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Abstract

A constrained optimization problem for the Fourier transform

by

Dominique Maldague

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Christ, Chair

Among functions f majorized by indicator functions 1E, which functions have maximal ratio
} pf}q{|E|

1{p? We investigate the existence of maximizers, using a concentration compactness
approach and ingredients from additive combinatorics to establish properties of maximizing
sequences. For exponents q sufficiently close to even integers, we exploit variational tech-
niques and combinatorial results to identify all maximizers. This follows from establishing a
sharper version of an associated inequality: if the input pf, Eq, where |f | ď 1E, has a certain

structure, then the ratio } pf}q
|E|1{p

is at least a certain quantitative distance from being optimal.

1



Dedicated to my loving partner Franco, my brother Alex, and my therapist Ava, who
supported me while I was a graduate student. Also dedicated to all of the women who I am

lucky to have in my family, including my mom Laurie, Sandra, Lorraine, Lucie, Isabelle,
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Chapter 1

Introduction

Define the Fourier transform as Fpfqpξq “ pfpξq “
ş

Rd e
´2πix¨ξfpxqdx for a function f : Rd Ñ

C. The Fourier transform is a contraction from L1pRdq to L8pRdq and is unitary on L2pRdq.

Interpolation gives the Hausdorff-Young inequality } pf}q ď }f}p where p P p1, 2q, 1 “ 1
p
` 1

q
.

In [2], Beckner proved the sharp Hausdorff-Young inequality

} pf}q ď Cd
q}f}p (1.1)

where Cq “ p1{2pq´1{2q. In 1990, Lieb proved that Gaussians are the only maximizers of

(1.1), meaning that } pf}q{}f}p “ Cd
q if and only if f “ c expp´Qpx, xq ` v ¨ xq where Q is

a positive definite real quadratic form, v P Cd and c P C. In 2014, Christ established a
sharpened Hausdorff-Young inequality by bounding } pf}q ´Cd

p}f}p by a negative multiple of
an Lp distance function of f to the Gaussians.

In [16], Christ studied the existence of maximizers for the ratio }x1E}q{|E|
1{p where E Ă Rd

is a positive Lebesgue measure set. For d ě 1, q P p2,8q, and p “ q1, define

Aq,d :“ sup
|E|ă8

}x1E}q
|E|1{p

where the supremum is taken over Lebesgue measurable subsets of Rd of finite measure.
Building on the work of Burchard in [7], Christ identified maximizing sets to be ellipsoids for
exponents q ě 3 sufficiently close to even integers [16]. This dissertation presents analogous
results for a related inequality.

Our variant of the Hausdorff-Young inequality replaces indicator functions by bounded
multiples and modifies the functional as follows. For d ě 1, q P p2,8q, and p “ q1, we
consider the inequality

} pf}q ď Bq,d|E|
1{p (1.2)
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and define the quantities

ΨqpEq :“ sup
|f |ăE

} pf}q
}1E}p

(1.3)

Bq,d :“ sup
E

ΨqpEq (1.4)

where |f | ă E means |f | ď 1E and the supremum is taken over all Lebesgue measurable sets
E Ă Rd with positive, finite Lebesgue measures. This quantity Bq,d satisfies Bq,d ď Cd

p by
their definitions and Bq,d ă Cq,d by [16]. The supremum (1.4) is equal to

sup
fPLpp,1q

} pf}q
}f}L

where }f}L “ inft}a}`1 : |f | “
ÿ

n

an|En|
´1{p1En , an ą 0, |En| ă 8u.

We prove this equivalence in Proposition 5 in §2.1. Lorentz spaces can be defined by real
interpolation between Lp spaces. Since the quasinorm } ¨ }L induces the standard topology
on the Lorentz space Lpp, 1q, this is a natural quantity to study.

Christ used continuum versions of theorems of Balog-Szemerédi and Frĕıman from addi-
tive combinatorics to understand the underlying structure of functions with nearly optimal
ratio } pf}q{}f}p in [15] and for sets E with nearly optimal ratio }x1E}q{}1E}p in [16]. We use
similar techniques to prove properties of maximizing sequences for (1.1). Our most complete
result is Proposition 28, which describes a localization property for maximizing sequences.
The full precompactness result is presented in the following conjecture.

Conjecture 1. Let d ě 1 and q P p2,8q, p “ q1. Let pEνq be a sequence of Lebesgue
measurable subsets of Rd with |Eν | P R` and let fν be Lebesgue measurable functions on

Rd satisfying |fν | ď 1Eν . Suppose that limνÑ8 |Eν |
´1{p} pfν}q “ Bq,d. Then there exists a

subsequence of indices νk, a Lebesgue measurable set E Ă Rd with 0 ă |E| ă 8, a Lebesgue
measurable function f on Rd satisfying |f | ď 1E, a sequence pTνq of affine automorphisms
of Rd, and a sequence of vectors vν P Rd such that

lim
kÑ8

}e´2πivνk ¨xfνk ˝ T
´1
νk
´ f}p “ 0 and lim

kÑ8
|TνkpEνkq∆E| “ 0.

There is an open technical difficulty to proving the above conjecture, which is presented
as Question 9 in §4.

Proposition 2. If there is an affirmative answer to Question 9, then the claim in Conjecture
1 holds.

The conditional existence of maximizers is a direct consequence. A simplified outline of
this partial argument is as follows.

1. Begin by proving basic principles of concentration compactness: “no slacking” and
“cooperation” (see §3.1).
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2. If |f | ď 1E with |E| “ 1 satisfies } pf}q ě η for η ą 0, then f satisfies a related Young’s
convolution inequality: for appropriate γ, r, s, }|f |γ ˚ |f |γ}r ě ηs.

3. By continuum analogues of theorems of Balog-Szemerédi and Frĕıman, |f | ď 1E with
|E| “ 1 satisfying }|f |γ ˚|f |γ}r ě ηs must place a portion of its Lp mass on a continuum
multiprogression of controlled rank and Lebesgue measure.

4. Combine concentration compactness principles with the specific additive structure we
have from the relation to Young’s convolution inequality to conclude that a function
|f | ď 1E satisfying } pf}q ě p1 ´ δqBq,d|E|

1{p for small δ ą 0 is mostly supported on a
multiprogression of controlled rank and size.

5. By precomposing a near-extremizer with an affine transformation T , we can change
variables to guarantee that the continuum multiprogression is mostly contained in
Zd ˆ r´δ, δsd. We must guarantee that the Jacobian of T is bounded below since
otherwise we could trivially collapse any bounded set to a small neighborhood of the
origin.

6. The Fourier transform of a function living on Zd ˆ r´δ, δsd decomposes into a discrete
and a continuous Fourier transform, and a near-extremizer for (1.2) must be a near-
extremizer of each step of the decomposition. Since near-extremizers of the discrete
Fourier transform must mostly be supported on a single n P Zd, this gives extra
structure. We prove that the only multiprogression structure which is favorable at
each step of the decomposition is one mostly contained in a single convex set r´δ, δs.

7. If |f | ď 1E is a near-extremizer, then pf | pf |q´2 is a near-extremizer of a related dual
inequality (see §2.2). The above reasoning may also be carried out for this dual in-
equality, except for step (6), which may or may not be true in the dual setting. If step
(6) holds in the dual setting, we conclude that a significant portion of the Lp mass of

f and pf must be localized to ellipsoids (or other convex sets) of controlled size.

8. Via a composition with an affine transformation and modulation by a character, we can
assume that f and pf are localized (respectively) to the unit ball B and and ellipsoid
E centered at the origin. We prove a reversed uncertainty bound: |E ||B| ď C and
furthermore E Ă CB for an appropriate C ą 0.

9. It follows that for any sequence of function |fν | ď 1Eν with |Eν | P R` and

} pfν}q|Eν |
´1{p Ñ Bq,d, after pfν , Eνq is renormalized to pFν , Aνq by appropriate symme-

tries of the inequality, we have weakly convergent subsequences of Fν and 1Aν . Finally,
we get Lp convergence via a convexity argument involving the } ¨ }L norm.

If we restrict the exponents q, then our results are much more complete. In Chapter 6,
we prove Bq,d “ Aq,d, identify the maximizers, and prove a quantitative stability result for
the inequality

} pf}q ď Bq,d|E|
1{p (1.5)
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when q is near an even integer m ě 4. We define some notation in order to state our main
theorem. Let E denote the set of ellipsoids in Rd. Let A∆B denote the symmetric difference
pAzBq Y pBzAq. For any Lebesgue measurable subset E Ă Rd with |E| P p0,8q, define

distpE,Eq :“ inf
EPE

|E∆E|

|E|
(1.6)

where the inf is taken over all ellipsoids satisfying |E | “ |E|. Let L denote the set of affine
functions L : Rd Ñ R. For eig P L2pEq with g real-valued, define

distEpe
ig,Lq :“ inf

LPL
}eig ´ eiL}L2pEq. (1.7)

Theorem 3. Let d ě 1. For each even integer m P t4, 6, 8, . . .u there exists δpmq ą 0 such
that the following conclusions hold for all exponents satisfying |q ´ m| ď δpmq. Firstly, if
E Ă Rd is a Lebesgue measurable set of finite measure, and f, g are real-valued functions
with 0 ď f ď 1, then

Bq,d “ }
{feig1E}q{|E|

1{p

if and only if feig1E “ eiL1E , for some L P L and E P E. Secondly, there exists cq,d ą 0 such
that for every set E Ă Rd with |E| “ 1, and for all real-valued functions f, g with 0 ď f ď 1,

}{feig1E}
q
q ď Bq

q,d ´ cq,d
“

}f ´ 1}L1pEq ` distEpe
ig,Lq2 ` distpE,Eq2

‰

. (1.8)

This theorem refines (1.5) by bounding Bq,d´}
pf}q{|E|

1{p below by a function of a distance
of pf, Eq to the set of maximizers (or extremizers) of (1.5). The optimality of the L1 norm
and exponent 1 in }f ´ 1}L1pEq is proved in Lemma 50. The optimality of the L2 norm and
exponent 2 in distEpe

ig,Lq2 from (1.8) is proved in §6.8.1. The optimality of the exponent 2
of distpE,Eq2 is addressed in [16].

We rely on the hypothesis that q is near an even integer m ě 4 to identify maximizers.
For q P p2,8q not near an even integer, it is not known which sets E maximize }x1E}q{|E|

1{p.
Furthermore, if q “ 2m for Z Q m ě 2, then for any |f | ď 1E where E is a Lebesgue
measurable set and |E| P p0,8q, we have the inequality

} pf}qq “ }f ˚ ¨ ¨ ¨ ˚ f}
2
2 ď }1E ˚ ¨ ¨ ¨ ˚ 1E}

2
2 “ }

x1E}
q
q (1.9)

where the convolution products are m-fold. The failure of } pf}q ď }x|f |}q for general f P Lq
1

was shown for q “ 3 by Hardy and Littlewood and for all other exponents not in t2, 4, 6, . . .u
by Boas [5]. Thus it is not obvious that Bq,d is no larger than Aq,d. By Theorem 3, ellipsoids
are among maximizers for certain exponents q, so the following corollary is an immediate
consequence.

Corollary 4. Let d ě 1. For each even integer m P t4, 6, 8, . . .u there exists δpmq ą 0 such
that if |q ´m| ď δpmq, then Bq,d “ Aq,d.

This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship under Grant No. DGE 1106400.
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Chapter 2

Different versions of the inequality

2.1 An inequality for the Lorentz space Lpp, 1q

There are many quasinorms which induce the same topology on Lpp, qq spaces. For the
special case of p ą 1 and q “ 1, we will show that our extremization problem can be phrased
using various quasinorms (and one norm defined by Calderón) on Lpp, 1q. Let Bq,d be as
before.

Definition 1. Let d ě 1. Define }f}L for a measurable function f : Rd Ñ R by

}f}L “ inft}panq}`1 : |f | “
ÿ

n

an|En|
´1{p1En , an ě 0, |En| ă 8u.

The following definitions 2, 3, and 4 are from Chapter V, §3 in [36].

Definition 2. Let d ě 1. Define f˚ for t ą 0 by

f˚ptq “ inftr : |tx : |fpxq| ą ru| ď tu.

Definition 3. Let d ě 1, 1 ď p ă 8, q the conjugate of p. Define }f}˚p1 for a measurable
function f : Rd Ñ R by

}f}˚p1 “
1

p

ż 8

0

t´1{qf˚ptqdt.

Definition 4. Let d ě 1, 1 ď p ă 8, q the conjugate of p. Define }f}p1 for a measurable
function f : Rd Ñ R by

}f}p1 “
1

p

ż 8

0

t´1{q´1

ż t

0

f˚puqdudt.

Definition 5. Let d ě 1, 1 ď p ă 8. The space Lpp, 1q is defined as all measurable functions
f : Rd Ñ C satisfying }f}˚p1 ă 8.

5



See the appendix for the relationships between } ¨ }L, } ¨ }˚p1, and } ¨ }p1, and that they
generate the same topology on Lpp, 1q. In particular, it is proved that }f}L “ }f}

˚
p1 for all

measurable f : Rd Ñ C (where one quantity is infinite if and only if the other quantity is as
well).

Proposition 5. For d ě 1, q P p2,8q, and p the dual exponent to q,

Bq,d “ sup
fPLp

} pf}q
}f}L

.

Proof. Let |f | “
ř

n an|En|
´1{p1En where an ě 0 and |En| ă 8. Then }f}p ď

ř

n an, so
}f}p ď }f}L. By the Hausdorff-Young inequality, the constant AL defined by

AL :“ sup
fPLp

} pf}q
}f}L

(2.1)

is finite.
We want to show that Bq,d :“ sup|E|ă8 sup|f |ă1E

} pf}q
|E|1{p

“ supfPLp
} pf}q
}f}L

“: AL.

If |f | “
ř

an|En|
´1{p1En with an ě 0, |En| ă 8, then

} pf}q
ř

|an|
ď

ř

|an||En|
´1{p}y1En}q

ř

|an|
ď Bq,d,

so AL ď Bq,d.
For the other direction, since simple functions are dense in LppRdq, it suffices to consider

f “
ř

an1An where An are disjoint and f is majorized by the indicator of a Lebesgue

measurable set E of size one. Then
ř

|an||An|
1{p ď |E|1{p

ř

|an| “ |E|
1{p}f}1 ď |E|

1
p
`1
“ 1.

Rearranged, this means

} pf}q “
} pf}q
|E|1{p

ď
} pf}q

ř

|an||An|1{p
ď
} pf}q
}f}L

,

so Bq,d ď AL.

Lemma 6. If f P Lpp, 1q satisfies Bq,d “ }f}
´1
L }

pf}q, then

f “ aeiϕ1E

for some scalar a P R`, Lebesgue measurable function ϕ : Rd Ñ R, and a Lebesgue measur-
able set E of finite measure.

Proof. By Lemma 60, we also have that Bq,d “ p}f}
˚
p1q

´1} pf}q. Let E “ tpy, sq : |fpyq| ą su.
Let eiϕ “ f{|f | so we can use the layer cake representation

fpxq “ eiϕpxq
ż 8

0

1Epx, tqdt.
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Then

} pf}q “

›

›

›

›

›

ˆ
ż 8

0

eiϕpxq1Epx, tqdt

˙

p

›

›

›

›

›

q

“

›

›

›

›

ż 8

0

zeiϕ1Epξ, tqdt

›

›

›

›

q

ď

ż 8

0

}zeiϕ1Epξ, tq}qdt

ď

ż 8

0

Bq,d |tx : |fpxq| ą tu|1{p dt

“ Bq,d

ż 8

0

ż |tx:|fpxq|ątu|

0

1

p
u´1{qdudt

“ Bq,d

ż |tx:|fpxq|ą0u|

0

ż f˚puq

0

1

p
u´1{qdtdu “ Bq,d}f}

˚
p1.

Since Bq,d “ p}f}˚p1q
´1} pf}q, the above sequence of inequalities are actually equalities.

Equality in the Minkowski integral inequality implies that for a.e. pξ, tq P Rd ˆ R`,

zeiϕ1Epξ, tq “ hpξqgptq

for some measurable functions h, g. Since eiϕ1Epx, tq P L
2, in particular, h and qh in L2.

1Epx, tq “ e´iϕpxqqhpxqgptq.

But then for every px, tq satisfying |fpxq| ą t, we have

e´iϕpxqqhpxqgptq “ 1.

Suppose |fpxq| ą |fpyq| ą 0. Then for all 0 ď t ă fpyq,

e´iϕpxqqhpxq “ gptq´1
“ eiϕpyq}hpyq,

which is a contradiction unless |fpxq| is constant on its support. Thus f takes the form
aeiϕ1S where S “ supp f and a P R`.

The conditional existence corollary to Proposition 2 in terms of Lorentz norms is

Corollary 7. Suppose that there is an affirmative answer to Question 9. Let d ě 1, p P p1, 2q,

q the conjugate exponent of p. First, we have
Bq,d
q
“ sup0“gPLpp,1q }g}

´1
p1 }pg}q. Second, if

f P Lpp, 1q satisfies
Bq,d
q
“ }f}´1

p1 }
pf}q, then

f “ aeiϕ1E

for some scalar a P R`, Lebesgue measurable function ϕ : Rd Ñ R, and a Lebesgue measur-
able set E of finite measure.

See §5.4 for the proof of the Corollary 7.

7



2.2 The dual inequality

Recall the definition of the optimal constant Bq,d

Bq,d “ sup
0ă|E|ă8

sup
|f |ď1E

} pf}q
|E|1{p

.

By exploiting Lp duality and Plancherel’s theorem, we also have the expressions:

Bq,d “ sup
|E|ă8

sup
|f |ď1E

sup
}g}pď1

|x pf, gy|

|E|1{p
“ sup
|E|ă8

sup
}g}pď1

x1E, |pg|y|

|E|1{p
,

the last of which motivates the following definition.

Definition 6. Let d ě 1 and q P r1,8q, and p be the conjugate exponent to q. Define the
norm } ¨ }q,˚ of a function g P LqpRdq to be

}g}q,˚ “ sup
0ă|E|ă8

|E|´1{p

ż

E

|g|

where the supremum is taken over Lebesgue measurable subsets E Ă Rd of positive, finite
measure.

Note that by Hölder’s inequality, if g P Lq, then }g}q,˚ ď }g}q ă 8. Thus for f P Lp with
p P p1, 2q and q the conjugate exponent,

} pf}q,˚ ď }f}p

is a corollary of the Hausdorff-Young inequality.

Proposition 8. For d ě 1, q P p2,8q, and p the dual exponent to q,

Bq,d “ sup
}f}pď1

} pf}q,˚.

Furthermore, if |f | ď 1E, |E| ă 8 satisfies } pf}q ě p1´ δqBq,d|E|
1{p for some δ ą 0, then

}p| pf |q´2
pfqq}q,˚ ě p1´ δq

qBq,d}|
pf |q´2

pf}p.

Proof. Let f P LppRdq. Consider a Lebesgue measurable set E Ă Rd of finite measure such

that | pf | “ 0 a.e. on E and write pf “ e´iϕ| pf | for a real-valued phase function ϕ equal to 0

off of the support of pf . Using Plancherel’s theorem and Hölder’s inequality, we then have

|E|´1{p

ż

E

| pf | “ |E|´1{p

ż

1Ee
iϕ
pf “ |E|´1{p

ż

zeiϕ1Ef

ď |E|´1{p
}zeiϕ1E}q}f}p

ď Bq,d}f}p,

8



so that sup
}f}pď1

} pf}q,˚ ď Bq,d.

Now suppose that for |f | ď 1E, |E| ă 8, and δ ą 0 we have } pf}q ě p1 ´ δqBq,d|E|
1{p.

Then | pf |q´2
pf P Lp since }| pf |q´2

pf}pp ““ }
pf}qq. Then

ż

E

ˇ

ˇ

ˇ

ˇ

´

| pf |q´2
pf
¯

q

ˇ

ˇ

ˇ

ˇ

ě

ż

|f |

ˇ

ˇ

ˇ

ˇ

´

| pf |q´2
pf
¯

q

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ż

f
´

| pf |q´2 pf
¯

q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

pf | pf |q´2 pf

ˇ

ˇ

ˇ

ˇ

“

ż

| pf |q

ě p1´ δqqBq
q,d|E|

q{p.

Rearranging and using that }| pf |q´2
pf}p “ } pf}

q{p
q ď B

q{p
q,d |E|

q{p2 ,

|E|´1{p

ż

´E

ˇ

ˇ

ˇ

ˇ

´

| pf |q´2
pf
¯

p

ˇ

ˇ

ˇ

ˇ

ě p1´ δqqB
q´q{p
q,d }| pf |q´2

pf}p “ p1´ δq
qBq,d}|

pf |q´2
pf}p,

proving that we can find g P Lp such that }pg}q,˚}g}
´1
p is arbitrarily close to Bq,d.

For q P p2,8q and p the conjugate exponent of q, the inequality

}pg}q,˚ ď Bq,d}g}p. (2.2)

is amenable to the same analysis as our main inequality p1.2q, and each lemma we prove
about (1.2) will have an analogue for this dual inequality.
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Chapter 3

Structure of near-maximizers

3.1 Quasi-extremal principles

We establish the quasi-extremal principles “no slacking” and “cooperation”. No slacking
guarantees that every part of a near-extremizer is a quasi-extremizers. Cooperation guaran-
tees that these small parts work together in a compatible way (e.g. have nontrivial intersec-
tion of supports).

Definition 7. Let d ě 1, q P p2,8q and p “ q1. A nonzero function f satisfying |f | ď 1E P L
p

is a δ-quasi-extremizer for (1.2) if

} pf}q ě δBq,d|E|
1{p.

By a quasi-extremizer, we mean a δ-quasi-extremizer for some small δ ą 0.

3.1.1 No slacking

Lemma 9 (No slacking). For any p, q P p1,8q there exist c, C0 ă 8 with the following
property. Let δ ą 0, |E| ă 8, |f | ď 1E. Suppose that

} pf}q ě p1´ δqBq,d|E|
1{p.

Suppose that f “ g ` h where g “ 1Af, h “ 1Bf , and AXB “ H, and that

|B| ě C0δ|E|.

Then
}ph}q ě cδ|E|1{p.

Proof. There exists C ă 8 such that for any G,H P Lq,

}G`H}qq ď }G}
q
q ` C}G}

q´1
q }H}q ` C}H}

q
q.

10



Consequently,

}zg ` h}qq ď }pg}
q
q ` C}pg}

q´1
q }ph}q ` C}ph}

q
q

ď Bq
q,d|A|

q{p
` CBq´1

q,d |A|
pq´1q{p

}ph}q ` C}ph}
q
q.

On the other hand, |E| “ |A| ` |B|. Without loss of generality, assume |E| “ 1, so that
|A|, |B| ď 1. Thus

p1´ δqq ď
} pf}qq

Bq
q,d|E|

q{p
“
} pf}qq
Bq
q,d

ď B´q
q,dpB

q
q,d|A|

q{p
` CBq´1

q,d |A|
pq´1q{p

}ph}q ` C}ph}
q
qq

“ |A|q{p ` CB´1
q,d|A|

pq´1q{p
}ph}q ` CB´q

q,d}
ph}qq

ď p1´ |B|qq{p ` CB´1
q,d|A|

pq´1q{p
}ph}q ` CB´1

q,d}
ph}q

ď 1´ cp|B| ` 2CB´1
q,d}

ph}q.

Then we have

2CB´1
q,d}

ph}q ě p1´ δq
q
´ 1` cp|B|

ě 1´Opδq ´ 1` |B|

ě |B| ´Opδq

ě Cp
0δ ´Opδq

ě cδ

provided C0 is large enough.

Lemma 10 (No slacking dual). For each d ě 1 and q P p2,8q there exist δ0, c, C0 ă 8 with
the following property. Let δ P p0, δ0s and let f “ g ` h where f, g, h P LppRdq and g, h are
disjointly supported on A,B respectively. Suppose that

} pf}q,˚ ě p1´ δqBq,d}f}p.

and that
}h}p ě C0δ

1{p
}f}p.

Then
}ph}q,8 ě cδ}f}p.

Proof. Using the hypothesis that f is near-extremizing,

p1´ δq}f}pBq,d ď }
pf}q,˚ ď }pg}q,˚ ` }ph}q,˚

ď Bq,d}g}p ` }ph}q,˚

ď Bq,dp}f}
p
p ´ }h}

p
pq

1{p
` }ph}q,˚

ď Bq,dp}f}
p
p ´ C

p
0δ}f}

p
pq

1{p
` }ph}q,˚.

11



Rearranging the above inequality gives

`

p1´ δq ´ p1´ Cp
0δq

1{p
˘

Bq,d}f}p ď }ph}q,˚.

Finally, we can arrange that |Cp
0δ| ă 1, so

1´ δ ´ p1´ Cp
0δq

1{p
“ ´δ `

1

p
Cp

0δ `Opδ
2
q

“ pCp
0{p´ 1qδ `Opδ2

q.

If Cp
0{p´ 2 ą 0 and δ is small enough, we have the result.

3.1.2 Cooperation

Lemma 11. Let p P r1, 2q and q P r2,8q. There exist c, C P R` with the following property.

Let 0 “ f P Lp satisfy |f | ď 1E and } pf}q ě p1´ δqBq,d|E|
1{p. Suppose that f “ f 7` f 5 where

supp f 7 “ A and supp f 5 “ B satisfy

AYB “ E, AXB “ H,

and minp|A|, |B|q ě ηp|E|.

