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Abstract

Sparse Principal Component Analysis: Algorithms and Applications

by

Youwei Zhang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

The Sparse Principal Component Analysis (Sparse PCA) problem is a variant of the
classical PCA problem. The goal of Sparse PCA is to achieve a trade-off between the
explained variance along a normalized vector, and the number of non-zero components
of that vector. Sparse PCA has a wide array of applications in machine learning
and engineering. Unfortunately, this problem is also combinatorially hard and hence
various sub-optimal algorithms and approximation formulations have been proposed
to tackle it. In this dissertation, we first discuss convex relaxation techniques that
efficiently produce good approximate solutions. We then describe several algorithms
solving these relaxations as well as greedy algorithms that iteratively improve the
solution quality.

The dissertation then focuses on solving the attractive formulation called DSPCA
(a Direct formulation for Sparse PCA) for large-scale problems. Although Sparse
PCA has apparent advantages compared to PCA, such as better interpretability, it is
generally thought to be computationally much more expensive. We demonstrate the
surprising fact that sparse PCA can be easier than PCA in practice, and that it can be
reliably applied to very large data sets. This comes from a rigorous feature elimination
pre-processing result, coupled with the favorable fact that features in real-life data
typically have rapidly decreasing variances, which allows for many features to be
eliminated. We introduce a fast block coordinate ascent algorithm with much better
computational complexity than the existing first-order ones. We provide experimental
results obtained on text corpora involving millions of documents and hundreds of
thousands of features.

Another focus of the dissertation is to illustrate the utility of Sparse PCA in
various applications, ranging from senate voting and finance to text mining. In par-
ticular, we apply Sparse PCA to the analysis of text data, with online news as our
focus. Our experimental results on various data sets illustrate how Sparse PCA can
help organize a large corpus of text data in a user-interpretable way, providing an
attractive alternative approach to topic models.
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Chapter 1

Introduction

Principal Component Analysis (PCA) (see e.g. Jolliffe [18] and Anderson [3]) is
widely used for data analysis, visualization and dimension reduction. One way of
performing PCA is to first calculate the sample covariance

Σ =
1

m

m∑
i=1

xixi
T

where xi ∈ Rn, i = 1, ...,m are centered date samples. Then a set of eigenvectors
v1, ..., vk with top k(k << n) eigenvalues are computed using eigenvalue decompo-
sition and finally each data x is projected onto the set of eigenvectors to obtain a
representation in Rk.

An alternative way to obtain v1, ..., vk is via singular value decomposition: first
form a m× n data matrix X, where ith row of X is xi

T ,

X =

 x1
T

...
xm

T


Then perform SVD: X = UDV T , where V = [v1, ..., vk, ..., vn], U = [u1, ..., um] are
both unitary.

Essentially, PCA finds linear combinations of the variables called principal com-
ponents or factors, corresponding to orthogonal directions maximizing variance in
the data. In this classical procedure, two issues in particular motivate Sparse PCA.
First, each of the principal components v1, ..., vk are typically a linear combination
of all original variables. That is, most of coefficients (or loadings) in the principal
components are non-zero. This means that while PCA facilitates model interpreta-
tion and visualization by concentrating the information in a few factors, the factors
themselves are still constructed using all variables, hence are often hard to interpret.
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For example, with stock return data, we might expect to see a subset of stocks with
some certain commonalities to be the driving force for the market volatility. Fig 1.1
gives an example of using PCA to visualize the S&P500 returns over one year. The
top 2 principal components can explain 87% of the total variance. However, it is not
quite clear about what the two principal components represent. Later in Chapter 4,
we will present the interesting findings that Sparse PCA can reveal. Second, for some
contemporary applications, the number of variables n can be comparable to or even
larger than the number of available data points m. In that case, the sample esti-
mator Σ is not a reliable one. Without further structure information, there is little
hope to perform high dimensional inference with limited data. Sparsity in principal
components could be a reasonable assumption in certain applications.
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Figure 1.1: S&P500 daily returns projected onto the top 2 principal components.

The sparse principal component analysis (Sparse PCA) problem is a variant of the
classical PCA problem, which accomplishes a trade-off between the explained variance
along a normalized vector, and the number of non-zero components of that vector. In
order to obtain sparse principal components, a simple thresholding is frequently used
in practice: first use PCA to obtain principal components, and then set those loadings
with absolute values less than some threshold to be zero. This method is quite ad
hoc and can be misleading especially when there are only a limited number of data
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samples are available. Better approaches directly incorporate sparsity constraint into
problem formulations. We discuss two such formulations in this dissertation.

The first formulation starts with the observation that the principal component
can be obtained via a variational representation:

max zTΣz

subject to ‖z‖2 = 1

Where z ∈ Rn, and Σ ∈ Sn is the (symmetric positive semi-definite) sample covari-
ance matrix.The objective can be interpreted as the variance “explained by” (con-

tained in) the direction z. Precisely, the ratio zT Σz
Tr Σ

quantifies the amount of variance
contained in the direction z v.s. the total variance.

By either adding a cardinality constraint Card(z) ≤ k to the constraint set or
adding a penalizing term −ρCard(z) to the objective, we can obtain a non-convex
optimization problem encouraging a sparse solution. Here ρ is a parameter controlling
sparsity, and Card(z) denotes the cardinality (or `0 norm) of z, i.e. the number of
non zero coefficients of z. Then relaxation techniques can be used to further convert
the non-convex problem to a convex one, which will be discussed in Chapter 2. In
this dissertation, we will focus on the version with the penalized objective as written
below:

max
‖z‖2=1

zTΣz − ρCard(z) (1.1)

Another formulation comes from the viewpoint of low rank approximation of ma-
trices. Given a centered data matrix X ∈ Rm×n (where n is number of features and
m is the number of samples),the leading principal component z can also be obtained
by solving the following optimization problem

min
y,z
‖X − yzT‖F

subject to ‖z‖2 = 1

where y ∈ Rm and z ∈ Rn.

Similarly, a sparsity-inducing norm such as `0 and `1 on z can be added to encour-
age sparse solutions. The formulation as discussed in Chapter 2 will be a non-convex
optimization problem and hence only admits an algorithm to find local optimal solu-
tions. This approach merits discussion as the algorithm is very simple and scalable.

An important aspect of this dissertation is to study the interpretability issues
of Sparse PCA solutions. We will first run Sparse PCA on data sets of various
nature, illustrating how Sparse PCA brings about clearer interpretability and better
visualization in real data. We will also comment on new interesting findings revealed
by Sparse PCA in each case.

Then we focus on applying Sparse PCA to analysis of text data with online text
news as our particular focus, showing that sparse PCA can uncover interesting topics
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within a large text corpora. Here a topic corresponds to a short list of terms that
should be semantically coherent.

The text data we are dealing with are large-scale, typically involving around 10,000
features. However, the existing first-order algorithm for solving the semidefinite for-
mulation, as developed in d’Aspremont et al. [9], has a computational complexity of
O(n4

√
log n), with n the number of features, which is too high for such large-scale data

sets. Therefore, we develop a faster block coordinate ascent algorithm with better
dependence on problem size, which is another major contribution from this disserta-
tion. The new algorithm, coupled with a rigorous feature elimination method, works
pretty well in practice.

In terms of dissertation organization, we first discuss several problem formulations
for Sparse PCA and describe algorithms to solve the formulations in Chapter 2. We
then develop the new algorithm to solve the semidefinite formulation called DSPCA
for large-scale data in Chapter 3. Finally we report numerical results on various
data sets: newsgroup data, Senate voting records and stock market returns, and
discuss a potentially very useful application of Sparse PCA to exploring a large text
corpora in Chapter 4. We draw conclusions and point out future research directions
in Chapter 5.
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Chapter 2

Sparse PCA

2.1 Introduction

While PCA is numerically easy, each factor requires computing a leading eigenvec-
tor, which can be done in O(n2) floating point operations using the Lanczos method
for example (see e.g. Golub and Van Loan [15, §8.3, §9.1.1] or Saad [36] for de-
tails), Sparse PCA is a hard combinatorial problem. In fact, Moghaddam et al.
[25] show that the subset selection problem for ordinary least squares, which is NP-
hard (Natarajan [30]), can be reduced to a sparse generalized eigenvalue problem, of
which sparse PCA is a particular instance. Sometimes factor rotation techniques are
used to post-process the results from PCA and improve interpretability (see QUAR-
TIMAX by Neuhaus and Wrigley [34], VARIMAX by Kaiser [21] or Jolliffe [17] for
a discussion). Another straightforward solution is to threshold to zero loadings with
small magnitude (Cadima and Jolliffe [6]), but outside of easy cases, the methods
highlighted below always perform better in situation when only a few observations
are available or when significant noise is present (Zhang et al. [42]).

A more systematic approach to the problem arose in recent years, with various
researchers proposing nonconvex algorithms (e.g., SCoTLASS by Jolliffe et al. [19],
SLRA by Zhang et al. [44] or D.C. based methods Sriperumbudur et al. [39] which find
modified principal components with zero loadings). The SPCA algorithm, which is
based on the representation of PCA as a regression-type optimization problem (Zou
et al. [45]), allows the application of the LASSO (Tibshirani [40]), a penalization
technique based on the `1 norm. With the exception of simple thresholding, all the
algorithms above require solving non convex problems. Recently also, d’Aspremont
et al. [9] derived an `1 based semidefinite relaxation for the sparse PCA problem
(1.1) with a complexity of O(n4

√
log n) for a given ρ. Moghaddam et al. [26] used

greedy search and branch-and-bound methods to solve small instances of problem
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(1.1) exactly and get good solutions for larger ones. Each step of this greedy algo-
rithm has complexity O(n3), leading to a total complexity of O(n4) for a full set of
solutions. Moghaddam et al. [27] improve this bound in the regression/discrimination
case. Journée et al. [20] use an extension of the power method to (locally) solve the
problem defined here, as well as the “block” problem of finding several sparse princi-
pal components at once. Loss of orthogonality means that there is no natural method
for deflating the matrix once a sparse principal component is found and Mackey [24]
discusses several options, comparing the variance vs. orthogonality/sparsity tradeoffs
they imply. Finally, Amini and Wainwright [2] derive explicit sample size thresh-
olds for recovery of true sparse vector using either simple thresholding methods or
semidefinite relaxations, in a spiked model for the covariance.

