensional potentials of the intermolecular 

interactions in OC–HBr, OC–HF, OC–HCCH, OC–HCN, OC–HCl, OC–HI, OC–BrCl, and OC–

Cl2. Such approaches were, however, limited with respect to general applicability and the 

limitations of the RKR method to cover the entire bound potentials particularly in the asymptotic 

limit near dissociation. 
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In a recent work29 canonical approaches were applied to classic Morse, Lennard-Jones, and 

Kratzer potentials. It was found that from the canonical transformation generated for the Morse 

or Lennard-Jones or Kratzer potentials as a reference, inverse transformations allow the accurate 

generation of the Born-Oppenheimer potential for H2
+ ion, neutral covalently bound H2, van der 

Waals bound Ar2, and the hydrogen bonded one dimensional dissociative coordinate in water 

dimer. In addition an algorithmic strategy based upon a canonical transformation to 

dimensionless form applied to the force distribution associated to a potential was developed. This 

algorithm lead to accurate approximations to both the force and potential functions 

corresponding to a particular diatomic molecule in terms of the force distribution associated with 

an algebraic potential energy function, such as the Lennard-Jones function.‡ 

Classical algebraic potential energy functions try to represent the potential curve of a real 

molecule by involving a number of adjustable parameters that ultimately bring error to the 

calculations. In contrast, by using the canonical approach to algebraic potential energy functions 

more accurate representations of the potential curve of a real molecule are obtained, where the 

value of the adjustable parameters have no effect on the calculation.29 Thus, is it necessary to 

have over 100 empirical algebraic potential energy functions to describe pairwise interatomic 

interactions, and therefore invoke different types of chemical bonding? Is there really a 

difference in the potential energy functions between pairwise interatomic interactions? Can a 

generic potential function be found that would describe this wide range of interactions? In the 

next section, canonical forms are derived to present a perspective on the unification of pairwise 

interatomic interactions, and thus provide an answer to the previous questions.  

We describe here a unifying principle for understanding pairwise interatomic interactions 

from the perspective of recently developed, force based, canonical approaches.28-36 The key ideas 



	 6	

will be introduced through the consideration of pairwise interatomic interactions from the point 

of view of force, echoing the seminal result of R. P. Feynman37 that “…the force on a nucleus in 

an atomic system is … just the classical electrostatic force that would be exerted on this nucleus 

by other nuclei and by the electrons’ charge distribution”. In the next Section, we develop 

Feynman’s idea into a new canonical model that unifies pairwise interatomic interactions and 

lends strong support to the previous assertions made by Slater.  

 

3. Canonical Forms and the Unification of Pairwise Interatomic Interactions  

Recently, we introduced explicit force-based transformations to canonical forms for 

potentials corresponding to both diatomic and two body intermolecular interactions.28-36 The 

term canonical form for a class of molecular potentials refers to a dimensionless function 

obtained from each molecular potential within the defined class by a readily invertible piecewise 

affine (a function that performs a uniform scaling and translation of one interval of real numbers 

onto another interval) transformation. Furthermore, to be deemed canonical, the dimensionless 

forms obtained from all of the molecular potentials within the defined class by the canonical 

transformation must agree to within a specified order of high accuracy. The salient feature of 

these canonical forms is that they encode the “shape” of their associated molecular potential 

curves. The above definition of canonical form implies that the potential curves for all of the 

molecules in the considered class that share a common canonical form have the same shape. Just 

what this means is explained below. We note also that it has been shown36 that the origin of these 

canonical transformations is rooted in the Hellmann-Feynman theorem37,38 and thus to 

fundamental molecular quantum mechanics. 

The key tool for constructing the canonical transformation is the Feynman force.37 This is a 
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virtual force arising from a thought experiment, which is most easily visualized in the setting of a 

diatomic molecule. For illustrative purposes, consider the diatomic molecule H2. The thought 

experiment consists of defining E(R) to be the static (ground electronic state) energy of the H2 

molecule when the two nuclei are separated a distance R. This energy is calculated by solving the 

static (time independent) Schrödinger equation with the nuclei held at the fixed separation 

distance R (i.e., the Born-Oppenheimer approximation39). The Feynman (virtual) force is defined 

by: F (R) = − ʹE (R) , that is, the negative of the derivative of the potential E(R) with respect to the 

separation distance R. This idea is readily generalized to any diatomic molecule and, indeed, to 

any molecule irrespective of the number of nuclei. Figures 1a and 1b show graphs of E(R) and 