Then
} pf 7 ¨ pf 5}q{2 ě pcη

p
´ Cδq|E|2{p.

Proof.

} pf}qq ď

ż

p| pf 7|2 ` | pf 5|2q| pf |q´2
` 2

ż

| pf 7 ¨ pf 5|| pf |q´2

ď p}| pf 7|2}q{2 ` }| pf 7|
2
}q{2q}|

pf |q´2
}q{pq´2q ` 2} pf 7 ¨ pf 5}q{2}| pf |

q´2
}q{pq´2q

“ p} pf 7}2q ` }
pf 7}2qq}

pf}q´2
q ` 2} pf 7 ¨ pf 5}q{2} pf}

q´2
q

ď p|A|2{p ` |B|2{pqBq
q,d|E|

pq´2q{p
` 2} pf 7 ¨ pf 5}q{2B

q´2
q,d |E|

pq´2q{p.

Rearranging gives

} pf 7 ¨ pf 5}q{2 ě p2Bq´2
q,d |E|

pq´2q{p
q
´1

´

} pf}qq ´ p|A|
2{p
` |B|2{pqBq

q,d|E|
pq´2q{p

¯

ě p2Bq´2
q,d |E|

pq´2q{p
q
´1

`

p1´ δqqBq
q,d|E|

q{p
´ p|A|2{p ` |B|2{pqBq

q,d|E|
pq´2q{p

˘

ě 2´1B2
q,d

`

p1´ δqq|E|2{p ´ |A|2{p ´ |B|2{p
˘

.

Note that since p ă 2,
p|A|2{p ` |B|2{pqp{2 ď |A| ` |B| ď |E|

with strict inequality unless |A| or |B| is 0. Without loss of generality, suppose that |E| “ 1.

12



We want to show there exists c P R` such that for η small enough and ηp ď minp|A|, |B|q,

|A|2{p ` |B|2{p

p|A| ` |B|q2{p
“ |A|2{p ` |B|2{p ď 1´ cηp.

By assumption, |A|, |B| P rηp, 1´ ηps, so |A|2{p ` |B|2{p ď pηpq2{p ` p1´ ηpq2{p. For all η ą 0
sufficiently small, there exists c ą 0 so that pηpq2{p ` p1´ ηpq2{p ď 1´ cηp.

Finally, using |A| ` |B| “ |E| “ 1,

} pf 7 ¨ pf 5}q{2 ě 2´1B2
q,d

`

p1´ δqq ´ |A|2{p ´ |B|2{p
˘

ě 2´1B2
q,d pp1´ δq

q
´ p1´ cηpqq

ě cηp ´ Cδ.

Lemma 12. For each d ě 1 and q P p2,8q there exist δ0, c, C0 ă 8 with the following
property. Let δ P p0, δ0s and let f “ g ` h where f, g, h P LppRdq and g, h are disjointly
supported. Let ηp ě δ. Suppose that the following inequalities hold.

} pf}q,˚ ě p1´ δqBq,d}f}p,

minp}g}p, }h}pq ě C0η}f}p.

Then
}|pg|1{2|ph|1{2}q,˚ ě cδ}f}pBq,d.

Proof. Take E Ă Rd with |E| P p0,8q satisfying

|E|´1{p

ż

E

| pf | ě p1´ 2δqBq,d}f}p.

By replacing E with E X t pf “ 0u, we can assume that pf is nonzero on E. For λ ą 0 a large

constant to be chosen later, define Eλ,g “ tx P E : |pg| ą λ|ph|u and Eλ,h “ tx P E : |ph| ą λ|pg|u.
Note that

ż

E

| pf | “

ż

Eλ,g

| pf | `

ż

Eλ,h

| pf | `

ż

EzpEλ,gYEλ,hq

| pf |

ď p1` 1{λq

ż

Eλ,g

|pg| ` p1` 1{λq

ż

Eλ,h

|ph| `

ż

EzpEλ,gYEλ,hq

p|pg| ` |ph|q

ď p1` 1{λq

ż

Eλ,g

|pg| ` p1` 1{λq

ż

Eλ,h

|ph| `

ż

EzpEλ,gYEλ,hq

p|pg|1{2λ1{2
|ph|1{2 ` λ1{2

|pg|1{2|ph|1{2q

ď p1` 1{λqp|Eλ,g|
1{p
}pg}q,˚ ` |Eλ,h|

1{p
}ph}q,˚q ` 2λ1{2

ż

EzpEλ,gYEλ,hq

|pg|1{2|ph|1{2.
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Using our main dual inequality, we have

|Eλ,g|
1{p
}pg}q,˚ ` |Eλ,h|

1{p
}ph}q,˚ ď

`

|Eλ,g|
1{p
}g}p ` |Eλ,h|

1{p
}h}p

˘

Bq,d

and by Hölder’s inequality,

|Eλ,g|
1{p
}g}p ` |Eλ,h|

1{p
}h}p ď p|Eλ,g|

p{p
` |Eλ,h|

p{p
q
1{p
p}g}qp ` }h}

q
pq

1{q
ď |E|1{pp}g}qp ` }h}

q
pq

1{q.

Also

}g}qp ` }h}
q
p ď maxp}g}q´pp , }h}q´pp qp}g}pp ` }h}

p
pq “ maxp}g}q´pp , }h}q´pp q}f}pp.

Now we use the hypothesis that minp}g}p, }h}pq ě C0η}f}p to say

maxp}g}pp, }h}
p
pq “ }f}

p
p ´minp}g}p, }h}pq ď }f}

p
pp1´ C

p
0η

p
q.

In summary,

|Eλ,g|
1{p
}pg}q,˚ ` |Eλ,h|

1{p
}ph}q,˚ ď |E|

1{p
`

}f}ppq
1{q
}f}pq´pq{qp p1´ Cp

0η
p
q
pq´pq{q

˘

Bq,d

“ |E|1{p}f}pp1´ C
p
0η

p
q
pq´pq{qBq,d.

Putting everything together, we have

p1´ 2δqBq,d}f}p ď p1` 1{λq}f}pp1´C
p
0η

p
q
pq´pq{qBq,d ` λ

1{2
|E|´1{p

ż

EzpEλ,hYEλ,hq

|pgph|1{2

p1´ 2δ ´ p1` 1{λqp1´ p1´ p{qqCp
0η

p
`Opη2p

qqBq,d}f}p ď λ1{2
|E|´1{p

ż

EzpEλ,hYEλ,hq

|pgph|1{2

p´2δ ´ 1{λ` p1` 1{λqp1´ p{qqCp
0η

p
`Opη2p

qqBq,d}f}p ď λ1{2
|E|´1{p

ż

E

|pgph|1{2.

The desired inequality follows from choosing λ “ δ´1, ηp ě δ and C0 large enough.

3.2 Multiprogression structure of quasi-extremizers

In this section, we relate quasi-extremizers for (1.2) to quasi-extremizers for Young’s convo-
lution inequality. Then we exploit the connection between Young’s convolution inequality
and principles of additive combinatorics which imply that quasi-extremizing functions for
Young’s inequality have significant support on sets with arithmetic structure. We use the
following definition and notation for multiprogressions.

Definition 8. A discrete multiprogression P in Rd of rank r is a function

P :
r
ź

i“1

t0, 1, . . . , Ni ´ 1u Ñ Rd
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of the form

Ppn1, . . . , nrq “
 

a`
r
ÿ

i“1

nivi : 0 ď ni ă Ni

(

,

for some a P Rd, some vj P Rd, and some positive integers N1, . . . , Nr. A continuum multi-
progression P in Rd of rank r is a function

P :
r
ź

i“1

t0, 1, . . . , Ni ´ 1u ˆ r0, 1sd Ñ Rd

of the form
pn1, . . . , nd; yq ÞÑ a`

ÿ

i

nivi ` sy

where a, vi P Rd and s P R`. The size of P is defined to be

σpP q “ sd
ź

i

Ni.

P is said to be proper if this mapping is injective.

We will often identify a multiprogression with its range, and will refer to multiprogressions
as if they were sets rather than functions. If P is proper then the Lebesgue measure of its
range equals its size. For a discussion of properties of multiprogressions, see §5 of [15].

Lemma 13 (Quasi-extremizers for Young’s inequality). Let r P p1,8q and suppose that the
exponent t defined by 1 ` t´1 “ 2r´1 also belongs to p1,8q. For each δ ą 0, there exist
cδ, Cδ P p0,8q such that for any |f | ď 1E with 0 ă |E| ă 8 and |E|2{rδ ď }f ˚ f}t, there
exist a disjoint, measurable partition E “ A Y B and a proper continuum multiprogression
P such that

A Ă P

|P | ď Cδ|A|

rank pP q ď Cδ

}f ´ 1Af}r ď p1´ cδq}f}r.

Proof. This lemma follows from the proof of Lemma 6.1 in [15] where we specialize to the
case f1 “ f2 and use the relation |E|2{r ě }f}2r.

Lemma 14. Let d ě 1 and p P p1, 2q. Let η ą 0. Suppose that E is a measurable set

and f is a nonzero function satisfying |f | ď 1E P L
ppRdq and |E|1{pη ď } pf}p1. If p ď 4{3,

|E|2{pη2 ď }|f | ˚ |f |}t for t´1 “ 2p´1 ´ 1. If 4{3 ă p, then there exists γ “ γppq P R` such
that |E|3{2ηγ ď }|f |4{3 ˚ |f |4{3}2.
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Proof. First suppose that p ď 4
3
. Then applying Plancherel’s theorem and the Hausdorff-

Young inequality, we have

|E|1{pη ď } pf}p1 “ }zf ˚ f}
1{2
p1{2 ď }f ˚ f}

1{2
pp1{2q1 ď }|f | ˚ |f |}

1{2
t ,

where t “ p1{2
p1{2´1

“
p{pp´1q
p{pp´1q´2

“ p2p´1 ´ 1q´1.

Write fpxq “ gpxqeiϕpxq where ϕpxq is real-valued and g ě 0. Note that for Rez ą 0, we
can define fz :“ gzeiϕ P Lp{Rez.

Assume that 4
3
ă p. Since p

2
ă 1 ă 3p

4
, there exists θ P p0, 1q such that 1 “ p1´ θqp2´1 `

θ3p4´1. By the Three Lines Lemma proof of the Riesz-Thorin theorem,

} pf}p1 ď sup
Rez“p{2

}pfz}
1´θ
2 sup

Rez“3p{4

}pfz}
θ
p4{3q1 “ }f}

p1´θqp2´1

p sup
Rez“3p{4

}pfz}
θ
p4{3q1 .

Combining this with the quasi-extremal hypothesis for f gives

|E|1{pη ď }f}p1´θqp2
´1

p sup
Re z“4{3

}pfz}
θ
p4{3q1

ď |E|p1´θq2
´1

sup
Re z“4{3

}{fz ˚ fz}
θ{2
2

“ |E|p1´θq2
´1

sup
Re z“4{3

}fz ˚ fz}
θ{2
2

ď |E|p1´θq2
´1

}|f |4{3 ˚ |f |4{3}
θ{2
2 .

Rearranging, we can write
|E|3θ{4η ď }|f |4{3 ˚ |f |4{3}

θ{2
2

so |E|3{2ηγ ď }|f |4{3 ˚ |f |4{3}2 for some γ ą 0.

Proposition 15 (Structure of quasi-extremizers). Let d ě 1, let Λ Ă p1, 2q be a compact
set, and let η ą 0. There exist Cη, cη P R` with the following property for all p P Λ. Suppose

that 0 “ f P LppRdq, |f | ď 1E with |E| ă 8, and } pf}q ě η|E|1{p. Then there exists a
multiprogression P and a disjoint, measurable partition E “ AYB such that

A Ă P

|P | ď Cη|A|

rank P ď Cη

}f ´ 1Af}p ď p1´ cηq}f}p.

Proof. Combine Lemmas 14 and 13.
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Lemma 16. Let d ě 1, let Λ Ă p2,8q be compact, and let η P p0, 1s. There exist Cη, cη ą 0

with the following property for all q P Λ. Suppose that 0 “ f P Lq
1

pRdq satisfies } pf}q,˚ ě
η}f}p. Then there exist a proper continuum multiprogression P and a disjointly supported
Lebesgue measurable decomposition f “ g ` h such that

g ă P,

}g}p ě cη}f}p

}g}8|P |
1{p
ď Cη}f}p

rank P ď Cη.

Proof. This follows from Proposition 6.4 in [15] since }f}pη ď } pf}q,˚ ď } pf}q.

3.3 Multiprogression structure of near-extremizers

The following is a restatement of Lemma 5.5 of [15], included here for the reader’s conve-
nience.

Lemma 17 (Compatibility of nonnegligibly interacting multiprogressions). Let d ě 1. Let
Λ be a compact subset of p1, 2q. Let λ ą 0 and R ă 8. There exists C ă 8, depending
only λ,R, d,Λ, with the following property. Let p P Λ. Let P,Q Ă Rd be nonempty proper
continuum multiprogressions of ranks ď R. Let ϕ ă P and ψ ă Q be functions that satisfy
}ϕ}8|P |

1{p ď 1 and }ψ}8|Q|
1{p ď 1. If

}pϕ pψ}q{2 ě λ

then
maxp|P |, |Q|q ď C minp|P |, |Q|q

|P `Q| ď C minp|P |, |Q|q.

Lemma 18. Let d ě 1, and let Λ Ă p1, 2q be a compact set. For any ε ą 0 there exist
δ ą 0, Nε ă 8, and Cε ă 8 with the following property for all p P Λ. Let |E| ă 8 and

|f | ď 1E be such that } pf}q ě p1´ δqBq,d|E|
1{p. Then there exist a measurable decomposition

f “ g ` h, where g “ g1A, h “ h1B, and A X B “ H, and continuum multiprogressions
tPi : 1 ď i ď Nεu such that

|B| ď ε|E|
ÿ

i

|Pi| ď Cε|E|

A Ă
Nε
Y
i“1
Pi

rankPi ď Cε

}g}p ě cδ}f}p.
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Proof. We define an iterative process following the proof of Theorem 7.1 from [15]. Setting
ηδ “ 1 ´ δ, we may apply Proposition 15 to obtain a disjoint decomposition E “ A1 Y B1

with a multiprogression P1 satisfying

|P1| ď Cηδ |A1|, rank P1 ď Cηδ , }1A1f}p ě cηδ}f}p.

Suppose that |B1| ą ε|E| (the case |B1| ď ε|E| will be analyzed below). By Lemma 9 with
δ ă ε{C0,

}z1B1f}q ě
c

C0

ε|E|1{p,

where c, C0 are as in the lemma. Define ηε “
c
C0
ε. Then we apply Proposition 15 to 1B1f to

obtain a disjoint decomposition B1 “ A2 YB2 with the corresponding conclusions.
For the k-th step in the process, we halt if |Bk´1| ď ε|E|. If |Bk´1| ą ε|E|, then by Lemma

9, we have }{1Bk´1
f}q ě ηε|E|

1{p. Then applying Proposition 15, we get Bk´1 “ AkYBk with
the conclusions of the proposition.

We note that this process terminates after finitely many steps since all of the Bi are
disjoint and after m steps, |E| ě |B1| ` ¨ ¨ ¨ ` |Bm| ą mε|E|. Thus we may suppose we have
obtained a disjoint decomposition

E “ A1 Y ¨ ¨ ¨ Y An YBn

where |Bi| ą ε|E| for 1 ď i ă n and |Bn| ď ε|E|. We also have multiprogressions Pi satisfying
|P1| ď Cηδ |A1|, rank P1 ď Cηδ and for 1 ă i ď n, |Pi| ď Cηε |Ai|, rank Pi ď Cηε . Thus

ÿ

i

|Pi| ď Cε|E|,

A :“ Y
i
Ai Ă Y

i
Pi, rank Pi ď Cε, and

}1Af}p ě }1A1f}p ě cδ}f}p,

as desired.

Lemma 19 (More structured decomposition). Let d ě 1, and let Λ Ă p1, 2q be a compact
set. For any ε ą 0 there exist δ ą 0, Nε ă 8, and Cε ă 8 with the following property for
all p P Λ. Let |E| ă 8 and |f | ď 1E be such that } pf}q ě p1´ δqBq,d|E|

1{p. Then there exist
a measurable decomposition f “ g ` h, where g “ g1A, h “ h1B, and A X B “ H, and a
continuum multiprogression P such that

|B| ď ε|E|

|P | ď Cε|E|

A Ă P

rankP ď Cε.
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Proof. First we define Eλ “ tx P E : |fpxq| ď λu. Note that by the Hausdorff-Young
inequality,

}z1Eλf}q ď }1Eλf}p ď λ|E|1{p.

Assume that |Eλ| ą ε|E|. Then by Lemma 9,

}z1Eλf}q ě
c0ε

C
|E|1{p :“ ηε|E|

1{p.

Thus if we take λ “ ηεε, we are guaranteed that |Eλ| ă ε|E|. Now without loss of generality,
assume that |f | ě ηεε on E.

We define an iterative process with an outer and an inner loop. For the step 1 of the
outer loop, letting ηδ “ 1´δ, apply Proposition 15 to get E “ A1YB1 where A1 is contained
in a multiprogression P1 satisfying the conclusions of the proposition. At step N of the outer
loop, we have a measurable decomposition

f “ GN `HN

where HN “ 1BNHN and GN “ 1ANGN , where AN X BN “ H and AN is contained in a
multiprogression PN with |PN | ď Cε|E|, rank PN ď Cε, and }GN}p ě cδ}f}p. If |BN | ă

ε|E|, then we halt. Otherwise, initiate step pN, 1q of the inner loop. Since |BN | ě ε|E|,

by Lemma 9, }z1BNf}q ě ηε|E|
1{p. Thus we can decompose BN into SN,1 (contained in a

multiprogression) and RN,1 using Proposition 15. The halting criterion for the pN, jqth step

is |RN,j| ď
1
2
ε|E| or }yGN

{1SN,jf}q{2 ě ρ|E|2{p. If neither is satisfied in step pN, jq, then
|RN,j| ą

1
2
ε|E|, so repeat the argument described for step pN, 1q replacing BN by RN,j. After

k iterations of the inner loop, we note that

|BN | ě |RN,1| ` ¨ ¨ ¨ ` |RN,k| ě kε|E|,

so the inner loop terminates in a maximum of Mε steps.
Suppose that the inner loop terminates at step k because |RN,k| ď

1
2
ε|E| but }yGN

{1SN,kf}q{2 ă

ρ|E|2{p. Then }yGN
{1SN,jf}q{2 ă ρ|E|2{p for 1 ď j ď k. Define h “

k
ř

j“1

1SN,jf . Note that

}yGN
ph}q{2 ď

k
ÿ

j“1

}yGN
{1SN,jf}q{2 ăMερ|E|

2{p. (3.1)

However, |supp h| “
k
ř

j“1

|SN,k| ě |BN | ´ |RN,k| ě ε|E| ´ 1
2
ε|E| “ ε

2
|E| and

|supp GN | “ |AN | ě }GN}
p
p ě cδ}f}

p
p ě cδηεε|E|

1{p

where we used the assumption that |f | ě ηεε discussed at the beginning of the proof. Finally

note that } {GN ` h}q ě } pf}q ´ }{1RN,kf}q ě p1 ´ ε ´ ε1{pqBq,d|E|
1{p. Thus, choosing δ and ρ

small enough, (3.1) contradicts Lemma 11.
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Thus the halting criterion for the inner loop yields a function 1SN,kf such that

}yGN
{1SN,kf}q{2 ě ρ|E|2{p. (3.2)

The function 1SN,kf also satisfies

}1SN,kf}p ě cε}1RN,k´1
f}p ě cεηεε|RN,k´1|

1{p
ě cεηεε

1`1{p
|E|1{p. (3.3)

If QN is the multiprogression associated to SN,k, then Lemma 17 (taking ϕ “ 1
Cε|E|

1ANf

and ψ “ 1
Cε|E|

1SN,kf , which satisfies the hypotheses for small enough ρ) implies that |PN `

QN | ď C 1ε minp|PN |, |QN |q. Thus there exists a continuum multiprogression PN`1 of rank
ď Cε containing PN and QN and satisfying |PN`1| ď Cε|E|.

Set GN`1 “ GN ` 1SN,kf . Then HN`1 :“ f ´ GN`1 has support called BN`1. If
|BN`1| ď ε|E|, then we’re done. If not, proceed to outer loop step N ` 2. Note that for each
outer loop step, we have

}GN`1}
p
p ě }GN}

p
p ` }1SN,kf}

p
p ě }GN}

p
p ` cεηεε

p`1
|E|.

Thus the outer loop terminates in at most Nε steps. Note that since the ranks of PN and
QN at most add at each step of the outer loop, the rank of the ultimate multiprogression is
controlled by Mε ą 0.

Lemma 20. Let d ě 1, and let Λ Ă p1, 2q be a compact set. For any ε ą 0 there exist δ ą 0,
Nε ă 8, and Cε ă 8 with the following property for all p P Λ. Let |E| ă 8 and |f | ď 1E be

such that } pf}q,˚ ě p1´ δqBq,d}f}p. Then there exists a measurable decomposition f “ g ` h
where g “ 1Ag, h “ 1Bh, A X B “ H, and there is a continuum multiprogression P such
that

}h}p ď ε}f}p

}g}8|P |
1{p
ď Cε}f}p

A Ă P

rank P ď Cε.

Proof. Using the hypothesis } pf}q,˚ ě p1 ´ δqBq,d}f}p, by Lemma 16 there exists a disjoint
decomposition f “ g1`h1 where g1 is supported on a multiprogression P1 with rank P1 ď Cδ,
}g1}p ě cδ}f}p, }g1}8|P1|

1{p ď Cδ}f}p. If }h1}p ă ε}f}p, then we halt.
To further refine the decomposition in the case that }h1}p ě ε}f}p, define an iterative

process with input pg1, h1q and output pg2, h2q where f “ g2 ` h2 and g2, h2 satisfy certain

properties below. Apply Lemma 10 to conclude that } ph1}q,˚ ě ηε}f}p for ηε ą 0. Then apply
Lemma 16 to get h1 “ u1`v1 where u1 is supported on a multiprogression Q1, rank Q1 ď Cε,
}u1}8|Q1|

1{p ď Cε}f}p, and }u1}p ě cε}h1}p ě cεε}f}p.
Choose δ suffciently small to ensure that cδ ě εcε. Since minp}g1}p, }u1}pq ě εcε}f}p,

by Lemma 12, }|pg1|
1{2| pu1|

1{2}q,˚ ě ρpεq}f}pBq,d for ρpεq ą 0. But then Lemma 17 (taking
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ϕ “ 1
Cδ}f}p

g1 and ψ “ 1
Cε}f}p

u1) implies that maxp|P1|, |Q1|q ď C 1ε minp|P1|, |Q1|q and |P1 `

Q1| ď C 1ε minp|P1|, |Q1|q. Thus there exists a continuum multiprogression P2 of rank ď Cε,δ
containing P1 and Q1 and satisfying |P2| ď Cε. Define g2 :“ g1 ` u1 and h2 :“ v1.

If }h2}p ă ε}f}p, then halt. If }h2}p ě ε}f}p, repeat the process described above with
input pg2, h2q.

After n steps of this iteration, we have a decomposition f “ gn`hn and a multiprogression
Pn of controlled size and rank containing the support of gn and satisfying }gn}8|Pn|

1{p ď

Cε}f}p, and

}gn}
p
p “ }g1}

p
p ` }u1}

p
p ` ¨ ¨ ¨ ` }un´1}

p
p ě pc

p
δ ` pn´ 1qcpεε

p
q}f}pp.

Thus the loop terminates in at most nε steps. Note that since the ranks of Pn and Qn at
most add at each step of the process, the rank of the ultimate multiprogression is controlled
by a constant depending on ε. Also, |Pn| ď pC

1
εq
n´1pminp|P1|, |Q1|, . . . , |Qn´1|q.

Finally we note that

}gn}8|Pn|
1{p
ď pC 1εq

pn´1q
p}g1}8|P1|

1{p
` }u1}8|Q1|

1{p
` ¨ ¨ ¨ ` }un´1}8|Qn´1|

1{p
q

ď pC 1εq
n
pn´ 1q}f}p.
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Chapter 4

Exploitation of Zκ ˆ Rd

4.1 Analysis of the discrete Hausdorff-Young inequal-

ity

Let T denote the quotient group R{Z. Extend the previous notation and define the Fourier
transform p̈ : Zκ ˆ Rd Ñ Tκ ˆ Rd by

pfpθ, ξq “

ż

Rd

ÿ

nPZκ
e´2πix¨ξe´2πin¨θfpn, xqdx

where θ P Td. This can be decomposed as F ˝ F̃ where

Fgpθ, ξq “
ÿ

nPZκ
gpn, ξqe´2πin¨θ

F̃fpn, ξq “
ż

Rd
fpn, xqe´2πix¨ξdx.

If we treat the operator F as the partial Fourier transform with respect to the first coordinate
and F̃ the corresponding transform for the second coordinate, then we can say F ˝F̃ “ F̃ ˝F
(even though the operators on the left and right are not precisely the same).

Lemma 21. Let d, κ ě 1, and p P p1, 2q, q “ p1. The optimal constant Apq, d, κq in the
inequality

} pf}q ď Apq, d, κq|E|1{p, (4.1)

where E Ă Zκ ˆ Rd satisfies |E| ă 8 and |f | ď 1E, satisfies

Apq, d, κq “ Bq,d.

