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I am honored and humbled to be one of the awardees of the 2014 A. Champalimaud
Vision Award. I offer my heartfelt thanks to the Champalimaud Foundation President,
Leonor Beleza, and to the Award Committee Members for this wonderful recognition.

I feel especially fortunate to have had the opportunity to witness my scientific
discoveries move from the bench to the clinic. Scientific discovery is hugely exciting,
but the ability to translate that work into potentially helping someone lead a better
life is even more fulfilling. This Award is dedicated to the patients.

Introduction

The existence of factors capable of inducing
growth of cells and tissues was hypothesized already
at the beginning of the last century. In 1913, Carrel1

described the ability of tissues extracts to stimulate
cell proliferation in cultured tissue explants. Early
investigators also speculated that biochemical medi-
ators are responsible for the growth of blood vessels
associated with tumorigenesis and other pathological
conditions (reviewed previously2). In 1939, the
observation that tumors transplanted in transparent
chambers inserted in the rabbit ear induce rapid and
extensive neovascular growth, led Ide et al.3 to
postulate the existence of a tumor-derived ‘‘blood
vessel growth stimulating factor.’’ In 1945, Algire et
al.4 announced the seminal hypothesis that ‘‘the rapid
growth of tumor transplants is dependent upon the
development of a rich vascular supply.’’ In the late
1940s and in the 1950s, other investigators postulated
the existence of a diffusible angiogenic factor (‘‘Factor
X’’), produced in the ischemic retina.5–7 This hypo-
thetical molecule was thought to be responsible for
neovascularization associated with diabetic retinopa-
thy and other retinal disorders.5–7 Notwithstanding
these seminal studies, very little progress was possible

at that time, given the daunting challenge of isolating
growth factors, which typically are active at very low
concentrations. Beginning in the 1970s, the availabil-
ity of powerful protein purification techniques,
combined with the development of cDNA cloning
methodologies, enabled major advances. The greatest
challenge at that time was purifying the proteins to
homogeneity to obtain a partial amino acid sequence,
which could be used to design probes suitable for
cDNA cloning, thus, dramatically expanding the
possibilities of investigating the molecules of interest.2

In 1971, Folkman8 published an elegant synthesis
of the aforementioned early studies and hypotheses,
and also proposed that antiangiogenesis could be a
novel strategy to inhibit tumor growth. This key
hypothesis stimulated the search for regulators of
angiogenesis. By the mid 1980s, several proangiogenic
molecules had been identified and characterized,
including epidermal growth factor (EGF), tumor
growth factor (TGF)–a, TGF-b, a-fibroblast growth
factor (aFGF), bFGF, and angiogenin (reviewed
previously2,9). However, while these factors were able
to promote angiogenesis in various bioassays, their
role as endogenous mediators of angiogenesis re-
mained uncertain, suggesting that in all likelihood
some key molecules remained to be discovered
(reviewed previously2,10).
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The Discovery of Vascular Endothelial

Growth Factor (VEGF)

Independent efforts contributed to the discovery of
VEGF. In 1983, Senger et al.11 at Beth Israel Hospital
(Boston, MA) reported an initial biochemical char-
acterization of vascular permeability factor (VPF), a
permeability-enhancing protein identified in the con-
ditioned media of a guinea pig tumor cell line.
However, the lack of amino acid sequence data
precluded molecular cloning and establishing whether
VPF was distinct from the known mediators of
vascular permeability or from other proteins. There-
fore, it is not surprising that limited progress in
elucidating the significance and function of VPF took
place during the next several years.12 Senger et al.
reported the full purification of guinea pig VPF in
1990.13