In this chapter, we first discuss a non-convex formulation based on low-rank ap-
proximation of matrices and describe a local but very simple and scalable algorithm
for solving the problem. Then we review two semidefinite relaxations based on `1

and `0 penalizations respectively. The algorithm as developed by d’Aspremont et al.
[9] for solving the semidefinite relaxation based on `1 penalization is also briefly de-
scribed. This first-order algorithm has a complexity complexity of O(n4

√
log n) and

does not work well with large-scale problems, which motivates us to develop a new
block coordinate ascent algorithm to be presented later in Chapter 3. Several greedy
methods are also described in this chapter and we compare them with the first-order
algorithm on synthetic data. We leave the discussion of the performance on real data
till later in Chapter 4.

Notation. For a vector z ∈ R, we let ‖z‖1 =
∑n

i=1 |zi| and ‖z‖ = (
∑n

i=1 z
2
i )

1/2
,

Card(z) is the cardinality of z, i.e. the number of nonzero coefficients of z, while the
support I of z is the set {i : zi 6= 0} and we use Ic to denote its complement. For
β ∈ R, we write β+ = max{β, 0} and for X ∈ Sn (the set of symmetric matrix of
size n× n) with eigenvalues λi, Tr(X)+ =

∑n
i=1 max{λi, 0}. The vector of all ones is

written 1, while the identity matrix is written I. The diagonal matrix with the vector
u on the diagonal is written diag(u).

2.2 A low-rank approximation approach

One way to formulate principal component analysis involves as a crucial step the
approximation of a n×m data matrix M by a rank-one matrix. The problem can be
formulated as the non-convex one:

min
p,q
‖M − pqT‖2

F . (2.1)

Where p ∈ Rn, and q ∈ Rm. For large, sparse matrices M , the famous power
iteration method is an efficient algorithm that is guaranteed to converge when the

6



largest singular value of M is simple. The algorithm amounts to solve the above
alternatively over p, q, in a “block-coordinate” fashion. The iterations are

p→ 1

qT q
Mq, q → 1

pTp
MTp,

These can be expressed in terms of normalized vectors p̃ = p/‖p‖2, q̃ := q/‖q‖2, as

p̃→ P (Mq̃), q̃ → P (MT p̃),

where P is the projection on the unit circle (assigning to a non-zero vector v its scaled
version v/‖v‖2).

Based on the PCA formulation 2.1, one way to formulate the sparse PCA problem
(see Shen and Huang [38], Mackey [24]) involves a low-rank approximation problem
where the sparsity of the low-rank approximation is penalized:

min
p,q

1

2
‖M − pqT‖2

F + λ‖p‖1 + µ‖q‖1, (2.2)

where M is a n×m data matrix, ‖ · ‖F is the Frobenius norm, and µ ≥ 0, λ ≥ 0 are
parameters.

The model above results in a rank-one approximation to M (the matrix pqT

at optimum), and vectors p, q are encouraged to be sparse due to the presence of
the l1 norms, with high value of the parameters λ, µ yielding sparser results. Once
sparse solutions are found, then the rows (resp. columns) in M corresponding to zero
elements in p (resp. in q) are removed, and problem (2.2) is solved with the reduced
matrix as input. If M is a term-by-document matrix, the above model provides
sparsity in the feature space (via p) and the document space (via a “topic model” q),
allowing to pinpoint a few features and a few documents that jointly “explain” data
variance.

Several algorithms have been proposed for the sparse PCA problem, for example
by Journée et al. [20], Shen and Huang [38], d’Aspremont et al. [10]. In practice, one
algorithm that is very efficient (although it is only guaranteed to converge to a local
minimum) consists in solving the above problem alternatively over p, q many times
(Shen and Huang [38]). This leads to a modified power iteration method

p̃→ P (Sλ(q̃)), q̃ → P (Sµ(MT p̃)),

where P is again the projection on the unit circle, and for t ≥ 0, St is the “soft
thresholding” operator (for a given vector v, St(v) = sign(v) max(0, |v| − t), with
operations acting component-wise). We can replace the soft thresholding by hard
thresholding, for example zeroing out all but a fixed number of the largest elements
in the vector involved.

With λ = µ = 0 the original power iteration method for the computation of the
largest singular value of M is recovered, with optimal p, q the right- and left- singular
vectors of M . The presence of λ, µ modifies these singular vectors to make them
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sparser, while maintaining the closeness of M to its rank-one approximation. The
hard-thresholding version of power iteration scales extremely well with problem size,
with greatest speed increases over standard power iteration for PCA when a high
degree of sparsity is asked for. This is because the vectors p, q are maintained to be
extremely sparse during the iterations.

2.3 A semidefinite relaxation with `1 penalization

Starting from the variational representation of finding the first principal compo-
nent z ∈ Rn:

max zTΣz

subject to ‖z‖2 = 1

where Σ ∈ Sn is the sample covariance matrix. Problem 2.3 is another way to
formulate the sparse PCA problem:

φ(ρ) ≡ max
‖z‖2≤1

zTΣz − ρCard(z) (2.3)

where ρ > 0 is a parameter controlling sparsity. We assume without loss of generality
that Σ ∈ Sn is positive semidefinite and that the n variables are ordered by decreasing
marginal variances, i.e. that Σ11 ≥ . . . ≥ Σnn. We also assume that we are given
a square root A of the matrix Σ with Σ = ATA, where A ∈ Rn×n and we denote
by a1, . . . , an ∈ Rn the columns of A. Note that the problem and the algorithms for
solving it are invariant by permutations of Σ and by the choice of square root A. In
practice, we are very often given the data matrix A instead of the covariance Σ.

A problem that is directly related to (2.3) is that of computing a cardinality
constrained maximum eigenvalue, by solving

maximize zTΣz
subject to Card(z) ≤ k

‖z‖ = 1,
(2.4)

in the variable z ∈ Rn. Of course, this problem and (2.3) are related. By weak
duality, an upper bound on the optimal value of (2.4) is given by

inf
ρ∈P

φ(ρ) + ρk.

where P is the set of penalty values for which φ(ρ) has been computed. This means
in particular that if a point z is provably optimal for (2.3), it is also globally optimum
for (2.4) with k = Card(z).

Here, we briefly recall the `1 based relaxation derived by d’Aspremont et al. [9].
Following the lifting procedure for semidefinite relaxation described by Lovász and
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Schrijver [23], Alizadeh [1], Lemaréchal and Oustry [22] for example, we rewrite (2.4)
as

maximize Tr(ΣX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

(2.5)

in the (matrix) variable X ∈ Sn. Programs (2.4) and (2.5) are equivalent, indeed if
X is a solution to the above problem, then X � 0 and Rank(X) = 1 mean that
we have X = xxT , while Tr(X) = 1 implies that ‖x‖2 = 1. Finally, if X = xxT

then Card(X) ≤ k2 is equivalent to Card(x) ≤ k. We have made some progress
by turning the convex maximization objective xTΣx and the nonconvex constraint
‖x‖2 = 1 into a linear constraint and linear objective. Problem (2.5) is, however, still
nonconvex and we need to relax both the rank and cardinality constraints.

Since for every u ∈ Rn, Card(u) = q implies ‖u‖1 ≤
√
q‖u‖2, we can replace the

nonconvex constraint Card(X) ≤ k2, by a weaker but convex constraint: 1T |X|1 ≤
k, where we exploit the property that ‖X‖F =

√
xTx = 1 when X = xxT and

Tr(X) = 1. If we drop the rank constraint, we can form a relaxation of (2.5) and
(2.4) as

maximize Tr(ΣX)
subject to Tr(X) = 1

1T |X|1 ≤ k
X � 0,

(2.6)

which is a semidefinite program in the variable X ∈ Sn, where k is an integer param-
eter controlling the sparsity of the solution. The optimal value of this program will
be an upper bound on the optimal value of the variational problem in (2.4). Here, the
relaxation of Card(X) in 1T |X|1 corresponds to a classic technique which replaces
the (non-convex) cardinality or l0 norm of a vector x with its largest convex lower
bound on the unit box: |x|, the l1 norm of x (see Fazel et al. [13] or Donoho and
Tanner [11] for other applications).

Problem (2.6) can be interpreted as a robust formulation of the maximum eigen-
value problem, with additive, componentwise uncertainty in the input matrix Σ. We
again assume Σ to be symmetric and positive semidefinite. If we consider a variation
in which we penalize by the `1 norm of the matrix X instead of imposing a hard
bound, to get

maximize Tr(ΣX)− ρ1T |X|1
subject to Tr(X) = 1

X � 0,
(2.7)

which is a semidefinite program in the variable X ∈ Sn, where ρ > 0 controls the
magnitude of the penalty. We can rewrite this problem as

max
X�0,Tr(X)=1

min
|Uij |≤ρ

Tr(X(Σ + U)) (2.8)

9



in the variables X ∈ Sn and U ∈ Sn. This yields the following dual to (2.7)

minimize λmax(Σ + U)
subject to |Uij| ≤ ρ, i, j = 1, . . . , n,

(2.9)

which is a maximum eigenvalue problem with variable U ∈ Sn. This gives a natural
robustness interpretation to the relaxation in (2.7): it corresponds to a worst-case
maximum eigenvalue computation, with componentwise bounded noise of intensity ρ
imposed on the matrix coefficients.

Finally, the KKT conditions (see Boyd and Vandenberghe [4, §5.9.2]) for problem
(2.7) and (2.9) are given by

(Σ + U)X = λmax(Σ + U)X
U ◦X = ρ|X|
Tr(X) = 1, X � 0
|Uij| ≤ ρ, i, j = 1, . . . , n.

(2.10)

Where U◦X is the Hadamard (component-wise) product of U andX. If the eigenvalue
λmax(Σ + U) is simple (when, for example, λmax(A) is simple and ρ is sufficiently
small), the first condition means that Rank(X) = 1 and the semidefinite relaxation
is tight, with in particular Card(X) = Card(x)2 if x is the dominant eigenvector
of X. When the optimal solution X is not of rank one because of degeneracy (i.e.
when λmax(Σ + U) has multiplicity strictly larger than one), we can truncate X as
in Alizadeh [1], Lemaréchal and Oustry [22], retaining only the dominant eigenvector
x as an approximate solution to the original problem. In that degenerate scenario
however, the dominant eigenvector of X is not guaranteed to be as sparse as the
matrix itself.

First-order method The DSPCA code developed by d’Aspremont et al. [9] solves
the dual of the penalized formulation (2.7), rewritten below as

minimize f(U) = λmax(Σ + U)
subject to |Uij| ≤ ρ.

(2.11)

in the variable U ∈ Sn.

The algorithm in (d’Aspremont et al. [9], Nesterov [33]) regularizes the objective
f(U) in (2.11), replacing it by the smooth (i.e. with Lipschitz continuous gradient)
uniform approximation

fµ(U) = µ log (Tr exp((Σ + U)/µ))− µ log n.

