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On Viazovska’s modular form inequalities
Dan Romika,1
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Viazovska proved that the E8 lattice sphere packing is the densest sphere packing in 8
dimensions. Her proof relies on two inequalities between functions defined in terms
of modular and quasimodular forms. We give a direct proof of these inequalities that
does not rely on computer calculations.

Jacobi thetanull function | Eisenstein series | modular form | inequality | sphere packing

Viazovska (1) proved that the sphere packing associated with the E8 lattice, which has a
packing density of �4

384 , is the densest sphere packing in 8 dimensions. Her proof relied
on properties of certain functions, denoted �0(z) and  I (z), which were defined in
terms of classical modular and quasimodular forms: the Eisenstein series E2, E4, and E6,
and the Jacobi thetanull functions �2, �3, and �4. A key step in the proof consisted of
showing that these functions satisfied a certain pair of inequalities; this was essential to
verifying that a radial function defined by taking an integral transform of �0(z) and
 I (z) (combined in a particular way) was the so-called magic function that had been
conjectured to exist by Cohn and Elkies (2) and certifies the correct sphere packing
bound.

The goal of this paper is to give a direct proof of Viazovska’s inequalities. To recall the
result, let z denote a complex variable taking values in the upper half plane, and denote
q = e�iz . Let ��(n) =

∑
d | n d

� denote the divisor function. Recall the definitions of
the functions E2, E4, E6, �2, �3, and �4:

E2(z) = 1− 24
∞∑
n=1

�1(n)q2n, �2(z) =
∑
∞

n=−∞ q(n+1/2)2
,

E4(z) = 1 + 240
∑
∞

n=1 �3(n)q2n, �3(z) =
∑
∞

n=−∞ qn
2
,

E6(z) = 1− 504
∑
∞

n=1 �5(n)q2n, �4(z) =
∑
∞

n=−∞(−1)nqn
2
.

Next, set

�0(z) = 1728
(E2(z)E4(z)− E6(z))2

E4(z)3 − E6(z)2 , [1]

 I (z) = 128

(
�3(z)4 + �4(z)4

�2(z)8 +
�4(z)4

− �2(z)4

�3(z)8

)
, [2]

and define functions A(t), B(t) of a real variable t > 0 by

A(t) = −t2�0(i/t)−
36
�2 I (it),

B(t) = −t2�0(i/t) +
36
�2 I (it).

Theorem 1 (Viazovska’s modular form inequalities). The functions A(t), B(t) satisfy

A(t) < 0 (t > 0), [V1]
B(t) > 0 (t > 0). [V2]

Viazovska’s original proof of Theorem 1 relied heavily on computer calculations. The
proof consisted of two main steps: first, analogues of the inequalities [V1]–[V2] were
verified numerically for approximating functions A(6)

0 (t), A(6)
∞ (t), B(6)

0 (t), B(6)
∞ (t) of

A(t) and B(t), which were formed by truncating the asymptotic expansions of A(t) and
B(t) near t = 0 and t =∞; this could be done in a finite calculation. Second, rigorous
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bounds were derived that made it possible to deduce the
inequalities [V1]–[V2] from the corresponding inequalities for
the approximating functions.

Another pair of inequalities of similar flavor to [V1]–[V2] was
proved by Cohn et al. (3) in their subsequent proof of optimality
of the Leech lattice packing in 24 dimensions. Their proof used
different techniques, but that proof as well remained dependent
on extensive computer calculations.

Below, we give a proof of Theorem 1 that is fully human-
verifiable and requires no numerical calculations beyond the ele-
mentary manipulation of a few standard mathematical constants.
This helps to simplify and demystify a critical step in Viazovska’s
celebrated sphere packing proof.

1. Proof of [V1]

It is sufficient to prove that �0(it) > 0 and  I (it) > 0 for all
t > 0. The first of these claims follows immediately from the
standard identities (4, pp. 20, 21, 49)

E3
4 − E2

6 = 1728q2
∞∏
n=1

(1− q2n)24, [3]

E2E4 − E6 =
3

2�i
dE4

dz
= 720

∞∑
n=1

n�3(n)q2n, [4]

which imply that both E3
4 −E2

6 and E2E4−E6 take positive real
values on the positive imaginary axis.

For the claim about  I (it), recall Jacobi’s identity �4
2 + �4

4 =
�4

3 (see ref. 4, p. 28), and set �(z) = �4
2/�4

3 = 1 − �4
4/�4

3 (the
modular lambda function; see ref. 4, p. 63). It is clear from these
defining relations of �(z) that for t > 0, �(it) takes real values
in (0, 1). Now note that

1
128

 I =
�4

3 + �4
4

�8
2

+
�4

4 − �
4
2

�8
3

=
1
�4

3
·
�8

3 + �4
3�

4
4

�8
2

+
1
�4

3
·
�4

4 − �
4
2

�4
3

=
1
�4

3

(
1
�2 +

1
�
·

1− �
�

+ (1− �)− �
)

=
1
�4

3

(1− �)(2 + �+ 2�2)
�2 .