The optimal constant A1pq, d, κq for the inequality

} pf}q,˚ ď A1
pq, d, κq}f}p

for Zκ ˆ Rd likewise satisfies A1pq, d, κq “ Bq,d.
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Proof of Lemma 21. We analyze the mixed Lp norms LpnL
q
ξpZκn ˆ Rd

ξq and LqξL
p
npZκn ˆ Rd

ξq,
given respectively by

}g}LpnLqξ “

˜

ÿ

n

ˆ
ż

|gpn, ξq|qdξ

˙p{q
¸1{p

and }g}LqξL
p
n
“

¨

˝

ż

˜

ÿ

n

|gpn, ξq|p

¸q{p

dξ

˛

‚

1{q

.

There are corresponding norms for LsθL
t
xpTκθ ˆRd

xq and LtxL
s
θpTκθ ˆRd

xq. Since q ě p, we have
by Minkowski’s integral inequality that

}g}LqθL
p
xpTκˆRdq ď }g}LpxLqθpTκˆRdq.

If F denotes the Fourier transform from Zκ to Tκ defined by

Fgpθq “
ÿ

n

gpnqe´2πin¨θ,

then the optimal constant in the corresponding Hausdorff-Young inequality for p P p1, 2q is
1. Thus if |f | ď 1E for E Ă Zκ and |E| ă 8, we have

}Ff}q ď }f}p ď |E|
1{p. (4.2)

This means that for g P LqξL
p
npZκn ˆ Rd

ξq,

}Fg}LqξLqθ “
ˆ
ż ż

|Fgpθ, ξq|qdθdξ
˙1{q

ď

¨

˝

ż

˜

ÿ

n

|gpn, ξq|p

¸q{p

dξ

˛

‚

1{q

,

so F is a contraction from LqξL
p
npRd

ξ ˆ Zκnq to LqξL
q
θpRd

ξ ˆ Tκθ q.
Let |f | ď 1E P L

ppZκ ˆ Rdq. For n P Zκ, define the subset En Ă Rd and the function
fn : Rd Ñ C by

En “ tx P Rd : pn, xq P Eu (4.3)

fnpxq “ fpn, xq, (4.4)

noting that fn P L
ppRdq. Since |fn| ď 1En ,

}F̃f}LpnLqξ “

˜

ÿ

n

ˆ
ż

|F̃fpn, ξq|qdξ
˙p{q

¸1{p

“

˜

ÿ

n

ˆ
ż

ˇ

ˇ

ˇ

ˇ

ż

fnpxqe
´2πix¨ξdx

ˇ

ˇ

ˇ

ˇ

q

dξ

˙p{q
¸1{p

ď

˜

ÿ

n

Bp
q,d|En|

¸1{p

“ Bq,d|E|
1{p. (4.5)
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Combining the above inequalities yields

} pf}LqpZκˆRdq “ }FF̃f}LqξLqθ ď }F̃f}LqξLpn ď }F̃f}LpnLqξ ď Bq,d|E|
1{p, (4.6)

where we use (4.5) in the last inequality. Thus Apq, d, κq ď Bq,d. Now let |f | ď 1E P L
ppRdq

be given. Define E0 “ t0uˆE and f0 : ZκˆRd Ñ C by f0pn, xq “ 0 for n “ 0 and f0p0, xq “
fpxq. Let F̃ denote the Fourier transform on Rd defined by F̃gpξq “

ş

gpxqe´2πix¨ξdx. Then

}F̃f}LqpRdq “ }Ff0p0, ¨q}Lqξ

“ }F f̃}LqξLqn
ď Apq, d, κq|E0|

1{p
“ Apq, d, κq|E|1{p.

This yields the reverse inequality Apq, d, κq ě Bq,d.
Now consider A1pq, d, κq. Let f P LppZκ ˆ Rdq and let E Ă Zk ˆ Rd be a Lebesgue

measurable set satisfying |E| P R`. Writing Eθ “ tξ : pθ, ξq P Eu,

ż

E

| pf | “

ż

Tκ

ż

Rd
|FF̃fpθ, ξq|1Epθ, ξqdξdθ

ď

ż

Tκ
}F̃Ffpθ, ¨q}Lq,˚ξ |Eθ|

1{pdθ

ď

ż

Tκ
Bq,d}Ffpθ, ¨q}Lpx |Eθ|

1{pdθ

ď Bq,d

ˆ
ż

Tκ
}Ffpθ, ¨q}q

Lpx
dθ

˙1{q ˆż

Tκ
|Eθ|

p{pdθ

˙1{p

ď Bq,d}Ff}LpxLqθ |E|
1{p

ď Bq,d}f}Lp |E|
1{p,

so A1pq, d, κq ď Bq,d. For the reverse inequality, let f P LppRdq and let E Ă Rd be a Lebesgue
measurable set with |E| P R`. Let f0 and E0 be defined as above. Then

ż

E

|F̃f | “
ÿ

n

ż

|Ff0pn, ξq|1E0pn, ξqdξ

ď A1
pq, d, κq|E0|

1{p
}f0}LppZκˆRdq

“ A1
pq, d, κq|E|1{p}f}LppRdq.

In the remainder of the subsection, we prove the following two propositions concerning
the structure of near-extremizers of the sharp Hausdorff-Young inequality on Zκ ˆ Rd.
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Proposition 22. Let d, κ ě 1 and q P p2,8q, p “ q1. Let δ ą 0 be small. Let 0 “
f P LppZκ ˆ Rdq, |f | ď 1E where E Ă Zκ ˆ Rd is Lebesgue measurable and |E| ă 8. If

} pf}q ě p1´ δqBq,d|E|
1{p, then there exists m P Zκ such that

|Em| ě p1´ oδp1qq|E| (4.7)

where Em is defined in (4.3).

The analogous proof of Proposition 22 for the dual inequality fails to go through, which
is the reason our results are partial. This leads to the following question, which is left open.
Our final precompactness result is conditional on a positive answer to this question.

Question 9. Let d, κ ě 1 and q P p2,8q, p “ q1. Let δ ą 0 be small. Let 0 “ f P LppZκˆRdq.

If } pf}q,˚ ě p1´ δqBq,d}f}p, then must there exist m P Zκ such that

}fm}LppRdq ě p1´ oδp1qq}f}LppZκˆRdq, (4.8)

where fm is defined in (4.4)?

In the analysis of Apq, d, κq from Lemma 21, we proved a string of inequalities in (4.6).
Combining these inequalities with the assumption that pf, Eq are δ-near extremizing yields
the following lemma, which requires no further proof.

Lemma 23. Let d, κ ě 1 and q P p2,8q. Set p “ q1. Let δ ą 0, let E Ă Zκ ˆ Rd be
a Lebesgue measurable set with |E| P R`, and let f be a measurable function satisfying

|f | ď 1E. If } pf}q ě p1´ δqBq,d|E|
1{p, then all of the following hold:

}FF̃f}LqξLqθ ě p1´ δq}F̃f}LpnLqξ (4.9)

}F̃f}LqξLpn ě p1´ δq}F̃f}LpnLqξ (4.10)

}F̃f}LpnLqξ ě p1´ δqBq,d|E|
1{p (4.11)

The inequalities listed in Lemma 23 will be used to establish the following weak result,
which is a preliminary for showing that any near extremizer of the lifted problem is mostly
supported on one slice of the Zκ variable.

Lemma 24. Let E Ă Zκ ˆ Rd and |f | ď 1E satisfy } pf}q ě p1´ δqBq,d|E|
1{p. There exists a

disjointly supported decomposition

F̃fpn, ξq “ gpn, ξq ` hpn, ξq

where
}h}LqξL

p
n
ď oδp1q|E|

1{p

and for each ξ P Rd there exists npξq P Zκ such that

gpn, ξq “ 0 for all n “ npξq.

25



Proof of Lemma 24. This is completely analogous to the proof of Lemma 10.14 in [16].
Let η “ δ1{2. Since |f | ď 1E, for each n P Zκ the function F̃fpn, ξq is a continuous

function of ξ. Thus ϕξpnq :“ F̃fpn, ξq is well-defined for every ξ P Rd. Define

G “ tξ P Rd : ϕξ “ 0, }xϕξ}Lqθ ě p1´ ηq}ϕξ}L
p
n
u.

Here, p̈ denotes the Fourier transform for Zκ. Then

}FF̃f}q
LqθL

q
ξ
“

ż

RdzG
}xϕξ}

q
Lqθ
dξ `

ż

G
}xϕξ}

q
Lqθ
dξ

ď p1´ ηqq
ż

RdzG
}ϕξ}

q
Lpn
dξ `

ż

G
}ϕξ}

q
Lpn
dξ

ď

ż

Rd
}F̃f}q

Lpn
dξ ´ cη

ż

RdzG
}F̃f}q

Lpn
dξ.

Combining this with (4.9), we get

p1´ δqq}F̃f}q
LpnL

q
ξ
ď }FF̃f}q

LqξL
q
θ

ď

ż

Rd
}F̃f}q

Lpn
dξ ´ cη

ż

RdzG
}F̃f}q

Lpn
dξ.

Rearranging the above inequality, obtain
ż

RdzG
}F̃f}q

Lpn
dξ ď c1δ1{2

}F̃f}q
LpnL

q
ξ
. (4.12)

For each ξ P G, }xϕξ}Lqθ ě p1´ ηq}ϕξ}L
p
n
, so we can invoke the argument beginning in line (7)

of [25] or Theorem 1.3 from [8] to get n “ npξq P Zκ such that

}ϕξ}LppZkztnpξquq ď oηp1q}ϕξ}LppZκq.

Define

gpn, ξq “

#

ϕξpnq if n “ npξq, ξ P G
0 else.

Let hpn, ξq :“ F̃fpn, ξq ´ gpn, ξq. Note that g satisfies the conclusions of the lemma by its
definition. To bound }h}LqξL

p
n
, we use the definition of g as well as (4.12) to get

}h}q
LqξL

p
n
ď

ż

G
}F̃f ´ g}q

Lpn
dξ `

ż

RdzG
}F̃f}q

Lpn
dξ

“

ż

G

´

}F̃f}pLppZκznpξqq ` |F̃fpnpξq, ξq ´ gpnpξq, ξq|
p
¯q{p

dξ `

ż

RdzG
}F̃f}q

Lpn
dξ

“

ż

G

´

}F̃f}pLppZκznpξqq ` 0
¯q{p

dξ `

ż

RdzG
}F̃f}q

Lpn
dξ

ď

ż

G

´

oηp1q}F̃f}LppZκq
¯q

dξ ` c1δ1{2
}F̃f}q

LqξL
p
n
“ oδp1q}F̃f}qLqξLpn .
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Proof of Proposition 22. Let F̃f “ g`h as in Lemma 24. Combining }h}LqξL
p
n
ď oδp1qp1q|E|

1{p

with (4.11) implies }h}LqξL
p
n
ď oδp1q}F̃f}LpnLqξ . Using this with (4.9) gives

}g}LqξL
p
n
` }h}LqξL

p
n
ě }FF̃f}LqξLqθ ě p1´ δq}F̃f}LpnLqξ ,

from which we conclude

}g}LqξL
p
n
ě p1´ oδp1qq}F̃f}LpnLqξ .

Noting that }g}q
LqξL

p
n
“ }g}q

LqξL
q
n
, we further have

}g}LqξL
q
n
“ }g}LqξL

p
n
ě p1´ oδp1qq}F̃f}LpnLqξ ě p1´ oδp1qq}g}LpnLqξ . (4.13)

Let M “ supn }gpn, ¨q}
q
Lqξ

(which is finite by (4.13)) and calculate using (4.13)

M
q´p
pq

ˆ
ż

|gpnpξq, ξq|qdξ

˙1{q

ě p1´ oδp1qqM
q´p
pq

˜

ÿ

n

ˆ
ż

|gpn, ξq|qdξ

˙p{q
¸1{p

ě p1´ oδp1qq

˜

ÿ

n

ż

|gpn, ξq|qdξ

¸1{p

“ p1´ oδp1qq

ˆ
ż

|gpnpξq, ξq|qdξ

˙1{p

and therefore

M ě p1´ oδp1qq
pq
q´p

ˆ
ż

|gpnpξq, ξq|qdξ

˙p 1p´
1
q qp

pq
q´pq

“ p1´ oδp1qq

ż

|gpnpξq, ξq|qdξ.

Thus there exists n P Zκ such that
ż

|gpn, ξq|qdξ ě p1´ oδp1qqp}F̃f}LqξLpn ´ }h}LqξLpnq
q
ě p1´ oδp1qqB

q
q,d|E|

q{p.

Then

Bq
q,d|En|

q{p
ě

ż

|gpn, ξq|qdξ ě p1´ oδp1qqB
q
q,d|E|

q{p,

so |En|
1{p ě p1´ oδp1qq|E|

1{p.

4.2 Lifting to Zκ ˆ Rd

Definition 10. Let Qd “ r´1
2
, 1

2
sd. To any function f : Rd Ñ C, associate the function

f : : Zd ˆ Rd Ñ C defined by

f :pn, xq “

#

fpn` xq if x P Qd

0 if x R Qd.
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For a measurable set E Ă Rd, let E: be the set in Zd ˆ Rd defined by

E: “ tpn, xq : n` x P Eu.

We abuse the notation of p̈ in the following lemmas: if g : Rd Ñ C, then pgpξq “
ş

Rd e
´2πix¨ξgpxqdx and if g : Zd ˆ Rd Ñ C, then pgpθ, ξq “

ř

nPZd

ş

Rd e
´2πin¨θe´2πix¨ξgpn, xqdx.

Lemma 25. Let d ě 1 and q P p2,8q, p “ q1. Let δ, η ą 0 be small. Let E Ă Rd be a
Lebesgue measurable set with |E| P R`. Suppose that

distancepx,Zdq ď η for all x P E

and that for |f | ď 1E,

} pf}LqpRdq ě p1´ δqBq,d|E|
1{p.

Then
} pf :}LqpTdˆRdq ě p1´ δ ´ oηp1qqBq,d|E

:
|
1{p.

Proof. The conclusion of Lemma 9.1 of [15] is that for some C, γ P R`, we have

ˇ

ˇ

ˇ
} pf :}LqpTdˆRdq ´ } pf}LqpRdq

ˇ

ˇ

ˇ
ď Cηγ}f}LppRdq.

It follows that

} pf}LqpTdˆRdq ě p1´ δqBq,d|E|
1{p
´ Cηγ}f}p ě p1´ δqBq,d|E|

1{p
´ Cηγ|E|1{p

“ p1´ δ ´ oηp1qqBq,d|E
:
|
1{p,

where we used that |E| “ |E:|.

The following lemma is analogous to the previous lemma. Ultimately, it is necessary to
establish analogous results for the norm } ¨ }q,˚ because we will use it to translate localization
properties of near-extremizers to the Fourier transforms of near-extremizers.

Lemma 26. Let d ě 1 and q P p2,8q, p “ q1. Let δ, η ą 0 be small. Let 0 “ f P LppRdq.
Suppose that

f “ 0 ùñ distance px,Zdq ď η

and that
} pf}Lq,˚pRdq ě p1´ δqBq,d}f}p.

Then
} pf :}Lq,˚pTdˆRdq ě p1´ 2δ ´ oηp1qqBq,d}f

:
}LppZdˆRdq.
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Proof. Let ξ “ npξq ` αpξq where npξq P Zd and αpξq P r´1
2
, 1

2
sd “ Qd. The proof of Lemma

9.1 in [15] demonstrates that

} pf :pθ, npξq ` αpξqq ´ pfpnpξq ` θq}Lqθ,ξ ď oηp1q}f}p. (4.14)

Let E Ă Rd be such that |E|´1{p
ş

E
| pfpξq|dξ ě p1 ´ 2δqBq,d}f}Lpx . Define the lifted set

Ẽ “ tpθ, ξq P Td ˆ Rd : θ ` npξq P Eu. Using (4.14), we calculate

ż

Ẽ

| pf :pθ, ξq|dθdξ ě

ż

Ẽ

| pfpnpξq ` θq|dθdξ ´

ż

Ẽ

| pf :pθ, npξq ` αpξqq ´ pfpnpξq ` θq|dθdξ

ě

ż

E

| pfpξq|dξ ´ |Ẽ|1{p} pf :pθ, npξq ` αpξqq ´ pfpnpξq ` θq}Lqθ,ξ

ě |Ẽ|1{pp1´ 2δqBq,d}f}Lpx ´ |Ẽ|
1{poηp1q}f}Lpx

“ |Ẽ|1{pp1´ 2δ ´ oηp1qqBq,d}f
:
}Lpn,x .

Translating general near-extremizers of (1.2) and (2.2) to near-extremizers satisfying the
hypotheses of the previous two lemmas respectively will be much easier with the following
Proposition 5.2 from [15], stated here for the reader’s convenience.

Proposition 27. (Approximation by Zd). For each d ě 1 and r ě 0 there exists c ą 0
with the following property. Let P be a continuum multiprogression in Rd of rank r, whose
Lebesgue measure satisfies |P | “ 1. Let δ P p0, 1

2
s. There exists T P Affpdq whose Jacobian

determinant satisfies
| det JpT q| ě cδdr`d

2

such that
}T pxq}Rd{Zd ă δ for all x P P.
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Chapter 5

Conditional argument for
precompactness

5.1 Spatial localization

Theorem 28. Let d ě 1 and q P p2,8q, p “ q1. For every ε ą 0 there exists δ ą 0
with the following property. Let E be a measurable set with |E| P R` and |f | ď 1E. If

} pf}q ě p1´ δqBq,d|E|
1{p, then there exists an ellipsoid E Ă Rd satisfying

|EzE | ď ε|E| (5.1)

|E | ď Cε|E|. (5.2)

Proof. Assume that |E|1{pBq,dp1´ δq ď } pf}q, where δ is to be chosen below.

1. Using the structural lemma for near extremizers of (1.2), Lemma 19 with ε0 ą 0 to be
chosen later, we obtain a decomposition E “ AYB and a multiprogression P satisfying

E “ AYB, AXB “ H,

|B| ď ε0|E|,

|P | ď Cε0 |E|,

A ă P,

rank P ď Cε0 .

2. By precomposing f with an affine transformation, assume without loss of generality
that |P | “ 1. Then for a fixed δ0 P p0,

1
2
s to be chosen below, Proposition 5.2 in [15],

otherwise known as Proposition 27 in this paper, allows us to find a c “ cpd, pq as well
as T P Affpdq such that

| det JpT q| ě cδ
dCε0`d

2

0 and

}T pAq}Rd{Zd ă δ0

where JpT q is the Jacobian matrix of T .
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3. Now taking η0 “ δ0 in the hypothesis of Lemma 25, we are guaranteed that since

} {1Af ˝ T ´1}q ě p1´ δqBq,d|T ´1
pEq|1{p ´ }y1Bf}q ě p1´ δ ´ oε0p1qqBq,d|A|

1{p

and }T pAq}Rd{Zd ă δ0, we have

} {p1Af ˝ T ´1q:}LqpTdˆRdq ě p1´ δ ´ oε0p1q ´ oδ0p1qqBq,d|T pAq:|1{p,

where p̈ here denotes the Fourier transform on Zd ˆ Rd.

4. Then Proposition 22 gives the existence of m P Zd such that

|T pAq X pm` r1{2, 1{2qdq| ě p1´ oδp1q ´ oε0p1q ´ oδ0p1qq|T pAq|.

5. Last, we note that the cube Q :“ m` r1{2, 1{2qd satisfies

|EzT ´1
pQq| ď |A| ` |B| ´ |AX T ´1

pQq|

ď |A| ` ε0|E| ´ p1´ oδp1q ´ oε0p1q ´ oδ0p1qq|A|

ď pε0 ` oδp1q ` oε0p1q ` oδ0p1qq|E|.

Note that ε0 and δ0 may be chosen freely, and δ may be taken small enough after
fixing an ε0 and δ0. Thus we may choose ε0, δ0, and then δ small enough so that
|EzT ´1pQq| ď ε|E|. We also note that

|T ´1
pQq| “ | det JpT q|´1

|Q|

“ | det JpT q|´1
|P |

ď pcδ
dCε0`d

2

0 q
´1Cε0 |E|

“ C̃ε|E|.

Finally, since Q is comparable in size (up to dimensional constants) to the smallest
ball which contains it, we are done.

Proposition 29. Suppose that there is an affirmative answer to Question 9. Let d ě 1
and q P p2,8q, p “ q1. For every ε ą 0 there exists δ ą 0 with the following property. Let

0 “ f P Lq
1

pRdq satisfy } pf}q,˚ ě p1 ´ δqBq,d}f}p. There exists an ellipsoid E Ă Rd and a
decomposition f “ φ` ψ such that

}ψ}q1 ă ε}f}p

φ ” 0 on Rd
zE

}φ}8|E |1{p ď Cε}f}p.
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Proof. We follow an analogous argument as that in the proof of Theorem 28, replacing
the near extremizer structure Lemma 19 by the analogous structure theorem for the dual
problem, Lemma 20. For step (3) in the proof of Theorem 28, we use Lemma 26 in place of
Lemma 25. For step (4), use an affirmative answer to Question 9 instead of Proposition 22.
The conclusion is that using analogous notation as in the proof of Theorem 28,

}1Af ˝ T ´11Q}LppRdq ě p1´ oδp1q ´ oε0p1q ´ oδ0p1qq}1Af ˝ T ´1
}LppRdq

where ε0 and δ0 may be chosen freely, and δ may be taken small enough after fixing an ε0 and
δ0. Let E be the smallest ellipsoid containing T ´1pQq and define φ “ 1AXEf , so ψ “ f ´ ϕ.
Then for small enough parameters δ0, ε0 and then δ,

}ψ}p ă ε}f}p and ϕ ă 1E .

By the construction, we also have that

}ϕ}8|E |1{p ď cd}1Af}8|T ´1
pQq|

ď cdCε0}f}p| det JpT ´1
q|

ď cdCε0}f}ppcδ
dCε0`d

2

0 q
´1,

so we are done.

5.2 Frequency localization

Proposition 30. Suppose that there is an affirmative answer to Question 9. Let d ě 1
and q P p2,8q, p “ q1. For every ε ą 0 there exists δ ą 0 with the following property.

Let E be a Lebesgue measurable set with |E| P R`. Suppose that |f | ď 1E satisfies } pf}q ě

p1 ´ δqBq,d|E|
1{p. Then there exists an ellipsoid E 1 Ă Rd and a decomposition pf “ Φ ` Ψ

such that
}Ψ}q1 ă ε} pf}p

Φ ” 0 on Rd
zE 1

}Φ}8|E 1|1{p ď Cε}f}p.

Proof. In the proof of Proposition 8 we showed that if pf, Eq is a near-extremizing pair for

(1.2), then pf | pf |q´2 is a near-extremizer for (2.1). Thus we may apply Proposition 29 to

obtain a decomposition pf | pf |q´2 “ ϕ`ψ and take Φ “ ϕ|ϕ|p2´qq{pq´1q and Ψ “ ψ|ψ|p2´qq{pq´1q

for the desired decomposition.

32



5.3 Compatibility of approximating ellipsoids

We will show that E and E 1 are dual to each other, up to bounded factors and independent
translations. For s P R` and E Ă Rd, we consider the dilated set sE “ tsy : y P Eu.

Definition 11. The polar set E˚ of a balanced, bounded, convex set with nonempty interior
E Ă Rd is

E˚ “ ty : |xx, yy| ď 1 for every x P Eu

where x¨, ¨y denotes the Euclidean inner product.

Lemma 31. Suppose that there is an affirmative answer to Question 9. Let d ě 1 and let
Λ Ă p1, 2q be a compact set. There exists η0 ą 0 such that the following property holds for

0 ă η ă η0. Let η ą 0. Let p P Λ and let q “ p1. Suppose } pf}q ě p1 ´ ρpηqqBq,d|E|
1{p for

a function ρ : r0, 1s Ñ R` where ρpηq Ñ 0 as η Ñ 0 sufficiently fast so that there exists
an ellipsoid E ` u satisfying the conclusions of Theorem 28 with ε “ η and an ellipsoid
Ẽ`v and disjoint decomposition pf “ Φ`Ψ satisfying the conclusions of Proposition 29 with
ε “ η, where E and Ẽ are ellipsoids centered at the origin and u, v P Rd. Then there exists a
constant C “ Cpd,Λ, ηq such that

E Ă CẼ˚ and Ẽ Ă CE˚.

Proof. By constants, we mean quantities which are permitted to depend on d,Λ, η. By
replacing f and 1E with e2πix¨vfpx` uq and 1Epx` uq respectively, we may assume without
loss of generality that u, v “ 0. By dilating f and E by |E |1{d, we may further assume that
|E | “ 1.

First, we will prove that |Ẽ | “ |E ||Ẽ | ď C. We have assumed that

p1´ ρpηqqBq,d|E|
1{p
ď } pf}q, (5.3)

and hence by Theorem 28 we know that

|EzE | ď η|E|, |E | ď Cη|E|

and by Proposition 29 that

}Ψ}q ď η|E|1{p, Φ ă Ẽ , }Φ}8|Ẽ |1{q ď Cη|E|
1{p.