F(R) for H2 and the diatomic ion H2
+. One should notice that in Figures 1a and 1b, Re denotes the 

equilibrium nuclear separation distance at which the force vanishes (F(Re) = 0) and the potential 

attains its minimum value –De where De is the dissociation energy of the molecule, i.e., the 

energy required to break the diatomic molecule into two separate atoms. When the separation 

distance R > Re, the force is attractive (binding) while when 0 < R < Re the force is repulsive 

(anti-binding). Also, the value of F(R) (considering the nuclei as point charges) goes to infinity 

as R approach zero and F(R) goes to zero as R approach infinity.  

In Figure 1a, S0 denotes the section of the potential curve E(R) for Re ≤ R ≤ Rm which, as seen 

in Figure 1b, corresponds to the section of the force curve F(R) on which the force goes from 

zero to its maximum attractive magnitude Fm. A key observation is that the S0 section for H2 

(red) and for H2
+ (blue) have the same shape, where the shape of S0 is defined through the 

canonical transformation to dimensionless form: 

cem (x) =
E(xRm + (1− x)Re )− E(Re )

E(Rm)− E(Re )
, for 0 ≤ x ≤1.       (1) 

Figure 2 shows the canonical form cem(x) for H2 (solid red curve) and H2
+ (blue circles). The two 
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curves have a relative error of 0.0026. The canonical form cem(x) results from an affine scaling of 

the potential curve E(R) for Re ≤ R ≤ Rm to dimensionless form and reflects the inherent shape of 

the dimensional curve E(R). Two curves will be declared to have the same inherent shape if their 

associated canonical forms agree to within a specified error tolerance.  

In similar fashion, the section S1 for H2 and H2
+ in Figure 1a, defined for Rm ≤ R ≤ R1, are 

also seen to have the same inherent shape where the associated canonical form is defined by: 

cm1(x) =
E(xR1 + (1− x)Rm)− E(Rm)

E(R1)− E(Rm)
, for 0 ≤ x ≤1.       (2) 

The right-endpoint of the section S1 is R1 which, as shown in Figure 1b, is defined by the 

requirement that the force F(R1) = –Fm/2, that is, R1 is the nuclear separation distance at which 

the attractive force has been reduced to half its maximum magnitude Fm. The canonical forms in 

eq 2 for H2 and H2
+ agree to a relative error of 0.0022. 

The section S2 for H2 and H2
+ in Figure 1a, defined for R1 ≤ R ≤ R2, have the same inherent 

shape with associated canonical form defined by: 

  
c12(x) =

E(xR2 + (1− x)R1)− E(R1)
E(R2 )− E(R1)

, for 0 ≤ x ≤1.       (3) 

The right-endpoint of the S2 is R2 defined in Figure 1b by F(R2) = –Fm/4, that is, the internuclear 

separation for which the attractive force has been reduced to one-quarter of its maximum 

magnitude. The canonical form in eq 3 for H2 and H2
+ agree up to a relative error of 0.00042.  

More generally, we define the sections Sj of the potential curves in Figure 1a by Rj-1 ≤ R ≤ Rj 

where the separation distances Rj are defined by F(Rj) = –Fm/2j, and the associated canonical 

dimensionless form: 

c( j−1) j (x) =
E(xRj + (1− x)Rj−1)− E(Rj−1)

E(Rj )− E(Rj−1)
, for 0 ≤ x ≤1.      (4) 
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Each of the sections Sj for H2 and H2
+ for j = 0, 1, 2, … have the same inherent shape. Moreover, 

it is the associated force curves that carry this inherent shape information in that the force 

determines the endpoints of the various sections Sj. 

Similar constructions can be carried out on the repulsive side of the potential, that is, 0 < R ≤ 

Re, only now one defines the sequence of section endpoints …Rrj < Rr(j-1) < … < Rr1 < Rr0 < Re by 

F(Rrj) = Fm2j. In particular, Rr0 is the internuclear separation at which the repulsive force has 

magnitude equal to Fm, the maximum value of the attractive force. At successive values Rrj, the 

repulsive force doubles. The sections Srj of the potential curves for H2 and H2
+ between 

corresponding endpoints Rrj and Rr(j-1) have the same inherent shape. The definition of the 

endpoints Rj and Rrj as explained above is not unique and indeed it can be generalized as reported 

previously.34,35 

It should be emphasized that H2 and H2
+ are two-electron and one-electron molecules, 

respectively, yet their repulsive walls can be decomposed into sections of the same inherent 

shape. It follows that electron-electron repulsion must play only a very minor role in determining 

the inherent shape of the potential curve since for the ion H2
+, there is no electron-electron 

repulsion. 

