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G E O P H Y S I C S

Surface parameters and bedrock properties covary 
across a mountainous watershed: Insights 
from machine learning and geophysics
Sebastian Uhlemann1*, Baptiste Dafflon1, Haruko Murakami Wainwright1†, 
Kenneth Hurst Williams1,2, Burke Minsley3, Katrina Zamudio3, Bradley Carr4, Nicola Falco1, 
Craig Ulrich1, Susan Hubbard1

Bedrock property quantification is critical for predicting the hydrological response of watersheds to climate 
disturbances. Estimating bedrock hydraulic properties over watershed scales is inherently difficult, particularly in 
fracture-dominated regions. Our analysis tests the covariability of above- and belowground features on a water-
shed scale, by linking borehole geophysical data, near-surface geophysics, and remote sensing data. We use machine 
learning to quantify the relationships between bedrock geophysical/hydrological properties and geomorphological/
vegetation indices and show that machine learning relationships can estimate most of their covariability. Although 
we can predict the electrical resistivity variation across the watershed, regions of lower variability in the input 
parameters are shown to provide better estimates, indicating a limitation of commonly applied geomorphological 
models. Our results emphasize that such an integrated approach can be used to derive detailed bedrock charac-
teristics, allowing for identification of small-scale variations across an entire watershed that may be critical to assess 
the impact of disturbances on hydrological systems.

INTRODUCTION
Subsurface structure and property distributions—from soil to the 
unweathered bedrock—are one of the biggest uncertainties in the 
prediction of hydrology and watershed processes (1). Subsurface 
porosity and permeability govern the storage and flow of water and 
nutrients (1–3), control subsurface-surface interactions (4–6), and 
buffer climatic variability and biogeochemical dynamics (7). However, 
subsurface characterization is difficult using conventional wellbore 
approaches. These intrusive investigations can shed light on the 
physical parameters of the regolith and bedrock, thereby quantify-
ing hydrological flow and bedrock weathering and fracturing pa-
rameters (8, 9). However, the derived data are representative of the 
properties in the immediate vicinity of the boreholes only, and up-
scaling to estimate the variability at a watershed scale is challenging 
and fraught with high uncertainty. As a result, quantitative subsurface 
characterization has been mostly restricted to analyzing hillslopes 
along short transects [e.g., (8, 10)] rather than across watershed scales 
[as highlighted in, e.g., (7)]. To develop a predictive understanding 
of watershed function, including climate change impacts on water 
and biogeochemical cycling, new approaches are needed to estimate 
watershed subsurface properties with sufficient accuracy and yet at 
length scales and over spatial extents relevant to such cycling.

While the importance of shallow bedrock properties on the 
functioning of watersheds and the ecosystem services that they pro-
vide has been highlighted in numerous studies [e.g., (3, 11)], those 
bedrock properties are commonly neglected because of the difficulty 

associated with their characterization. Two key approaches have been 
used to mitigate this challenge. The first approach is the use of geo-
physical datasets, including their combination with wellbore data to 
characterize fracture systems in shallow, fractured hard rock envi-
ronments (12–14), as well as their combination with hydrological 
modeling to estimate bedrock hydraulic properties and subsurface 
flow dynamics (15, 16). Although these studies provide useful in-
formation with regard to bedrock hydraulic properties, they were 
mostly focused on site-scale, two-dimensional transects, and more 
recently, similar approaches are starting to be applied to estimate 
spatially extensive bedrock properties (17). The second key ap-
proach focuses on using spatially distributed proxy information. 
Recent work has focused on the use of geomorphological indices, 
such as slope angle, aspect, tectonic stress, and distance to streams, 
to estimate the thickness of the subsurface comprising soil and 
weathered rock, i.e., the thickness of the regolith (18–22). These 
models usually assume that crest-to-valley geomorphic processes 
are controlling the regolith thickness, rather than geological hetero-
geneity. While these approaches enable estimation of subsurface 
characteristics over watershed scales, they do not provide estimates 
of subsurface hydraulic properties, which are required to accurately 
predict groundwater flow and reactive transport (23). Characteriza-
tion of hydrologic heterogeneity is particularly important for hard 
rock environments (i.e., crystalline igneous, metamorphic, and ce-
mented carbonate and sedimentary rocks), which cover about 50% 
of Earth’s land surface (24). In these environments, discontinuities 
(such as fractures or faults) or structural elements (such as fracture 
zones) are known to govern the hydrological response of fractured 
bedrock aquifers (25).

To fully understand the multidimensional variability of bedrock 
properties throughout a mountainous watershed, new approaches 
are required that can assess the spatial variability of hydraulic 
parameters (26, 27) and ideally can take advantage of increasingly 
available, spatially distributed remote sensing datasets.
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The lack of studies addressing the spatial variability of subsur-
face properties throughout a watershed possibly has two reasons: 
(i) Many studies focus on specific process investigations, such as 
weathering, sediment transport, or nutrient cycling, which can be 
performed through focusing on a hillslope or subsystem, with-
out the need for studying large-scale property variations; and (ii) 
appropriate data to scale plot observations to regional variability are 
scarce. Here, we present an integrated approach using measurements 
ranging from borehole and surface to airborne geophysical mea-
surements. Recent developments in data inversion allow for the 
analysis of large airborne electromagnetic (AEM) datasets (28). AEM 
datasets use electromagnetic fields to measure the electrical response 
of the subsurface, which is used to derive depth-resolved electrical 
resistivities (29). The electrical resistivity of bedrock is mostly de-
pendent on the formation’s mineral composition, pore fluid con-
tent, and available pore space (30). For example, using AEM data, 
subsurface properties in Alaska over an area of about 300 km2 have 
been estimated (31). Within the last few years, AEM surveys are 
covering increasingly larger areas at regional basin scales, as large as 
140,000 km2 (32), and are moving from predominantly flat areas 
[e.g., (33, 34)] to mountainous environments (35–37). There is an 
increased effort to use AEM data to construct hydrological models 
from local to regional scales (38–40).

Our goal is to investigate covariability of bedrock geophysical 
properties, derived from an integrated analysis of borehole, surface 

and airborne geophysical methods, and geomorphological and 
vegetation indices, within a hard rock environment. Building on 
the findings of abovementioned geomorphological studies [e.g., (22)], 
we hypothesize that topographic and vegetation metrics covary with 
bedrock electrical resistivity on a watershed scale. We test this 
hypothesis by developing a machine learning model linking these 
metrics to AEM-derived shallow bedrock electrical resistivities and 
eventually to hydraulic properties. Because the electrical resistivity 
is an indirect measure of bedrock weathering, water saturation, and 
hydraulic and fracture properties, such a combination should provide 
an opportunity to scale the subsurface properties over the region 
to allow for a detailed parameterization of large-scale hydrological 
models. While many studies show the validity of geomorphological 
models for estimating regolith thickness and have proven the rela-
tionship between subsurface bedrock properties and surface expres-
sions over hillslope scales, this is the first study that assesses bedrock 
property variability across multiple hillslopes over a large watershed.