Since the function x 7→ (1−x)(2+x+2x2)
x2 is positive for x ∈

(0, 1), and since �3(it)4 > 0 for t > 0, we get the claim that
 I (it) > 0. �

2. Proof of [V2]

We will make use of the standard modular transformation
properties (1, pp. 996–997)

�2(z + 1)4 = −�2(z)4, �2(−1/z)4 = −z2 �4(z)4, [5]

�3(z + 1)4 = �4(z)4, �3(−1/z)4 = −z2 �3(z)4, [6]

�4(z + 1)4 = �3(z)4, �4(−1/z)4 = −z2 �2(z)4, [7]

E2(z + 1) = E2(z), E2(−1/z) = z2E2(z)−
6iz
�

,

[8]

E4(z + 1) = E4(z), E4(−1/z) = z4E4(z), [9]

E6(z + 1) = E6(z), E6(−1/z) = z6E6(z). [10]

Using [8]–[10], a simple calculation shows that

z2�0(−1/z) = 1728
[ (E2E4 − E6)2

E3
4 − E2

6
z2

−
12i
�
·
E4(E2E4 − E6)

E3
4 − E2

6
z −

36
�2

(
E2

4

E3
4 − E2

6

)]
.

(This is a slightly simplified version of equation 29 from ref. 1.)
Similarly, with the help of [5]–[7], we see that

z2 I (−1/z) = −128

(
�4

3 + �4
2

�8
4

+
�4

2 − �
4
4

�8
3

)
.

We will separate the proof of [V2] into two parts, proving
separately that

B(t) > 0 for t ≥ 1 and t2B(1/t) > 0 for t ≥ 1,

that is, equivalently, that

�2

36
t2�0(i/t) <  I (it) for t ≥ 1,

�2

36
�0(it) < t2 I (i/t) for t ≥ 1.

It is convenient to clear the denominators in each of these
inequalities by multiplying both sides by E3

4 − E2
6 , which is

also equal to 27
4 (�2�3�4)8 by a well-known identity. (4, p. 29)

We therefore define

f (z) =
1

864
·
�2

36
(E3

4 − E2
6 )�0(z) =

�2

18
(E2E4 − E6)2, [11]

f̃ (z) = −
1

864
·
�2

36
(E3

4 − E2
6 )z2�0(−1/z)

= −
�2

18
(E2E4 − E6)2z2 +

2�i
3

E4(E2E4 − E6)z + 2E2
4 ,

[12]

g(z) = −
1

864
(E3

4 − E2
6 )z2 I (−1/z)

= �8
2(�12

3 + �4
2�

8
3 + �4

2�
8
4 − �

12
4 ), [13]

g̃(z) =
1

864
(E3

4 − E2
6 ) I (z)

= �8
4(�12

3 + �4
4�

8
3 + �8

2�
4
4 − �

12
2 ). [14]

By the above remarks, in order to deduce [V2], it will be sufficient
to prove the following inequalities:

f (it) < g(it) for t ≥ 1, [V2-I]

f̃ (it) < g̃(it) for t ≥ 1. [V2-II]
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As a final bit of preparation, recall the known explicit
evaluations

E2(i) =
3
�
, E4(i) =

3Γ(1/4)8

64�6 , E6(i) = 0, [15]

�2(i) =
Γ(1/4)
(2�)3/4 , �3(i) =

Γ(1/4)
√

2�3/4
, �4(i) =

Γ(1/4)
(2�)3/4 .

[16]

Here, Γ(·) denotes the Euler gamma function. The numerical
value of Γ(1/4) is approximately 3.62561 (5). For the proof of
Eq. 16, see ref. 6, p. 325 and ref. 7, equation 2.21, p. 307. The
identity E2(i) = 3/� is an immediate consequence of Eq. 8. The
relation E6(i) = 0 is proved in ref. 8, p. 40, and the formula for
E4(i) follows from Eq. 16 and the identity E4 = 1

2 (�8
2 +�8

3 +�8
4),

proved, e.g., in ref. 4, p. 29; see also ref. 9, p. 290.

A. Proof of [V2-I]. The functions f (z), g(z) have Fourier expan-
sions

f (z) = 28800�2q4 + 1036800�2q6 + 14169600�2q8 + . . .

=:
∞∑
n=4

anqn, [17]

g(z) = 20480q3 + 2015232q5 + 41656320q7 + . . .