Let Sα “ tξ : | pfpξq| ě α|Ẽ |´1{qu and λη “ tξ : | pfpξq| ď Cη|E|
1{p|Ẽ |´1{q

u. We decompose
the following integral as

ż

Rd
| pf |qdξ “

ż

Ẽc
| pf |qdξ `

ż

ẼXλcη
| pf |qdξ `

ż

ẼXpληXSαq
| pf |qdξ `

ż

ẼXpληXScαq
| pf |qdξ

:“ A`B ` C `D.
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We will bound each integral defined above. First, we use the properties of the decomposition
pf “ Φ`Ψ to note that

A “

ż

Ẽc
|Ψ|qdξ ď }Ψ}qq ď ηq|E|q{p.

Next, to control B, we use the property that pf “ Φ`Ψ is a disjointly supported decompo-
sition and }Φ}8 ď Cη|E|

1{p|Ẽ |´1{q, so Φ “ 0 a.e. on λcη. Namely,

B “

ż

ẼXλcη
|Ψ|qdξ ď ηq|E|q{p.

For C, we use that | pf | ď Cη|E|
1{p|Ẽ |´1{q on λη to get

C ď Cq
η |E|

q{p
|Ẽ |´1

|Ẽ X Sα|.

Finally, we have for D that
D ď |Ẽ X λη|αq|Ẽ |´1

ď αq.

Combining the upper bounds for A,B,C,D with (5.3), we have

p1´ ρpηqqqBq
q,d|E|

q{p
ď

ż

Rd
|f |qdξ

“ A`B ` C `D

ď ηq|E|q{p ` ηq|E|q{p

` Cq
η |E|

q{p
|Ẽ |´1

|Ẽ X Sα| ` αq

Rearranging, we get

C´qη rp1´ ρpηqq
qBq

q,d ´ 2ηq ´ αq|E|´q{ps|Ẽ | ď |Ẽ X Sα|

Finally, since |E | “ 1 and |E | ď Cη|E|, we have

C´qη rp1´ oηp1qq
qBq

q,d ´ 2ηq ´ αqCq{p
η s|Ẽ | ď |Ẽ X Sα|.

Choose α small enough so that

1

2
C´qη rp1´ oηp1qq

qBq
q,d ´ 2ηqs ď C´qη rp1´ oηp1qq

qBq
q,d ´ 2ηq ´ αqCq{p

η s,

so α only depends on η. Thus for c1 “ c1pηq ą 0 and α “ αpηq, we can conclude that

c1|Ẽ | ď |Ẽ X Sα|.

Since |f | ď 1E and |E| ă 8, f is in L2. Since |E | “ 1, note that |E| “ |E X E | ` |EzE | ď
1` η|E|, so we can assume |E| ď 2. Using these two observations, we have

2 ě |E| ě }f}22 “ }
pf}22 ě

ż

Sα

| pfpξq|2dξ ě α2
|Ẽ |´2{q

|Sα| ě α2c1|Ẽ |1´2{q,
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so |E ||Ẽ | “ |Ẽ | ď C 1 for C 1 “ C 1pηq.
Now assume via composition with an affine transformation that Ẽ “ B and that E “ tx :

řd
j“1 s

´2
j x2

j ď 1u. We wish to show that B Ă CE˚ and that E Ă CB, where C is permitted to

depend on η. We know from the earlier discussion that |E ||B| ď Cη. Since |E | “ cd
śd

j“1 sj,
it remains to show that the smallest si, say s1, is bounded below. Using the same notation
as earlier, we note that

}Bξ1
y1Ef}q ď 2πBq,d}x11Ef}p ď 2πBq,ds1|E|

1{p

and that

}y1Ef}LqpBq ě } pf}LqpBq ´ }{1EzEf}q

ě } pf}LqpRdq ´ }Ψ}q ´Bq,d|EzE |1{p

ě p1´ ρpηqqBq,d|E|
1{p
´ η|E|1{p ´Bq,dη

1{p
|E|1{p

ě p1´ oηp1qqBq,d|E|
1{p.

We also have
}|E|´1{p

y1Ef}q ď Bq,d.

Thus we are in the situation where there are functions h satisfying }Bξ1h}LqpRdq ď 2πBq,ds1phq
for a positive quantity s1 associated to each h and }h}LqpBq ą

1
2
Bq,d ą 0. If there are func-

tions h “ |E|´1{p
y1Ef fitting the above regime and for which s1phq Ñ 0, then }h}LqpRdq Ñ 8.

Since we have the uniform upper bound }|E|´1{p
y1Ef}q ď Bq,d, there must be a positive lower

bound depending on η for the values of s1, which completes the proof.

5.4 Precompactness

We restate Proposition 2 for the reader’s convenience.
Proposition 2 Suppose that there is an affirmative answer to Question 9. Let d ě 1
and q P p2,8q, p “ q1. Let pEνq be a sequence of Lebesgue measurable subsets of Rd with
|Eν | P R` and let fν be Lebesgue measurable functions on Rd satisfying |fν | ď 1Eν . Suppose

that limνÑ8 |Eν |
´1{p} pfν}q “ Bq,d. Then there exists a subsequence of indices νk, a Lebesgue

measurable set E Ă Rd with 0 ă |E| ă 8, a Lebesgue measurable function f on Rd satisfying
|f | ď 1E, a sequence pTνq of affine automorphisms of Rd, and a sequence of vectors vν P Rd

such that

lim
kÑ8

}e´2πivνk ¨xfνk ˝ T
´1
νk
´ f}p “ 0 and lim

kÑ8
|TνkpEνkq∆E| “ 0.

In order to prove Proposition 2, we first prove the following lemma.
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Lemma 32. Suppose that there is an affirmative answer to Question 9. Let d ě 1 and
q P p2,8q, p “ q1. Let pEνq be a sequence of Lebesgue measurable subsets of Rd with
|Eν | P R`. Let fν be Lebesgue measurable functions satisfying |fν | ď 1Eν . Suppose that

limνÑ8 |Eν |
´1{p} pfν}q “ Bq,d. Then there exists a sequence of elements Tν P Affpdq and

vectors vν P Rd such that |TνpEνq| is uniformly bounded and the sequence of functions p pgνq
where gν “ e´2πivν ¨xfν ˝ T

´1
ν is precompact in LqpRdq.

Proof of Lemma 32. Let fν and Eν satisfy the hypotheses. Let ε0 “ minp1
4
, η0q where η0 is

the threshold from Lemma 31. For each sufficiently large ν, (1) there exists an ellipsoid Eν
satisfying the conclusions of Theorem 28 with ε “ ε0 and (2) there exists an ellipsoid Fν and
disjointly supported decomposition fν “ Φν ` Ψν satisfying the conclusions of Proposition
30 with ε “ ε0.

Let uν , vν P Rd be the centers of the Eν and Fν respectively. By replacing fν by
e´2πivν ¨xfνpx`uνq and 1Eν by 1Eν´un , we may reduce to the case uν “ vν “ 0. By composing
fn and 1Eν with an element of the general linear group on Rd, we may reduce to the case in
which En is the unit ball B of Rd. Continue to denote these modified functions by fν and
1Eν .

For each ε ą 0, there exists N ă 8 such that for each ν ě N , Theorem 28 associates
to pfν , Eνq an ellipsoid Eν,ε and Proposition 30 associates to pfν , Eνq an ellipsoid Fν,ε and a

disjointly supported decomposition pfν “ Φν,ε `Ψν,ε.
Symmetries of the inequality have been exploited to normalize so that Eν “ B, so by

Lemma 31, Fn are balls centered at the origin with radii comparable to 1. We claim that this
ensures corresponding normalizations for Eν,ε,Fν,ε; ε–dependent symmetries are not needed.

According to Theorem 28,

|EνzB| ď ε0|Eν | and |B| ď C0|Eν |

|EνzEν,ε| ď ε|Eν | and |Eν,ε| ď Cε|Eν |,

provided that ν is sufficiently large and ε is sufficiently small. This implies that

3

4
C´1

0 |B| ď p1´ ε0q|Eν | ď |BX Eν | “ |pBX EνqzEν,ε| ` |BX Eν X Eν,ε|

ď ε|Eν | ` |BX Eν,ε| ď ε
4

3
|B| ` |BX Eν,ε|,

so there is a c ą 0 such that |BXEν,ε| ě c where c is independent of ε and ν. This lower bound
combined with the upper bound |Eν,ε| ď Cε|Eν | ď Cε

4
3
|B| implies the Eν,ε are contained in a

ball centered at 0 with radius depending only on ε.
By Proposition 30, for sufficiently large ν and sufficiently small ε,

}Φν ´
pfν}q ď ε0} pfν}q and }Φν,ε ´

pfν}q ď ε} pfν}q,

}Φν}8 ď C0}fν}p and }Φν,ε}8|Eν,ε|1{q ď Cε}fν}p.
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For each ξ P Rd, each of Φνpξq,Φν,εpξq is equal either to pfνpξq, or to 0. From these
inequalities and this fact, along with the support relations Φν ă B and Φν,ε ă Fν,ε, it follows
that

}Φν,ε}q “ }1Fν,ε
pfν}q ě p1´ εq} pfν}q

}1Fν,εzC0B
pfν}q ď }Φν ´ Φν,ε}q ď pε0 ` εq} pfν}q

where Fν Ă C0B. Thus }1Fν,εXC0B
pfν}q ě p1´ ε0 ´ 2εq} pfν}q. Combined with the inequalities

} pfν}q ě
1

2
Bq,d|Eν |

1{p
ě

1

2
Bq,dC

´1{p
0 |B|1{p and

}1Fν,εXC0B
pfν}q ď |Fν,ε X C0B|1{q} pfν}8 ď |Fν,ε X C0B|1{q|Eν | ď |Fν,ε X C0B|1{q

4

3
|B|,

we conclude |Fν,ε X C0B| ě c where c ą 0 is independent of ν, ε.
Another consequence of the inequalities from Proposition 30 is that }Φν,ε}8 ě c}Φν}8,

where c ą 0 is independent of ν, ε. Indeed,

p1´ ε0q} pfν}q ď }Φν}q “ }Φν}LqpC0Bq ď }Φν ´ Φν,ε}q ` }Φν,ε}LqpC0Bq

ď pε0 ` εq} pfν}q ` |Φν,ε}8|C0B|1{q,

so for a constant c ą 0 independent of ν, ε,

}Φν,ε}8 ě c} pfν}q ě c
1

2
Bq,d|Eν |

1{p
ě c

1

2
Bq,d}fν}p.

Then |Fν,ε|
1{q ď Cε}fν}p}Φν,ε}

´1
8 ď Cε

2
cBq,d

. The uniform lower bound on |Fν,ε X C0B| and

the ε-dependent upper bound on |Fν,ε| imply that Fν,ε Ă CεB for sufficiently large ν.
Now note the uniform bound

}{1C0Bfν}q ď Bq,d|Eν |
1{q
ď Bq,d

4

3
|B|1{p.

By the Hausdorff-Young inequality,

}∇{1C0Bfν}q ď }|x|1Eν,ε}p ď Cε

since |x|1Eν,ε is bounded by the diameter of Eν,ε and the volumes |Eν,ε| are bounded above
uniformly in ν. Thus by Rellich’s theorem, on any fixed bounded subset of Rd, we can find
an Lq convergent subsequence of p{1Eν,εfνq. Since this is true for each ε, } pfν}q is bounded uni-

formly above, and }

Ź

1RdzEν,εfν}q Ñ 0 as εÑ 0, it follows that the sequence p pfνq is precompact

in LqpRdq on any fixed bounded subset of Rd. Since Fν,ε is contained in a ball independent of

ν for each fixed ε, and since
ş

ξRFν,ε |
pfνpξq|

q dξ Ñ 0 as εÑ 0, the sequence p pfνq is precompact

in LqpRdq.
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Proof of Proposition 2. From Lemma 32, we can assume that the sequence p pfνq is convergent
in LqpRdq and that the supports Eν satisfy |Eν | ď

4
3
|B|. By passing to a subsequence, we

may also assume that limνÑ8 |Eν | “ a where 0 ă a ă 8 and by precomposing fν and 1Eν
by affine transformations, we may assume that |Eν | “ 1 for all ν. Then

lim
νÑ8

} pfν}q “ Bq,d.

Since }fν}2 ď |Eν |
1{2 “ 1 for all ν, by the Banach-Alaoglu theorem, there is a weak-*

convergent subsequence (which we just denote pfνq) to a limit f P L2. Note that since weak-*

convergence of pfνq to f implies convergence as tempered distributions, it must be that p pfνq

converge to pf as tempered distributions. Since p pfνq is a convergent sequence in Lq, it must

therefore be true that pfν Ñ pf strongly in Lq.
We claim that

lim
ν,µÑ8

1
2
}fν ` fµ}L “ 1.

Indeed, }fν ` fµ}L ď |Eν |
1{p ` |Eµ|

1{p “ 2, so

Bq,d “ lim
ν,µÑ8

}1
2
pfν `

1
2
pfµ}q ď lim

ν,µÑ8

}1
2
pfν `

1
2
pfµ}q

}1
2
fν `

1
2
fµ}L

ď Bq,d

where we used Proposition 5 in the final inequality. Also observe that

lim
ν,µÑ8

}1
2
fν `

1
2
fµ}L ď }

1
2
1Eν `

1
2
1Eµ}L ď 1,

so lim
ν,µÑ8

}1
2
1Eν `

1
2
1Eµ}L “ 1. By Lemma 59, since 1

2
1Eν `

1
2
1Eµ “ 1EνXEµ `

1
2
1Eν∆Eµ ,

}1
2
1Eν `

1
2
1Eµ}L “

1
2
|Eν X Eµ|

1{p
` 1

2
|Eν Y Eµ|

1{2.

Let δν,µ ą 0 be defined by |Eν X Eµ| “ 1 ´ δνµ, so |Eν Y Eµ| “ 1 ` δνµ. Since there exists
c ą 0 so p1 ´ δq1{p ` p1 ` δq1{p ď 2 ´ cδ2 for |δ| ď 1, conclude that lim

ν,µÑ8
|Eν X Eµ| “ 1.

It follows that |Eν∆Eµ| Ñ 0, so there exists a Lebesgue measurable set E Ă Rd such that
|Eν∆E| Ñ 0.

Note that for each 0 ă η ă 1,

1
2
}fν ` fµ}L ď }1

t
1
2
|fν`fµ|ą1´ηu

` p1´ ηq1
t0ă

1
2
|fν`fµ|ď1´ηu

}L

“ η|t1
2
|fν ` fµ| ą 1´ ηu|1{p ` p1´ ηq|t0 ă 1

2
|fν ` fµ|u|

1{p

ď η|t1
2
|fν ` fµ| ą 1´ ηu|1{p ` p1´ ηq|Eν Y Eµ|

1{p.

Since lim
ν,µÑ8

|Eν Y Eµ| “ lim
ν,µÑ8

1
2
}fν ` fµ}L “ 1, we conclude that

lim
ν,µÑ8

|tx : 1
2
|fνpxq ` fµpxq| ą 1´ ηu| “ 1.
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It follows that lim
ν,µÑ8

}fν`fµ}2 “ 2, and so lim
ν,µÑ8

}fν´fµ}p “ 0 since }fν´fµ}p ď 2}fν´fµ}2

and by the parallelogram law,

}fν ´ fµ}
2
2 ` }fν ` fµ}

2
2 “ 2p}fν}

2
2 ` }fµ}

2
2q.

Letting ν, µÑ 8 gives the result.

Corollary 33. Suppose that there is an affirmative answer to Question 9. Let d ě 1 and
q P p2,8q, p “ q1. There exist a measurable function f and a measurable subset E of Rd

with |f | ď 1E such that

Bq,d “
} pf}q
|E|1{p

“
} pf}q
}f}L

.

Proof of Corollary 33. By the proof of Proposition 2, there exist a sequence of Lebesgue
measurable subsets Eν of Rd, functions fν satisfying |fν | ď 1Eν and f, 1E P L

ppRdq with |f | “

1E which satisfy limνÑ8 |Eν |
´1{p} pfν}q “ Bq,d, limνÑ8 }fν´f}p “ 0, and limνÑ8 |Eν∆E| “ 0.

It follows immediately that

} pf}q
|E|1{p

“
} pf}q
}f}L

“ Bq,d.

Proof of Corollary 7. By Lemma 60, Lemma 6, and the inequality }g}p1 ď q}g}˚p1 for all
g P Lpp, 1q that

sup
gPLpp,1q
g “0

}pg}q
}g}p1

ě
Bq,d

q
.

For the upper bound, we have a similar argument to the proof of Lemma 6. Let 0 “

g P Lpp, 1q. Let E “ tpy, sq : |gpyq| ą su. Let |g|eiϕ “ g so we can use the layer cake
representation

gpxq “ eiϕpxq
ż 8

0

1Epx, sqds.
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Then

}pg}q “

›

›

›

›

›

ˆ
ż 8

0

eiϕpxq1Epx, sqds

˙

p

›

›

›

›

›

q

“

›

›

›

›

ż 8

0

zeiϕ1Epξ, sqds

›

›

›

›

q

ď

ż 8

0

}zeiϕ1Epξ, sq}qds

ď

ż 8

0

Bq,d |tx : |gpxq| ą su|1{p ds

“
Bq,d

q

ż 8

0

}1tx:|gpxq|ąsu}p1ds

“
Bq,d

q

ż 8

0

ż 8

0

t´1{q´1

ż t

0

1˚tx:|gpxq|ąsupuqdudtds

ď
Bq,d

q

ż 8

0

t´1{q´1

ż t

0

g˚puqdudt “
Bq,d

q
}g}p1,

so

sup
gPLpp,1q
g “0

}pg}q
}g}p1

“
Bq,d

q
.

Now if 0 “ f P Lpp, 1q satisfies } pf}q
}f}p1

“
Bq,d
q

, then by repeating the previous analysis, the

above inequalities are equalities. Equality in the Minkowski integral inequality implies that
for a.e. pξ, sq P Rd ˆ R`,

zeiϕ1Epξ, sq “ hpξqgpsq

for some measurable functions h, g. Since eiϕ1Epx, tq P L
2, in particular, h and qh in L2.

1Epx, sq “ e´iϕpxqqhpxqgpsq.

But then for every px, sq satisfying |fpxq| ą s, we have

e´iϕpxqqhpxqgptq “ 1.

Suppose |fpxq| ą |fpyq| ą 0. Then for all 0 ď s ă fpyq,

e´iϕpxqqhpxq “ gpsq´1
“ eiϕpyq}hpyq,

which is a contradiction unless |fpxq| is constant on its support. Thus f takes the form
aeiϕ1S where S Ă Rd is a Lebesgue measurable subset and a P R`.

For the existence of such an extremizer, by the proof of Proposition 2, there exist a
sequence of Lebesgue measurable subsets Eν of Rd, functions fν satisfying |fν | ď 1Eν , and

f, 1E P L
ppRdq with |f | “ 1E which satisfy limνÑ8 |Eν |

´1{p} pfν}q “ Bq,d, limνÑ8 }fν´f}p “ 0,
and limνÑ8 |Eν∆E| “ 0. Thus there exists f P Lpp, 1q satisfying

} pf}q
q|E|1{p

“
} pf}q
}f}p1

“
Bq,d

q
.
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Chapter 6

Sharpened inequalities for exponents
q ě 4 close to even integers

6.1 Background for sharpened inequalities and a gen-

eral approach

The existence and identification of maximizers has been studied for many inequalities in
analysis. Talenti determined the maximizers for the Sobolev inequality }f}p˚ ď Bpnq}∇f}p
for Rn [37]. Maximizers for the Hardy-Littlewood-Sobolev inequality were determined by
Lieb [29] and with an alternative method by Frank and Lieb [24]. Extremizing cases for the
isoperimetric inequalities and the Brunn-Minkowski inequality have also been studied.

There is extensive work in sharpened inequalities of the same general form as (1.8).
Bianchi and Egnell [4] proved a sharpened Sobolev inequality for the special case p “ 2,
with general p treated by Cianchi, Fusco, Maggi, and Pratelli [17]. Chen, Frank, and Weth
established a quantitative sharpened fractional Sobolev inequality in [9]. Fusco, Maggi, and
Pratelli [23] obtained a strengthened isoperimetric inequality. Figalli, Maggi, and Pratelli [18]
used mass transportation techniques to sharpen isoperimetric inequalities and the Brunn-
Minkowski inequality for convex sets.

Let B denote the d-dimensional unit ball. In this paper, the proof of the quantitative
stability result (1.8) implies that Bq,d “ } p1B}q{|B|1{p, so maximizers exist. In addition, the
inequality (1.8) implies that the only maximizers are functions equivalent to 1B acted on by
symmetries of the inequality. The quantitative stability result determining the extremizers
is analogous to the argument of Christ in [16].

A general approach outlined by Bianchi and Egnell [4] to prove stability results like (1.8)
for 4 ď q P 2N is as follows. It is immediate from (1.9) that Aq,d “ Bq,d. Since for |f | ď 1E,

} pf}q
|E|1{p

“
} {eiLf ˝ ϕ}q
|ϕ´1pEq|1{p

for all affine transformations ϕ : Rd Ñ Rd and L P L, we can also say that functions of the
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form eiL1E where L P L and E P E are among the extremizers for (1.5). Establishing (1.8)
would then show that they are the only extremizers. Christ’s Theorem 34, stated below,
plus the inequality in (1.9) will provide the starting point for our proof of (1.8).

Theorem 34. [16] Let d ě 1. For each even integer m P t4, 6, 8, . . .u there exists δpmq ą 0
such that the following three conclusions hold for all exponents satisfying |q ´ m| ď δpmq.
Let p be the conjugate exponent to q. Firstly,

Aq,d “ }x1E}q{|E|
1{p for any E P E.

Secondly, ellipsoids are the only extremizers; for any Lebesgue measurable set E Ă Rd, with
0 ă |E| ă 8, ΦqpEq “ Aq,d if and only if E is an ellipsoid. Thirdly, there exists c̃q,d ą 0
such that for every set E Ă Rd with |E| “ 1,

}x1E}
q
q ď Aq

q,d ´ c̃q,ddistpE,Eq2. (6.1)

Definition 12. For δ a small positive constant, we say that |f | ď 1E is a δ near extremizer

of (1.5), or just a near extremizer, if p1´ δqBq
q,d|E|

q{p ď } pf}qq.

If |E| “ 1, f, g are real-valued functions with 0 ď f ď 1, and feig1E is NOT a δ near
extremizer of (1.5), then

}{feig1E}
q
q ď Bq

q,dp1´ δq ď Bq
q,d ´

δ

9
Bq
q,d

“

}f ´ 1}L1pEq ` distEpe
ig,Lq2 ` distpE,Eq2

‰

since }f ´ 1}L1pEq ď 1, distEpe
ig,Lq2 ď 4, and distpE,Eq ď 4. Thus in the case that feig1E

is not a δ near extremizer, (1.8) is trivially satisfied with cq,d “
δ
9
Bq
q,d.

Now assume that feig1E is a δ near extremizer. From (1.9) and (6.1) for 4 ď q P 2N, we
can immediately say that

c̃q,ddistpE,Eq2 ď δBq,d.

By precomposing feig1E with an appropriate affine transformation, we can assume that
|E∆B|2 is bounded by a constant multiple of δ. We work more to prove that f must be close
to 1 and eig close to eiL for some L P L in §6.3.

In the case that feig´iL1E is close to 1B, we will be able to control the error in a Taylor

expansion of } {feig´iL1E}
q
q about } p1B}

q
q which is developed in §6.4. To simplify the Taylor

expansion analysis, we treat the special case of E “ B for near-even integer exponents q in
§6.6.

In §6.3.1, we generalize the previous discussion to 3 ď q near even integers using the
equicontinuity of the functional

q ÞÑ } pf}q

on q P p2,8q where |f | ď 1E, E a Lebesgue measurable set with |E| ă 8. Finally, for
real valued functions f and g with 0 ď f ď 1 and a Lebesgue measurable set E Ă Rd of
finite measure, we prove (1.8) for near extremizers in three cases: (1) majority modulus f
variation, (2) majority support E variation, and (3) mostly frequency g variation, which we
address in Proposition 49, Proposition 54, and Proposition 55 respectively.
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6.2 Equicontinuity of q ÞÑ }yf1E}q for |E| “ 1.

The following equicontinuity result for the optimal constant Bq,d as a function of q will
be used to make a perturbative argument generalizing bounds for one exponent to nearby
exponents.

Lemma 35. Let d ě 1 and r P p2,8q. As f1E varies over all subsets satisfying |E| “ 1

and functions satisfying |f | ď 1, the functions q ÞÑ }yf1E}q form an equicontinuous family of
functions of q on any compact subset of p2,8q.

Proof. This follows from the proof of Lemma 3.1 from [16] with f1E in place of 1E.

An immediate consequence of the equicontinuity lemma is the following corollary.

Corollary 36. For each mapping d ě 1, the mapping p2,8q Q q ÞÑ Bq,d P R
` is continuous.

The following corollary and lemma will be used in §6.3.1 to outline the strategy of the
proof of Theorem 3.

Corollary 37. Let d ě 1 and q ě 4 be an even integer with conjugate exponent p. Let δ ą 0,
E be a Lebesgue measurable subset of Rd, and f : Rd Ñ C satisfy |f | ď 1. Let q ą 2 with
conjugate exponent p. If

}yf1E}
q
q{|E|

q{p
ě Bq

q,d ´ δ,

then
}yf1E}

q
q{|E|

q{p
ě Bq

q,d ´ oq´qp1q ´ δ

where oq´qp1q is a function which tends to zero as |q ´ q| goes to zero.