This study makes use of data acquired in a mountainous system. 
Data were collected at the point and hillslope scales (e.g., core ob-
servations, borehole logs, and surface geophysical transects) to the 
watershed scale [e.g., airborne geophysics, light detection and rang-
ing (LiDAR), and hyperspectral data] to estimate the variability of 
subsurface properties at the site (Fig. 1). We assume that variations 
in the subsurface electrical properties, as imaged by surface and air-
borne geophysical methods, are predominantly driven by variations 

Fig. 1. Data inventory and large-scale characteristics of the study site. Overview map showing the location of boreholes, surface geophysical transects, and AEM 
(35) flight lines [(A), Universal Transverse Mercator (UTM) Zone 10N] on top of an aerial photograph (71). Also shown are the outline of the watershed and the area un-
derlain by Mancos Shale. On the basis of the attributes shown in (B) and (C), the Mancos Shale is divided into a northern unit and a southern unit. Not shown here, the 
data inventory also includes LiDAR data and detailed vegetation classification using hyperspectral data (69). (B) Photographs of the Mancos Shale cores recovered from 
the boreholes, highlighting variability in Mancos Shale properties. Boreholes GLS1 and GUM1 are located in the upper part of the watershed, while PLM7 and PLM8 are 
located in the lower part (photo credit: Kenneth Williams, Lawrence Berkeley National Laboratory). (C) Resistivity distribution of the upper 20 m of the southern and 
northern Mancos Shale as obtained from the AEM data.



Uhlemann et al., Sci. Adv. 8, eabj2479 (2022)     23 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 15

in lithology, the effective porosity, and fracture density or weath-
ering of the underlying rock [e.g., (41)]. To eliminate the effect of 
varying lithology, we are focusing our analysis on the dominant 
lithological unit (Mancos Shale). Groundwater levels throughout the 
Mancos Shale unit have been observed to be shallow (<10 m), given 
the sensitivity of the AEM measurements variations in groundwater 
level are deemed to have negligible impact on the results. While 
borehole observations and near-surface geophysical data provide 
detailed information about soil, regolith, and bedrock properties 
at specific locations, airborne geophysical data give a spatially 
distributed, aggregated response of the regolith column across 
watershed scales, including small-scale features (fracture zones or 
biogeochemical hot spots) that are difficult to identify using sparse 
measurements. Although the resolutions of hillslope and remote 
sensing methods are different, we show here that they can be 
combined effectively to estimate bedrock parameters at resolutions 
of 20 m2 across the 300-km2 watershed.

This methodology is developed at and applied to the East River 
watershed, located close to Crested Butte, Colorado (Fig. 1A). The 
study area comprises an area of about 135 km2, with a topographic 
relief of 1700 m and associated variability in vegetation, hydrology, 
and weather (42). The dominating vegetation community types, in 
order from low to high elevations, are sagebrush, aspen, spruce-fir, 
upland herb, and alpine assemblages. In this area, like in other 
mountainous areas, lithological and vegetation patterns are coinci-
dent (43). The geomorphology of the watershed is characterized by 
gentle to steep slopes, with an average slope angle of 25.5°, and is 
controlled by the bedrock type; while shale formations relate to 
open valleys, limestone formations tend to form sharp cliffs and 
granodiorite intrusions form rugged peaks (44). Surface deposits 
comprise rock glaciers, talus, landslide, and in the lower elevations 
lateral moraine deposits (45). The East River, being a previously gla-
ciated subalpine system, is characterized by shallow down-valley 
gradients, heterogeneous floodplain sediments, and a channel mor-
phology that ranges from high-energy mountain streams to low-energy 
meandering floodplains (46). The climate is continental subarctic, 
and stream discharge is snow-dominated, peaking in early June and 
receding through the summer and fall. Recent work has shown that 
deep groundwater flow, which is controlled by the bedrock properties, 
provides a substantial input to streamflow in this mountainous water-
shed (47). This shows that within this mountainous watershed, the 
bedrock provides major control on the critical zone, including veg-
etation patterns, geomorphological characteristics, and hydrologi-
cal response, and hence supports our hypothesis.

The bedrock geology is dominated by Cretaceous Mancos Shale 
(accounting for >40% of the outcropping formations), with laccolith- 
shaped Oligocene intrusions of granodiorite, forming Mt. Crested 
Butte, Mt. Snodgrass, and Mt. Gothic. Mancos Shale is a gray to 
dark-gray marine shale, with a maximum thickness of 1500 m (48). 
It is a rock unit that formed during transgressive and regressive ep-
isodes of the Western Interior Seaway, resulting in minor facies 
of limestone, marlstone, bentonite, concretions, and sandstone beds 
(49). Mancos Shale is known to have generally low hydraulic con-
ductivities, with higher values primarily associated with fracture zones 
(50). Shale is a rock of global importance; it is a critical geological 
unit for energy resources and also serves as a source for nutrients 
and geogenic contaminants (51, 52). Outcropping mostly on the eastern 
side of the watershed are the Cretaceous Fort Hays Limestone and 
Dakota Sandstone, and Middle Pennsylvanian to lower Permian 

Maroon Formation. The area felt increased compressive stress during 
the Laramide orogeny, shown by emplacement of sills and thrust 
faults (53). Postglacial stress release after the Quaternary glaciation 
caused sackungen (44), which are slow, deep-seated gravitational 
slope deformations. The past and current-day extensional stress 
regime likely contributed to the formation of a complex network of 
fractures in East River watershed. While some of the fractures have 
been mapped using surface methods (44), others are likely hidden 
underneath thin Quaternary deposits. Because subsurface electrical 
properties are dependent on the bedrock type, we limit our analysis 
to areas underlain by Mancos Shale.

The East River watershed is representative of many headwater 
catchments of the Rocky Mountains, which provide ~85% of the 
streamflow of the Colorado River Basin and supply about 40 million 
people and 20,000 km2 of agricultural land with water (54). While it 
is known that these alpine systems are sensitive to climate warming, 
the impact of climate change on their water supply is difficult to 
estimate (55). Understanding the bedrock properties of the East 
River watershed and the related feedback of environmental distur-
bances to groundwater will eventually help to improve downstream 
water management.