=:
∞∑
n=3

bnqn. [18]

The coefficients an in Eq. 17 are nonnegative: This is immediate
from Eq. 4. Similarly, we have bn ≥ 0 for all n. To see this, let

(z) = �8

2�
12
3 + �12

2 �
8
3 , and observe that, by Eqs. 5–7, g(z) can

be represented as

g(z) = 
(z)− 
(z + 1). [19]

The Fourier coefficients of 
 are manifestly nonnegative, and,
since the substitution z 7→ z + 1 corresponds to replacing each
occurrence of q by −q in the Fourier series, the relationship
[19] means that the Fourier expansion of g consists of twice the
odd terms in the Fourier expansion of 
 and therefore also has
nonnegative coefficients.

From the above remarks, it now follows that the function
t 7→ e3�t f (it) =

∑
∞

n=4 ane
−�(n−3)t is a nonincreasing function

of t. Using [15], we then get for all t ≥ 1 the bound

e3�t f (it) ≤ e3� f (i) = e3� �
2

18

(
3
�

3Γ(1/4)8

64�6 − 0
)2

= e3� 9Γ(1/4)16

8192�12 ≈ 13130.47. [20]

On the other hand, by Eq. 18 and the observation about the
nonnegativity of the coefficients bn, the bound e3�tg(it) =
20480 +

∑
∞

n=4 bne
−�(n−3)t

≥ 20480 holds for all t > 0.
Combining this with [20] gives [V2-I]. �

B. Proof of [V2-II]. In a similar vein, we examine the q-series
expansions of f̃ (z), g̃(z) and their properties. From Eqs. 12 and

14, we obtain expansions of the forms

f̃ (z) = 2 + (480�iz + 960)q2

+ (−28800�2z2 + 123840�iz + 123840)q4

+ (−1036800�2z2 + 3150720�iz + 2100480)q6

+ . . .

=:
∞∑
n=0

cn(z)qn, [21]

g̃(z) = 2 + 240q2
− 10240q3 + 134640q4

− 1007616q5

+ . . .

=:
∞∑
n=0

dnqn. [22]

Here, [22] is a conventional Fourier series, whereas [21] is a more
unusual expansion in powers of q = e�iz in which each coefficient
cn(z) is itself a quadratic polynomial in z. It is convenient to
renormalize these expressions, defining new functions

F̃ (z) = −
f̃ (z)− 2

q2 = −
∞∑
n=2

cn(z)qn−2

= (−480�iz − 960)

+ (28800�2z2
− 123840�iz − 123840)q2 + . . . ,

[23]

G̃(z) = −
g̃(z)− 2

q2 = −
∞∑
n=2

dnqn−2

= −240 + 10240q − 134640q2 + 1007616q3 + . . . .
[24]

The inequality [V2-II] can now be restated as the claim that
G̃(it) < F̃ (it) for all t ≥ 1. This will follow from the
combination of the following two lemmas.

Lemma 2. G̃(it) ≤ 288 for all t ≥ 1.

Lemma 3. F̃ (it) ≥ 468 for all t ≥ 1.

The following auxiliary claim will be used in the proof of
Lemma 2.

Lemma 4. We have (−1)ndn ≥ 0 for n ≥ 0.

Proof: By Eqs. 5–7, the function g̃(z + 1) =
∑
∞

n=0(−1)ndnqn
can be written as

g̃(z + 1) = �12
3 �

8
2 + �8

3�
12
2 + �12

3 �
8
4 + �8

3�
12
4 . [25]

The claim is that the Fourier series of this function has
nonnegative coefficients. This fact was proved by Slipper (10,
p. 76), who deduced it from a certain identity representing
the function on the right-hand side of Eq. 25 in terms of
the theta series of a certain 20-dimensional lattice, known as
“DualExtremal(20,2)a”. Here is a self-contained proof that uses
only elementary properties of the thetanull functions. Denote for
convenience

Z = �4
3 , X = �4

2 , Y = 2Z − X .
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Then X and Z have Fourier series with nonnegative coefficients,
and, again recalling the identity �4

2 + �4
4 = �4

3 , we see that
Y = �4

3 + �4
4 = �3(z)4 + �3(z + 1)4 (recall [6] above), so

the Fourier series of Y also has nonnegative coefficients. Now,
observe that g̃(z + 1) can be expressed as

g̃(z + 1) = Z3X 2 + Z2X 3 + Z3(Z − X )2 + Z2(Z − X )3

=
1
16

(
6X 5 + 15X 4Y + 10X 3Y 2 + Y 5

)
,

and therefore also has nonnegative Fourier coefficients. �

Proof of Lemma 2: Define

H(z) =
G̃(z)− G̃(z + 1)

2
=
∞∑

m=1
(−d2m+1)q2m−1, [26]

= 10240q + 10007616q3 + . . . . [27]