Proof. Since Ψq is invariant under dilations, it suffices to consider when |E| “ 1. Then the
conclusion follows from the preceding Lemma 35 and Corollary 36.

The purpose of the following lemma is to confirm that Theorem 3 is trivial unless

}{feig1E}
q
q is close to Bq

q,d.

Lemma 38. Let d ě 1 and q ě 2 with conjugate exponent p. Let 0 ă δ ă 1, let E Ă Rd be a
Lebesgue measurable set with |E| “ 1 and let f, g be real-valued functions with 0 ď f ď 1. If

}{feig1E}
q
q ď Bq

q,d ´ δ,

then

}{feig1E}
q
q ď Bq

q,d ´
δ

6

”

}f ´ 1}L1pEq ` inf
LPL
}eig ´ eiL}2L2pEq ` distpE,Eq2

ı

.
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Proof. It suffices to note the following inequalities.

}f ´ 1}L1pEq ď 2|E| ď 2

inf
LPL
}eig ´ eiL}L2pEq ď }e

ig
´ 1}L2pEq ď 2|E|1{2 ď 2

distpE,Eq ď
|E∆λB|
|E|

ď 2,

where we define λ by |λB| “ 1, where B denotes the unit ball in Rd.

6.3 Structure of near-extremizers of the form feig1E for

q “ 2m.

In this section, let f be a real valued function with 0 ď fpxq ď 1 a.e., let g be a real valued
function, and let E Ă Rd be a Lebesgue measurable set. Recall that for even integers q, we
know that } p1B}q{|B|1{p “ Bq,d. We carefully unpackage the structure of near-extremizers of
(1.5) of the form feig1E for even q. By proving that (possibly after composition with an
affine function) eig must be close to a multiple of a character and that }f ´ 1}1 and |E∆B|
must be small, we guarantee that a Taylor expansion of }{feig1E}

q
q about } p1B}

q
q will have an

error that we can control (see §6.4).

Since q is even, we can write }{feig1E}
q
q as anm-fold convolution product using Plancherel’s

theorem:

}

Ź

feig1E}
2m
2m “

ż

E2m´1

fpx1q ¨ ¨ ¨ fpxmqfpy2q ¨ ¨ ¨ fpymqfpLpx, yqqˆ (6.2)

cospgpx1q ` ¨ ¨ ¨ ` gpxmq ´ gpy2q ´ ¨ ¨ ¨ ´ gpymq ´ gpLpx, yqqq1EpLpx, yqqdxdy

where x “ px1, . . . , xmq P Rmd, y “ py2, . . . , ymq P Rpm´1qd, and Lpx, yq “ x1 ` ¨ ¨ ¨ ` xm ´
y2 ´ ¨ ¨ ¨ ym. From this expression, it is clear that

}{feig1E}q ď }x1E}q (6.3)

}{feig1E}q ď }yf1E}q (6.4)

}{feig1E}q ď }{eigf1E}q. (6.5)

If p1´ δqBq,d|E|
1{p ď }{feig1E}q, then by (6.3),

p1´ δqAq,d|E|
1{p
ď }x1E}q

where Aq,d “ supE
}x1E}q
|E|1{p

and equals Bq,d since q is even. By Christ’s Theorem 2.6 in [16],

conclude that
|T´1

pEq∆B| ď 2distpE,Eq ď Opδ1{2
q
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where T P AffpRdq is an affine automorphism of Rd and the big-O depends on dimension and
is uniform for q in a compact subset of p3,8q.

Replacing our near-extremizer feig1E by f ˝Teig˝T1E ˝T , we may assume that |E∆B| ď
Opδ1{2q.

Define a measurable function f0 : Rd Ñ r0, 1s by f0 “ f1EXB ` 1BzE. Note that

}yf1E}q ď }yf01B}q ` }yf1E ´ yf01B}q ď }yf01B}q ` }f1EzB ´ 1BzE}p

ď }yf01B}q ` |E∆B|1{p ď }yf01B}q `Opδ
1{2p
q. (6.6)

In the following lemma, we consider }yf01B}q.

Lemma 39. Let d ě 1 and let q ě 4. Suppose 0 ď f ď 1B. Then

}yf1B}
q
q ď }

p1B}
q
q ´ c}f ´ 1}L1pBq

for c “ infBKq ą 0 where Kq is the pq ´ 1q-fold convolution product 1B ˚ ¨ ¨ ¨ ˚ 1B.

Proof. Letting q “ 2m, we have

}yf1B}
2m
2m “}

p1B}
2m
2m ` }

yf1B}
2m
2m ´ }

p1B}
2m
2m

“ } p1B}
2m
2m ` xf1B ˚ ¨ ¨ ¨ ˚ f1B, f1B ˚ ¨ ¨ ¨ ˚ f1By ´ x1B ˚ ¨ ¨ ¨ ˚ 1B, 1B ˚ ¨ ¨ ¨ ˚ 1By

ď } p1B}
2m
2m ` xf1B ˚ 1B ¨ ¨ ¨ ˚ 1B, 1B ˚ ¨ ¨ ¨ ˚ 1By ´ x1B ˚ ¨ ¨ ¨ ˚ 1B, 1B ˚ ¨ ¨ ¨ ˚ 1By

“ } p1B}
2m
2m ` xpf ´ 1q1B, Kqy

ď } p1B}
2m
2m ´ c}f ´ 1}L1pBq

where each convolution product has m factors and we used that Kq ą 0 on B.

Combine (6.6) with Lemma 39 to reason that if feig1E is a near-extremizer and |E∆B| ď
Opδ1{2q, then

}f ´ 1}L1pEq ď }f0 ´ 1}L1pBq ` 2|E∆B| ď Opδ1{2p
q.

Now define g0 : Rd Ñ R by g0 “ 1EXBg. Then

}{feig1E}q ď }{eig01B}q ` }e
ig1E ´ e

ig01B}p ` }pf ´ 1q1E}p

ď }{eig01B}q ` |E∆B|1{p ` }pf ´ 1q1E}
1{p
1

“ }{eig01B}q `Opδ
1{2p2

q.

Thus it remains to understand the case in which eig01B is a near extremizer. The naive
approach used to understand f1B in Lemma 39 breaks down when considering eig1B since an
expression with g appears within the argument of the cosine in (6.2). One tool we have at
our disposal is the following Proposition 8.2 of Christ from [14], stated here for the reader’s
convenience.
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Lemma 40. For each dimension d ě 1 there exists a constant K ă 8 with the following
property. Let B Ă Rd be a ball centered at the origin with positive radius, and let η P p0, 1

2
s,

and let δ ą 0 be sufficiently small. For j P t1, 2, 3u, let fj : 2B Ñ C be Lebesgue measurable
functions that vanish only on sets of Lebesgue measure zero. Suppose that

|tpx, yq P B2 : |f1pxqf2pyqf3px` yq
´1
´ 1| ą ηu| ă δ|B|2.

Then for each index j there exists an affine function Ljn : Rd Ñ C such that

|tx P B : |fjpxqe
´Ljpxq ´ 1| ą Kη1{K

u| ď Kδ|B|.

We will use this lemma in order to obtain structure for g, as described in the following
proposition.

Proposition 41. Let d ě 1 and let q ě 4 be an even integer with conjugate exponent p.
There exist positive constants K̃, δ0 ą 0, depending only on d, with the following property.
Suppose that p1 ´ δqBq,d|B|1{p ď }eig1B}q for δ ď δ0 and g real-valued. Then there exists an
affine function L1 : Rd Ñ R such that

ż

B
|eiL1pxq´igpxq ´ 1|dx ď K̃δ1{p8K̃q.

Proof. Let q “ 2m. We use the expression

}

Ź

eig1B}
q
q “

ż

Bq´1

cospgpx1q ` ¨ ¨ ¨ ` gpxmq ´ gpy2q ´ ¨ ¨ ¨ ´ gpymq ´ gpLpx, yqqq1BpLpx, yqqdxdy

where x “ px1, . . . , xmq P Rmd, y “ py2, . . . , ymq P Rpm´1qd, and Lpx, yq “ x1 ` ¨ ¨ ¨ ` xm ´
y2 ´ ¨ ¨ ¨ ym. Let Apx, yq “ gpx1q ` ¨ ¨ ¨ ` gpxmq ´ gpy2q ´ ¨ ¨ ¨ ´ gpymq ´ gpLpx, yqq. Since eig1B
is a near-extremizer, we have

p1´ δqBq,d|B|1{p ď }
Ź

eig1B}
q
q “ }

p1B}
q
q ` }

Ź

eig1B}
q
q ´ }

p1B}
q
q

“ Bq,d ´

ż

Bq´1

| cospApx, yqq ´ 1|1BpLpx, yqqdxdy,

so
ş

Bq´1 | cospApx, yqq ´ 1|1BpLpx, yqqdxdy ď Bq,d|B|1{pδ. We use this in the following:

ż

Bq´1

|eiApx,yq ´ 1|1BpLpx, yqqdxdy “

ż

Bq´1

pcospApx, yqq ´ 1q2 ` psinpApx, yqqq2q1{21BpLpx, yqqdxdy

“

ż

Bq´1

?
2| cospApx, yqq ´ 1|1{21BpLpx, yqqdxdy

ď
?

2|Bq´1
|
1{2

ˆ
ż

Bq´1

| cospApx, yqq ´ 1|1BpLpx, yqqdxdy

˙1{2

ď
?

2|B|pq´1q{2
pBq,d|B|1{pδq1{2.
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Set

δ̃ “

ż

Bq´1

|eiApx,yq ´ 1|1BpLpx, yqqdxdy ď Cδ1{2. (6.7)

Note that sometimes we will abuse the notation L: Lpx, yq where x P Rmd, y P Rpm´1qd and
Lpx1 ` x2, x

1, yq where x1, x2 P Rd, x1 P Rpm´2qd, y P Rpm´1qd mean the same thing. Define
the function α by

αpx1 ` x2, x
1, yq :“ gpx3q ` ¨ ¨ ¨ ` gpxmq ´ gpy2q ´ ¨ ¨ ¨ ´ gpymq ´ gpLpx1 ` x2, x

1, yqq (6.8)

so that Apx, yq “ gpx1q` gpx2q`αpx1`x2, x
1, yq for Lpx, yq P B. Define the set Sδ̃ Ă Rpq´3qd

to be

Sδ̃ :“

"

px1, yq P Bq´3 :

ż

B2

|eipgpx1q`gpx2q`αpx1`x2,x
1,yqq

´ 1|1BpLpx, yqqdx1dx2 ą δ̃1{2

*

.

Using Chebyshev’s inequality in (6.7), we know that |Sδ̃| ď δ̃1{2. Fix an px1, yq P Bq´3zSδ̃
such that |px1, yq| ă 2 inft|pw1, zq| : pw1, zq P Bq´3zSδ̃u. Since |Sδ̃| ď δ̃1{2, there must be some
positive intersection between Bq´3zSδ̃ and the ball in Rpq´3qd centered at the origin of radius

c
´1{ppq´3qdq
pq´3qd p2δ̃q1{p2pq´3qdq, where cpq´3qd is the volume of the pq ´ 3qd-dimensional unit ball.

Thus
|px1, yq| ď 2c

´1{ppq´3qd
pq´3qd p2δ̃q1{p2pq´3qdq

“: bpq, dqδ̃1{p2pq´3qdq.

For our fixed px1, yq, let a denote

a :“ x13 ` ¨ ¨ ¨x
1
m ´ y2 ´ ¨ ¨ ¨ ´ ym. (6.9)

Note that

|a| ď |x13| ` ¨ ¨ ¨ ` |x
1
m| ` |y2| ` ¨ ¨ ¨ ` |ym|

ď pq ´ 3q1{2p|x13|
2
` ¨ ¨ ¨ ` |x1m|

2
` |y2|

2
` ¨ ¨ ¨ ` |ym|

2
q
1{2

“ pq ´ 3q1{2|px1, yq|1{2 ă pq ´ 3q1{2bpq, dqδ̃1{p2pq´3qdq.

Since px1, yq R Sδ̃, we apply Chebyshev’s inequality again to get

|tpx1, x2q P B2 : |eipgpx1q`gpx2q`αpx1`x2,x
1,yqq

´ 1|1BpLpx, yqq ą δ̃1{4
u| ă δ̃1{4. (6.10)

In order to satisfy the hypotheses of Lemma 40, we need to eliminate the indicator
function 1BpLpx, yqq from the set. We accomplish this by shrinking the size of the ball.
Indeed let r :“ 1

2
p1´ |a|q. It is now clear why we chose px1, yq with nearly minimal modulus:

to make r reasonably close to 1{2. Then

|tpx1, x2q P Bprq
2 : |eipgpx1q`gpx2q`αpx1`x2,x

1,yqq
´ 1| ą δ̃1{4

u|

ď |tpx1, x2q P B2 : |eipgpx1q`gpx2q`αpx1`x2,x
1,yqq

´ 1|1BpLpx, yqq ą δ̃1{4
u| ď δ̃1{4,
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where Bprq denotes the d-dimensional ball of radius r centered at the origin. Thus the
hypotheses of Lemma 40 are satisfied. The lemma guarantees the existence of an affine
function L0 : Rd Ñ C such that

|tx P Bprq : |eigpxqe´L0pxq ´ 1| ą Kδ̃1{p4Kq
u| ď Kδ̃1{4r´d (6.11)

where K ą 0 depends only on the dimension. Note that there exists a constant c ą 0 such
that |eigpxqe´L0pxq ´ 1| ě c|eigpxqe´iImL0pxq ´ 1| for all x P B. Then for K 1 “ K{c, it follows
from (6.11) that

|tx P Bprq : |eigpxq´iImL0pxq ´ 1| ą K 1δ̃1{p4Kq
u| ď Kδ̃1{4r´d.

Since we know that eig « eiImL0 on the majority of Bprq, we can use the set whose
measure is bounded in (6.10) to make conclusions about α on the set Bprq ` Bprq (which
by the definition of α gives us information about g on Bp2rq). More precisely, we have that

|tpx1, x2q PBprq
2 : |eiImL0px1`x2q`iαpx1`x2,x1,yq ´ 1| ą 4K 1δ̃1{p4Kq

u| ď

|tpx1, x2q P Bprq
2 : |eiImL0px1`x2q´igpx1q´igpx2q ´ 1| ą 2K 1δ̃1{p4Kq

u|

` |tpx1, x2q P Bprq
2 : |eipgpx1q`gpx2q`αpx1`x2,x

1,yqq
´ 1| ą 2K 1δ̃1{p4Kq

u|

ď 2|tpx1, x2q P Bprq
2 : |eiImL0px1q´igpx1q ´ 1| ą K 1δ̃1{p4Kq

u| ` δ̃1{4

ď 2cdr
dKδ̃1{4r´d ` δ̃1{4

p2cdK ` 1qδ̃1{4 (6.12)

where cd is the volume of the d-dimensional unit ball.
Recalling the definition of α from (6.8) and a from (6.9) we write for x1, x2 P Bprq

eiImL0px1`x2q`iαpx1`x2,x1,yq “ eiImL0px1`x2q`igpx3q`¨¨¨`igpxmq´igpy2q´¨¨¨´igpymq´igpLpx1`x2,x1,yqq

“ eiImL0px1`x2q`igpx3q`¨¨¨`igpxmq´igpy2q´¨¨¨´igpymq´igpx1`x2`aq.

Combining this expression with the bound from line (6.12), we have actually shown that for
L1 : Rd Ñ R the affine function defined by L1pwq “ ImL0pwq ´ ImL0paq ` igpx3q ` ¨ ¨ ¨ `

igpxmq ´ igpy2q ´ ¨ ¨ ¨ ´ igpymq,

|tpx1, x2q P Bprq
2 : |eiL1px1`x2`aq´igpx1`x2`aq ´ 1| ą 4K 1δ̃1{4

u| ď p2cdK ` 1qδ̃1{4. (6.13)

Let A denote the set whose measure is bounded above in (6.13). Let E Ă Rd denote the set

E :“ tx P Bp2rq : |eL1pw`aq´igpw`aq ´ 1| ą 4K 1δ̃1{4
u.
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Writing line (6.13) in reverse order, we relate A to E as follows.

p2cdK ` 1qδ̃1{4
ě

ĳ

Bprq2

1Apx1, x2qdx1dx2

“

ĳ

Bprq2

1Epx1 ` x2qdx1dx2

“ x1Bprq ˚ 1Bprq, 1Ey

ě
`

inft1Bprq ˚ 1Bprqpxq : x P Bp1´ ηqu
˘

|E XBp1´ ηq|.

Note that there is a dimensional constant ad ą 0 such that 1Bprq ˚ 1Bprqpxq ą adη if η ă 1
and x P Bp1´ ηq. Thus if we pick η “ δ̃1{8,

|E XBp1´ δ̃1{8
q| ď a´1

d p2cdK ` 1qδ̃1{8.

Putting everything together, we can now bound the L1 norm of |eiL1´ig ´ 1|:

ż

B
|eiL1pxq´igpxq ´ 1|dx “

ż

EXBp1´δ̃1{8q

|eiL1pxq´igpxq ´ 1|dx`

ż

EzBp1´δ̃1{8q

|eL1pxq´igpxq ´ 1|dx

`

ż

BzE
|eL1pxq´igpxq ´ 1|dx

ď

”

a´1
d p2cdK ` 1qδ̃1{8

` cdpd` 1qδ̃1{8
ı

p2q ` cd4K
1δ̃1{p4Kq.

Finally, we consider maximizers of the form eig1B.

Lemma 42. Let d ě 1. Suppose that q ě 4 is an even integer and that }zeig1B}
q
q “ Bq,d.

Then there exists an affine function L : Rd Ñ R such that eig “ eiL on B.

This lemma follows from a standard argument. Using the expression from (6.2), the

equality }zeig1B}q “ Bq,d “ } p1B}q leads to a functional equation. By taking smooth approxi-
mations (which still satisfy the functional equation) and using derivatives, we find that eig

has the desired form.

6.3.1 Proof strategy for Theorem 3.

Fix a dimension d ě 1 and an even integer q ě 4. By Lemma 38, to prove Theorem 3, it is
sufficient to find δ ą 0 and ρ ą 0 so that if |q ´ q| ă ρ and if

}{feig1E}
q
q ě Bq

q,d ´ δ (6.14)
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where f, g are real valued with 0 ď f ď 1 and E Ă Rd is a Lebesgue measurable subset with
|E| “ 1, then

}{feig1E}
q
q ď Bq

q,d ´ cq,d
“

}f ´ 1}L1pEq ` distEpe
ig,Lq2 ` distpE,Eq2

‰

.

By Corollary 37, the hypothesis }{feig1E}
q
q ě Bq

q,d ´ δ implies that

}{feig1E}
q
q ě Bq

q,d ´ oq´qp1q ´ δ.

If δ, ρ are sufficiently small, then by the previous section, there exists an affine au-
tomorphism T : Rd Ñ Rd so that |T´1pEq| “ |B| and |T´1pEq∆B| ď 2distpE,Eq ď
Cq,dpoq´qp1q ` δ

1{2q. Let p be the conjugate exponent to q.
Define f 1 : BÑ r0, 1s by f ˝ T on T´1pEq X B and by 1 on BzT´1pBq. By Lemma 39,

} p1B}
q
q ´ cq}f

1
´ 1}L1pBq ě }yf 11B}

q
q

ě |B|q{pBq
q,d ´ oq´qp1q ´ oδp1q

“ } p1B}
q
q ´ oq´qp1q ´ oδp1q.

Thus }f ˝ T ´ 1}L1pT´1pEqq ď }f
1 ´ 1}L1pBq ` }f ˝ T ´ 1}L1pT´1pEqzBq ď oq´qp1q ` oδp1q.

Define g1 : B Ñ R by g ˝ T on T´1pEq X B and 0 on BzT´1pEq. Since }pf ˝ Teig˝T1E ˝
T qp}q{|T

´1pEq|1{p “ }pfeig1Eq
p}q,

}zeig11B}q ě }pf ˝ Te
ig˝T1E ˝ T q

p

}q ´ }f ˝ Te
ig˝T1E ˝ T ´ e

ig11B}p

ě |T´1
pEq|1{pBq,d ´ oq´qp1q ´ oδp1q

´ }f ˝ T ´ 1}
1{p

L1pEq ´ |T
´1
pEq∆B|1{p

“ |B|1{pBq,d ´ oq´qp1q ´ oδp1q.

Then Proposition 41 applies, so there exists a real-valued affine function L : Rd Ñ Rd so
that

}eig
1

´ eiL}L1pBq ď oq´qp1q ` oδp1q.

If for a.e. x P T´1pBq we choose a representative of the equivalence class rg ˝ T pxq ´Lpxqs P
R{p2πq with values in some range r´M,M s, then

}g ˝ T ´ L}2L2pT´1pEqq ďM2
|T´1

pEqzB| `M}eig1 ´ eiL}L1pBq ďM2
poq´qp1q ` oδp1qq.

We will prove in Propositions 49, 54, and 55 that

}pf˝Teipg˝T´Lq1E˝T q
p

}
q
q ď }

p1B}
q
q´cq,d

“

}f ˝ T ´ 1}L1pT´1pEqq ` distT´1pEqpe
ig˝T ,Lq2 ` |T´1

pEq∆B|2
‰

.

Since }pf ˝ Teipg˝T´Lq1E ˝ T q
p}q{|B|1{p “ }pfeig1Eqp}q, it follows that

}{feig1E}
q
q ď Bq

q,d ´ |B|
´1{pcq,d

“

}f ˝ T ´ 1}L1pT´1pEqq ` distT´1pEqpe
ig˝T ,Lq2 ` |T´1

pEq∆B|2
‰

ď Bq
q,d ´ |B|

1{qcq,d
“

}f ´ 1}L1pEq ` distEpe
ig,Lq2 ` distpE,Eq2

‰

where we used that |B| “ |T´1pEq| “ | detT´1||E| “ | detT´1|.
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6.4 A Taylor expansion representation of }{feig1E}
q
q.

Assuming that |f | ď 1E is close to 1B in the appropriate sense, we can find a good repre-

sentation of } pf}qq using a Taylor expansion about } p1B}
q
q. This is analogous to Lemma 3.4 in

[16]. The functions in the following definition arise in the Taylor expansion.

Definition 13. For d ě 1 and q P p3,8q, we define the functions Kq and Lq on Rd by

xKq “ | p1B|
q´2

p1B (6.15)

xLq “ | p1B|
q´2. (6.16)

The basic properties of Kq and Lq are discussed in §6.4.1 below. For any function f on
Rd, we let f̃ be the function f̃pxq “ fp´xq.

Lemma 43. Let d ě 1 and q P p3,8q with conjugate exponent q1. Let E Ă Rd and |f | ď 1E.
Set h “ f1E ´ 1B. For sufficiently small }h}q1,

} pf}qq “ } p1B}
q
q ` qxKq,Rehy ´

1

4
qpq ´ 2qxImh ˚ Imh, Lqy `

1

4
q2
xImh, Imh ˚ Lqy

`
1

4
qpq ´ 2qxReh ˚ Reh, Lqy `

1

4
q2
xReh ˚ Re h̃, Lqy `Op}h}

3
q1q.

If q belongs to a compact subset of p3,8q, the constant implicit in the notation Op¨q may
be taken to be independent of q.

Proof. Using the Taylor expansion

|1` t|q “ 1` qRe t`
1

2
qpq ´ 1qpRe tq2 `

1

2
qpIm tq2 `Op|t|3 ` |t|qq

valid for q P p3,8q and the fact that p1B is real-valued, we have

| p1B ` ph|q “ | p1B|
q
` qpRephq p1B| p1B|

q´2
`

1

2
qpq ´ 1qpRephq2| p1B|

q´2

`
1

2
qpImphq2| p1B|

q´2
`Op|ph|3| p1B|

q´3
q `Op|ph|qq.

Next we integrate over Rd to obtain

} pf}qq “ } p1B}
q
q ` qxKq,Rehy `

1

2
qpq ´ 1qxpRephq2,xLqy

`
1

2
qxpImphq2,xLqy `Op}h}

3
q1 ` }h}

q
q1q

“ } p1B}
q
q ` qxKq,Rehy `

1

8
qpq ´ 1qxpph` phq2,xLqy

´
1

8
qxpph´ phq2,xLqy `Op}h}

3
q1q.
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Using Plancherel’s theorem, recalling that the ˜̈ notation denotes the reflected function, using
the relation L̃q “ Lq, and exploiting the equality xf1 ˚ f2, f3y “ xf1, f̃2 ˚ f4y for real-valued
functions fi, we further compute

} pf}qq “ } p1B}
q
q ` qxKq,Rehy `

1

8
qpq ´ 1qxph` h̃q ˚ ph` h̃q, Lqy

´
1

8
qxph´ h̃q ˚ ph´ h̃q, Lqy `Op}h}

3
q1q.

By expanding h and h̃ into real and imaginary parts and reorganizing, obtain

} pf}qq “ } p1B}
q
q ` qxKq,Rehy ´

1

4
qpq ´ 2qxImh ˚ Imh, Lqy `

1

4
q2
xImh, Imh ˚ Lqy

`
1

4
qpq ´ 2qxReh ˚ Reh, Lqy `

1

4
q2
xReh ˚ Re h̃, Lqy `Op}h}

3
q1q.