RESULTS
General bedrock and AEM resistivity characteristics
Four boreholes were drilled throughout the watershed, and core in-
spection and geophysical borehole logging were performed to char-
acterize the vertical variability in bedrock properties (56). Two of 
the boreholes are located in the upper watershed (GLS1 and GUM1) 
and the other two are in the lower watershed (PLM7 and PLM8; 
Fig. 1A). At GLS1, the shale unit showed some minor fractures, 
mostly parallel to the bedding plane (approximately at 21-, 27-, and 
33-m depth), and thin quartz veins; visual inspection (Fig. 1B) indi-
cated that most of the ~51-m core is characterized by unfractured 
and homogeneous shale. At GUM1 (upper watershed), the recov-
ered core showed horizontal, fine-scale fracturing along the bed-
ding plane, which is attributed to mechanical stress induced by the 
intrusion of the nearby Mt. Gothic laccolith. Occasional subvertical 
fracturing is observed within the core. In the lower watershed, visual 
inspection of the PLM7 core revealed major brecciated fracture 
zones (>1 m thick) from the top of the borehole down to a depth of 
about 59 m, with intermittent up to 2-m-thick portions of compe-
tent, less fractured Mancos Shale. Despite being located only 335 m 
northeast of PLM7 on the opposite bank of the East River, PLM8 
showed no major fracture zones, and shale characteristics were 
comparable to those observed at GLS1 in terms of visual appearance 
and fracture density.

AEM data allowed us to assess the electrical properties of the 
bedrock throughout the watershed. As shown in Fig. 1A, AEM data 
were acquired along transects from about 0.2 to 17 km in length and 
in multiple orientations throughout the watershed, with a sounding 
spacing of ~50 m and a transect spacing of ~200 to 500 m [Fig. 1A; 
(35)]. Because different bedrock units are associated with different 
characteristic resistivities, here, we focus solely on the regions dom-
inated by Mancos Shale (Fig. 1A). Even within this single unit, the 
AEM data highlight a distinction between the upper and lower 
watershed (Fig. 1C). The uppermost 20 m of Mancos Shale of the upper 
watershed generally shows higher resistivities (258.2 ± 118.2 ohm·m) 
than the lower watershed (146.4 ± 91.8 ohm·m). In the following, 
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we will refer to these two separate domains as northern and southern 
Mancos Shale, based on their location within the watershed, where 
the northern and southern locations relate to the upper and lower 
watershed, respectively.

Detailed bedrock characteristics obtained from borehole 
geophysical measurements
Geophysical borehole logging, including nuclear magnetic resonance 
(NMR), pore fluid conductivity and temperature, electromagnetic in-
duction, spectral gamma, and flow meter tests, provides high-resolution 
information on the bedrock properties at each of the borehole locations 
[Fig. 2; (57)]. Groundwater temperatures represent seasonal flow condi-
tions, with the upper part of GLS1 within permeable lacustrine deposits 
showing colder temperatures and hence increased mixing than ob-
served in the Mancos Shale units of the other boreholes. All boreholes 
show a characteristic increase in temperature toward the base of the 
borehole representative of the regional geothermal gradient. Ground-
water electrical conductivity (EC) was low in the Mancos Shale of GLS1 
and GUM1 (286.6 ± 20.5 and 130.2 ± 25.4 S/cm, respectively). In con-
trast, groundwater EC was higher in PLM7 (361.7 ± 8.0 S/cm) and 
considerably higher in PLM8 (865.3 ± 11.1 S/cm). Those values trans-
late to electrical resistivities of the pore fluid of 34.9 to 76.8 ohm·m in 
the northern and 11.5 to 27.6 ohm·m in the southern Mancos Shale 
boreholes. Geochemical analysis of groundwater samples taken 
throughout the watershed corroborated those findings, showing con-
siderable variations in cation and anion concentrations, with elevated 
chloride, fluoride, and sodium concentrations in the lower part of the 
watershed (58, 59). This is why we infer that the gradient in pore water 
electrical properties is partly related to changes in the geochemical 
environment from the northern to the southern Mancos Shale.

High-resolution measurements of electrical resistivity in the 
vicinity of each borehole were acquired through in-hole electrical 
resistivity tomography (ERT), which indicated a range of vertical 
heterogeneity. Quaternary lacustrine deposits overlying the 
Mancos Shale in GLS1 show notably lower resistivities (93.1 ± 
16.8 ohm·m) than the shale itself, which varies between 485 and 
1620 ohm·m, with a mean of 820.4 ohm·m and an SD of 242.3 ohm·m. 
The lower electrical resistivity values in the shale unit correlate with 
observed fractures (see lithological description in Fig. 2). At GUM1, 
resistivities show some variability (350.3 ± 165.1 ohm·m) and gen-
erally increase with depth, which agrees with core observations that 
showed reduced fracturing along the lamination plane at depth. While 
the Mancos Shale of GLS1 and GUM1 is characterized by resistivities 
>120 ohm·m, resistivity values recorded within PLM7 and PLM8 are 
mostly <100 ohm·m. PLM7 generally showed the lowest resistivities 
(34.7 ± 5.2 ohm·m), with fracture zones being characterized by the 
lowest observed resistivities. PLM8, despite having no major frac-
ture zones and having visually comparable structural characteristics to 
the shale recovered from GLS1, showed lower resistivities (76.3 ± 
33.8 ohm·m) than recorded in the wells of the northern Mancos Shale. 
In part, this is attributed to the higher EC of the groundwater re-
corded in the wells of the southern Mancos Shale. However, a petro-
physical analysis of the data showed that the change in fluid EC is 
not sufficient to explain the observed difference in bedrock resistivity. 
For the same geological parameters, the change in pore fluid EC from 
286 to 865 S/cm would change the resistivity by about 120 ohm·m, 
while a difference of about 745 ohm·m was observed. The cause of 
this difference is interpreted to be a change in the mineral composi-
tion, likely due to a higher degree of metamorphism of the Mancos 
Shale of the northern domain (60).