Following Nesterov [31], solving the smooth problem

min
U∈Q

fµ(U)

where Q = {U ∈ Sn, |Uij| ≤ ρ}, with µ = ε/2 log(n) then produces an ε-approximate
solution to (2.7). The key difference between the minimization scheme developed in
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Nesterov [31] and classical gradient minimization methods is that it is not a descent
method but achieves a complexity of O(L/N2) instead of O(1/N) for gradient descent,
where N is the number of iterations and L the Lipschitz constant of the gradient.
Furthermore, this convergence rate is provably optimal for this particular class of
convex minimization problems (see Nesterov [32, Th. 2.1.13]). Thus, by sacrificing the
(local) properties of descent directions, we improve the (global) complexity estimate
by an order of magnitude. For our problem here, once the regularization parameter
µ is set, the algorithm is detailed as Algorithm 1.

Algorithm 1 First-Order Algorithm.

Input: The covariance Σ ∈ Rn×n, and a parameter ρ > 0 controlling sparsity.

1: for i = 1 to N do

2: Compute fµ(Ui) and ∇fµ(Ui)

3: Find Yi = arg minY ∈Q 〈∇fµ(Ui), Y 〉+ 1
2
L‖Ui − Y ‖2

F

4: Find Wi = arg minW∈Q

{
L‖W‖2F

2
+
∑N

j=0
j+1

2
(fµ(Uj) + 〈∇fµ(Uj),W − Uj〉)

}
5: Set Ui+1 = 2

i+3
Wi + i+1

i+3
Yi

6: end for

Output: A matrix U ∈ Sn.

The algorithm has four main steps. Step one computes the (smooth) function
value and gradient. The second step computes the gradient mapping, which matches
the gradient step for unconstrained problems (see Nesterov [32, p.86]). Step three and
four update an estimate sequence (see Nesterov [32, p.72]) of fµ whose minimum can
be computed explicitly and gives an increasingly tight upper bound on the minimum
of fµ. We now present these steps in detail for our problem (we write U for Ui and
X for Xi).

Step 1. The most expensive step in the algorithm is the first, the computation of
fµ and its gradient. The function value can be reliably computed as

fµ(U) = dmax + µ log

(
n∑
i=1

exp(
di − dmax

µ
)

)
− µ log n.

where di are the eigenvalues of Σ+U . The gradient∇fµ(U) can be computed explicitly
as

∇fµ(U) := exp ((Σ + U)/µ) /Tr (exp ((Σ + U)/µ)) .

which means computing the same matrix exponential.
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Step 2. This step involves a problem of the form

arg min
Y ∈Q
〈∇fµ(U), Y 〉+

1

2
L‖U − Y ‖2

F ,

where U is given. The above problem can be reduced to a Euclidean projection

arg min
‖Y ‖∞≤1

‖Y − V ‖F , (2.12)

where V = U − L−1∇fµ(U) is given. The solution is given by

Yij = sgn(Vij) min(|Vij|, 1), i, j = 1, . . . , n.

Step 3. The third step involves solving a Euclidean projection problem similar to
(2.12), with the solution V defined by

V = − 1

L

k∑
i=0

i+ 1

2
∇fµ(Ui).

Stopping criterion We can stop the algorithm when the duality gap is smaller
than ε:

gapk = λmax(Σ + Uk)−Tr ΣXi + 1T |Xi|1 ≤ ε,

where Xk = ∇fµ(U) is our current estimate of the dual variable. The above gap is
necessarily non-negative, since both Xi and Ui are feasible for the primal and dual
problem, respectively. This is checked periodically, for example every 100 iterations.

Complexity Overall the algorithm requires

O

(
ρ
n
√

log n

ε

)
(2.13)

iterations (d’Aspremont et al. [9], Nesterov [33]). The main step at each iteration is
computing the matrix exponential exp((Σ + U)/µ) (see Moler and Van Loan [28] for
a comprehensive survey) at a cost of O(n3) flops.

2.4 A semidefinite relaxation with `0 penalization

We summarize here the results in d’Aspremont et al. [10]. We begin by reformulat-
ing (2.3) as a relatively simple convex maximization problem. Suppose that ρ ≥ Σ11.
Since zTΣz ≤ Σ11(

∑n
i=1 |zi|)2 and (

∑n
i=1 |zi|)2 ≤ ‖z‖2 Card(z) for all z ∈ Rn, we

have
φ(ρ) = max‖z‖≤1 z

TΣz − ρCard(z)
≤ (Σ11 − ρ) Card(z)
≤ 0,
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hence the optimal solution to (2.3) when ρ ≥ Σ11 is z = 0. From now on, we assume
ρ ≤ Σ11 in which case the inequality ‖z‖ ≤ 1 is tight. We can represent the sparsity
pattern of a vector z by a vector u ∈ {0, 1}n and rewrite (2.3) in the equivalent form

φ(ρ) = maxu∈{0,1}n λmax(diag(u)Σ diag(u))− ρ1Tu
= maxu∈{0,1}n λmax(diag(u)ATAdiag(u))− ρ1Tu
= maxu∈{0,1}n λmax(Adiag(u)AT )− ρ1Tu,

using the fact that diag(u)2 = diag(u) for all variables u ∈ {0, 1}n and that for any
matrix B, λmax(BTB) = λmax(BBT ). We then have

φ(ρ) = maxu∈{0,1}n λmax(Adiag(u)AT )− ρ1Tu
= max‖x‖=1 maxu∈{0,1}n x

TAdiag(u)ATx− ρ1Tu
= max‖x‖=1 maxu∈{0,1}n

∑n
i=1 ui((a

T
i x)2 − ρ).

Hence we finally get, after maximizing in u (and using maxv∈{0,1} βv = β+)

φ(ρ) = max
‖x‖=1

n∑
i=1

((aTi x)2 − ρ)+, (2.14)

which is a nonconvex problem in the variable x ∈ Rn. We then select variables i such
that (aTi x)2−ρ > 0. Note that if Σii = aTi ai < ρ, we must have (aTi x)2 ≤ ‖ai‖2‖x‖2 <
ρ hence variable i will never be part of the optimal subset and we can remove it.

Because the variable x appears solely through X = xxT , we can reformulate the
problem in terms of X only, using the fact that when ‖x‖ = 1, X = xxT is equivalent
to Tr(X) = 1, X � 0 and Rank(X) = 1. We thus rewrite (2.14) as

φ(ρ) = max.
∑n

i=1(aTi Xai − ρ)+

s.t. Tr(X) = 1, Rank(X) = 1
X � 0.

Note that because we are maximizing a convex function ∆n = {X ∈ Sn : Tr(X) =
1, X � 0} which is convex, the solution must be an extreme point of ∆n (i.e. a
rank one matrix), hence we can drop the rank constraint here. Unfortunately, X 7→
(aTi Xai−ρ)+, the function we are maximizing, is convex in X and not concave, which
means that the above problem is still hard. However, we show below that on rank
one elements of ∆n, it is also equal to a concave function of X, and we use this to
produce a semidefinite relaxation of problem (2.3).

Proposition 2.4.1 Let A ∈ Rn×n, ρ ≥ 0 and denote by a1, . . . , an ∈ Rn the columns

of A, an upper bound on

φ(ρ) = max.
∑n

i=1(aTi Xai − ρ)+

s.t. Tr(X) = 1, X � 0, Rank(X) = 1
(2.15)
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can be computed by solving

ψ(ρ) = max.
∑n

i=1 Tr(X1/2BiX
1/2)+

s.t. Tr(X) = 1, X � 0.
(2.16)

in the variables X ∈ Sn, where Bi = aia
T
i − ρI, or also

ψ(ρ) = max.
∑n

i=1 Tr(PiBi)

s.t. Tr(X) = 1, X � 0, X � Pi � 0,
(2.17)

which is a semidefinite program in the variables X ∈ Sn, Pi ∈ Sn.

Proof Let X1/2 be the positive square root (i.e. with nonnegative eigenvalues) of a
symmetric positive semi-definite matrix X. In particular, if X = xxT with ‖x‖ = 1,
then X1/2 = X = xxT , and for all β ∈ R, βxxT has one eigenvalue equal to β and
n− 1 equal to 0, which implies Tr(βxxT )+ = β+. We thus get

(aTi Xai − ρ)+ = Tr((aTi xx
Tai − ρ)xxT )+

= Tr(x(xTaia
T
i x− ρ)xT )+

= Tr(X1/2aia
T
i X

1/2 − ρX)+ = Tr(X1/2(aia
T
i − ρI)X1/2)+.

For any symmetric matrix B, the function X 7→ Tr(X1/2BX1/2)+ is concave on the
set of symmetric positive semidefinite matrices, because we can write it as

Tr(X1/2BX1/2)+ = max{0�P�X}Tr(PB)
= min{Y�B, Y�0}Tr(Y X),

where this last expression is a concave function of X as a pointwise minimum of affine
functions. We can now relax the original problem into a convex optimization problem
by simply dropping the rank constraint, to get

ψ(ρ) ≡ max.
∑n

i=1 Tr(X1/2aia
T
i X

1/2 − ρX)+

s.t. Tr(X) = 1, X � 0,

which is a convex program in X ∈ Sn. Note that because Bi has at most one nonneg-
ative eigenvalue, we can replace Tr(X1/2aia

T
i X

1/2 − ρX)+ by λmax(X1/2aia
T
i X

1/2 −
ρX)+ in the above program. Using the representation of Tr(X1/2BX1/2)+ detailed
above, problem (2.16) can be written as a semidefinite program

ψ(ρ) = max.
∑n

i=1 Tr(PiBi)
s.t. Tr(X) = 1, X � 0, X � Pi � 0,

in the variables X ∈ Sn, Pi ∈ Sn, which is the desired result.

14



Note that we always have ψ(ρ) ≥ φ(ρ) and when the solution to the above semidef-
inite program has rank one, ψ(ρ) = φ(ρ) and the semidefinite relaxation (2.17) is tight.
This simple fact allows to derive sufficient global optimality conditions for the original
sparse PCA problem. We recall in particular the following result from d’Aspremont
et al. [10] which provides sufficient conditions for a particular nonzero coefficient pat-
tern I to be globally optimal. The optimal solution x to (2.3) is then found by solving
an eigenvalue problem on the principal submatrix of Σ with support I.