6.4.1 The functions Kq and Lq.

Let Kq and Lq be the functions defined in (6.15) and (6.16). We state the facts proved in
in [16] about Kq and Lq that we will need for our analysis of the Taylor expansion. See §3.3
and §3.4 from [16] for detailed explanations.

As is well known, p1B is a radially symmetric real-valued real analytic function which
satisfies

| p1Bpξq| ` |∇ p1Bpξq| ď Cdp1` |ξ|q
´pd`1q{2. (6.17)

The following are consequences of (6.17):

Lemma 44. Let d ě 1 and q P p3,8q. The functions Kq, Lq are real-valued, radially
symmetric, bounded and Hölder continuous of some positive order. Moreover, Kqpxq Ñ 0 as
|x| Ñ 8 and likewise for Lqpxq. The function Kq is continuously differentiable, and x ¨∇Kq

is likewise real-valued, radially symmetric, and Hölder continuous of some positive order.
These conclusions hold uniformly for q in any compact subset of p3,8q.

Lemma 45. For each d ě 1, Kq, Lq, and x ¨ ∇xKq depend continuously on q P p3,8q.
This holds in the sense that for each compact subset Λ Ă p3,8q, the mappings q ÞÑ Kq and
q ÞÑ Lq are continuous from Λ to the space of continuous functions on Rd that tend to zero at
infinity. Moreover, there exists ρ ą 0 such that this mapping from Λ to the space of bounded
Hölder continuous functions of order ρ on any bounded subset of Rd is continuous. The two
conclusions also hold for q ÞÑ x ¨∇xKq.

The following lemma is an immediate consequence of the boundedness of Lq.

Lemma 46. Let d ě 1 and q P p3,8q. Let h1, h2 P L
1pRdq. Then

xh1 ˚ Lq, h2y “ Op}h1}1}h2}1q.
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Lemma 47. For each d ě 1 and each even integer m ě 4 there exists η “ ηpd,mq ą 0 such
that whenever |q ´m| ă η, there exists c ą 0 such that whenever |y| ď 1 ď |x| ď 2,

Kqpyq ě Kqpxq ` c||x| ´ |y||. (6.18)

Also, infxP2BKqpxq ą 0 and

min
|x|ď1´δ

Kqpxq ą max
|x|ě1`δ

Kqpxq for all δ ą 0. (6.19)

Proof. From the proof of Lemma 3.10 in [16], if m is an even integer greater than 3 and
|y| “ 1, then the map t ÞÑ Kmptyq has strictly negative derivative for all t P p0,m´ 1q. The
inequalities (6.18) and (6.19) are a direct result. Since infxP2BKqpxq “ infxP2B 1B ˚ ¨ ¨ ¨ ˚ 1Bpxq
is obviously positive when q is even, the same holds for near q by the continuity of q ÞÑ Kq.

Remark 14. We will use the fact that infxP2BKqpxq is positive for q near even integers
extensively throughout the paper.

6.4.2 A more detailed Taylor expansion in terms of the support,
frequency, and modulus.

In order to better understand the effects of specific variations of 1B, we consider feig1E where
0 ď f ď 1, g is real valued, and |E| P R`.

Lemma 48. Let d ě 1 and q P p3,8q. Let E Ă Rd. Suppose that |E∆B|, }g}L2pEq, and
}f ´ 1}L1pEq are sufficiently small. Then

}{feig1E}
q
q “ }

x1E}
q
q ` qxKq, f cos g1EzB ´ 1EzBy ´ } p1B}

q
q ` }

{f 1eig11B}
q
q

`Opp}g}22 ` }f ´ 1}L1pEqq|E∆B|1{2q `Op}g}3L2pEq ` }f ´ 1}2L1pEq ` |E∆B|3{q1q

where g1 “ g on E X B, g1 “ 0 on RdzpE X Bq and f 1 “ f on E X B, f 1 “ 1 on BzE, f 1 “ 0
on RdzB.

Proof. As in Lemma 43, set h “ feig1E´1B. Using the expression for }{feig1E}
q
q from Lemma
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43, we replace some of the terms with h by h´ 1E ` 1E and expand to obtain

}{feig1E}
q
q “ }

p1B}
q
q ` qxKq, f cos g1E ´ 1Ey ` qxKq, 1E ´ 1By

´
1

4
qpq ´ 2qxf sin g1E ˚ f sin g1E, Lqy `

1

4
q2
xf sin g1E, f sin g1E ˚ Lqy

`
1

4
qpq ´ 2qxp1E ´ 1Bq ˚ p1E ´ 1Bq, Lqy

`
1

4
q2
xp1E ´ 1Bq ˚ p1Ẽ ´ 1Bq, Lqy

`Op}f cos g1E ´ 1E}1}f cos g1E ´ 1B}1 ` }f cos g1E ´ 1E}
2
1q `Op}h}

3
q1q

“ }x1E}
q
q ` qxKq, f cos g1E ´ 1Ey (6.20)

´
1

4
qpq ´ 2qxf sin g1E ˚ f sin g1E, Lqy `

1

4
q2
xf sin g1E, f sin g1E ˚ Lqy

`Op}f cos g1E ´ 1E}1}f cos g1E ´ 1B}1q

`Op}feig1E ´ 1E}
3
q1 ` }1E ´ 1B}

3
q1q.

where we used that Lemma 43 gives

}x1E}
q
q “ }

p1B}
q
q ` qxKq, 1E ´ 1By `

1

4
qpq ´ 2qxp1E ´ 1Bq ˚ p1E ´ 1Bq, Lqy

`
1

4
q2
xp1E ´ 1Bq, p1E ´ 1Bq ˚ Lqy `Op|E∆B|3{q1q.

Lemma 43 also gives the following Taylor expansion for } {f 1eig11E}
q
q.

} {f 1eig11B}
q
q “ }

p1B}
q
q ` qxKq, pf

1 cos g1 ´ 1q1By

´
1

4
qpq ´ 2qxf 1 sin g11B ˚ f

1 sin g11B, Lqy `
1

4
q2
xf 1 sin g11B, f

1 sin g11B ˚ Lqy

`
1

4
qpq ´ 2qxpf 1 cos g1 ´ 1q1B ˚ pf

1 cos g1 ´ 1q1B, Lqy

`
1

4
q2
xpf 1 cos g1 ´ 1q1B, pf

1 cos g1 ´ 1q1B ˚ Lqy `Op}f
1eig

1

´ 1}3
Lq
1
pBqq

“ } p1B}
q
q ` qxKq, pf

1 cos g1 ´ 1q1By

´
1

4
qpq ´ 2qxf 1 sin g11B ˚ f

1 sin g11B, Lqy `
1

4
q2
xf 1 sin g11B, f

1 sin g11B ˚ Lqy

`Op}f 1 cos g1 ´ 1}2L1pBqq `Op}f
1eig

1

´ 1}3
Lq1 pBqq.

Using that }pf 1eig
1

´ 1q1B}q1 “ }pfeig ´ 1q1EXB}q1 ď }pfeig ´ 1q1E}q1 and that }f 1 cos g1 ´
1}2L1pBq “ }f cos g ´ 1}2L1pEXBq ď }f cos g1E ´ 1E}1}f cos g1E ´ 1B}1, we will extract the
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expression for } {f 1eig11E}
q
q above from some of the terms from (6.20). First write some terms

from (6.20) in terms of g1:

xKq, f cos g1E ´ 1Ey “ xKq, f cos g1E ´ 1E ´ f
1 cos g11B ` 1By ` xKq, f

1 cos g11B ´ 1By

“ xKq, f cos g1EzB ´ 1EzBy ` xKq, f
1 cos g11B ´ 1By,

xf sin g1E ˚ f sin g1E, Lqy

“ xpf sin g1E ´ f
1 sin g11B ` f

1 sin g11Bq ˚ pf sin g1E ´ f
1 sin g11B ` f

1 sin g11Bq, Lqy

“ xf 1 sin g11B ˚ f
1 sin g11B, Lqy `Op}f sin g1E ´ f

1 sin g11B}1}f sin g1E}1q

`Op}f sin g1E ´ f
1 sin g11B}

2
1q

“ xf 1 sin g11B ˚ f
1 sin g11B, Lqy `Op}g}

2
2|E∆B|1{2q

xf sin g1E, f sin g1E ˚ Lqy

“ xpf sin g1E ´ f
1 sin g11B ` f

1 sin g11Bq, pf sin g1E ´ f
1 sin g11B ` f

1 sin g11Bq ˚ Lqy

“ xf 1 sin g11B, f
1 sin g11B ˚ Lqy `Op}f sin g1E ´ f

1 sin g11B}1}f sin g1E}1

`Op}f sin g1E ´ f
1 sin g11B}

2
1q

“ xf 1 sin g11B, f
1 sin g11B ˚ Lqy `Op}g}

2
2|E∆B|1{2q

Using the above equalities and the expression for } {f 1eig11B}
q
q, we have

qxKq,f cos g1E ´ 1Ey ´
1

4
qpq ´ 2qxf sin g1E ˚ f sin g1E, Lqy `

1

4
q2
xf sin g1E, f sin g1E ˚ Lqy

“ qxKq, f cos g1EzB ´ 1EzBy ´ } p1B}
q
q ` }

{f 1eig11B}
q
q

`Op}g}22|E∆B|1{2q `Op}f cos g1E ´ 1E}1}f cos g1E ´ 1B}1q `Op}pfe
ig
´ 1q1E}

3
q1q.

Inputting this into (6.20) gives

}{feig1E}
q
q “ }

x1E}
q
q ` qxKq, f cos g1EzB ´ 1EzBy ´ } p1B}

q
q ` }

{f 1eig11B}
q
q

`Op}g}22|E∆B|1{2q `Op}f cos g1E ´ 1E}1}f cos g1E ´ 1B}1q

`Op}feig1E ´ 1E}
3
q1 ` }1E ´ 1B}

3
q1q,

so it remains to understand the big-O terms. Note that

}feig1E ´ 1E}q1 ď }f ´ 1}
1{q1

L1pEq ` }g}L2pEqp2|E|q
p2´q1q{p2q1q.

We also have that }f cos g1E ´ 1E}1 ď }g}
2
L2pEq ` }f ´ 1}L1pEq and

}f cos g1E ´ 1B}1 ď }g}
2
L2pEq ` }f ´ 1}L1pEq ` |E∆B|.

Thus, noting that 3{q1 ą 2, we can simplify the big-O terms to

Opp}g}22 ` }f ´ 1}L1pEqq|E∆B|1{2q `Op}g}3L2pEq ` }f ´ 1}2L1pEq ` |E∆B|3{q1q.
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6.5 Mostly modulus variation

By mostly modulus variation, we mean }f ´ 1}
1{2

L1pEq ě maxpMN |E∆B|, N}g}L2pEqq. The
parameters M and N are consistent with the other two cases described in §6.7 and §6.8. Let
Kq, Lq be the functions defined in (6.15) and (6.16) in the following discussion. We use our
most basic Taylor expansion from Lemma 43 to understand this case.

Proposition 49. Let d ě 1 and let q ě 4 be an even integer. There exist M,N P R`, δ0 ą 0,
and ρ ą 0 all depending on q and d such that the following holds. Let q P p3,8q, E Ă Rd

be a Lebesgue measurable set with |E| ď |B|, 0 ď f ď 1, and g be real valued. Suppose that
}f ´ 1}L1pBq ď δ0, }g}L2pEq ď δ0, |E∆B| ď δ0, and |q ´ q| ď ρ. If

}f ´ 1}
1{2

L1pEq ě maxpMN |E∆B|, N}g}L2pEqq,

then

}{feig1E}
q
q ď }

p1B}
q
q ´ cq,d}f ´ 1}L1pEq

for a constant cq,d ą 0 depending only on the exponent q and on the dimension.

Proof. We begin with the Taylor expansion for }{feig1E}
q
q from Lemma 43.

}{feig1E}
q
q “ }

p1B}
q
q ` qxKq, f cos g1E ´ 1By

´
1

4
qpq ´ 2qxf sin g1E ˚ f sin g1E, Lqy `

1

4
q2
xf sin g1E, f sin g1E ˚ Lqy

`
1

4
qpq ´ 2qxpf cos g1E ´ 1Bq ˚ pf cos g1E ´ 1Bq, Lqy

`
1

4
q2
xpf cos g1E ´ 1Bq ˚ pf̃ cos g̃1Ẽ ´ 1Bq, Lqy

`Op}feig1E ´ 1B}
3
q1q

“ } p1B}
q
q ` qxKq, f cos g1E ´ 1By `Op} sin g}2L1pEq ` }f cos g1E ´ 1B}

2
1 ` }fe

ig1E ´ 1B}
3
q1q.

(6.21)

Analyze the inner product term in (6.21). Let G` “ tx P E : cos gpxq ě 0u, G´ “ tx P
E : cos gpxq ă 0u, K` “ tx P Rd : Kqpxq ě 0u, and K´ “ tx P Rd : Kqpxq ă 0u. The term
xKq, f cos g1E ´ 1By may be handled as follows:

xKq, f cos g1E ´ 1By “ xKq, f cos gp1EXG`XK` ` 1EXG`XK´ ` 1EXG´XK` ` 1EXG´XK´q ´ 1By

ď xKq, f cos g1EXG`XK` ´ 1By ` xKq, f cos g1EXG´XK´y

ď xKq, f1EXG`XK` ´ 1By ` C|G´|

where C “ Cpq, dq ą 0 is a constant. Note that on G´, we must have |g| ě π{2, so
|G´| ď

4
π2 }g}

2
L2pEq ď

4
π2N2 }f ´ 1}L1pEq. Now consider xKq, f1EXG`XK` ´ 1By:
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xKq, f1pEXG`XK`qXB ´ 1BXEy ` xKq, f1pEXG`XK`qzB ´ 1BzEy

ď xKq, f1EXB ´ 1BXEy ` xKq, f1pEXK`qzB ´ 1BzEy

ď ´ inf
B
Kq ¨ }f ´ 1}L1pEXBq ` sup

|x|ą1

Kqpxq ¨ }f1EzB}1 ´ inf
B
Kq ¨ |BzE|.

By Lemma 47, we know that infBKq “ sup|x|ą1Kqpxq “ Kq|BB. We assumed that |E| ď |B|
(so ´|BzE| ď ´|EzB|) in the hypotheses. Using these two observations, we further simplify
and bound the above.

sup
|x|ą1

Kqpxq ¨ }f1EzB}1 ´ inf
B
Kq ¨ |BzE| ď ´ Kq|BB

`

|EzB| ´ }f1EzB}1
˘

“ ´ Kq|BB }f ´ 1}L1pEzBq.

In summary, we have shown that

xKq, f cos g1E ´ 1By ď ´ inf
B
Kq ¨ }f ´ 1}L1pEq ` C

1

N2
}f ´ 1}L1pEq.

Now analyze the error term in (6.21). The error Op}f cos g1E ´ 1B}
2
1q can be replaced by

Op}f ´ 1}2L1pEq ` |E∆B|2q because

}f cos g1E ´ 1B}1 ď }f cos g1E ´ cos g1E}1 ` } cos g1E ´ 1E}1 ` |E∆B|
ď }f ´ 1}L1pEq ` }g}

2
L2pEq ` |E∆B|,

and similarly, Op}feig1E ´ 1B}
3
q1q can be replaced by Op}f ´ 1}

3{p2q1q

L1pEq q since

}feig1E ´ 1B}q1 ď }fe
ig1E ´ e

ig1E}q1 ` }e
ig1E ´ 1E}q1 ` }1E ´ 1B}q1

ď }f ´ 1}L1pEq ` }g}L2pEq|E|
pq1´2q{pq1q2

` |E∆B|1{q1 .

Also note that since | sinx| ď |x|, } sin g}21 ď }g}
2
1 ď |B|}g}2L2pEq ď

|B|
N2 }f ´ 1}L1pEq.

Returning to (6.21), we now have the following bound.

}{feig1E}
q
q “ }

p1B}
q
q ` qxKq, f cos g1E ´ 1By `Op} sin g}2L1pEq ` }f cos g1E ´ 1B}

2
1 ` }fe

ig1E ´ 1B}
3
q1q

ď } p1B}
q
q ´ q inf

B
Kq ¨ }f ´ 1}L1pEq ` C1

ˆ

1

N2
`

1

pMNq2

˙

}f ´ 1}L1pEq

`Op}f ´ 1}
3{p2q1q

L1pEq q

Thus for M,N large enough and δ0 small enough, we have the desired conclusion.
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The exponent 1 and the L1pEq norm of }f ´ 1}L1pEq in the previous proposition are
optimal in the following sense.

Lemma 50. Let d ě 1, p ě 1, N ą 0, and q ě 4 be an even integer. There exists
ρ “ ρpq, dq ą 0 such that the following holds. If for some q ą 3 satisfying |q ´ q| ă ρ, there
exists cq,d ą 0 such that for any function f : Rd Ñ r0, 1s,

}yf1B}
q
q ď }

p1B}
q
q ´ cq,d}f ´ 1}NLppBq, (6.22)

then N ě p.

Note that for a function f satisfying |f ´ 1| ď 1 and a subset E with |E| “ 1, if N ě p,

}f ´ 1}NLppEq ď }f ´ 1}NLN pEq ď }f ´ 1}L1pEq,

so Theorem 3 is stronger than if }f ´ 1}L1pEq were replaced by }f ´ 1}NLppEq.

Proof. For each n P N, let fn be the indicator function of the ball

Bn :“ tx P Rd : |x| ă 1´ 1{nu.

Use Lemma 43 with hn “ fn1B ´ 1B:

}zfn1B}
q
q “ }

p1B}
q
q ` qxKq, pfn ´ 1q1By `

1

4
qpq ´ 2qxhn ˚ hn, Lqy

`
1

4
q2
xhn ˚ h̃n, Lqy `Op}hn}

3
q1 ` }hn}

q
q1q

where q1 is the conjugate exponent of q. This combined with the hypothesis (6.22) leads to

c̃q,dp1´ p1´ 1{nqdqN{p`Opp1´ p1´ 1{nqdq3{q
1

q “ cq,d}fn ´ 1}NLppBq `Op}hn}
3
q1q

ď qxKq, p1´ fnq1By ď Cp1´ p1´ 1{nqdq.

Let n tend to infinity to conclude that N{p ě 1.

6.6 The special case E “ B for q near an even integer.

Let Kq, Lq be the functions defined in (6.15) and (6.16). In order to treat the remaining
cases of mostly support variation (in §6.7) and mostly frequency variation (in §6.8) of our
near-extremizer feig1E with 0 ď f ď 1, g real-valued, begin with Lemma 48. Let g1 “ g on
EXB and g1 “ 0 on BzE and let f 1 “ f on EXB and f 1 “ 1 on BzE. Recall the statement
from Lemma 48 :

}{feig1E}
q
q “ }

x1E}
q
q ` qxKq, f cos g1EzB ´ 1EzBy ´ } p1B}

q
q ` }

{f 1eig11B}
q
q

`Opp}g}22 ` }f ´ 1}L1pEqq|E∆B|1{2q `Op}g}3L2pEq ` }f ´ 1}2L1pEq ` |E∆B|3{q1q.

In this section, we work to understand the term } {f 1eig11B}
q
q above.
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6.6.1 A new Taylor expansion for }{feig1B}
q
q when }f ´ 1}1, }g}2 ! 1.

The structural information we have obtained from Lemma 39 and Proposition 41 guarantees
that if feig1B is a near-extremizer, then, after possibly replacing g by an affine translation

of g, feig1B is reasonably close to 1B. Thus a Taylor expansion of }{feig1B}
q
q about } p1B}

q
q

will have an error that we can control. Furthermore, since we know that |eig ´ 1| is small
on the majority of B, we can expand the sinpgq and cospgq that appear in Lemma 43 using
Taylor series approximations. We split up the set B into a subset where the frequency |g| is
small and the remainder set where the frequency is not small in order to use polynomials to
approximate the trigonometric terms in the next lemma. Define

Bεg :“ tx P B : |gpxq| ą εu

for 0 ă ε ă π{2 and Ag :“ tx P B : cos gpxq ě 0u. Note that in the following lemma, we do
not require a specific equivalence representative of gpxq P R{p2πq for x P B.

Lemma 51. Let d ě 1 and let q ě 4 be an even integer. Let f, g be real valued functions on
B with 0 ď f ď 1. There exists δ0 ą 0, depending on q and on d, such that if }f´1}L1pBq ď δ0

and }g}L2pBq ď δ0, then

}{feig1B}
q
q ď }

p1B}
q
q ´ q inf

B
Kq ¨

´

} cos g ´ 1}L1pAgXBεgq ` |B
ε
gzAg|

¯

´
q

2
xKq, g

21BzBεgy ´
1

4
qpq ´ 2qxg1BzBεg ˚ g1BzBεg , Lqy `

1

4
q2
xg1BzBεg , g1BzBεg ˚ Lqy

` ε2Op}g}2L2pBzBεgqq `Op|B
ε
g|

1{2
}g}2L2pBqq `Op}f ´ 1}L1pBq}g}L2pBqq

`Op}f ´ 1}2L1pBq ` }g}
3
L2pBqq

where Bεg “ tx P B : |gpxq| ą εu for any 0 ă ε ă π{2 and Ag “ tx P B : cos gpxq ě 0u.

Proof. We use the Taylor expansion from in Lemma 43.

}{feig1B}
q
q “ }

p1B}
q
q ` qxKq, f cos g1B ´ 1By ´

1

4
qpq ´ 2qxf sin g1B ˚ f sin g1B, Lqy (6.23)

`
1

4
q2
xf sin g1B, f sin g1B ˚ Lqy `

1

4
qpq ´ 2qxpf cos g1B ´ 1Bq ˚ pf cos g1B ´ 1Bq, Lqy

`
1

4
q2
xpf cos g1B ´ 1Bq ˚ pf̃ cos g̃1B ´ 1Bq, Lqy `Op}fe

ig
´ 1}3

Lq1 pBqq

Bound the terms with two cosines by Op}f cos g ´ 1}2L1pBqq. Since

}f cos g ´ 1}L1pBq ď }f ´ 1}L1pBq ` } cos g ´ 1}L1pBq

ď }f ´ 1}L1pBq ` }g}
2
L2pBq,

we can replace Op}f cos g ´ 1}2L1pBqq by Op}f ´ 1}2L1pBq ` }g}
4
L2pBqq.
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For the terms with sine, first we eliminate the f factor.

xf sin g1B, f sin g1B ˚ Lqy “ xpf ´ 1` 1q sin g1B, pf ´ 1` 1q sin g1B ˚ Lqy

“ xsin g1B, sin g1B ˚ Lqy `Op}pf ´ 1q sin g}L1pBq}f sin g}L1pBqq

ď xsin g1B, sin g1B ˚ Lqy `Op}f ´ 1}L1pBq}g}L2pBqq.

Next, split the ball into Bεg and BzBεg.

xsin g1B, sin g1B ˚ Lqy “ xpsin g1BzBεg ` sin g1Bεgq, psin g1BzBεg ` sin g1Bεgq ˚ Lqy

ď xsin g1BzBεg , sin g1BzBεg ˚ Lqy `Op} sin g1Bεg}1} sin g1B}1q

ď xsin g1BzBεg , sin g1BzBεg ˚ Lqy `Op|B
ε
g|

1{2
}g}2L2pBqq.

Together, we have

´
1

4
qpq ´ 2qxf sin g1B ˚ f sin g1B, Lqy `

1

4
q2
xf sin g1B, f sin g1B ˚ Lqy

ď ´
1

4
qpq ´ 2qxsin g1BzBεg ˚ sin g1BzBεg , Lqy `

1

4
q2
xsin g1BzBεg , sin g1BzBεg ˚ Lqy

Op|Bεg|1{2}g}2L2pBqq `Op}f ´ 1}L1pBq}g}L2pBqq.

Finally, for the term with one cosine, recall Ag “ tx P B : cos gpxq ě 0u. On the set
BzBεg “ tx P B : |gpxq| ď εu where ε ă π{2, we also have cos g ą 0, so BzBεg Ă Ag. Calculate

xKq, f cos g1B ´ 1By ď xKq, f cos g1Ag ´ 1By

ď xKq, cos g1BzBεg ´ 1BzBεgy ` xKq, cos g1AgXBεg ´ 1AgXBεgy

´ inf
B
Kq ¨ |BεgzAg|

ď xKq, cos g1BzBεg ´ 1BzBεgy ´ inf
B
Kq ¨

´

} cos g ´ 1}L1pAgXBεgq ` |B
ε
gzAg|

¯

.

Using the above analysis in (6.23), we have

}{feig1B}
q
q ď }

p1B}
q
q ` qxKq, cos g1BzBεg ´ 1BzBεgy ´ q inf

B
Kq ¨

´

} cos g ´ 1}L1pAXBεgq ` |B
ε
gzA|

¯

(6.24)

´
1

4
qpq ´ 2qxsin g1BzBεg ˚ sin g1BzBεg , Lqy `

1

4
q2
xsin g1BzBεg , sin g1BzBεg ˚ Lqy

Op|Bεg|1{2}g}2L2pBqq `Op}f ´ 1}L1pBq}g}L2pBqq

`Op}f ´ 1}2L1pBq ` }g}
4
L2pBqq `Op}fe

ig
´ 1}3

Lq1 pBqq.