Fig. 2. Bedrock and pore fluid properties obtained from borehole logging. With the exception of GLS1, which had about 20 m of lacustrine deposits overlying the 
Mancos Shale, boreholes were drilled entirely within Mancos Shale with less than 2 m of soil cover. For each borehole (GLS1, GUM1, PLM7, and PLM8), pore fluid electrical 
conductivity (EC) and temperature, bedrock electrical resistivity, and bulk water content (WC) and hydraulic conductivity (estimated from NMR measurements) are shown 
from left to right. Groundwater table as measured during borehole logging is shown with pore fluid temperature and EC. Lithology and locations of major fracture zones 
are indicated on the right side of each panel and were derived from the drilling notes and core photographs.
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Borehole NMR measurements, which are sensitive to the water 
content and pore size distribution in the vicinity of the borehole, 
were used to estimate bedrock effective porosity and hydraulic con-
ductivity for depths below the water table (61, 62). Similar to the 
observations of the borehole fluid conductivity, temperature, and 
bedrock resistivity, the lacustrine deposits of GLS1 show high effec-
tive porosity (45.0%) and hydraulic conductivity (1.0 × 10−1 m/s), 
while the lower part of the borehole traversing Mancos Shale shows 
low values (2.9% and 1.42 × 10−7 m/s, respectively). Similar obser-
vations are drawn from GUM1, which shows low effective porosity 
and hydraulic conductivity throughout the borehole (2.8% and 
6.9 × 10−8 m/s, respectively). The estimated effective porosity at 
PLM7 agrees with fracture zones observed in retrieved core and 
thus is highly variable (8.1 ± 11.6%). Hydraulic conductivities with-
in the Mancos Shale in PLM7 were considerably higher than in the 
other boreholes (2.1 × 10−6 m/s). PLM8 showed high effective po-
rosity and hydraulic conductivities in the upper 4.5 m below ground 
level (bgl; 28.5% and 4.2 × 10−6 m/s, respectively), which is com-
posed mostly of weathered rock and hence can be attributed to the 
weathering zone overlying the unweathered shale. Below this depth, 
effective porosity and hydraulic conductivity were lower (1.8% 
and 2.6 × 10−8 m/s, respectively) and comparable with measure-
ments obtained at GLS1 and GUM1.

Petrophysical model using wellbore data to relate electrical 
resistivity to regolith hydraulic properties
We develop a site-specific petrophysical relationship between the 
borehole porosity estimates and electrical resistivity and subsequently 
use this developed relationship to transfer the AEM measurements 
into regolith hydraulic property estimates. This intrinsically assumes 
that the resistivity response of borehole and AEM data is compara-
ble (40, 63). Our use of electrical resistivity for this estimation is 
justified because electrical resistivity is related to the porosity of rocks 
(64). This relationship between electrical resistivity and porosity, 
however, has been shown to be complex, often site specific (30), and 
dependent on the rock lithology and fluid characteristics. While 
many studies have shown direct relationships between the resistivity 
response and hydraulic parameters, most of these studies have con-
sidered porous rocks [e.g., (65, 66)]. When dealing with fractured 

rocks, the relationship becomes more complex, and usually, a dual- 
porosity concept is used to estimate petrophysical properties (66). 
Generally, an increasing number and width of fractures relate to a 
decreasing electrical resistivity (67, 68). Relating the resistivity and 
effective porosity as measured in the boreholes shows that low resistiv-
ities generally can be related to high effective porosity (Fig. 3A). 
Grouping the data in terms of fracture density, with PLM7 having 
high and PLM8, GLS1, and GUM1 having low fracture density, shows 
that the high–fracture density group is characterized by high poros-
ity with a large variability, while, for the low–fracture density group, 
lower porosities with less variability were recorded (2.6 ± 0.9%). For 
the PLM7 data, it is also worth noting that there is a negative linear 
correlation between resistivity and porosity (Pearson’s r = −0.64). 
The large variability at low resistivities is explained by the fractured 
nature of the bedrock and the resolution of the ERT measurements, 
where fracture zones show very high porosity (>20%), while adja-
cent competent bedrock has very low porosity (<5%), which pro-
vides an aggregated response in the ERT data. Similarly, as described 
above, bedrock resistivity is not only a function of the available pore 
space but also the mineral composition and pore fluid conductivity. 
The PLM8 data show the smallest resistivity of the sites, low po-
rosity, and the highest pore fluid EC (Fig. 2). The AEM data show a 
similar aggregated response, and differences can be associated to 
the spatial resolution of the data. Although an exponential model 
could be used to explain the relationship between electrical resistiv-
ity and porosity for the entire dataset, the steep rise toward small 
resistivities would result in poor sensitivity for transforming AEM- 
derived bedrock resistivities into effective porosity. Hence, we 
develop an indicator petrophysical model, using 70 ohm·m as a 
threshold, with values lower than that representing bedrock having 
higher mean porosity and hence high fracture density, and values 
above representing bedrock having lower mean porosity and low 
fracture density.

An inverse relationship between resistivity and hydraulic con-
ductivity can be observed, with lower bedrock resistivities showing 
higher hydraulic conductivities (Fig. 3B). The effective porosity 
of fractured rocks is known to often be directly proportional to 
hydraulic conductivity (69). A linear trend (Pearson’s r = 0.59) is 
observed for the log-transformed variables with increasing porosity 

Fig. 3. Petrophysical relationships linking bedrock electrical resistivity with porosity and hydraulic conductivity. Relationship between electrical resistivity 
and porosity (A) established from the in-hole ERT and NMR measurements. Boxplots are shown for data of high (PLM7) and low fracture density (GLS1, GUM1, and PLM8). 
(B) Relationship between electrical resistivity and hydraulic conductivity and boxplots of the data grouped on the basis of fracture density. (C) Linear relationship between 
log-transformed porosity and hydraulic conductivity (Pearson’s r = 0.59). Symbols are outlined in black, and gray error bars indicate the averaged AEM-related subsurface 
response.
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showing increasing hydraulic conductivities (Fig. 3C). Hence, for 
the investigated Mancos Shale, low resistivity can be associated with 
having high porosity, hydraulic conductivity, and fracture density.

Determining geomorphic indices and vegetation types
Geomorphic indices were derived from high-resolution airborne 
LiDAR data, which were acquired in August 2015, using a Riegl 
Q1560 dual-channel LiDAR system (70). The point density exceeds 
8 pulse/m2. From the LiDAR point cloud, a digital terrain model 
(DTM) was computed, representing the bare ground at a spatial res-
olution of 0.5 m. The DTM was compared to real-time kinematic 
GPS measurements, showing root mean square errors of less than 
0.15 m (70). Using Landlab (71), we calculated the slope and aspect 
from a DTM that was smoothed and reduced in resolution to 5 m. 
The elevation ranges from 2700 to 3400 m, and slopes have a mean 
angle of 25.5°, with a maximum of 68.1°. Slopes are mostly oriented 
along two main directions, northeast and southwest.