Proposition 2.4.2 Let A ∈ Rn×n, ρ ≥ 0, Σ = ATA with a1, . . . , an ∈ Rn the

columns of A. Given a sparsity pattern I, setting x to be the largest eigenvector of∑
i∈I aia

T
i , if there is a ρ∗ ≥ 0 such that the following conditions hold

max
i∈Ic

(aTi x)2 < ρ∗ < min
i∈I

(aTi x)2 and λmax

(
n∑
i=1

Yi

)
≤
∑
i∈I

((aTi x)2 − ρ∗),

with the dual variables Yi defined as

Yi = max

{
0, ρ

(aTi ai − ρ)

(ρ− (aTi x)2)

}
(I− xxT )aia

T
i (I− xxT )

‖(I− xxT )ai‖2
, when i ∈ Ic,

and

Yi =
Bixx

TBi

xTBix
, when i ∈ I,

then the sparsity pattern I is globally optimal for the sparse PCA problem (2.3) with

ρ = ρ∗ and we can form an optimal solution z by solving the maximum eigenvalue

problem

z = argmax
{zIc=0, ‖z‖=1}

zTΣz.

This result also provides tractable lower bounds on the optimal value of (2.3) whenever
the solution is not optimal.

2.5 Greedy methods

We can also find good solution to problem (2.3), or improve existing solutions,
using greedy methods. We first present very simple preprocessing solutions with
complexity O(n log n) and O(n2). We then recall a simple greedy algorithm with
complexity O(n4). Finally, we describe an approximate greedy algorithm that com-
putes a full set of (approximate) solutions for problem (2.3), with complexity O(n3).
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Sorting and thresholding

The simplest ranking algorithm is to sort the diagonal of the matrix Σ and rank the
variables by variance. This works intuitively because the diagonal is a rough proxy
for the eigenvalues: the Schur-Horn theorem states that the diagonal of a matrix
majorizes its eigenvalues (Horn and Johnson [16]); sorting costs O(n log n). Another
quick solution is to compute the leading eigenvector of Σ and form a sparse vector by
thresholding to zero the coefficients whose magnitude is smaller than a certain level.
This can be done with cost O(n2).

Full greedy solution

Following Moghaddam et al. [26], starting from an initial solution of cardinality
one at ρ = Σ11, we can update an increasing sequence of index sets Ik ⊆ [1, n],
scanning all the remaining variables to find the index with maximum variance con-
tribution.

Algorithm 2 Greedy Search Algorithm.

Input: Σ ∈ Rn×n

1: Preprocessing: sort variables by decreasing diagonal elements and permute ele-

ments of Σ accordingly.

2: Compute the Cholesky decomposition Σ = ATA.

3: Initialization: I1 = {1}, x1 = a1/‖a1‖.

4: for i = 1 to ktarget do

5: Compute ik = argmaxi/∈Ik λmax

(∑
j∈Ik∪{i} aja

T
j

)
.

6: Set Ik+1 = Ik ∪ {ik} and compute xk+1 as the leading eigenvector of∑
j∈Ik+1

aja
T
j .

7: end for

Output: Sparsity patterns Ik.

At every step, Ik represents the set of nonzero elements (or sparsity pattern) of
the current point and we can define zk as the solution to problem (2.3) given Ik, which
is:

zk = argmax
{zIc

k
=0, ‖z‖=1}

zTΣz − ρk,
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which means that zk is formed by padding zeros to the leading eigenvector of the
submatrix ΣIk,Ik . Note that the entire algorithm can be written in terms of a fac-
torization Σ = ATA of the matrix Σ, which means significant computational savings
when Σ is given as a Gram matrix. The matrices ΣIk,Ik and

∑
i∈Ik aia

T
i have the same

eigenvalues and if z is an eigenvector of ΣIk,Ik , then AIkz/‖AIkz‖ is an eigenvector of
AIkA

T
Ik

.

Approximate greedy solution

Computing n − k eigenvalues at each iteration is costly and we can use the fact
that uuT is a subgradient of λmax at X if u is a leading eigenvector of X (Boyd and
Vandenberghe [4]), to get:

λmax

 ∑
j∈Ik∪{i}

aja
T
j

 ≥ λmax

(∑
j∈Ik

aja
T
j

)
+ (xTk ai)

2, (2.18)

which means that the variance is increasing by at least (xTk ai)
2 when variable i is

added to Ik. This provides a lower bound on the objective which does not require
finding n− k eigenvalues at each iteration. Then the following algorithm is obtained.

Algorithm 3 Approximate Greedy Search Algorithm.

Input: Σ ∈ Rn×n

1: Preprocessing: sort variables by decreasing diagonal elements and permute ele-

ments of Σ accordingly.

2: Compute the Cholesky decomposition Σ = ATA.

3: Initialization: I1 = {1}, x1 = a1/‖a1‖.

4: for i = 1 to ktarget do

5: Compute ik = argmaxi/∈Ik(xTk ai)
2.

6: Set Ik+1 = Ik ∪ {ik} and compute xk+1 as the leading eigenvector of∑
j∈Ik+1

aja
T
j .

7: end for

Output: Sparsity patterns Ik.

Again, at every step, Ik represents the set of nonzero elements (or sparsity pattern)
of the current point and we can define zk as the solution to problem (2.3) given Ik,
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which is:
zk = argmax

{zIc
k

=0, ‖z‖=1}
zTΣz − ρk,

which means that zk is formed by padding zeros to the leading eigenvector of the
submatrix ΣIk,Ik . Better points can be found by testing the variables corresponding
to the p largest values of (xTk ai)

2 instead of picking only the best one.

Computational complexity

The complexity of computing a greedy regularization path using the classic greedy
algorithm in 2.5 is O(n4): at each step k, it computes (n − k) maximum eigenvalue
of matrices with size k. The approximate algorithm in 2.5 computes a full path in
O(n3): the first Cholesky decomposition is O(n3), while the complexity of the k-th
iteration is O(k2) for the maximum eigenvalue problem and O(n2) for computing all
products (xTaj). Also, when the matrix Σ is directly given as a Gram matrix ATA
with A ∈ Rq×n with q < n, it is advantageous to use A directly as the square root of
Σ and the total complexity of getting the path up to cardinality p is then reduced to
O(p3 + p2n) (which is O(p3) for the eigenvalue problems and O(p2n) for computing
the vector products).

2.6 Numerical results

In this section, we compare the performance of various algorithms on synthetic
data. We will discuss the performance on real data later in Chapter 4 .

2.6.1 Statistical consistency vs. computational complexity

As we hinted above, very simple methods such as thresholding or greedy algo-
rithms often perform well enough on simple data sets, while obtaining good statistical
fidelity on more complex (or random) data sets requires more complex algorithms.
This is perfectly illustrated by the results in Amini and Wainwright [2] on a spiked
covariance model. To summarize these results, suppose that the sample covariance
matrix Σ̂ ∈ Sn is a noisy estimate of the true population covariance Σ ∈ Sn with
Σ̂ = Σ + ∆ where ∆ is a noise matrix, suppose also that the leading eigenvector of
the true covariance is sparse with cardinality k. Under some assumptions on the noise
component ∆, Amini and Wainwright [2] show that when the ambient dimension n,
the number of observations m and the number k of nonzero components in the leading
eigenvector all scale to infinity, and when the ratio

θthres =
m

k2 log(n− k)
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is above some critical value, then simply thresholding the diagonal of the sample co-
variance matrix will recover the exact support of the leading eigenvector of Σ with
probability tending to one. On the other hand, simple thresholding fails with probabil-
ity one when this ratio is below a certain value. Furthermore, Amini and Wainwright
[2] show that when

θsdp =
m

k log(n− k)

is above some critical value, the solution of the semidefinite relaxation in Section 2.3
(if tight) will recover the exact support of the leading eigenvector of Σ with probability
tending to one. On the other hand, the semidefinite relaxation fails with probability
one when this ratio is below a certain value. They also show that the semidefinite
programing relaxation in Section 2.3 is statistically optimal, meaning that no other
method (even combinatorial ones) can recover the true support using fewer samples
(up to a constant factor). This result clearly illustrates a tradeoff between statistical
fidelity on one side and computational complexity on the other. In the spiked model,
the semidefinite relaxation requires O(1/k) fewer samples than simply thresholding
the diagonal to recover the true support of the leading eigenvector of Σ, but its
complexity is much higher than that of the thresholding strategy.

We can further illustrate this behavior on a simple numerical example. Suppose
we are given a sample covariance Σ̂ ∈ Sn coming from a “spiked” model of covariance
similar to that in Amini and Wainwright [2], with

Σ̂ = uuT + V V T/
√
m

where u ∈ Rn is the true sparse leading eigenvector, with Card(u) = k, V ∈ Rn×m

is a noise matrix with Vij ∼ N (0, 1) and m is the number of observations. We com-
pare the performance of the simple thresholding method (on the leading eigenvector
of regular PCA here) with that of the semidefinite relaxation when recovering the
support of u for various values of the number of samples. Our point here is that,
while variance versus cardinality is a direct way of comparing the performance of
sparse PCA algorithms, accurate recovery of the support is often a far more impor-
tant objective. Many methods produce similar variance levels given a limited budget
of nonzero components, but their performance in recovering the true support is often
markedly different.

In Figure 2.1 on the left we compare ROC curves when recovering the support of
u in the spiked model above using thresholded PCA, the approximate and full greedy
algorithms in d’Aspremont et al. [10] and semidefinite relaxation (DSPCA). On the
right, we plot Area Under ROC as the number of samples increase. As expected, we
observe that the semidefinite relaxation performs much better when only a limited
number of observations are available (m small).
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Figure 2.1: Left: ROC curves when recovering the support of u in the spiked model

using thresholding, approximate and exact greedy algorithms and the semidefinite

relaxation (DSPCA) in Section 2.3 in the spiked model when n = 250, m = 400 and

k = 25. Right: Area Under ROC (AUROC) versus number of samples m.

2.6.2 Random matrices

Sparse eigenvalues of random matrices play a central role in characterizing the
performance of `1 decoders in compressed sensing applications. Testing the Restricted
Isometry Property (RIP) in Candès and Tao [7] amounts to bounding the maximum
and minimum eigenvalues of a Gram matrix. Here, we compute the upper and lower
bounds on sparse eigenvalues produced using various algorithms. We pick the data
matrix to be small enough so that computing sparse eigenvalues by exhaustive search
is numerically feasible. In Figure 2.2, we plot the maximum sparse eigenvalue versus
cardinality, obtained using exhaustive search (solid line), the approximate greedy
(dotted line) and fully greedy (dashed line) algorithms. We also plot the upper
bounds obtained by minimizing the gap of a rank one solution (squares), by solving
the semidefinite relaxation in §2.4 explicitly (stars) and by solving the DSPCA dual
(diamonds). On the left, we use a matrix Σ = F TF with F Gaussian. On the right,
Σ = uuT/‖u‖2 +2V TV , where ui = 1/i, i = 1, . . . , n and V is matrix with coefficients
uniformly distributed in [0, 1]. Almost all algorithms are provably optimal in the
noisy rank one case (as well as in many example arising from “natural data”), while
Gaussian random matrices are harder. Note however, that the duality gap between
the semidefinite relaxations and the optimal solution is very small in both cases, while
our bounds based on greedy solutions are not as good. Overall, while all algorithms
seem to behave similarly on “natural” or easy data sets, only numerically expensive
relaxations produce good bounds on the random matrices used in compressed sensing
applications.
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Figure 2.2: Upper and lower bound on sparse maximum eigenvalues. We plot

the maximum sparse eigenvalue versus cardinality, obtained using exhaustive search

(solid line), the approximate greedy (dotted line) and fully greedy (dashed line)

algorithms. We also plot the upper bounds obtained by minimizing the gap of a rank

one solution (squares), by solving the `0 semidefinite relaxation explicitly (stars) and

by solving the DSPCA dual `1 relaxation (diamonds). Left: On a matrix F TF with

F Gaussian. Right: On a sparse rank one plus noise matrix.