Approximate the remaining trigonometric functions by the following Taylor expansions for
t P R:
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sin t “ t`Opt3q and cos t “ 1´
t2

2
`Opt4q.

This combined with the definition of Bεg gives

qxKq, cos g1BzBεg ´ 1BzBεgy ´
1

4
qpq ´ 2qxsin g1BzBεg ˚ sin g1BzBεg , Lqy

`
1

4
q2
xsin g1BzBεg , sin g1BzBεg ˚ Lqy

“ qxKq, p1´ g
2
{2`Opg4

qq1BzBεg ´ 1BzBεgy

´
1

4
qpq ´ 2qxpg `Opg3

qq1BzBεg ˚ pg `Opg
3
qq1BzBεg , Lqy

`
1

4
q2
xpg `Opg3

qq1BzBεg , pg `Opg
3
qq1BzBεg ˚ Lqy

ď ´
q

2
xKq, g

21BzBεgy ` ε
2Op}g}2L2pBzBεgqq ´

1

4
qpq ´ 2qxg1BzBεg ˚ g1BzBεg , Lqy

`
1

4
q2
xg1BzBεg , g1BzBεg ˚ Lqy `Op}g}

3
L2pBqq

Finally, we note that since q1 ă 3{2 and }feig´1}Lq1 pBq ď }f´1}Lq1 pBq`}g}L2pBqp2|B|qp2´q
1q{2q1 ,

the error terms may be combined to

Op}f ´ 1}2L2pBq ` }g}
3
L2pBq ` }g}

4
L2pBq ` }fe

ig
´ 1}3

Lq1 pBqq ď Op}f ´ 1}2L2pBq ` }g}
3
L2pBqq.

6.6.2 Connection with a spectral problem.

In the previous section, for feig1B with }f´1}L1pBq and }g}L2pBq small, we expressed }{feig1B}
q
q

as } p1B}
q
q plus a quadratic form in g1BzBεg and a small error. In this section, we analyze a

spectral problem concerning that quadratic form when q ě 4 is an even integer in order to

obtain a more descriptive upper bound for }{feig1B}
q
q.

Definition 15. Define Tq : L2pBq Ñ L2pBq to be the linear operator which is the composition

of multiplication by K
´1{2
q , followed by convolution with Lq, followed by multiplication by

K
´1{2
q . That is, for h P L2pBq,

h
Tq
ÞÝÑ K´1{2

q pK´1{2
q h1B ˚ Lqq

ˇ

ˇ

B .

Observe that Tq is bounded on L2pBq since Kq is bounded above and below by positive
quantities on B, so

}K´1{2
q pK´1{2h ˚ Lqq}L2pBq ď }K

´1{2
q }

2
L8pBq}Lq}L1p2Bq}h}L2pBq.
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Using that p1B is a real-valued function that satisfies } p1Bpξq| ď Cdp1`|ξ|q
´pd`1q{2 and that

xLq “ | p1B|
q´2, we will show that Tq is a compact operator. Since Kq is bounded above and

below by positive constants on 2B, multiplication by K
´1{2
q defines a bounded operator on

L2pBq and therefore it suffices to show that convolution with Lq is compact. But convolution
with any continuous function, followed by restriction to the ball, defines a compact operator,
so Tq is compact.

Finally, since Kq is real and Lq is symmetric,

xTqh, fy “ xK
´1{2
q h ˚ Lq, K

´1{2
q hy “ xK´1{2

q h, Lq ˚K
´1{2
q hy “ xh, Tqfy,

so Tq is self-adjoint. Let Qq be the quadratic form on L2pBq defined by

Qqpf, hq “ xf, Tqhy

where f, h P L2pBq. As above, f̃pxq “ fp´xq.

Definition 16. Let d ě 1 and q ě 4 be an even integer. Let H denote the subspace of L2pBq
of functions of the form K

1{2
q pxqpα ¨ x` bq where α P Rd and b P R. Let PH : L2pBq Ñ L2pBq

denote the orthogonal projection onto H.

Lemma 52. Let d ě 1. Let q ě 4 be an even integer. Then there exists c ą 0 depending on
the dimension and q such that

´
q

2
}h}2L2pBq ´

1

4
qpq ´ 2qQqph, h̃q `

1

4
q2Qqph, hq ď ´c}pI ´ PHqh}

2
L2pBq (6.25)

for every real-valued h P L2pBq.

Proof. Since Tq is a compact, self-adjoint linear operator, we can write L2pBq as a direct
sum of eigenspaces. For a fixed eigenvalue , we can further orthogonally decompose the
corresponding eigenspace into even eigenfunctions and odd eigenfunctions since Kq “ K̃q

and if Tqϕ “ λϕ, 1{2pϕ ` ϕ̃q ` 1{2pϕ ´ ϕ̃q is a unique representation of ϕ as a sum of
an even eigenvector with eigenvalue λ and an odd eigenvector with eigenvalue λ. Since Tq
can be regarded as an operator on real-valued functions in L2pBq, we can assume that the
eigenfunctions are real-valued. Thus we can expand h as say h “

ř8

n“0 hn, where the hn
are pairwise orthogonal eigenfunctions of Tq, either even or odd, real-valued, and associated
with eigenvalues λn. The spectrum is real and λn Ñ 0 as n Ñ 8. Assume that |λn| is
nonincreasing and calculate
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´
q

2
}h}2L2pBq´

1

4
qpq ´ 2qQqph, h̃q `

1

4
q2Qqph, hq

“
ÿ

nďN

ˆ

´
q

2
}hn}

2
L2pBq ´

1

4
qpq ´ 2qλnxhn, h̃ny `

1

4
q2λn}hn}2

˙

`
ÿ

nąN

ˆ

´
q

2
}hn}

2
L2pBq ´

1

4
qpq ´ 2qλnxhn, h̃ny `

1

4
q2λn}hn}

2
2

˙

ď
ÿ

nďN

ˆ

´
q

2
}hn}

2
L2pBq ´

1

4
qpq ´ 2qλnxhn, h̃ny `

1

4
q2λn}hn}

2
2

˙

(6.26)

`

ˆ

´
q

2
`

1

2
qpq ´ 1q|λN |

˙

ÿ

nąN

}hn}
2
L2pBq

We return to this expression (6.26) after understanding the case for a single eigenfunction.
Fix an eigenfunction ϕ of Tq with eigenvalue λ. We analyze

´
q

2
}ϕ}2L2pBq ´

1

4
qpq ´ 2qQqpϕ, ϕ̃q `

1

4
q2Qqpϕ, ϕq. (6.27)

Note that since Kq and Lq are even functions, Tqϕ̃ “ λϕ̃ as well. If λ “ 0, then (6.25)
for h “ ϕ is trivial since

´
q

2
}ϕ}2L2pBq ´

1

4
qpq ´ 2qQqpϕ, ϕ̃q `

1

4
q2Qqpϕ, ϕq “ ´

q

2
}ϕ}2L2pBq

ď ´
q

2
}pI ´ PHqϕ}

2
L2pBq.

Thus we can assume that λ “ 0. In this case,

|λ||ϕpxq| “ |K´1{2
q pxqpK´1{2ϕ ˚ Lqqpxq| ď }K

´1{2
q }

2
L8pBq}ϕ}L2pBq}Lq}L2pBq,

so }ϕ}L8pBq is finite. Following [15] and [10], (6.27) is analyzed for an eigenfunction ϕ by

considering a Taylor expansion of }yeitψ}qq where ψ “ K
´1{2
q ϕ and t P R is an auxiliary

parameter. Choose t ą 0 sufficiently small so that cos tψ ě 0 on B and the hypotheses of
Lemma 51 are satisfied with f “ 1 and g “ tψ. Executing the proof of Lemma 51 without
expanding the term xKq, pf cospgq ´ 1q1By yields the following equality:

}{eitψ1B}
q
q “ }

p1B}
q
q ` qxKq, pcosptψq ´ 1q1By ´

1

4
qpq ´ 2qxtψ1BzBεtψ ˚ tψ1BzBεtψ , Lqy

`
1

4
q2
xtψ1BzBεtψ , tψ1BzBεtψ ˚ Lqy `Op|B

ε
tψ|

1{2t2}ψ}2L2pBq ` t
3
}ψ}3L2pBqq.
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where ε P p0, π{2q and Bεtψ “ tx P B : t|K´1{2pxqϕpxq| ą εu. Since }ϕ}L8pBq ă 8, for

t ă εp}K´1{2ϕ}L8pBqq
´1, the set Bεtψ is empty. Thus the statement we have from the proof of

Lemma 51 for t ă εp}K´1{2ϕ}L8pBqq
´1 is

}{eitψ1B}
q
q “ }

p1B}
q
q ´ qxKq, pcosptψq ´ 1q1By ´

1

4
qpq ´ 2qxtψ1B ˚ tψ1B, Lqy

`
1

4
q2
xtψ1B, tψ1B ˚ Lqy `Opt

3
}ψ}3L2pBqq.

Now if we expand the cosine, we have the equality

}{eitψ1B}
q
q “ }

p1B}
q
q ´

q

2
xKq, ptψq

21By ` t
4Op}ψ}2L8pBq}ψ}

2
L2pBqq ´

1

4
qpq ´ 2qxtψ1B ˚ tψ1B, Lqy

`
1

4
q2
xtψ1B, tψ1B ˚ Lqy `Opt

3
}ψ}3L2pBqq

“ } p1B}
q
q ´ t

2

„

q

2
xKq, pψq

21By ´
1

4
qpq ´ 2qxψ1B ˚ ψ1B, Lqy `

1

4
q2
xψ1B, ψ1B ˚ Lqy



`Oϕpt
3
q

“ } p1B}
q
q ´ t

2

„

q

2
}ϕ}2L2pBq ´

1

4
qpq ´ 2qQqpϕ, ϕ̃q `

1

4
q2Qqpϕ, ϕq



`Oϕpt
3
q

“ } p1B}
q
q ´ t

2

„

q

2
}ϕ}2L2pBq ´

λ

4
qpq ´ 2qxϕ, ϕ̃y `

λ

4
q2
}ϕ}2L2pBq



`Oϕpt
3
q, (6.28)

where the final big-Oϕ depends on the dimension, the exponent q, and on the L8 and L2

norms of ϕ. Note that we used that |ψ| is bounded above and below by a constant (depending

on q) multiple of ϕ on B. Since q is an even integer, }{eitψ1B}
q
q ď }

p1B}
q
q and so

q

2
}ϕ}2L2pBq ´

λ

4
qpq ´ 2qxϕ, ϕ̃y `

λ

4
q2
}ϕ}2L2pBq ě 0 (6.29)

from (6.28). Expressing q “ 2m, we can also write

}

Ź

eitψ1B}
q
q “ Re

ż

Bq´1

eitpψpx1q`¨¨¨`ψpxmq´ψpy2q´¨¨¨´ψpymq´ψpLpx,yqqq1BpLpx, yqqdxdy

where x “ px1, . . . , xmq, y “ py2, . . . , ymq, and Lpx, yq “ x1 ` ¨ ¨ ¨ ` xm ´ y2 ´ ¨ ¨ ¨ ym. Let
αpx, yq “ ψpx3q ` ¨ ¨ ¨ ` ψpxmq ´ ψpy2q ´ ¨ ¨ ¨ ´ ψpymq ´ ψpLpx, yqq . Then for all sufficiently
small t, since cospθq ´ 1 ď ´ θ2

4
for |θ| ď θ{2,
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}

Ź

eitψ1B}
q
q “ }

p1B}
q
q ` }

Ź

eitψ1B}
q
q ´ }

p1B}
q
q

“ } p1B}
q
q ´

ż

Bq´1

| cosptpψpx1q ` ψpx2q ` αpx, yqqq ´ 1|1BpLpx, yqqdxdy

ď } p1B}
q
q ´

t2

4

ż

Bq´1

pψpx1q ` ψpx2q ` αpx, yqq
21BpLpx, yqqdxdy. (6.30)

Combining (6.28) with (6.30) gives

t2

4

ż

Bq´1

pψpx1q ` ψpx2q ` αpx, yqq
21BpLpx, yqqdxdy

ď t2
„

q

2
}ϕ}2L2pBq ´

λ

4
qpq ´ 2qxϕ, ϕ̃y `

λ

4
q2
}ϕ}2L2pBq



`Oϕpt
3
q

for all sufficiently small t ą 0. If the coefficient of t2 on the right hand side is 0, then
ż

Bq´1

pψpx1q ` ψpx2q ` αpx, yqq
21BpLpx, yqqdxdy “ 0,

which means that

}

Ź

eitψ1B}
q
q “ }

p1B}
q
q ´

ż

Bq´1

| cosptpψpx1q ` ψpx2q ` αpx, yqqq ´ 1|1BpLpx, yqqdxdy “ } p1B}
q
q.

By Lemma 42, eitψ “ eipα¨x`bq for some α P Rd and b P R. Thus the inequality (6.29) is strict

unless eiK
´1{2ϕ takes the form eipα¨x`bq. Using that λ is nonzero, we have for each x P B the

expression
ϕpxq “ λ´1K´1{2

q pxqpK´1{2
q ϕ ˚ Lqqpxq.

Since K
´1{2
q is continuous and Lq P L

2pRdq, ϕ is continuous on B. Note that eiK
´1{2
q ϕ “

eipα¨x`bq implies that K
´1{2
q ϕpxq “ α ¨ x` b` fpxq for some function f : BÑ 2πZ. The only

continuous such function is constant, so ϕpxq “ K
1{2
q pα ¨ x ` b1q for b1 “ b ` 2πn for some

n P Z. Conclude that the inequality (6.29) is strict unless ϕ P H, where H was defined in
Definition 16.

Finally, we use this in (6.26) and conclude that there exists c ą 0 so that

´
q

2
}h}2L2pBq´

1

4
qpq ´ 2qQqph, h̃q `

1

4
q2Qqph, hq

ď ´c
ÿ

nďN
hnRH

}hn}
2
L2pBq ´ c

ÿ

nąN

}hn}
2
L2pBq

ď ´c}pI ´ PHqh}
2
L2pBq.
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6.6.3 Conclusion of the spectral analysis for q near an even integer
and E “ B

Let Kq, Lq be the functions defined in (6.15) and (6.16). Use the frequency Taylor expansion
from Lemma 51 and compare the main terms with Kq and Lq to analogous terms with
Kq and Lq where q is the closest even integer. Then make use of the spectral analysis in
Lemma 52 to obtain the following theorem. We will use the following theorem in the proof
of Proposition 54 in §6.7 and the proof of Proposition 55 in §6.8.

Theorem 53. Let d ě 1 and let q ě 4 be an even integer. There exist δ0, ρ,ą 0 all depending
on the dimension and q as well as cq,d ą 0 so that the following holds. Let q P p3,8q, E Ă Rd

be a Lebesgue measurable set with |E| ď |B|, 0 ď f ď 1, and g be real valued. If |q ´ q| ă ρ,
}f ´ 1}L1pBq ď δ0, }g}L2pBq ď δ0, and |g| ď 5π

4
, then

}{feig1B}
q
q ď }

p1B}
q
q ´ cq,d}pI ´ PHqK

1{2
q g}2L2pBq ` oq´qp1q}g}

2
L2pBq

`Op}f ´ 1}L1pBq}g}L2pBqq `Op}f ´ 1}2L1pBq ` }g}
5{2

L2pBqq.

Proof. The function feig1B satisfies the hypotheses of Lemma 51. We have the expansion

}{feig1B}
q
q ď }

p1B}
q
q ´ q inf

B
Kq ¨

´

} cos g ´ 1}L1pAgXBεgq ` |B
ε
gzAg|

¯

(6.31)

´
q

2
xKq, g

21BzBεgy ´
1

4
qpq ´ 2qxg1BzBεg ˚ g1BzBεg , Lqy `

1

4
q2
xg1BzBεg , g1BzBεg ˚ Lqy

` ε2Op}g}2L2pBzBεgqq `Op|B
ε
g|

1{2
}g}2L2pBqq `Op}f ´ 1}L1pBq}g}L2pBqq

`Op}f ´ 1}2L1pBq ` }g}
3
L2pBqq

We analyze the three main terms in the expansion:

´
q

2
xKq,g

21BzBεgy ´
1

4
qpq ´ 2qxg1BzBεg ˚ g1BzBεg , Lqy `

1

4
q2
xg1BzBεg , g1BzBεg ˚ Lqy

“ ´
q

2
xKq ´Kq `Kq, g

21BzBεgy ´
1

4
qpq ´ 2qxg1BzBεg ˚ g1BzBεg , Lq ´ Lq ` Lqy

`
1

4
q2
xg1BzBεg , g1BzBεg ˚ pLq ´ Lq ` Lqqy

ď ´cq,d}pI ´ PHqK
1{2
q g1BzBεg}

2
L2pBq ` oq´qp1q}g}

2
L2pBzBεgq (6.32)

where we use Lemma 52 and Lemma 45 in (6.32). Using this in (6.31) gives
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}{feig1B}
q
q ď }

p1B}
q
q ´ q inf

B
Kq ¨

´

} cos g ´ 1}L1pAgXBεgq ` |B
ε
gzAg|

¯

(6.33)

´ cq,d}pI ´ PHqK
1{2
q g1BzBεg}

2
L2pBq ` oq´qp1q}g}

2
L2pBzBεgq

` ε2Op}g}2L2pBzBεgqq `Op|B
ε
g|

1{2
}g}2L2pBqq `Op}f ´ 1}L1pBq}g}L2pBqq

`Op}f ´ 1}2L1pBq ` }g}
3
L2pBqq.

Since |g| ď 5π
4

, we can combine the }pI ´ PHqK
1{2
q g1BzBεg}

2
L2pBq above with the other

negative term above as follows. Choose c0 ą 0 so that 1´ cos θ ě c0θ
2 for |θ| ď 5π

4
. Then

} cos g ´ 1}L1pAgXBεgq ` |B
ε
gzAg| ` }pI ´ PHqK

1{2
q g1BzBεg}

2
L2pBq ě c0}g}

2
L2pAgXBεgq

`
16

25π2
}g}2L2pBεgzAgq ` }pI ´ PHqK

1{2
q g1BzBεg}

2
L2pBq

ě c0}Kq}
´1
L8pBq}K

1{2
q g}2L2pAgXBεgq `

16

25π2
}Kq}

´1
L8pBq}K

1{2
q g}2L2pBεgzAgq

` }pI ´ PHqK
1{2
q g1BzBεg}

2
L2pBq

ě C0}K
1{2
q g1Bεg ` pI ´ PHqK

1{2
q g1BzBεg}

2
L2pBq

“ C0}K
1{2
q g ´ PHpK

1{2
q g1BzBεgq}

2
L2pBq ě C0}K

1{2
q g ´ PHpK

1{2
q gq}2L2pBq

(6.34)

for an appropriate constant C0 ą 0. So we have for another constant c ą 0

}{feig1B}
q
q ď }

p1B}
q
q ´ c}pI ´ PHqK

1{2
q g}2L2pBq (6.35)

` oq´qp1q}g}
2
L2pBzBεgq ` ε

2Op}g}2L2pBzBεgqq

`Op|Bεg|1{2}g}2L2pBqq `Op}f ´ 1}L1pBq}g}L2pBqq

`Op}f ´ 1}2L1pBq ` }g}
3
L2pBqq.

Use the bound |Bεg|1{2 ď ε´1}g}L2pBq and choose ε “ }g}
1{2

L2pBq to simplify the above to

}{feig1B}
q
q ď }

p1B}
q
q ´ c}pI ´ PHqK

1{2
q g}2L2pBq ` oq´qp1q}g}

2
L2pBq (6.36)

`Op}f ´ 1}L1pBq}g}L2pBqq `Op}f ´ 1}2L1pBq ` }g}
5{2

L2pBqq.
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6.7 Mostly support variation

By mostly support variation, we mean MN |E∆B| ě maxpN}g}L2pEq, }f ´ 1}
1{2

L1pEqq. The
parameters M and N are consistent with the other two cases described in §6.5 and §6.8. Let
Kq, Lq be the functions defined in (6.15) and (6.16). We employ the more detailed Taylor
expansion from Lemma 48 in this section.

Proposition 54. Let d ě 1 and let q ě 4 be an even integer and M,N P R`. There
exists δ0 “ δ0pq, d,M,Nq ą 0 and ρ “ ρpδ0, q,M,Nq ą 0 such that the following holds. Let
q P p3,8q, E Ă Rd be a Lebesgue measurable set with |E| ď |B|, 0 ď f ď 1, and g be
real valued. Suppose that }f ´ 1}L1pBq ď δ0, }g}L2pEq ď δ0, |E∆B| ď 2distpE,Eq ď δ0, and
|q ´ q| ď ρ. If

MN |E∆B| ě maxpN}g}L2pEq, }f ´ 1}
1{2

L1pEqq,

then

}{feig1B}
q
q ď }

p1B}
q
q ´ cq,ddistpE,Eq2

for a constant cq,d ą 0 depending only on the exponent q and on the dimension.

Proof. We begin with the expression from Lemma 48, in which the terms with f and g are
separated from terms with just the support E. Recall that g1 “ g on E X B and g1 “ 0 on
BzE and that f 1 “ f on E X B and f 1 “ 1 on BzE. We have

}{feig1E}
q
q “ }

x1E}
q
q ` qxKq, f cos g1EzB ´ 1EzBy ´ } p1B}

q
q ` }

{f 1eig11B}
q
q (6.37)

`Opp}g}22 ` }f ´ 1}L1pEqq|E∆B|1{2q `Op}g}3L2pEq ` }f ´ 1}2L1pEq ` |E∆B|3{q1q.

We use Christ’s Theorem 2.6 from [16] to bound }x1E}q:

}x1E}
q
q ď }

p1B}
q
q ´ cq,d|E∆B|2.

By Theorem 53, we control } {f 1eig11B}q as follows.

} {f 1eig11B}
q
q ď }

p1B}
q
q ´ cq,d}pI ´ PHqK

1{2
q g1}2L2pBq ` oq´qp1q}g

1
}

2
L2pBq

`Op}f 1 ´ 1}L1pBq}g
1
}L2pBqq `Op}f

1
´ 1}2L1pBq ` }g

1
}

5{2

L2pBqq

ď } p1B}
q
q ` 0` oq´qp1qM

2
|E∆B|2

`OM,Np|E∆B|3q `OM,Np}E∆B|4 ` |E∆B|5{2q
“ } p1B}

q
q ` oq´qp1qM

2
|E∆B|2 `OM,Np|E∆B|5{2q.
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Finally, to bound the inner product term from (6.37), using that Kq ě 0, calculate

xKq, f cos g1EzB ´ 1EzBy “ xKq ´Kq `Kq, f cos g1EzB ´ 1EzBy

ď oq´qp1q}f cos g ´ 1}L1pEzB ` xKq, pf cos g ´ 1q1EzBy

ď oq´qp1qp}f ´ 1}L1pEzBq ` } cos g ´ 1}L1pEzBq ` 0

ď oq´qp1qpM
2N2

|E∆B|2 `M2
|E∆B|2q.

Using the above bounds in (6.37) gives

}{feig1E}
q
q ď }

p1B}
q
q ´ cq,d|E∆B|2 `M2N2oq´qp1q|E∆B|2

`OM,Np|E∆B|5{2 ` |E∆B|3{q1q

If δ0, ρ are chosen sufficiently small, then we have the desired result.

6.8 Mostly frequency variation

By mostly frequency variation, we mean maxp}f ´ 1}
1{2
1 ,MN |E∆B|q ď N}g}L2pEq. The

parameters M and N are consistent with the other two cases described in §6.5 and §6.7. Let
Kq, Lq be the functions defined in (6.15) and (6.16). As in §6.7, we employ Lemma 48 to
analyze the contributions from the frequency g.

Proposition 55. Let d ě 1 and let q ą 3 be an even integer and N P R`. There exist
δ0 “ δ0pq, dq ą 0, ρpδ0, q, Nq ą 0, and M “ Mpq, ρq P N, such that the following holds. Let
q P p3,8q, E Ă Rd be a Lebesgue measurable set with |E| ď |B|, 0 ď f ď 1, and ´π ď g ď π.
Suppose that }f ´ 1}L1pBq ď δ0, }g}L2pEq ď δ0, }eig ´ 1}L2pEXBq ď 2 inf L affine

R´valued
}eipg´Lq ´

1}L2pEXBq, |E∆B| ď δ0, |E| “ |B|, and |q ´ q| ď ρpδ0, qq. If

maxp}f ´ 1}
1{2
1 ,MN |E∆B|q ď N}g}L2pEq,

then

}{feig1E}
q
q ď }

p1B}
q
q ´ cq,d inf

L affine
R´valued

}eipg´Lq ´ 1}L2pEq

for a constant cq,d ą 0 depending only on the exponent q and on the dimension.

For use in the subsequent proof of Proposition 55, we state a version of Lemma 4.1 from
[16] with the special case η “ 1, noting that qd in the statement may be taken to be equal
to 3.
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Lemma 56. [16] Let d ě 1 and q ě 4 be an even integer. There exists δ0 “ δ0pqq ą 0
and c, C, ρ, α P R` with the following property. Let E Ă Rd be a Lebesgue measurable set
satisfying |E| “ |B|. If |q ´ q| ă ρ and |E∆B| ď δ0, then

}x1E}
q
q ď }

Ź

1EX2B}
q
q ´ c|Ez2B| ` C|E∆B| ¨ |Ez2B| ` C|E∆B|2`α.