Vegetation distribution was derived from WorldView-2 satellite 
imagery, acquired in September 2015. WorldView-2 provides pan-
chromatic images of 0.5-m resolution and multispectral imagery of 
eight bands including the visible and near-infrared ranges at spatial 
resolution of 2 m. Using pan sharpening, the multispectral image 
resolution was improved to 0.5 m (70). A supervised machine learn-
ing approach was used to estimate the plant community distribu-
tion, based on an extensive ground-truth dataset. The classification 
methodology is detailed in (70). The identified vegetation types 
were grouped into five classes: meadow plants, shrubs, deciduous 
and evergreen forests, and barren land. These classes account for 
57.8, 8.3, 15.3, 10.9, and 7.7% of ground cover, respectively.

Estimating regolith properties across the watershed 
and spatial variability of the influence of bedrock 
on geomorphic and vegetation properties
The inverted AEM data reveal differences between the lower and up-
per watersheds (Fig. 4), with the lower watershed generally showing 

lower resistivities. With higher resistivities (>500 ohm·m) than the 
surrounding Mancos Shale, the data also indicate the granodiorite 
laccoliths of Mt. Snodgrass, Mt. Gothic, and Mt. Crested Butte. 
Similarly, known outcrops of the granodiorite Copper Creek sill are 
related to resistivities >500 ohm·m east of GUM1. Beyond the vari-
ability within the Mancos Shale, the resistivity generally agrees with 
the geologic map, both spatially and along transects (Fig. 5). This 
suggests that subsurface electrical properties are a good proxy for 
distinguishing different geological units and characterizing het-
erogeneity within units such as the Mancos Shale. We also qualita-
tively compared the AEM-derived subsurface electrical resistivities 
with data acquired on the surface and in the boreholes (Fig. 6). Al-
though the surface and borehole data provide more detail than the 
AEM data, the datasets show comparable amplitude and feature 
distribution and are generally in agreement.

After establishing a relationship between borehole geophysical 
and regolith hydraulic properties, we test the hypothesis that 
geomorphic indices and vegetation type can be used to describe the 
bedrock electrical and hydraulic properties on a watershed scale. 
We explore relationships between the AEM-inverted shallow sub-
surface resistivity (i.e., the mean resistivity of the upper 20 m bgl) of 
the Mancos Shale–dominated units, and geomorphic indices (ele-
vation, slope, and aspect), and vegetation type (Figs. 7A and 8; (72)]. 
Given the local geology, the upper 20 m is generally representative 
of the subsurface response of the soil and weathered bedrock. The 
data show significant linear relationships between resistivity and the 
geomorphological indices, with increasing resistivity for increasing 
elevation and slope (Pearson’s r = 0.38 and 0.13, respectively, and 
P << 0.01). Higher elevations tend to have steeper slopes, which are 
mostly southeast (SE) or northwest facing. While resistivity and 
elevation show distinct distributions for the southern and northern 
Mancos Shale, slope and aspect have comparable distributions for 
both areas, although the northern Mancos Shale domain shows a 
higher portion of SE-facing slopes compared to the southern Mancos 
Shale domain. Vegetation type shows covariability with subsurface 

Fig. 4. AEM data covering the East River watershed. The figure shows the upper 100 m of each inverted flight line, placed above the surface topography. Topographic 
data are based on LiDAR data and colored using WorldView-2 data (72). Gaps in the AEM data are due to restrictions in access and air space. Shown also are the borehole 
locations and the outline of the cross section (dashed black line) shown in Fig. 5.
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resistivity (Fig.  8), where shrub- and meadow-covered areas are 
characterized by lower resistivities than those covered by forests. 
Within forests, deciduous tree types are related to lower-resistivity 
bedrock than conifers. The differences in these distributions are 
statistically significant. Exploiting those relationships, we train a 
machine learning method, called extremely randomized trees re-
gression (ERTr) model (73), to estimate shallow subsurface resistiv-
ities for each Mancos Shale domain. The data estimated using the 
regression models fit the measured data well (R2 = 0.64; Fig. 7B). 
Training a single model without considering the two domains sep-
arately failed, as the data fit, in particular for the northern Mancos 
Shale, deteriorated. The three geomorphological indices are of most 
importance to the ERTr model, with elevation, aspect, and slope 
having a relative feature importance of 0.29, 0.27, and 0.24, respec-
tively, and the vegetation having a relative importance of 0.07. Our 
results indicate a strong correlation between the surface topogra-
phy, geomorphology, and bedrock properties.

Using the ERTr model, we predict the shallow resistivity across the 
watershed from remotely sensed geomorphic indices and vegetation- 
type estimates (Fig. 9) and make use of the relationships devel-
oped from the borehole data to transform the resistivity to an 
estimate of fracture density. We used this intermediate step to over-
come the small number of borehole observations, which prevented 
us from directly linking the surface metrics to the fracture density. We 
limited the analysis to areas characterized by the Mancos Shale because 
the model was trained on data from this bedrock type only. Within the 
northern Mancos Shale, estimated resistivities are comparably high 
(265.9 ± 78.7 ohm·m), while the southern Mancos Shale shows consid-
erably lower resistivities (136.3 ± 60.8 ohm·m). The spatial variability of 
estimated fracture density shows distinct spatially connected fracture 
zones. In particular, the anomaly that characterizes PLM7 could possi-
bly be associated with a mapped fracture zone to the south of it (44). 
While the southern Mancos Shale shows numerous linear features hav-
ing low resistivity that are interpreted as fracture zones, the northern 
Mancos Shale shows resistive linear features in its southwestern part 
that relate to granodiorite outcrops on the eastern flank of Mt. Gothic. 
No fracture zones that could be related to areas of increased effective 
porosity are evident from the data within the northern Mancos Shale.

Previous approaches using geomorphic indices assumed a 
constant relationship between regolith thickness and geomorphic 
indices across a site [e.g., (19)]. To investigate the stationarity of the 
developed relationship, we calculated the model misfit and the SD 
of the governing topographic and vegetation metrics across the 
watershed (Fig. 10). We focused our analysis on 10 subcatchments, 
which were defined using a DTM with 1-m cell size, and as before 
limited our analysis on the part of the watersheds that are character-
ized by Mancos Shale. The relative root mean square error calculated 
on the basis of the observed and predicted resistivity values within 
each subcatchment varies between 5 and 12%. The smallest errors 
are in the northernmost part of the study area, and the highest er-
rors are in the eastern part. Linking the errors to the SD of the input 
parameters, we observe that, generally, lower variability in the input 
parameters results in smaller prediction errors. That indicates that 
the prediction is more accurate in smaller regions, where topo-
graphic metrics and vegetation distributions can more safely be 
considered to be stationary compared to larger regions that have 
more variability.