2.7 Summary

In this chapter, we have reviewed several formulations for the single factor sparse
PCA problem, as well as the first-order algorithms and a few greedy methods. We
also compare performance of the various methods on synthetical data. When data
is noisy, the semidefinite relaxation called DSPCA usually reports the best perfor-
mance. Unfortunately, the first-order algorithm for solving DSPCA has the worst
computational complexity and converges slow in practice. This motivates us to de-
velop a faster algorithm for solving DSPCA, with better dependence on problem size
in Chapter 3.
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Chapter 3

Large-Scale Sparse PCA

3.1 Introduction

Sparse PCA not only brings better interpretation (d’Aspremont et al. [9]), but
also provides statistical regularization (Amini and Wainwright [2]) when the number
of samples is less than the number of features. Various researchers have proposed
different formulations and algorithms for this problem, ranging from ad-hoc methods
such as factor rotation techniques by Jolliffe [17] and simple thresholding by Cadima
and Jolliffe [6], to greedy algorithms by Moghaddam et al. [26] and d’Aspremont et al.
[10]. Other algorithms include SCoTLASS by Jolliffe et al. [19], SPCA by Zou et al.
[45], the regularized SVD method by Shen and Huang [38] and the generalized power
method by Journée et al. [20]. These algorithms are based on non-convex formula-
tions, and may only converge to a local optimum. The `1-norm based semidefinite
relaxation DSPCA, as introduced by d’Aspremont et al. [9] , does guarantee global
convergence and as such, is an attractive alternative to local methods. In fact, it
has been shown by d’Aspremont et al. [8], Amini and Wainwright [2], Zhang et al.
[42] that simple ad-hoc methods, the greedy, SCoTLASS and SPCA algorithms, of-
ten underperform DSPCA. However, the first-order algorithm for solving DSPCA, as
developed in d’Aspremont et al. [9], has a computational complexity of O(n4

√
log n),

with n the number of features, which is too high for many large-scale data sets.
At first glance, this complexity estimate indicates that solving sparse PCA is much
more expensive than PCA, since we can compute one principal component with a
complexity of O(n2).

In this chapter we show that solving DSPCA is in fact computationally easier than
PCA, and hence can be applied to very large-scale data sets. To achieve that, we first
view DSPCA as an approximation to a harder, cardinality-constrained optimization
problem. Based on that formulation, we describe a safe feature elimination method
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for that problem, which leads to an often important reduction in problem size, prior
to solving the problem. Then we develop a block coordinate ascent algorithm, with a
computational complexity of O(n3) to solve DSPCA, which is much faster than the
first-order algorithm proposed by d’Aspremont et al. [9] . Finally, we observe that
real data sets typically allow for a dramatic reduction in problem size as afforded
by our safe feature elimination result. Now the comparison between sparse PCA and
PCA becomes O(n̂3) v.s. O(n2) with n̂� n, which can make sparse PCA surprisingly
easier than PCA (Zhang and El Ghaoui [43]).

In Section 3.2, we relate the `1-norm based DSPCA formulation to an approxi-
mation to the `0-norm based formulation and highlight the safe feature elimination
mechanism as a powerful pre-processing technique. We use Section 3.3, to present
our fast block coordinate ascent algorithm. Finally, in Section 3.4,, we demonstrate
the efficiency of our approach on two large data sets, each one containing more than
100,000 features.

Notation. R(Y ) denotes the range of matrix Y , and Y † its pseudo-inverse. The
notation log refers to the extended-value function, with log x = −∞ if x ≤ 0.

3.2 Safe Feature Elimination

Primal problem. Given a n×n positive-semidefinite matrix Σ, the `1-norm based
DSPCA formulation introduced in d’Aspremont et al. [9] and reviewed in Chapter 2
is :

φ = max
Z

Tr ΣZ − λ‖Z‖1 : Z � 0, TrZ = 1 (3.1)

where λ ≥ 0 is a parameter encouraging sparsity. Without loss of generality we
may assume that Σ � 0. This is true because we can add an arbitrary multiple of
identity matrix to Σ, without changing the optimal solution to the above optimization
problem.

An upper bound on λ. Without loss of generality, we can impose an upper bound
on λ, as follows.

Assume first λ ≥ σmax := max1≤i≤n Σii. Then the problem has a simple solution.
Indeed, in that case, Z = eje

T
j is optimal, with ej the j-th unit vector, and j is any

index such that Σjj = σmax.

This can be seen from the dual problem

φ = min
U

λmax(Σ + U) : U = UT , ‖U‖∞ ≤ λ.

Since Σ � 0, we have |Σkl| ≤
√

ΣkkΣll ≤ σmax for every k, l. Now define the matrix
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U = UT ∈ Rn×n with elements

Ukl :=

{
−Σkl (k, l) 6= (j, j)
−λ k = l = j

By construction, U is feasible for the dual problem, so that

φ ≤ λmax(Σ + U) = Σjj − λ = σmax − λ.

This upper bound is attained with the primal feasible point Z = eje
T
j , which shows

that Z is optimal for the primal problem (3.1).

In the sequel we can thus assume λ < σmax. In turn, this guarantees that φ > 0,
which is obtained by plugging in Z = eje

T
j in the objective of the primal problem (3.1).

Problem (3.1) is in fact a relaxation to a PCA problem with a penalty on the
cardinality of the variable:

ψ = max
x

xTΣx− λ‖x‖0 : ‖x‖2 = 1 (3.2)

Where ‖x‖0 denotes the cardinality (number of non-zero elemements) in x. This can
be seen by first writing problem (3.2) as:

max
Z

Tr ΣZ − λ
√
‖Z‖0 : Z � 0, TrZ = 1,Rank(Z) = 1

where ‖Z‖0 is the cardinality (number of non-zero elements) of Z.

By observing ‖Z‖1 ≤
√
‖Z‖0 ‖Z‖F =

√
‖Z‖0 here, we obtain the relaxation

max
Z

Tr ΣZ − λ‖Z‖1 : Z � 0,TrZ = 1,Rank(Z) = 1

Further drop the rank constraint, leading to problem (3.1).

By viewing problem (3.1) as a convex approximation to the non-convex prob-
lem (3.2), we can leverage the safe feature elimination theorem first presented
in d’Aspremont et al. [10] and El Ghaoui [12] for problem (3.2):

Theorem 3.2.1 Let Σ = ATA, where A = (a1, . . . , an) ∈ Rm×n. We have

ψ = max
‖ξ‖2=1

n∑
i=1

((aTi ξ)
2 − λ)+.

An optimal non-zero pattern corresponds to indices i with λ < (aTi ξ)
2 at optimum.

We observe that the i-th feature is absent at optimum if (aTi ξ)
2 ≤

λ for every ξ, ‖ξ‖2 = 1. Hence, we can safely remove feature i ∈ {1, . . . , n} if

Σii = aTi ai < λ (3.3)
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A few remarks are in order. First, if we are interested in solving problem (3.1) as
a relaxation to problem (3.2), we first calculate and rank all the feature variances,
which takes O(nm) and O(n log(n)) respectively. Then we can safely eliminate any
feature with variance less than λ. Second, the elimination criterion above is conserva-
tive. However, when looking for extremely sparse solutions, applying this safe feature
elimination test with a large λ can dramatically reduce problem size and lead to huge
computational savings, as will be demonstrated empirically in Section 3.4. Third, in
practice, when PCA is performed on large data sets, some similar variance-based cri-
teria is routinely employed to bring problem sizes down to a manageable level. This
purely heuristic practice has a rigorous interpretation in the context of Sparse PCA,
as the above theorem states explicitly the features that can be safely discarded.

3.3 Block Coordinate Ascent Algorithm

The first-order algorithm developed in d’Aspremont et al. [9] to solve problem (3.1)
has a computational complexity of O(n4

√
log n). With a theoretical convergence rate

of O(1
ε
), the DSPCA algorithm does not converge fast in practice. In this section, we

develop a block coordinate ascent algorithm with better dependence on problem size
(O(n3)), which in practice converges much faster.

Failure of a direct method. We seek to apply a “row-by-row” algorithm by
which we update each row/column pair, one at a time. This algorithm appeared
in the specific context of sparse covariance estimation in O.Banerjee et al. [35], and
extended to a large class of SDPs in Wen et al. [41]. Precisely, it applies to problems
of the form

min
X

f(X)− β log detX : L ≤ X ≤ U, X � 0, (3.4)

where X = XT is a n × n matrix variable, L,U impose component-wise bounds on
X, f is convex, and β > 0.

However, if we try to update the row/columns of Z in problem (3.1), the trace
constraint will imply that we never modify the diagonal elements of Z. Indeed at each
step, we update only one diagonal element, and it is entirely fixed given all the other
diagonal elements. The row-by-row algorithm does not directly work in that case, nor
in general for SDPs with equality constraints. Wen et al. [41] propose an augmented
Lagrangian method to deal with such constraints, with a complication due to the
choice of appropriate penalty parameters. In our case, we can apply a technique
resembling the augmented Lagrangian technique, without this added complication.
This is due to the homogeneous nature of the objective function and of the conic
constraint. Thanks to the feature elimination result (Thm. 3.2.1), we can always
assume without loss of generality that λ < σ2

min := min1≤i≤n Σii.

25



Direct augmented Lagrangian technique. We can express problem (3.1) as

1

2
φ2 = max

X
Tr ΣX − λ‖X‖1 −

1

2
(TrX)2 : X � 0. (3.5)

This expression results from the change of variable X = γZ, with TrZ = 1, and γ ≥
0. Optimizing over γ ≥ 0, and exploiting φ > 0 (which comes from our assumption
that λ < σ2

min), leads to the result, with the optimal scaling factor γ equal to φ.
An optimal solution Z∗ to (3.1) can be obtained from an optimal solution X∗ to the
above, via Z∗ = X∗/φ. (In fact, we have Z∗ = X∗/Tr(X∗).)