This construction of sections of potential curves via their associated force curves has been 

applied to a wide variety of weakly and strongly bound diatomic molecules and intermolecular 

complexes. Figure 3 show on the left a plot of the dimensional potential energy curves of weakly 

bound molecules (red; (i) Ar2 (ii) Ar-HBr (iii) OC-Cl2 (iv) OC-HF) and strongly bound 

molecules (blue; (i) H2 (ii) H2
+ (iii) LiH (iv) CO). Note that these molecules have been 

deliberately chosen to furnish examples of (i) a van der Waals molecule, (ii) a weak hydrogen-

bonded molecule, (iii) a halogen-bonded molecule, (iv) a stronger hydrogen bond than in (ii), (v) 
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the classic two-electron covalent bond, (vi) the classic one-electron bond, (vii) an ionic bond, 

and (viii) a covalent multiple bond. Different characteristics of these dimensional potential 

energy curves reflect the different types and classes of interatomic binding represented. 

However, applying the canonical transformation to dimensionless form to the sections of the 

potential curves discussed above for each of the molecules, reveals that these dimensional 

potential energy curves all have the same inherent dimensionless shape. The fact that each of the 

potential energy curves in Fig. 3 can be transformed to the same dimensionless canonical curve 

via a piecewise affine transformation suggests that the intrinsic binding characteristics inherent 

in covalent bonds, ionic bonds, and intermolecular interactions yield associated force 

distributions that share a common dimensionless shape. Therefore, what emerges from the 

canonical transformation is that the potential energy curve associated with two body pairwise 

interatomic interactions have the same shape that gets revealed from their dimensionless 

canonical forms. In particular, what appear to be different shapes in the potential curves in Fig. 3 

for different pairwise interatomic interactions is really a matter of scaling. This scaling becomes 

transparent through the dimensionless canonical transformations described above. These results 

demonstrate, for example, that there is not a fundamental difference in the binding between 

argon dimer and carbon monoxide, supporting the previous assertion by Slater and giving a 

unification of pairwise interatomic interactions. In addition, within the canonical model, the 

argon dimer is considered as a diatomic molecule. 

 

4.  Conclusions 

Recently developed canonical approaches to understanding molecular and intermolecular 

potentials and forces demonstrate “…that there is no very fundamental distinction between van 
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der Waals binding and covalent binding”,2 or by extension, between covalent and hydrogen or 

halogen binding.28-36 These observations based upon shape-revealing, canonical transformation 

of potentials and their associated force distributions to dimensionless canonical forms provide 

compelling arguments in support of Slater’s brilliant insight. Perhaps, this new canonical 

perspective on interatomic interactions provide a framework with which, it should be argued 

that, as asserted by Slater, pairwise interatomic interactions are fundamentally the same.  
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Figure 1. Potential, E(R), and Force, F(R), curves for H2 and H2
+. Panel (a) graphs of E(R) in cm-

1 for H2 (red) and H2
+ (blue). Panel (b) graphs of F(R) in cm-1/Å for H2 (red) and H2

+ (blue). 

 

 

 

 

Figure 2. Canonical potential curve cem(x) for H2 (solid red curve) and H2
+ (blue circles). 
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Figure 3. Weakly bound (red; (i) Ar2 (ii) Ar-HBr (iii) OC-Cl2 (iv) OC-HF) and strongly bound 

(blue; (i) H2 (ii) H2
+ (iii) LiH (iv) CO) pairwise interatomic interactions potential energy curves 

(E(R) in cm-1) transformed to one canonical potential curve. On the attractive side, for each 

molecule, the canonical transformation is applied from the equilibrium interatomic separation to 

the point where the force is reduced to Fm/2. On the repulsive side, for each molecule, the 

canonical transformation is applied from the equilibrium interatomic separation to the point 

where the force is 2Fm. On the attractive side the canonical potential is evaluated at x, 0 ≤ x ≤ 1, 

whereas on the repulsive side the canonical potential is evaluated at -x, -1 ≤ x ≤ 0. 
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