DISCUSSION
Our analysis provides the first study to test the covariability of 
above- and belowground features on a watershed scale. We cor-
relate shallow subsurface resistivity (<20 m bgl), which is a proxy 
for shallow bedrock properties, with topographic indices and vege-
tation cover and show that a linear correlation exists between the 
subsurface and surface properties. Other studies have developed 
similar relationships to link or predict subsurface properties from 
surface geomorphological observations, but their analysis was based 
on a small number of subsurface observations (74, 75). The correla-
tion between bedrock and vegetation distribution and productivity 
is shown by other studies and is linked to variations in water-holding 
capacity, fracture density, and nutrient supply (76–78). We show 
that steeper slopes generally relate to higher bedrock resistivity, which 
can be linked to a higher rock strength (79). This is explained by 
either a smaller effective porosity or fracture density, reduced water 
saturation of the rocks forming these slopes, or a combination. This 

Fig. 5. Comparison between AEM-derived subsurface resistivity distribution and geological cross section. Figure 4 shows the location of the cross section, which 
spans from west of Mt. Snodgrass to the eastern end of the watershed. The geological cross section was modified from (44). Note that the blended area in the top panel 
indicates the area that is not shown by the geological cross section.
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is in agreement with other studies that showed that steeper slopes 
are usually related to higher runoff and less groundwater infiltra-
tion [e.g., (23)], while increased soil erosion leads to a thinner soil 
cover (80), which also likely contributes to a higher aggregated re-
sistivity response.

By relating the subsurface with surface observations in an ERTr 
model, more than 64% of the data variability is explained. A multi-
dimensional relationship between surface parameters and subsur-
face properties indicates that (i) increases in slope and elevation are 
related to increases in resistivity and (ii) forests generally grow on 
higher-resistivity bedrock than meadows and shrubs do. Of the 
variability not explained by those parameters (36%), most are likely 
related to inherent bedrock properties (such as grade of metamor-
phism, mineralization, deep fractures, and faulting), and changing 
hydrogeochemical conditions that alter weathering rates and subsurface 

flow conditions (60,  81). This indicates that geomorphological 
models based on such relationships are able to recover general trends 
of subsurface conditions, but that they may fail in addressing the full 
heterogeneity, especially in cases of stratigraphically and tectonically 
complex geological conditions. Although those models provide a 
reasonable estimate, direct and geophysical observations are required 
to build a subsurface model that is representative of the local and 
regional subsurface conditions, and AEM data can be a valuable 
dataset to fill this lack of multiscale subsurface imaging. This approach, 
which combines multiscale measurements, presents an opportunity 
to investigate shallow bedrock properties in unprecedented detail 
across a watershed. It will allow us to parameterize hydrological 
models to study the impact of disturbances on mountainous water-
sheds and will aid in focusing future research efforts to target specific 
bedrock features identified from this high-resolution dataset. Our 

Fig. 6. Site geological and geophysical cross sections showing agreement between geologic map and subsurface resistivities. Shown are data of the upper water-
shed (A, B), and of the lower watershed (C). For GLS1 (A), and PLM7 and PLM8 (C) AEM data points are shown, highlighting the agreement between surface ERT and AEM 
data. For each borehole location, the results of in-hole ERT measurements are shown, which are also in agreement with the surface data. This highlights that subsurface 
resistivities are a suitable proxy for estimating subsurface conditions within the East River watershed. The geological cross sections were drawn on the basis of the geo-
logic map (44).
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approach could be extended by including geochemical and hydro-
logical measurements and linking those to various surface fea-
tures to estimate the spatial variability of these measurements [e.g., 
(82)]. However, such applications would also require a covariabil-
ity between surface and hydrobiogeochemical features, which has 
yet to be shown.

Although the East River watershed is known to be dominated by 
a single bedrock unit, Mancos Shale, we show that bedrock hydraulic 
properties vary systematically within this unit. While the northern 
Mancos Shale is characterized as a mostly unfractured shale with 
low effective porosity and low hydraulic conductivity, the southern 
Mancos Shale shows notable variability in those properties. These are 
controlled by deep faults and fracture zones that show high porosity 

and hydraulic conductivity, while outside those zones, porosity and 
hydraulic conductivity are low. The binary classification map of 
fracture density (Fig. 9B) relates many linear features in the southern 
Mancos Shale to extensive fracture zones, which were not evident 
in the northern Mancos Shale. From the ground-based ERT data 
(Fig. 6), a Popper-Bayes hypothesis testing method has recently 
been used to determine the geological origin of a low-resistivity 
anomaly at PLM7 (83). Their results show this anomaly to be repre-
sentative of a normal or high-angle reverse fault, or a potential sackung 
feature, which is located along one of those linear features (Fig. 9C). 
Fault and fracture zones are interpreted to not have a surface 
expression (such as at PLM7) but likely impose major control on 
hydrological processes, such as strong anisotropic flow (25). Hence, 

Fig. 7. Relationships between subsurface electrical resistivity and geomorphological indices. We analyzed 13,524 data points of colocated AEM-derived averaged 
shallow resistivity, slope, aspect, and vegetation types. (A) Cross-plots and distributions of mean subsurface electrical resistivity (<20 m bgl), elevation, topographic slope, 
and incoming shortwave radiation at AEM locations within the northern and southern Mancos Shale, as defined in Fig. 1. (B) Cross-plot of measured and estimated elec-
trical resistivity. Estimation based on random forest regression using elevation, slope, radiation, and vegetation type (72) as estimators. The random forest regression 
model explains 64% of the data variance.
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modeling approaches that neglect the fracture control will not fully 
capture watershed behavior as it pertains to preferential fluid flow 
and transport. Similarly, Mancos Shale is a thick formation [up to 
1500 m; (48)], which shows lateral and vertical heterogeneities in 
hydrological properties due to alternating depositional environ-
ments that range from shallow to deep water. Although not dis-
cussed in detail here, hydrological conditions are expected to vary 
considerably between different bedrock types, e.g., the granodiorite 

of the laccolithic intrusions potentially outweighing the intra–Mancos 
Shale variability.

Despite the linear features that are related to fracture zones, the 
southern Mancos Shale generally shows lower resistivities than the 
northern domain, which is associated to a change in grade of meta-
morphism and pore fluid conductivity but could also be associated 
with changes in the depositional regime of the Mancos Shale. Be-
cause the pore fluid conductivity is directly linked to the bulk re-
sistivity response of the subsurface, we investigated the potential 
impact of this parameter on our results. However, changes in pore 
fluid conductivity cannot solely explain the observed resistivity dif-
ferences between the upper and the lower watershed. Rock sample 
analysis indicates a general trend of increasing shale metamorpho-
sis toward higher elevations of the watershed, changing the miner-
alogical composition (60), due to proximity to intrusive rocks and 
hence changes in hydrothermal conditions (81). Higher grades of 
metamorphism are assumed to relate to a higher resistivity. The 
location where the AEM data map the change agrees with previous 
results that indicate shale induration at a similar location (81). The 
observed gradient in pore fluid conductivity of the boreholes likely 
represents different geochemical environments within the watershed 
including those that span adjacent hillslopes. These differences in 
hydrological and geochemical conditions are interpreted to affect 
seasonal variations in concentration-discharge relationships as dif-
ferent landscape components become hydrologically activated at 
different times of the water year (84).