Proof Let X = γZ, with TrZ = 1, and γ ≥ 0

Problem (3.5) ⇔ max
Z,γ

Tr ΣγZ − ρ‖γZ‖1 −
1

2
(Tr γZ)2 : Z � 0,TrZ = 1, γ ≥ 0

⇔ max
Z,γ

γTr ΣZ − γρ‖Z‖1 −
1

2
γ2(TrZ)2 : Z � 0,TrZ = 1, γ ≥ 0

⇔ max
Z,γ

γ(Tr ΣZ − ρ‖Z‖1)− 1

2
γ2 : Z � 0,TrZ = 1, γ ≥ 0

Optimize over γ ≥ 0 only, and then the above objective is just a concave quadratic
function of γ. We can obtain the optimal scaling γ∗ by setting the derivative to zero
if we ignore the constraint γ ≥ 0

γ∗ = φ = max
Z

Tr ΣZ − ρ‖Z‖1 : Z � 0,TrZ = 1

In fact, φ is still the optimal scaling factor even if we take the constraint γ ≥ 0
into account, because we know φ > 0 and hence γ∗ > 0 satisfying the constraint.

Then the optimal value is φ2 − 1
2
φ2 = 1

2
φ2. That is

1

2
φ2 = max

X
Tr ΣX − λ‖X‖1 −

1

2
(TrX)2 : X � 0.

To apply the row-by-row method to problem (3.5), we need to consider a variant
of it, with a strictly convex objective. That is, we address the problem

max
X

Tr ΣX − λ‖X‖1 −
1

2
(TrX)2 + β log detX, : X � 0, (3.6)

where β > 0 is a penalty parameter. SDP theory ensures that if β = ε/n, then a
solution to the above problem is ε-suboptimal for the original problem (Boyd and
Vandenberghe [5]).
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Optimizing over one row/column. Without loss of generality, we consider the
problem of updating the last row/column of the matrix variable X. Partition the
latter and the covariance matrix S as

X =

(
Y y
yT x

)
, Σ =

(
S s
sT σ

)
,

where Y, S ∈ R(n−1)×(n−1), y, s ∈ Rn−1, and x, σ ∈ R. We are considering the
problem above, where Y is fixed, and (y, x) ∈ Rn is the variable. We use the notation
t := TrY .

The conic constraint X � 0 translates as yTY †y ≤ x, y ∈ R(Y ), where R(Y ) is
the range of the matrix Y . We obtain the sub-problem

ϕ := max
x,y

(
2(yT s− λ‖y‖1) + (σ − λ)x− 1

2
(t+ x)2

+β log(x− yTY †y)

)
: y ∈ R(Y ). (3.7)

Simplifying the sub-problem. We can simplify the above problem, in particular,
avoid the step of forming the pseudo-inverse of Y , by taking the dual of problem (3.7).

Using the conjugate relation, valid for every η > 0:

log η + 1 = min
z>0

zη − log z,

and with f(x) := (σ − λ)x− 1
2
(t+ x)2, we obtain

ϕ+ β = max
y∈R(Y )

2(yT s− λ‖y‖1) + f(x) + βmin
z>0

(
z(x− yTY †y)− log z

)
= min

z>0
max
y∈R(Y )

2(yT s− λ‖y‖1 − βzyTY †y) + max
x

(f(x) + βzx)− β log z

= min
z>0

h(z) + 2g(z)

where, for z > 0, we define

h(z) := −β log z + max
x

(f(x) + βzx)

= −β log z + max
x

((σ − λ+ βz)x− 1

2
(t+ x)2)

= −1

2
t2 − β log z + max

x
((σ − λ− t+ βz)x− 1

2
x2)

= −1

2
t2 − β log z +

1

2
(σ − λ− t+ βz)2

with the following relationship at optimum:

x = σ − λ− t+ βz. (3.8)
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In addition,

g(z) := max
y∈R(Y )

yT s− λ‖y‖1 −
βz

2
(yTY †y)

= max
y∈R(Y )

yT s+ min
v : ‖v‖∞≤λ

yTv − βz

2
(yTY †y)

= min
v : ‖v‖∞≤λ

max
y∈R(Y )

(yT (s+ v)− βz

2
(yTY †y))

= min
u : ‖u−s‖∞≤λ

max
y∈R(Y )

(yTu− βz

2
(yTY †y))

= min
u : ‖u−s‖∞≤λ

1

2βz
uTY u.

with the following relationship at optimum:

y =
1

βz
Y u. (3.9)

Putting all this together, we obtain the dual of problem (3.7): with ϕ′ := ϕ+β+
1
2
t2, and c := σ − λ− t, we have

ϕ′ = min
u,z

1

βz
uTY u− β log z +

1

2
(c+ βz)2 : z > 0, ‖u− s‖∞ ≤ λ.

Since β is small, we can avoid large numbers in the above, with the change of variable
τ = βz:

ϕ′ − β log β = min
u,τ

1

τ
uTY u− β log τ +

1

2
(c+ τ)2 : τ > 0, ‖u− s‖∞ ≤ λ. (3.10)

Solving the sub-problem. Problem (3.10) can be further decomposed into two
stages.

First, we solve the box-constrained QP

R2 := min
u

uTY u : ‖u− s‖∞ ≤ λ, (3.11)

using a simple coordinate descent algorithm to exploit sparsity of Y . Without loss of
generality, we consider the problem of updating the first coordinate of u. Partition
u, Y and s as

u =

(
η
û

)
, Y =

(
y1 ŷT

ŷ Ŷ

)
, s =

(
s1

ŝ

)
,

Where, Ŷ ∈ R(n−2)×(n−2), û, ŷ, ŝ ∈ Rn−2, y1, s1 ∈ R are all fixed, while η ∈ R is the
variable. We obtain the subproblem

min
η

y1η
2 + (2ŷT û)η : ‖η − s1‖ ≤ λ (3.12)

28



for which we can solve for η analytically using the formula given below.

η =


− ŷT û

y1
if ‖s1 + ŷT û

y1
‖ ≤ λ, y1 > 0,

s1 − λ if − ŷT û
y1

< s1 − λ, y1 > 0 or if ŷT û > 0, y1 = 0,

s1 + λ if − ŷT û
y1

> s1 + λ, y1 > 0 or if ŷT û <= 0, y1 = 0.

(3.13)

Next, we set τ by solving the one-dimensional problem:

min
τ>0

R2

τ
− β log τ +

1

2
(c+ τ)2.

The above can be reduced to a bisection problem over τ , or by solving a polynomial
equation of degree 3.

Obtaining the primal variables. Once the above problem is solved, we can obtain
the primal variables y, x, as follows. Using formula (3.9), with βz = τ , we set y =
1
τ
Y u. For the diagonal element x, we use formula (3.8): x = c+ τ = σ − λ− t+ τ .

Algorithm summary. We summarize the above derivations in Algorithm 4. No-
tation: for any symmetric matrix A ∈ Rn×n, let A\i\j denote the matrix produced by
removing row i and column j. Let Aj denote column j (or row j) with the diagonal
element Ajj removed.

29



Algorithm 4 Block Coordinate Ascent Algorithm

Input: The covariance matrix Σ, and a parameter ρ > 0.

1: Set X(0) = I

2: repeat

3: for j = 1 to n do

4: Let X(j−1) denote the current iterate. Solve the box-constrained quadratic

program

R2 := min
u

uTX
(j−1)
\j\j u : ‖u− Σj‖∞ ≤ λ

using the coordinate descent algorithm

5: Solve the one-dimensional problem

min
τ>0

R2

τ
− β log τ +

1

2
(Σjj − λ−TrX

(j−1)
\j\j + τ)2

using a bisection method, or by solving a polynomial equation of degree 3.

6: First set X
(j)
\j\j = X

(j−1)
\j\j , and then set both X(j)’s column j and row j using

X
(j)
j =

1

τ
X

(j−1)
\j\j u

X
(j)
jj = Σjj − λ−TrX

(j−1)
\j\j + τ

7: end for

8: Set X(0) = X(n)

9: until convergence

Convergence and complexity. Our algorithm solves DSPCA by first casting it
to problem (3.6), which is in the general form (3.4). Therefore, the convergence result
from Wen et al. [41] readily applies and hence every limit point that our block coor-
dinate ascent algorithm converges to is the global optimizer. The simple coordinate
descent algorithm solving problem (3.11) only involves a vector product and can take
sparsity in Y easily. To update each column/row takes O(n2) and there are n such
columns/rows in total. Therefore, our algorithm has a computational complexity of
O(Kn3), where K is the number of sweeps through columns. In practice, K is fixed
at a number independent of problem size (typically K = 5). Hence our algorithm has
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better dependence on the problem size compared to O(n4
√

log n) required of the first
order algorithm developed in d’Aspremont et al. [9] .
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Figure 3.1: Speed comparisons between Block Coordinate Ascent and First-Order

Fig 3.1 shows that our algorithm converges much faster than the first order algo-
rithm. On the left, both algorithms are run on a covariance matrix Σ = F TF with F
Gaussian. On the right, the covariance matrix comes from a ”spiked model” similar
to that in Amini and Wainwright [2], with Σ = uuT + V V T/m, where u ∈ Rn is the
true sparse leading eigenvector, with Card(u) = 0.1n, V ∈ Rn×m is a noise matrix
with Vij ∼ N (0, 1) and m is the number of observations.

3.4 Numerical Examples

In this section, we analyze two publicly available large data sets, the NYTimes
news articles data and the PubMed abstracts data, available from the UCI Machine
Learning Repository (Frank and Asuncion [14]). Both text collections record word
occurrences in the form of bag-of-words. The NYTtimes text collection contains
300, 000 articles and has a dictionary of 102, 660 unique words, resulting in a file of
size 1 GB. The even larger PubMed data set has 8, 200, 000 abstracts with 141, 043
unique words in them, giving a file of size 7.8 GB. These data matrices are so large
that we cannot even load them into memory all at once, which makes even the use
of classical PCA difficult. However with the pre-processing technique presented in
Section 3.2 and the block coordinate ascent algorithm developed in Section 3.3, we
are able to perform sparse PCA analysis of these data, also thanks to the fact that
variances of words decrease drastically when we rank them as shown in Fig 3.2. Note
that the feature elimination result only requires the computation of each feature’s
variance, and that this task is easy to parallelize.
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By doing sparse PCA analysis of these text data, we hope to find interpretable
principal components that can be used to summarize and explore the large corpora.
Therefore, we set the target cardinality for each principal component to be 5. As we
run our algorithm with a coarse range of λ to search for a solution with the given
cardinality, we might end up accepting a solution with cardinality close, but not
necessarily equal to, 5, and stop there to save computational time.
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Figure 3.2: Sorted variances of 102,660 words in NYTimes (left) and 141,043

words in PubMed (right)

The top 5 sparse principal components are shown in Table 3.1 for NYTimes and
in Table 3.2 for PubMed. Clearly the first principal component for NYTimes is
about business, the second one about sports, the third about U.S., the fourth about
politics and the fifth about education. Bear in mind that the NYTimes data from
UCI Machine Learning Repository “have no class labels, and for copyright reasons no
filenames or other document-level metadata” (Frank and Asuncion [14]). The sparse
principal components still unambiguously identify and perfectly correspond to the
topics used by The New York Times itself to classify articles on its own website.