Proof. (of Proposition 55)
Use the expression from Lemma 48 in which the terms with f and g are separated from

the terms with only the support E. Majorize the big-O terms with }f ´ 1}L1pEq or |E∆B|
by terms with }g}L2pEq.

}{feig1E}
q
q “ }

x1E}
q
q ` qxKq, f cos g1EzB ´ 1EzBy ´ } p1B}

q
q ` }

{f 1eig11B}
q
q (6.38)

`ONp}g}
5{2

L2pEq ` }g}
3{q1

L2pEqq

where f 1 “ f on E X B and f 1 “ 1 on BzE and g1 “ g on E X Band g1 “ 0 on BzE. We

further analyze }x1E}
q
q and xKq, f cos g1EzB ´ 1EzBy.

Use Lemma 56 to extract ´|Ez2B| from }x1E}
q
q:

}x1E}
q
q ď }

{1EX2B}
q
q ´ c|Ez2B| ` C|E∆B| ¨ |Ez2B| ` C|E∆B|2`α

ď } p1B}
q
q ´ c|Ez2B| `

C

M2
}g}22 `Op}g}

2`α
2 q

ď } p1B}
q
q ´ c{4}e

ig
´ 1}2L2pEz2Bq `

C

M2
}g}22 `Op}g}

2`α
2 q.

As above, let q denote the nearest even integer to q. Next bound the term xKq, f cos g1EzB´
1EzBy above by a negative multiple of }eig ´ 1}2L2ppEX2BqzB plus an error term. Let Ag “ tx P

EzB : cos g ě 0u.

xKq ´Kq `Kq,f cos g1EzB ´ 1EzBy “ oq´qp1q}f cos g ´ 1}L1pEzBq ` xKq, f cos g1EzB ´ 1EzBy

ď oq´qp1q}f cos g ´ 1}L1pEzBq ` xKq, f cos g1Ag ´ 1EzBy

ď oq´qp1qp}f ´ 1}L1pEq ` }g}
2
L2pEqq ` xKq, cos g1Ag ´ 1EzBy

ď oq´qp1qpN
2
` 1q}g}2L2pEzBq ` xKq, f cos g1Ag ´ 1Agy ´ xKq, 1pEzBqzAgy

ď oq´qp1qpN
2
` 1q}g}2L2pEzBq ´ inf

2B
Kq ¨

`

} cos g ´ 1}L1pAgX2Bq ` |pE X 2BqzpBY Agq|
˘

ď oq´qp1qpN
2
` 1q}g}2L2pEzBq ´ inf

2B
Kq ¨ }e

ig
´ 1}2L2ppEX2BqzBq (6.39)

where we used that Kq ě 0 everywhere.
By Theorem 53, since g is real-valued with |g| ď π,
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} {f 1eig11B}
q
q ď }

p1B}
q
q ´ cq,d}pI ´ PHqK

1{2
q g1}2L2pBq ` oq´qp1q}g

1
}

2
L2pBq

`Op}f 1 ´ 1}L1pBq}g
1
}L2pBqq `Op}f

1
´ 1}2L1pBq ` }g

1
}

5{2

L2pBqq

ď } p1B}
q
q ´ cq,d}pI ´ PHqK

1{2
q g1EXB}

2
L2pBq ` oq´qp1q}g}

2
L2pEq

`ONp}g}
5{2

L2pEqq.

Recalling the definition of H in Definition 16 and the hypotheses about g, note that

}pI ´ PHqK
1{2
q g1EXB}L2pBq ě inf

B
K

1{2
q ¨ }g ´K

´1{2
q PHpK

1{2
q g1EXBq}L2pEXBq

ě inf
B
K

1{2
q ¨ }eig ´ eiK

´1{2
q PHpK

1{2
q g1EXBq}L2pEXBq

ě inf
B
K

1{2
q ¨ inf

L affine
R´valued

}eipg´Lq ´ 1}L2pEXBq

ě
1

2
inf
B
K

1{2
q ¨ }eig ´ 1}L2pEXBq.

Combining the above analysis yields

}{feig1E}
q
q ď }

p1B}
q
q ´ c{4}e

ig
´ 1}2L2pEz2Bq `

C

M2
}g}2L2pEq ` oq´qp1qpN

2
` 1q}g}2L2pEzBq

´ inf
2B
Kq ¨ }e

ig
´ 1}2L2ppEX2BqzBq

´
cq,d
4

inf
B
Kq ¨ }e

ig
´ 1}2L2pEXBq ` oq´qp1q}g}

2
L2pEq `ONp}g}

2`ε
L2pEqq

“ } p1B}
q
q ´ c̃}e

ig
´ 1}2L2pEq (6.40)

`

ˆ

C

M2
` oq´qp1qN

2

˙

}g}2L2pEq `ONp}g}
2`ε
L2pEqq

where 2` ε “ minp2`α, 5{2, 3{q1q and c̃ ą 0 depends on q and d. Since |g| ď π, |eig ´ 1|2 ě
π´2g2 almost everywhere on E. Thus for δ0 and ρ sufficiently small depending on N and M
small enough depending on q,

}{feig1E}
q
q “ }

p1B}
q
q ´

c̃

2
}eig ´ 1}2L2pEq,

which proves the proposition.

6.8.1 Optimality of the L2 norm and the exponent 2

We show that the exponent 2 and the L2 norm in the term inf L affine
R´valued

}eipg´Lq´ 1}2L2pEq from

Theorem 3 are optimal in Lemma 58. First we prove a technical sublemma.
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Notation 17. Let d ě 1 and let B “ tx P Rd : |x| ď 1u. Let the projection Rpfq of a real-
valued function f be defined for each x in the domain of f by Rpfqpxq ” fpxq mod p2πq
and Rpfqpxq P r´π, πq.

Sublemma 57. Let d ě 1, p ě 1. There exists ε ą 0 such that the following holds. If
g : Rd Ñ R satisfies }g}8 ď ε, then

inf
L affine
R´valued

}eipg´Lq ´ 1}LppBq ě
1

2
inf

L affine
R´valued

}g ´ L}LppBq.

Proof. Using the notation R above and that |eiθ ´ 1| ě 1
2
θ for all θ P r´π, πq, note that

inf
L affine
R´valued

}eipg´Lq ´ 1}LppBq “ inf
L affine
R´valued

}eiRpg´Lq ´ 1}LppBq

ě
1

2
inf

L affine
R´valued

}Rpg ´ Lq}LppBq.

By the definition of R,

inf
L affine
R´valued

}Rpg ´ Lq}LppBq ď inf
L affine
R´valued

}g ´ L}LppBq.

For the reverse inequality, it suffices to note that

inf
L affine
R´valued

}g ´ L}LppBq “ inf
L:BÑR affine

|L|ď3

}g ´ L}LppBq

since for |L| ď 3 and ε ă 0.1, Rpg´Lq “ g´L. Indeed, suppose for L0pxq “ x ¨α` b where
α P Rd and b P R that

}g ´ L0}LppBq ď 2 inf
L affine
R´valued

}g ´ L}LppBq ď 2ε|B|1{p. (6.41)

Suppose for x P B that |L0pxq| ě 3. Since |g| ď ε, there exists some y P B such that
|L0pyq| ď 1. Then

2 ď |L0pxq ´ L0pyq| “ |α ¨ px´ yq| ď 2|α|,

so on the set S :“ tz P B : |z ´ x| ă 1u, |L0pzq| ě 2. Thus

}g ´ L0}LppBq ě }g ´ L0}LppSq ě p2´ εq|S|
1{p
ě |S|1{p.

Since |S| ě |B X pB ` e1q| where e1 “ p1, 0, . . . , 0q P Rd, if ε ă minp |BXpB`e1q|
1{p

2|B|1{p , 0.1q, this

contradicts (6.41).
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Lemma 58. Let d ě 1, p ě 1, N ą 0, and q ě 4 an even integer. There exists ρ “ ρpq, dq ą
0 such that the following holds. If for some q ą 3 satisfying |q ´ q| ă ρ, there exists cq,d ą 0
such that for any function g : Rd Ñ R,

}zeig1B}
q
q ď }

p1B}
q
q ´ cq,d inf

L affine
R´valued

}eipg´Lq ´ 1}NLppBq, (6.42)

then N ě 2 and N ě p.

Note that this lemma proves optimality of exponent 2 and the L2 norm in the term
inf L affine

R´valued
}eipg´Lq´1}2L2pEq from Theorem 3 because if N ě 2 and N ě p, for any real-valued

function g, real-valued affine function L, and subset E with |E| “ 1,

}eipg´Lq ´ 1}NLppEq ď }e
ipg´Lq

´ 1}NLN pEq ď 2N´2
}eipg´Lq ´ 1}2L2pBq.

Proof. Consider the family of real-valued functions εgn with small parameter ε ą 0 and
n P N, where gn is the indicator function of the annulus

An :“ tx P Rd : 1´ 1{n ă |x| ă 1u.

Choose ε ą 0 small enough so Lemma 43 applies. Then if q1 is the conjugate exponent
to q,

}{eiεgn1B}
q
q “ }

p1B}
q
q ` qxKq, pcospεgnq ´ 1q1By (6.43)

´
1

4
qpq ´ 2qxsinpεgnq1B ˚ sinpεgnq1B, Lqy `

1

4
q2
xsinpεgnq1B, sinpεgnq1B ˚ Lqy

`Op} cospεgnq ´ 1}2L1pBqq `Op}e
iεgn ´ 1}3

Lq1 pBqq

Since 2| cospθq ´ 1| “ |eiθ ´ 1|2 for θ P R, } cospεgnq ´ 1}2L1pBq ď }e
iεgn ´ 1}4L2pBq ď ε4}gn}

4
L2pBq.

Since 1 ă q1 ă 2, by Hölder’s inequality,}eiεgn ´ 1}Lq1 pBq ď }e
iεgn ´ 1}L2pBq|B|p2´q

1q{p2q1q. Thus

we can majorize the big-O terms by Opε3}gn}
2
L2pBqq. Combining (6.43) with our hypothesis

(6.42) and rearranging, we have for a constant Cq,d ą 0

cq,d inf
L affine
R´valued

}eipεgn´Lq ´ 1}NLppBq `Opε
3
}gn}

3
2q ď qxKq, pcospεgnq ´ 1q1By

´
1

4
qpq ´ 2qxsinpεgnq1B ˚ sinpεgnq1B, Lqy `

1

4
q2
xsinpεgnq1B, sinpεgnq1B ˚ Lqy

ď Cq,dε
2
}gn}

2
L2pBq.

For ε ą 0 small enough, Sublemma 57 gives

cq,d
2

inf
L affine
R´valued

}εgn ´ L}
N
LppBq `Opε

3
}gn}

3
2q ď cq,d inf

L affine
R´valued

}eipεgn´Lq ´ 1}NLppBq `Opε
3
}gn}

3
2q

ď Cq,dε
2
}gn}

2
L2pBq.
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Divide by ε2 to obtain

cq,d
2
εN´2 inf

L affine
R´valued

}gn ´ L}
N
LppBq `Opε}gn}

3
2q ď Cq,d}gn}

2
L2pBq. (6.44)

Since gn is not an affine function, letting εÑ 0 implies that N ´ 2 ě 0.
Note that

}gn}
2
2 “ c

`

1´ p1´ 1{nqd
˘

for a dimensional constant c ą 0. Choose real valued affine functions Ln so that

1

2
}gn ´ Ln}LppBq ď inf

L affine
R´valued

}gn ´ L}LppBq.

Using these expressions in (6.44) gives

cq,d
2N`1

εN´2
}gn ´ Ln}

N
LppBq `Opεp1´ p1´ 1{nqdq3{2q ď Cq,dcp1´ p1´ 1{nqdq.

Since

1

2
}gn ´ Ln}LppBq ď inf

L affine
R´valued

}gn ´ L}LppBq ď }gn}p “ c1{p
p1´ p1´ 1{nqdq1{p,

we have }gn´Ln}LppBzAnq “ }Ln}LppBzAnq “ onp1q and |gnpxq´Lnpxq| ě 1´ onp1q for x P An.
Thus

cq,d
2N`1

εN´2
p1´ onp1qq

N{pcN{pp1´ p1´ 1{nqdqN{p `Opεp1´ p1´ 1{nqdq3{2q ď

cq,d
4
εN´2

}gn ´ Ln}
N
LppAnq `Opεp1´ p1´ 1{nqdq3{2q

ď cCq,dp1´ p1´ 1{nqdq,

which after dividing by p1´ p1´ 1{nqdq yields

cq,d
2N`1

εN´2
p1´ onp1qq

N{pcN{pp1´ p1´ 1{nqdqN{p´1
`Opεp1´ p1´ 1{nqdq1{2q ď cCq,d.

This inequality holds for arbitrarily large n, so N{p ě 1.
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Chapter 7

Appendix: The Lorentz space Lpp, 1q

We relate the three quasinorms on Lpp, 1q defined in §2.1. In the following lemma, we prove
a formula for }s}L where s is a nonnegative simple function.

Lemma 59. Let d ě 1. Let s “
řN
n“1 an1An where the An are pairwise disjoint and of finite

Lebesgue measure and 0 ă a1 ă ¨ ¨ ¨ ă aN . Let a0 “ 0 and let Bn “ Y
N
k“nAk for n “ 1, . . . , N .

Then

}s}L “
N
ÿ

n“1

pan ´ an´1q|Bn|
1{p.

Proof. First we prove for any k ě 1 that when c0 “ 0 ă c1 ă c2 ă ¨ ¨ ¨ ă ck and Cj “ Y
k
i“jEi

for measurable sets Ei Ă Rd of finite measure,

k
ÿ

j“1

pcj ´ cj´1q|Cj|
1{p
ď

k
ÿ

j“1

cj|Ej|
1{p. (7.1)

If k “ 1, then clearly
řk
j“1pc

n
j ´ cnj´1q|C

n
j |

1{p “ c1|C1|
1{p “

ř1
j“1 cj|Ej|

1{p. Suppose for

k ě 1 that when c1 ă c2 ă ¨ ¨ ¨ ă ck and Cj “ Y
k
i“jEi for measurable sets Ei Ă Rd of finite

measure,
k
ÿ

j“1

pcj ´ cj´1q|Cj|
1{p
ď

k
ÿ

j“1

cj|Ej|
1{p.

Then

k`1
ÿ

j“1

pcj ´ cj´1q|C
n
j |

1{p
“ c1|C1|

1{p
` pc2 ´ c1q|C2|

1{p
` ¨ ¨ ¨ ` pck`1 ´ ckq|Ck`1|

1{p

ď c1p|E1|
1{p
` |C2|

1{p
q ` pc2 ´ c1q|C2|

1{p
` ¨ ¨ ¨ ` pck`1 ´ ckq|Ck`1|

1{p

“ c1|E1|
1{p
` pc2 ´ c0q|C2|

1{p
` ¨ ¨ ¨ ` pck`1 ´ ckq|Ck`1|

1{p

ď c1|E1|
1{p
`

k`1
ÿ

j“2

cj|Ej|
1{p
“

k`1
ÿ

j“1

cj|Ej|
1{p,
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so (7.1) is proved.
Next we prove the lemma inductively, where notation is as in the statement of the lemma.

If N “ 1, suppose a11A1 “
ř8

j“1 bj1Sj where bj ě 0, |Sj| ă 8. Then

a1|A1|
1{p
“ }a11A1}p “ }

N
ÿ

j“1

bj1Sj `
8
ÿ

j“N`1

bj1Sj}p

ď

8
ÿ

j“1

bj|Sj|
1{p
` lim

NÑ8
}

8
ÿ

j“N`1

bj1Sj}p

where limNÑ8 }
ř8

j“N`1 bj1Sj}p “ 0 by Lebesgue’s dominated convergence theorem.
Now suppose that the lemma holds for N ´ 1 ě 1. Consider

N
ÿ

n“1

an1An “
8
ÿ

j“1

bj1Sj

where bj´1 ě bj ě 0, Sj Ă YNn“1An, the Sj are distinct, and |Sj| ą 0. From (7.1), we
have for each M ą 0 that

M
ÿ

j“1

pbj ´ bj`1q| Y
j
k“1 Sk|

1{p
ď

M
ÿ

j“1

bj|Sj|
1{p.

Letting M Ñ 8 and noting that
ř8

j“1 bj1Sj “
ř8

j“1pbj ´ bj`1q1Yjk“1Sk
, we can assume

that S1 Ă S2 Ă ¨ ¨ ¨ and bj ě 0 but are not necessarily decreasing. Since the simple function s
achieves its L8 norm on AN , and the series takes its maximum on S1, we must have S1 “ A1

and

aN “
8
ÿ

j“1

bj,

so
ř8

k“j bk Ñ 0 as j Ñ 8. The simple function s achieves its minimum (on a set of

positive measure) in YNn“1An on A1, but the series takes the values of
ř8

k“j bk on positive

measure sets in YNn“1An, so there is no minimum unless
ř8

k“j bk is zero for large enough j.
Thus we may write

N
ÿ

n“1

pan ´ an´1q1Bn “
M
ÿ

j“1

bj1Sj

where Sj Ă Sj`1 and bj ą 0. We note B1 “ SM and a1 “ bM . Then invoking the
inductive hypothesis, we have

N
ÿ

n“2

pan ´ an´1q|Bn|
1{p
` a1|B1|

1{p
ď

M´1
ÿ

j“1

bj|Sj|
1{p
` bM |SM |

1{p,
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as desired.

For all f P Lpp, 1q,

}f}˚p1 ď }f}p1 ď
p

p´ 1
}f}˚p1, (7.2)

which is proved in Chapter V, §3 in [36]. From the nonincreasing property of f˚, it is clear
that 1

t

şt

0
f˚puqdu ě f˚ptq for t ą 0, which implies that}f}p1 ě }f}

˚
p1. This combined with

(7.2) implies that }f}˚p1 is finite if and only if }f}p1 is finite.

Lemma 60. Let d ě 1. Let p ą 1 and let q be the conjugate exponent to p. For all
measurable functions f : Rd Ñ C with }f}L ă 8 and }f}˚p1 ă 8, }f}L “ }f}

˚
p1.

Proof. First we show the equivalence for nonnegative simple functions. Write s “
řN
n“1 an1An

where the An are pairwise disjoint and 0 ă a1 ă ¨ ¨ ¨ ă aN . Let a0 “ 0 and let Bn “ Y
N
k“nAk

for n “ 1, . . . , N , and let |BN`1| “ 0.
Calculate

}s}˚p1 “
1

p

ż 8

0

t´1{qs˚ptqdt “
1

p

N´1
ÿ

n“0

ż |BN´n|

|BN´n`1|

t´1{q inftr : |tx : |spxq| ą ru| ď tudt

“
1

p

N´1
ÿ

n“0

ż |BN´n|

|BN´n`1|

t´1{q inftr : |tx : |spxq| ą ru| ď |BN´n`1|udt

“
1

p

N´1
ÿ

n“0

aN´n

ż |BN´n|

|BN´n`1|

t´1{qdt

“

N´1
ÿ

n“0

aN´n
`

|BN´n|
1{p
´ |BN´n`1|

1{p
˘

“

N´1
ÿ

n“0

aN´n|BN´n|
1{p
´

N´1
ÿ

n“0

aN´n|BN´n`1|
1{p

“

N
ÿ

n“1

an|Bn|
1{p
´

N
ÿ

n“1

an´1|Bn|
1{p
“

N
ÿ

n“1

pan ´ an´1q|Bn|
1{p.

Thus by Lemma 59, we have }s}L “ }s}
˚
p1 for all nonnegative simple functions.

Next, consider a f P Lpp, 1q with finite support A and L8 norm M ą 0. From the
definition of } ¨ }L and Lemma 59, we can choose nonnegative simple functions |f | ´ 1{n ď
sn ď |f | such that limnÑ8 snpxq “ |fpxq| for a.e. x P Rd and

}f}L “ lim
nÑ8

}sn}L “ lim
nÑ8

}sn}
˚
p1.
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Note that

1

p

ż 8

0

t´1{qs˚nptqdt “
1

p

ż |A|

0

t´1{qs˚nptqdt.

Since p|f | ´ 1{n1Aq
˚ ď s˚n ď |f |

˚, we have the upper bound

1

p

ż |A|

0

t´1{qs˚nptqdt ď
1

p

ż |A|

0

t´1{qf˚ptqdt

and the lower bound

1

p

ż |A|

0

t´1{q inftr : |tx : snpxq ą ru| ď tudt ě
1

p

ż |A|

0

t´1{q inftr : |tx : |fpxq| ą r ` 1{nu| ď tudt

“
1

p

ż |A|

0

t´1{q inftr : |tx : |fpxq| ą ru| ď tudt´ p|A|1{p
1

n
.

Thus by the squeeze theorem, we have that limnÑ8 }sn}
˚
p1 “ }f}

˚
p1.

For general f P Lpp, 1q, define fn “ f1t1{nď|f |ďnu. We argue that }f}L “ limnÑ8 }fn}L.
If |fn| “

ř

n an1An , |f |1t|f |ąnu “
ř

m bm1Bm , and |f |1t|f |ă1{nu “
ř

k ck1Ck , then |f | “
ř

n an1An `
ř

m bm1Bm `
ř

k ck1Ck and so

}f}L ď }fn}L ` }|f |1t|f |ąnu}L ` }|f |1|f |ă1{nu}L.

Since if |f | “
ř

m em1Em , em ą 0 with
ř

m em|Em|
1{p ă 8 then |fn| “

ř

m em1EmXt1{nď|f |ďnu
with

ÿ

m

em|Em X t1{n ď |f | ď nu|1{p ď
ÿ

m

em|Em|
1{p
ă 8,

we also have }fn}L ď }f}L. To show that }f}L “ limnÑ8 }fn}L, it suffices to show that
limnÑ8 }f1t|f |ąnu}L “ limnÑ8 }f1t|f |ą1{nu}L “ 0.

If |f | “
ř

m em1Em , em ą 0 with
ř

m em|Em|
1{p ă 8, then

lim sup
nÑ8

}|f |1t|f |ąnu}L ď lim sup
nÑ8

ÿ

m

em|Em X t|f | ą nu|1{p “ 0

where we used the monotone convergence theorem in the last line. Similarly, we have that

lim sup
nÑ8

}f1t|f |ă1{nu}L ď lim sup
nÑ8

ÿ

m

em|Em X t|f | ă 1{nu|1{p.

Since
ř

m em|Em X t|f | ă 1{nu|1{p is a decreasing sequence in n,

lim sup
nÑ8

ÿ

m

em|Em X t|f | ă 1{nu|1{p “ inf
n

ÿ

m

em|Em X t|f | ă 1{nu|1{p.
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We also have for each M ą 1

inf
n

ÿ

m

em|Em X t|f | ă 1{nu|1{p ď inf
n

ÿ

mďM

em|Em X t|f | ă 1{nu|1{p `
ÿ

mąM

em|Em|
1{p

“
ÿ

mďM

em|Em X t|f | “ 0u|1{p `
ÿ

mąM

em|Em|
1{p

“
ÿ

mąM

em|Em|
1{p.

LettingM go to infinity, we have limnÑ8 }f1t|f |ă1{nu}L “ 0. Conclude that }f}L “ limnÑ8 }fn}L “
limnÑ8 }fn}

˚
p1.

Finally, we need to show that limnÑ8 }fn}
˚
p1 “ }f}˚p1. Since }fn}

˚
p1 ď }f}˚p1 for each n

and limMÑ8

ş8

M
t´1{qf˚n ptqdt ď limMÑ8

ş8

M
t´1{qf˚ptqdt “ 0, it suffices to show that for each

M ą 0,

lim
nÑ8

ż M

0

t´1{qf˚n ptqdt ě

ż M

0

t´1{qf˚ptqdt.

We note that

ż M

0

t´1{qf˚n ptqdt “

ż M

0

t´1{q inftr : |tx : |fnpxq| ą ru| ď tudt

ě

ż M

0

t´1{q inftr : |tx : |fpxq|1t|f |ďnu ą ru| ď tudt´ pM1{p 1

n

“ě

ż M

0

t´1{qf˚pt` |tx : |fpxq| ą nu|qdt´ pM1{p 1

n
.

Since limnÑ8 |tx : |fpxq| ą nu| “ 0 and f˚ is a.e. continuous, by the Lebesgue dominated
convergence theorem,

lim
nÑ8

ż M

0

t´1{qf˚n ptqdt ě

ż M

0

t´1{qf˚ptqdt.

Corollary 61. Let d ě 1. Let p ą 1 and let q be the conjugate exponent to p. For all
measurable functions f : Rd Ñ C, }f}L ă 8 if and only if }f}˚p1 ă 8.

Proof. Suppose that }f}L ă 8. We showed in the proof of Lemma 60 that }f}L “

limnÑ8 }fn}L where |fn| are bounded with finite support and monotonically increasing a.e.
to |f |. We also showed that for those fn, limnÑ8 }fn}

˚
p1 “ }f}

˚
p1, so }f}˚p1 ă 8.

Next, suppose }f}˚p1 ă 8. By definition of }f}L (regardless of whether this quantity is
finite or infinite), there exist simple functions 0 ď sn ď |f | such that }f}L “ limnÑ8 }sn}L.
But we showed in the proof of Lemma 60 that }sn}L “ }sn}

˚
p1 for each n. Since }sn}

˚
p1 ď }f}

˚
p1

for all n, we must have }f}L ă 8.
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