The scale and resolution of geophysical measurements are critical 
in studying the heterogeneity of watersheds. While borehole and sur-
face geophysical techniques provide high-resolution data (centimeters 

Fig. 8. Distribution of Mancos Shale shallow resistivity (<20 m bgl) for differ-
ent vegetation types. Analyzed resistivity is the mean of the upper 20 m bgl; veg-
etation types were derived from hyperspectral data (72).

Fig. 9. Predicted shallow subsurface resistivity and fracture density. (A) Resistivity is predicted using an ERTr (73) model, using topographic elevation, slope, aspect, 
and vegetation type as estimators. The variation in resistivity (low resistivity in the lower watershed, high resistivity in the upper watershed) agrees with observational 
studies (60) showing a higher degree of metamorphism in the upper watershed. (B) Fracture density is defined on the basis of the relationship gained from the borehole 
data using a resistivity of 70 ohm·m. Linear features showing areas of high fracture density are postulated to correspond to fracture zones. (C) The area of the fracture zone 
analyzed in (83) lies along the estimated and known fracture zones.
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to meters), these measurements are usually restricted to the hillslope 
scale, and hence, sampling of watershed heterogeneity at scales 
more directly relevant to water managers is almost impossible. 
AEM measurements complement these techniques to provide bed-
rock resistivity at the watershed scale at a resolution that is adequate 
to study larger-scale bedrock variability and faults. To bridge the 
resolution, we only consider an aggregated response for the AEM 
measurements and define a dimensionless bulk measure, high or 
low fracture density, to interpret the estimated shallow bedrock 
resistivity, while we define the electrical response of the bedrock 
column in detail at borehole locations. By using this aggregated 
response and considering the sensitivity of the airborne measure-
ments, we assume that most of the response originates from the 
shallow bedrock and in the saturated zone. Because surface deposits 
are thin throughout the watershed and water tables usually close to 
the surface (<10 m bgl), this assumption is valid but could be violated 
at other research sites. In addition, this study focuses primarily on 
a single unit, the Mancos Shale, to better isolate the relationship 
between resistivity and fracture density, which may be more com-
plex when considering multiple geologic units. Although we show 
that AEM and borehole and surface geophysical data provide com-
parable responses at our study site, this may not be generally the 
case. Because the measurement principles are different, the sub-
surface response may be different too. The quantitative comparison 
between borehole, surface, and airborne geophysical methods therefore 
requires still more research.

In conclusion, we show that variations in geomorphic properties 
and vegetation types correlate with bedrock properties and that these 

bedrock properties vary considerably throughout a single geological 
unit, the Mancos Shale. This change is governed by variations in 
fracture density and pore water conductivity, which affect subsur-
face flow and transport processes. We postulate that the tectonic 
history, including the laccolith intrusions, changed the Mancos Shale 
mineralogical composition and created a complex fracture network 
in the East River watershed, which are both expressed in the electri-
cal resistivity of the bedrock. Those heterogeneities, in turn, control 
geomorphological processes, such as soil production and erosion, 
and the ecohydrological parameter distributions, which are ultimately 
expressed in vegetation distribution. Hence, models aiming to as-
sess the impact of disturbances on groundwater flow and transport 
dynamics should incorporate these heterogeneities to address the 
complexity of subsurface processes, as these affect current and 
future concentration-discharge relationships (3). This feedback, 
however, is complex and more work is required to understand the 
coevolution of subsurface features and geomorphological and vege-
tation dynamics.

A thorough multiscale subsurface characterization of a water-
shed from plot to regional scale enables detailed understanding and 
modeling of subsurface flow and transport to assess and predict the 
impact of disturbances onto a complex hydrological system. While 
we show this applied to the mountainous East River watershed, 
similar observations are expected from headwater to coastal systems, 
where bedrock properties are critical for groundwater research and 
management. The results of our study support the validity of geo-
morphological models that use surface expressions to estimate bed-
rock properties yet highlight some of the limitations of these models. 

Fig. 10. Spatial variability of prediction accuracy. (A) Relative root mean square error (RRMSE) of the predicted resistivity values for several sub-basins within the 
Mancos Shale–dominated part of the East River watershed. Variability of the prediction inputs plotted against (B) elevation, (C) slope aspect and (D) angle, and (E) percentage 
of the basin covered by the dominant vegetation type.
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We also showed that these relationships are not stationary, with 
areas of less variability in surface metrics related to smaller model 
misfits. We envision that the geomorphology and vegetation distri-
bution can be used to scale the subsurface properties from the geo-
physical data locations to a larger scale, as well as to guide subsurface 
characterization in such a way to identify the key regions for quan-
tifying the subsurface-surface covariability.

MATERIALS AND METHODS
Experimental design
Our analysis builds upon drilling data, near-surface and airborne 
geophysical data, and remote sensing data acquired within the East 
River watershed (35, 57, 72). These techniques were chosen not only 
to characterize bedrock properties in detail but also to provide data 
representing the variability of subsurface conditions throughout the 
watershed. The watershed contains designated areas of wilderness 
and private land that were not accessible; hence, data acquisition 
was restricted to locations within a permit provided by the U.S. For-
est Service. AEM data were acquired in 2017 (35), and on the basis 
of those results, which show large-scale variations in bedrock prop-
erties, borehole locations and accompanying surface geophysical 
surveys were placed. Those locations provide detailed information 
on bedrock properties representative of different bedrock features 
identified from the AEM data. Within previous studies, detailed 
topographic data were collected using airborne LiDAR measure-
ments, and vegetation has been classified using hyperspectral data 
(70, 72). Both datasets were used in this study and provided data 
across the entire watershed at 0.5-m resolution.