After the pre-processing steps, it takes our algorithm around 20 seconds to search
for a range of λ and find one sparse principal component with the target cardinality
(for the NYTimes data in our current implementation on a MacBook laptop with 2.4
GHz Intel Core 2 Duo processor and 2 GB memory).

A surprising finding is that the safe feature elimination test, combined with the
fact that word variances decrease rapidly, enables our block coordinate ascent algo-
rithm to work on covariance matrices of order at most n = 500, instead of the full
order (n = 102660) covariance matrix for NYTimes, so as to find a solution with
cardinality of around 5. In the case of PubMed, our algorithm only needs to work on
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Table 3.1: Words associated with the top 5 sparse principal components in NY-

Times

1st PC 2nd PC 3rd PC 4th PC 5th PC
million point official president school

percent play government campaign program

business team united states bush children

company season u s administration student

market game attack

companies

Table 3.2: Words associated with the top 5 sparse principal components in

PubMed

1st PC 2nd PC 3rd PC 4th PC 5th PC
patient effect human tumor year

cell level expression mice infection

treatment activity receptor cancer age

protein concentration binding maligant children

disease rat carcinoma child

covariance matrices of order at most n = 1000, instead of the full order (n = 141, 043)
covariance matrix. Thus, at values of the penalty parameter λ that a target cardinal-
ity of 5 commands, we observe a dramatic reduction in problem sizes, about 150 ∼ 200
times smaller than the original sizes respectively. This motivates our conclusion that
sparse PCA is in a sense, easier than PCA itself.

3.5 Summary

The safe feature elimination result, coupled with a fast block coordinate ascent
algorithm, allows to solve sparse PCA problems for very large scale, real-life data sets.
The overall method works especially well when the target cardinality of the result is
small, which is often the case in applications where interpretability by a human is
key. The algorithm we proposed has better computational complexity, and in practice
converges much faster than, the first-order algorithm developed in d’Aspremont et al.
[9] . Our experiments on text data also hint that the sparse PCA can be a promising
approach towards summarizing and organizing a large text corpus, which will be
further investigated in Chapter 4.
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Chapter 4

Applications

4.1 Introduction

As mentioned in Chapter 1, one major motivation for Sparse PCA theory and
algorithm research is that the sparse principal components found by such algorithms
should be more interpretable than their classic counterparts. To validate that mo-
tivation, we apply Sparse PCA to real data sets of various nature, illustrating the
interpretability of sparse principal components in each case.

Then, we focus on the interesting application of Sparse PCA to analysis of text
data, where each sparse principal component is found to correspond to some coherent
aspect of the text data. Typically, the few (say 5 to 10) words in each sparse principal
component can be thought to represent a particular concept or topic. These findings
suggest that Sparse PCA can be used as an attractive alternative for topic modelling.

4.2 Non-text data

4.2.1 Senate voting data

In this section, we analyze the voting records of the 109th US Senate (2000-2004)
There were 101 senators (one extra Senator is due to a replacement during the term)
and 48 bills involved. To simplify, the votes are divided into yes (coded as 1) or no
(coded as -1), and other votes are coded as 0.
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Figure 4.1: Left: Explained variance as a function of cardinality. Right: Cardinal-

ity as a function of penalty parameter ρ.

Each senator’s voting record can be viewed as a point in a 48-dimensional space.
By applying PCA, and projecting each senator’s voting record onto a two-dimensional
subspace of maximum variance, we can see that senators are almost perfectly sepa-
rated by partisanship (Fig. 4.2). However, since the principal components involve all
the bills, it is hard to tell which bills are most responsible for the explained variance.
By applying Sparse PCA to the voting record, we aim to find a few bills that not
only divide the senators according to partisanship, but also reveal which topics are
most controversial within the Republican and Democratic parties. Fig. 4.2 (right)
shows the senators’ voting records, projected onto the first two sparse principal com-
ponents. We note that in the two-dimensional space senators are still divided by
partisanship. In fact, many republican senators perfectly coincide with each other
and so are democratic senators. In contrast to Fig. 4.2 (left), the cardinalities associ-
ated with the first and second sparse principal components are 5 and 2 respectively,
which makes it possible to interpret the coordinates.

Let us examine the bills appearing in the first two sparse principal components.
For the first sparse PC, the corresponding bills’ brief description is as follows:

• S. 1932, As Amended; Deficit Reduction Act of 2005.

• S. Con. Res. 83; An original concurrent resolution setting forth the congressional
budget for the United States Government for fiscal year 2007 and including the
appropriate budgetary levels for fiscal years 2006 and 2008 through 2011.

• S. 3930, As Amended; Military Commissions Act of 2006.

• S. 403, As Amended; Child Interstate Abortion Notification Act.
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Figure 4.2: 109th Senate’s voting record projected onto the top 2 principal com-

ponents.

• Passage of S. 397, As Amended; Protection of Lawful Commerce in Arms Act.

The brief description for the two bills in the second sparse principal component
are:

• H. R. 3045; Dominican Republic-Central America-United States Free Trade
Agreement Implementation Act.

• S. 1307; Dominican Republic-Central America-United States Free Trade Agree-
ment Implementation Act.

A glance at these bills tells us that the major controversial issues between Democrats
and Republicans are topics such as “abortion”, “military”, “budget”, and “free trade”.

Fig 4.1 plots the variance explained by the first sparse principal component
divided by that explained by the first PC, as a function of the cardinality of the
sparse PC. Fig. 4.1 also shows how the cardinality of the first sparse PC varies as the
penalty parameter ρ is changed in the DSPCA code.We can see that when 19 out of
48 variables (bills) are used, sparse PCA almost achieves the same statistical fidelity
as standard PCA does.

4.2.2 Stock market data

In this section, we investigate the historical prices of S&P500 stocks over 5 years,
from June 1st, 2005, through June 1st, 2010. By taking out the stocks with less than
5 years of history, we end up with 472 stocks, each having daily closing prices over
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1259 trading days. The prices are first adjusted for dividends and splits and then
used to calculate daily log returns. Each day’s return can be represented as a point
in R472.
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Figure 4.3: Left: Explained variance as a function of cardinality. Right: Cardinal-

ity as a function of penalty parameter ρ.

Fig. 4.3 shows the explained variance as a function of 1st PC’s cardinality. It
seems hard to say that the 1st PC is sparse, since there is no natural “kink” in that
curve. That is, we need almost 300 out of the total 472 stocks to explain at least
90% of the variance explained by the 1st PC from PCA. However, when we inspect
the sparse PCs with increasing cardinalities, we note that initially only stocks from
the ”Financials” sector come to play and later until, at cardinality 32, do we see
companies from other sectors appearing in the 1st sparse PC. So we take the first
sparse PC with cardinality equal to 32. Then we solve for the 2nd sparse PC, and
using the same guideline to arrive at a cardinality of 26.

Figure 4.4 show the stock returns projected onto the 2-dimensional subspaces
spanned by the top 2 PCs and top 2 sparse PCs, respectively. Comparing these two
plots, we observe two interesting phenomena:

• Although the top 2 principal components from PCA explain more variance (as
seen from the larger range of the axes in the left over the right panel), the two
sparse principal components from DSPCA involve only 58 out of 472 stocks (32
on the first PC and another distinct 26 on the second). Furthermore, 31 of
the 32 stocks in the first sparse PC are all from the sector ”Financials”, and
that almost all 26 stocks in the second sparse PC come from ”Energy” and
”Materials” except 2 from ”Financials” and 1 from ”Information Technology”,
as shown in Table 4.1. Considering that there are 10 sectors in total, this is
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Figure 4.4: S&P500 daily returns projected onto the top 2 principal components.

For PCA (left) and sparse PCA (right).

quite interesting as Sparse PCA is able to identify the right groups (industry
factors) that explains most of the variance. Our data covers June 2005 through
June 2010 where a severe financial crisis took place, and the key role of the
Financial sector is revealed purely through our sparse PCA analysis.

• In Fig. 4.4 (left), the projected data appears symmetrically distributed around
its center. In contrast, In Fig. 4.4 (right), we observe a definite orientation.
Since the horizontal axis (first PC) corresponds to “Financials” and the vertical
one to “Energy” and “Materials”, the sparse PCA analysis tells us that these
two sectors are positively correlated.
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1st PC 2nd PC
GNW (Genworth Financial) CHK (Chesapeake Energy)
HIG (Hartford Financial) AKS (AK Street Holding Corp.)
LNC (Lincoln National) CLF (Cliffs Natural Resources)
PFG (Principal Financial) X (United States Steel Corp.)
PRU (Prudential Financial) MEE (Massey Energy Company)
XL (XL Capital) CNX (CONSOL Energy Inc.)
C (Citigroup) BTU (Peabody Energy)
BAC (Bank of America) COG (Cabot Oil & Gas)
HBAN (Huntington Bancshares) FCX (Freeport-McMoran Cp & Gld)
FITB (Fifth Third Bancorp) TIE (Titanium Metals Corp)
RF (Regions Financial) ATI (Allegheny Technologies Inc.)
MI (Marshall & Ilsley) DNR (Denbury Resources Inc.)
KEY (KeyCorp) NOV (National Oilwell Varco Inc.)
STI (SunTrust Banks) SWN (Southwestern Energy)
ZION (Zions Bancorp) RDC (Rowan Cos.)
CBG (CB Richard Ellis Group) AIG (American International Group)
PLD (ProLogis) SII (Smith International)
AIG (American International Group) PXD (Pioneer Natural Resources)
COF (Capital One Financial) HP (Helmerich & Payne)
WFC (Wells Fargo) GNW (Genworth Financial Inc.)
MS (Morgan Stanley) NBR (Nabors Industries)
ETFC (E-Trade) PLD (ProLogis)
JNS (Janus Capital Group) AA (Alcoa )
HST (Host Hotels & Resorts) HES (Hess Corp)
LEN (Lennar Corp.) CBG (CB Richard Ellis Group)
STT (State Street Corp.) NUE (Nucor Corp.)
SLM (SLM Corp.)
MET (MetLife Inc.)
FHN (First Horizon National)
AIV (AIMCO)
KIM (Kimco Realty)
CMA (Comeria)

Table 4.1: Top 2 PCs from DSPCA

4.3 Text data

A text corpus can be represented as a matrix X = {xij}, with each row
i = 1, . . . ,m corresponding to a particular document, each column j = 1, . . . , n
corresponding to a particular text token, and each element encoding the number of
times each token appears in each document, resulting in a large, sparse matrix. This
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encoding of value xij is open to a variety of methods. One could use a straight count
of the number of times token j appeared in document i, or a binary matrix where
xij is a 0/1 indicator of which tokens appeared in which documents. The TF-IDF
approach(Salton [37]) is a popular representation for many text processing applica-
tions, and the effects of several other candidate representations are tested in Nakov
et al. [29]. It’s important to remember that choosing this encoding is an important
first step which can greatly impact our results.