Two crucial properties of H(z) are a) the function t 7→ H(it) =∑
∞

m=1(−d2m+1)e−�(2m−1)t is nonincreasing (each summand is
nonincreasing, by Lemma 4); and b) G̃(it)+240 ≤ H(it) for all
t > 0 (this follows from Lemma 4 together with the observation
that the constant coefficient in Eq. 24 is −240). Now note that,
by Eqs. 5–7, 14, and 24, H(z) can be expressed explicitly as

H(z) = −
1
2
q−2

[
�8

4(�12
3 + �4

4�
8
3 + �8

2�
4
4 − �

12
2 )− 2

− �8
3(�12

4 + �4
3�

8
4 + �8

2�
4
3 + �12

2 ) + 2
]

=
1
2
q−2 (�8

2�
12
3 + �12

2 �
8
3 + �12

2 �
8
4 − �

8
2�

12
4
)

=
1
2
q−2 (�8

2(�12
3 − �

12
4 ) + �12

2 (�8
3 + �8

4)
)
.

Therefore, using the evaluations [16], we get that for all t ≥ 1,

G̃(it) ≤ −240 + H(it) ≤ −240 + H(i)

= −240 +
e2�

2

(
Γ(1/4)

(2�)3/4

)20 (
(21/4)12

− 1 + (21/4)8 + 1
)

= −240 +
e2�

2
Γ(1/4)20

(2�)15 (8 + 4)

= −240 + 6e2�
Γ(1/4)20

(2�)15 ≈ 287.02,

as claimed. �

Proof of Lemma 3: We strategically separate F̃ (z) into three
components, defining

F̃1(z) = −480�iz + (28800�2z2
− 123840�iz − 123840)q2,

[28]

F̃2(z) =
�2

18
q−2(E2E4 − E6)2z2

− 2q−2(E2
4 − 1)

+ (−28800�2z2 + 123840)q2, [29]

F̃3(z) = −
2�i
3

q−2E4(E2E4 − E6)z

+ (480�iz + 123840�izq2), [30]

so that, by Eqs. 12 and 23, we have

F̃ (z) = F̃1(z) + F̃2(z) + F̃3(z). [31]

We now make the following elementary observations:

(a) The function t 7→ F̃1(it) is monotone increasing on [1,∞).

Proof: Assume that t ≥ 1. A trivial calculation gives that

d
dt

(
F̃1(it)

)
= 480�e−2�t (e2�t + 120�2t2 − 636�t + 774

)
≥ 480�e−2�t (e2� + 120�2t2 − 636�t + 774

)
.

The last expression is of the form e−2�t times a quadratic
polynomial in t, which, it is easy to check, is positive on the
real line. Thus, we have shown that F̃ ′1(t) > 0 for t ≥ 1,
which proves the claim.

(b) The function t 7→ F̃2(it) is monotone increasing on [1,∞).

Proof: Let (�n)∞n=2 and (�n)∞n=1 be the coefficients in the
Fourier series

(E2E4 − E6)2 =
∞∑
n=2

�nq2n, E2
4 − 1 =

∞∑
n=1

�nq2n.

Clearly, �n ≥ 0 [Eq. 4] and �n ≥ 0 for all n. One can also
easily check that �2 = 518400 and �2 = 61920. Then, on
inspection of Eq. 29, we see that

F̃2(it) = −2�1 +
∞∑
n=3

(
−
�2

18
�nt2 − 2�n

)
e−�(2n−2)t .

The summand associated with n = 2 is precisely canceled out
by the term (−28800�2z2 + 123840)q2 in Eq. 29. Now for
each n ≥ 3, the nth summand in this series is easily seen to
be an increasing function of t for t ≥ 1

(n−1)� , so in particular
for t ≥ 1. Thus, t 7→ F̃2(it) is also increasing for t ≥ 1.

(c) F̃3(it) ≥ 0 for all t > 0.

Proof: Let (�n)∞n=1 be the coefficients in the Fourier series
E4(E2E4 − E6) =

∑
∞

n=1 �nq
2n. Then �n ≥ 0 for all n, and

we have �1 = 720 and �2 = 185760. Referring to Eq. 30, we
then see that

F̃3(it) =
2�t
3

∞∑
n=3

�ne−�(2n−2)t
≥ 0,

since the summands associated with n = 1, 2 are canceled by
the term (480�iz + 123840�izq2) in Eq. 30.

Finally, combining [31] with the observations (a)–(c) above,
we get that for t ≥ 1,

F̃ (it) ≥ F̃1(it) + F̃2(it) ≥ F̃1(i) + F̃2(i)

= 480� + 123840e−2�

+ e2�
(
−
�2

18
(E2(i)E4(i)− E6(i))2

− 2(E4(i)2
− 1)

)
= 480� + 123840e−2� + e2�

(
2−

45Γ(1/4)16

8192�12

)
≈ 468.39,

as claimed. �

Data, Materials, and Software Availability. There are no data underlying
this work.
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