Borehole drilling and geophysical logging
Boreholes were drilled using rotary drilling, with core recovery 
throughout the Mancos Shale. With the exception of GLS1, which 
could be logged with an open hole, borehole stability required im-
mediate installation of polyvinyl chloride casing; hence, geophysical 
logging was performed in the cased borehole. This limited the num-
ber of geophysical parameters that could be measured. Along with 
fluid temperature and conductivity (Fig. 2), we acquired electro-
magnetic induction, spectral gamma, and heat pulse and spinner 
flow data using Mount Sopris QL-40 borehole tools (Mount Sopris 
Instruments, Denver, CO). Borehole nuclear magnetic data were 
recorded at 1-m intervals using a Vista Clara Javelin system [Vista 
Clara Inc., Mukilteo, WA; (85)]. The raw data were inverted for 
T2 relaxation time distribution (62), which, in turn, was used to 
calculate depth-resolved total porosity and permeability (86). The 
permeability was calculated on the basis of the Schlumberger- Doll-
Research model (SDR) and transformed into hydraulic conductivity 
following (87)

  K = k(g / )  

with the gravity g, density , and dynamic viscosity  of water. 
The parameters of the SDR model, i.e., the formation-dependent 
variable C, were calibrated using constant head step tests (88), 
performed in GLS1 and GUM1, by minimizing the difference be-
tween the measured and estimated hydraulic conductivities. Re-
covered cores were examined and photographed and are archived 
at the U.S. Geological Survey core repository in Denver, Colorado 
(56). The core observations were used to identify fractures at each 

borehole location (Figs. 1 and 2) and to derive an estimate of the 
fracture density.

Near-surface and borehole geophysical imaging
ERT data were acquired along the surface and within the boreholes 
using an AGI SuperSting R8 system (AGIUSA, Austin, TX) to 
obtain high-resolution images of the subsurface electrical resistivity 
distribution. At the surface, data were acquired using 112 electrodes 
at 5-m spacing and using a dipole-dipole acquisition scheme, with 
dipole lengths a of 5, 10, 15, 20, 25, 30, 35, and 40 m. For the bore-
hole measurements, 56 electrodes at 0.6-m spacing were used, using 
a dipole-dipole array with dipole lengths a of 0.6, 1.2, 1.8, 2.4, and 
3.0 m. For both, dipole separations of 1 to 8a were used. The data 
were inverted using a finite element, fully parallelized inversion 
code [E4D, (89)], using an L2 norm for the model misfit. The final 
misfit for the surface data ranged from 2.1 to 3.1% and from 1.6 
to 3.9% for the borehole data. To represent the resistivity variation 
around the borehole, we extracted the resistivities between a dis-
tance of 0.5 and 1.0 m from the center of the borehole and averaged 
those values at 0.5-m intervals along the depth of the borehole. The 
data were then used to calculate the petrophysical relationships 
(Fig. 3). To account for the different resolution of borehole NMR 
and ERT, we applied a Gaussian filter with a characteristic length of 
1 m to both datasets.

AEM imaging
AEM data were acquired using a helicopter-mounted VTEM-ET 
system, which has a 17.4-m diameter transmitter loop with two 
turns. To create a primary electromagnetic field, a current of 230 A 
was introduced in this loop and turned off rapidly within 500 s. 
This primary field then introduces eddy currents within the subsur-
face, which create a secondary electromagnetic field that is sampled 
by the receiver coil from 5.2 s to 8.8 ms after the current turnoff. 
Given topographic and access restrictions, AEM flight paths were 
designed to allow for dense sampling of subsurface properties. AEM 
data were manually edited to remove the influence of noise from 
man-made structures such as powerlines or nearby buildings, and 
soundings were averaged into regular 1-s output intervals (roughly 
50-m spacing along flight lines). Deterministic inversions of the 
processed AEM data were performed using the AarhusINV code 
(90) implemented in the Aarhus Workbench software (v. 6.3.0.0, 
Aarhus Geosoftware, Aarhus, Denmark). A smooth, laterally con-
strained, 30-layer model was used with layer-top depths ranging 
between 4 and 800 m and layer thickness increasing with depth 
(35). The maximum phase angle parameterization (91) was used 
to estimate electrical resistivity values for each layer, along with 
additional parameters needed to fit induced polarization effects ob-
served in portions of the data. An estimated depth of investigation 
(DOI) for each sounding location was calculated (92) and indicates 
the depth to which data constrain parameter estimates. Before 
further analysis, soundings with poor convergence of the inversion 
(2 > 1.5), resistivities deeper than the DOI, and values <5 ohm·m 
were removed from the dataset.

Statistical analysis
For the analysis of subsurface resistivity with regard to topographic 
and vegetation indices, we first averaged the data of the upper 20 m 
and transformed it into log space. This depth was defined on the 
basis of the characteristics of the AEM acquisition system but also 
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assumed to be a reasonable depth to which bedrock properties af-
fect surface conditions. To do the regression analysis, the slope and 
aspect were estimated from the LiDAR-derived digital elevation 
model using Landlab (71). Elevation, slope, and aspect were averaged, 
and the most abundant vegetation type was calculated across a 100-m 
radius around each AEM sounding point located within areas char-
acterized by Mancos Shale (Fig. 1). For this analysis, we tested radii 
between 10 and 250 m. While correlation between these parameters 
and the resistivity increased significantly from 10 to 100 m, at radii 
above 100 m, correlation increased only slightly. Hence, we chose 
100 m as the length scale for our analysis, which is also comparable 
to the shallow footprint of the AEM system. The ERTr model (73) 
was trained on the scaled data of the southern and northern Mancos 
Shale, using the scikit-learn package for machine learning in Python 
(93). From the 13,524 data points, 10,819 were used to train the 
model and 2705 for validation. The model was then applied to a 20 m 
by 20 m grid covering the northern and southern Mancos Shale do-
mains. Equal to the training data, for each grid cell, elevation, slope, 
and aspect were averaged, and most abundant vegetation type was 
estimated for a radius of 100 m, before applying the regression model. 
Using a threshold of 70 ohm·m, the inverted resistivities were trans-
formed into areas of low and high fracture density.

A single regression model could not explain the measured data 
to an acceptable level. Instead, we had to include the subdomain 
as a feature, which emphasizes the control of bedrock geology and 
properties on subsurface resistivity. This also shows that, while the 
approach is transferable, the model and relationships may not be 
applicable to a different watershed or even a different domain (e.g., 
characterized by a different bedrock type) within the same water-
shed. We applied a similar analysis to smaller domains and found 
increasing correlation between surface and subsurface variables with 
decreasing domain size. We attribute this behavior to the increasing 
complexity of domains covering wider areas. Simple relationships 
may be able explain subsurface properties on a small scale [e.g., 
(70)], but the same relationships may have limited applicability to a 
different or wider domain. Nevertheless, this study provides further 
evidence that surface topographic features are controlled by sub-
surface properties and that geomorphological models can provide 
first-order estimates of subsurface properties, while geophysical 
studies can provide detailed subsurface information.
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