4.3.1 20-newsgroups data

Our first text data set is a small version of the “20-newsgroups” data1. The data
records binary occurrences of 100 specific words across 16242 postings, where the
postings have been tagged by the highest level domain in Usenet.
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Figure 4.5: PCA with 20-Newsgroups data. Left: Explained variance vs. number

of PCs. Right: 3D visualization via PCA.

Each posting is viewed as one point in a 100-dimensional space. We begin with a
standard PCA on the data. Fig. 4.5 (left) shows the cumulative percentage of variance
explained as we increase the number of principal components. The slow increase
means that the data does not lie within a subspace of significantly low dimension.
We can anyway proceed to visualize the data: Fig. 4.5 (right) is the result obtained
by projecting it on a subspace of dimension 3, chosen by selecting the eigenvectors
corresponding to the three largest eigenvalues of the covariance matrix. Since these
3 vectors are dense, the axes in Fig. 4.5 (right) do not have a clear interpretation.

1available from http://cs.nyu.edu/~roweis/data.html.
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With Sparse PCA, we hope to find a set of corresponding sparse principal compo-
nents, which still help with visualization nearly as well as PCA does, and yet reveal
some interesting structure. To achieve this, we have run the block coordinate ascent
algorithm developed in Chapter 3 on the data with a range of values for the penalty
parameter ρ. We obtained a plot of the variance explained by the first sparse prin-
cipal component (PC), as a function of its cardinality (Fig. 4.6). We then selected
a cardinality that can explain at least 90% of the variance explained by the the first
principal component obtained from PCA. Then we have deflated the covariance ma-
trix by taking out the part due to the first sparse PC, and then repeated the above
procedure to obtain the second sparse PC. In the same way, we have solved for the
third sparse PC. Fig. 4.6 also shows the projection of the data on the 3-dimensional
subspace that is spanned by the three sparse PCs obtained above.
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Figure 4.6: Sparse PCA on the 20Newsgroups data set. First three principal

components and 3D visualization. The first three principal components have cardi-

nalities 26, 30 and 10 respectively.

41



We first note that only a small number of words, out of the total of 100 words
that can appear in each sparse PC, can explain more than 90% of variance explained
by the corresponding PC. Specifically, we obtain 30 words for the first PC, 26 for
the second, and 10 for the third. The lists of words associated with each sparse PCs
is given in Table 4.2, and reveals some structure about each one of the sparse PCs.
That is, the 30 words associated with the first sparse PC are almost all about politics
and religion, the 26 words in the second sparse PC are all computer-related, and the
majority of the 10 words in the third sparse PC concerns science. Hence, applying
sparse PCA to this data set allows to discover structure that is otherwise hidden in
the standard PCA, for example that the first principal component is mainly related
to politics and religion.

1st PC (30 words) 2nd PC (26 words) 3rd PC (10 words)
fact help problem

question problem university

world system email

course email state

case windows research

problem program science

god computer phone

government software world

human university fact

state version question

number files

christian drive

evidence data

law card

power dos

religion god

children disk

jesus pc

system graphics

rights ftp

war memory

jews christian

help phone

bible video

earth fact

science display

research

israel

president

gun

Table 4.2: Words associated with the first three sparse PCs.
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4.3.2 New York Times data

Our second data set is the collection of 1,288 news articles published in 2009 by the
New York Times’s International section mentioning the word “China”. We tokenize
the articles by unigrams, remove no stop words, and perform no stemming. The data
encodes the binary {0, 1} values (corresponding to appearance/non-appearance) of
86,500 unique tokens. Compared to the “20 Newsgroup” data, this is a fairly large
“unlabeled” data in terms of feature size (i.e. number of unique tokens). For the
purpose of comparison, we run both the thresholded PCA and DSPCA algorithms
over this set of text news.
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Figure 4.7: Sparse PCA on 1,288 New York Times articles mentioning the word

“China”.

Figure 4.7 shows the percentage of explained variance as a function of cardinality.
Here we see DSPCA does outperform Thresholded PCA, though not by a big margin.
Although we do not have ground truth, Table 4.3 and Table 4.4 contains words
selected by two algorithms respectively as we increase cardinality. Words selected by
DSPCA appear much more meaningful than those chosen by thresholded PCA at the
same cardinality.
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k = 2 k = 3 k = 9 k = 14
united american washington international

states united american would

states administration will

united washington

states american

president administration

obama united

countries states

nations president

obama

counties

nations

policy

nuclear

Table 4.3: 1st PC from DSPCA on 1,288 New York Times articles mentioning the

word “China” for various values of the eigenvector cardinality k.

k = 2 k = 3 k = 9 k = 14
even even even would

like like we new

states like even

now we

this like

will now

united this

states will

if united

states

world

so

some

if

Table 4.4: 1st PC from Thresholded PCA on 1,288 New York Times articles men-

tioning the word “China” for various values of the eigenvector cardinality k.

Table 4.5 lists the words corresponding to the top 6 sparse principal components.
This tells us that among all these articles mentioning the word “China”, there are a
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few important topics running through the text collection: the first sparse principal
component probably represents China-US relationships, the third sparse principal
component centers around world economy and financial crisis that was happening in
2009, the fourth sparse principal component is related to geographic politics that is
important to China, and the fifth sparse principal component is purely about China’s
biggest state-run news agency. It is also very interesting to observe that all the stop
words are grouped into one sparse principal component (the second one), instead of
polluting the other sparse principal component. Finally, it is a bit surprising that the
sixth sparse principal component essentially is a set of synonyms.

1st PC 2nd PC 3rdPC 4th PC 5th PC 6th PC
united all world chinese news his

states if economic beijing official i

president most global chinas reported mr

obama no percent north agency he

american many economy korea xinhua him

washington we billion russia

countries so financial iran

nations like crisis program

admin. what growth nuclear

now weapons

only sanctions

there

Table 4.5: Words associated with the top 6 sparse principal components

We also run the Sparse PCA analysis on the news articles published by the New
York Times’s International section mentioning other target words such as “Russia”
and “Germany”. The findings are very similar, so we don’t report them here to avoid
redundancy.

1st PC 2nd PC 3rd PC 4th PC 5th PC
million point official president school

percent play government campaign program

business team united states bush children

company season u s administration student

market game attack

companies

Table 4.6: Words associated with the top 5 sparse principal components in NY-

Times
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For a larger set of New York Times’s articles instead of a small subset mentioning
a particular word, we already report our findings in Section 3.4 of Chapter 3, where
the main purpose is to demonstrate that our newly proposed algorithm can be safely
applied to large data sets. We repeat the results here to emphasize that Sparse PCA
do uncover interesting topics buried in a large unlabeled text corpus. That set of
NYTimes news articles is much larger, containing 300, 000 articles and has a dictio-
nary of 102, 660 unique words after stop words have been removed. The top 5 sparse
principal components are shown in Table 4.6. Clearly the first principal component is
about business, the second one about sports, the third about U.S., the fourth about
politics and the fifth about education. Bear in mind that the NYTimes data from
UCI Machine Learning Repository “have no class labels, and for copyright reasons no
filenames or other document-level metadata” (Frank and Asuncion [14]). The sparse
principal components still unambiguously identify and perfectly correspond to the
topics used by The New York Times itself to classify articles on its own website.

4.4 Summary

In this chapter, we perform the Sparse PCA analysis on data sets ranging from
senate voting, stock returns, 20-newsgroup to New York Times’s articles. In all cases,
we found that the results from Sparse PCA are much more interpretable and hence
usually reveal some interesting patterns buried in the unorganized data. The findings
in text data are particularly interesting, as this suggest the possibility of using Sparse
PCA to better organize or to better present a large text collection. For example,
Sparse PCA might be run on top of the search results returned by Google, so as to
better direct users towards the subset regarding a particular topic or aspect in the
query results.

46



Chapter 5

Conclusions

In this dissertation, we first discuss several formulations for Sparse PCA, as well as
the algorithms for solving the formulations and a few greedy methods. We empirically
show that the particular formulation based on semidefinite relaxation called DSPCA
typically has the best performance, especially when only limited number of samples
are available or when the data is noisy.

We then develop a block coordinate ascent algorithm for solving DSPCA with bet-
ter dependence on problem size. We also explicitly leverage a safe feature elimination
procedure to make our code more scalable. We show that our algorithm converges
much faster than the existing first-order algorithm in practice and demonstrate that
our code can handle huge real data sets. This newly developed package should make
it easier for applying Sparse PCA (using DSPCA) to large data sets typically found
in contemporary applications.

We also demonstrate that Sparse PCA does bring more interpretability and hence
gives rise to new interesting findings in various real data sets. In particular, we found
that the extremely sparse principal components in text news usually correspond to
some semantically coherent concepts or topics. This opens the door to potentially
using Sparse PCA as an attractive alternative approach to topic models.

There are still many questions remained to be answered in terms of Sparse PCA
research. First, outside of the (locally) convergent algorithm in Journée et al. [20],
very few methods handle the problem of simultaneously finding several leading sparse
principal components. Also, most methods (even extremely simple ones) perform well
enough on easy, “natural” data sets while only the most expensive semidefinite re-
laxations seem to produce good bounds on the random matrices used in compressed
sensing applications, or when only a few samples are available for example. Charac-
terizing what makes “natural” data sets easier than random ones remains an open
problem at this point. It is also not clear yet how to extend the statistical optimality
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statements of Amini and Wainwright [2] to broader (e.g. deterministic) classes of
matrices.
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