In 1989, we reported the isolation and cloning of a
heparin-binding endothelial cell mitogen.14,15 This
project began while I was a postdoctoral fellow at the
University of California, San Francisco (UCSF) in
the mid 1980s. At that time, I was able to isolate and
culture a population of nonhormone-secreting cells
from bovine pituitary, termed ‘‘follicular’’ or ‘‘folli-
culo-stellate’’ cells.16 Earlier investigators noted that
they establish intimate contacts with the pituitary
perivascular spaces, suggesting a role in the develop-
ment or maintenance of the pituitary vasculature.17 In
the course of these studies, I discovered that follicular
cells release in their culture supernatants an endothe-
lial cell mitogen. In 1988, I joined Genentech, where I
had the opportunity to pursue the isolation of this
mitogen. By early 1989, we were able to determine the
amino terminal amino acid sequence of the purified
protein. We found that this sequence was unique,
since it had no match with known sequences in
available databases.14,15 Because this molecule ap-
peared to have growth-promoting activity selectively
for vascular endothelial cells, we proposed the name
‘‘vascular endothelial growth factor’’ (VEGF). We
then isolated bovine and human clones encoding
multiple molecular species (isoforms) of VEGF, due
to alternative mRNA splicing.15 In this early study,
we identified three VEGF isoforms: VEGF121,
VEGF165, and VEGF189. Subsequent studies revealed
the existence of additional VEGF isoforms (reviewed
previously18).

After our cloning paper was accepted for publi-
cation,15 we learned that a group at the Monsanto
Company had submitted at approximately the same

time a manuscript reporting on the cloning of VPF.19

These investigators described a human clone that
encoded a protein identical to VEGF189.

19 This
group followed up on the earlier work by Senger et
al.11 and was able to isolate and sequence VPF.
Therefore, it appeared that the same molecule
possesses mitogenic and permeability-enhancing
activities.

VEGF as a Key Regulator of Normal

and Tumor Angiogenesis

The cloning of VEGF (today also known as
VEGF-A following the discovery of several related
molecules, VEGF-B, VEGF-C, VEGF-D, and PlGF)
generated significant interest in the angiogenesis
field,2 but it took several years before we could
establish that VEGF was truly a pathophysiologically
relevant mediator. It became clear that the VEGF
isoforms are well suited to generate biochemical
gradients, a requirement for angiogenesis in vivo,
due to their differential diffusibility, which depends
on their affinity for heparan-sulfate proteogly-
cans.20,21 A key question was whether VEGF has a
role as an angiogenic factor in vivo. The earliest
evidence that VEGF expression is temporally and
spatially correlated with neovascularization was from
a study published in 1990, where we examined the
expression of VEGF mRNA in the rat ovary by in
situ hybridization.22 We reported that the expression
was low in the avascular granulosa cells, but was
strongly upregulated in the highly vascularized corpus
luteum.22 Furthermore, in 1992 we reported that the
high affinity binding sites for VEGF are selectively
expressed in endothelial cells in vivo.23

The identification of the VEGF tyrosine kinase
receptors represented a major milestone in the quest
to understand VEGF action. In 1992, in collaboration
with Lewis (Rusty) Williams at UCSF, we identified
the fms-like tyrosine kinase24 (presently known as
VEGFR-1) as a high-affinity VEGF receptor.25 In the
same year, Terman et al.26 identified a highly
homologous tyrosine kinase receptor, known as
KDR or VEGFR-2. It now is well established that
VEGFR-2 is the main signaling VEGF receptor.27

Figure 1 illustrates the current view of the roles of the
VEGF receptors and signaling pathways.

To elucidate the role of VEGF in vivo, we
employed multiple strategies to inhibit its function.
In 1993, we reported that administration of an anti-
VEGF monoclonal antibody substantially reduced
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the growth of several human tumor cell lines
implanted in immunodeficient mice.28 These findings
were unexpected at that time, as it was widely believed
that tumor angiogenesis is multifactorial and, there-

fore, reflects the contribution of numerous mediators.
They paved the way for subsequent clinical develop-
ment of VEGF inhibitors as cancer therapeutics,
including a humanized variant of this anti-VEGF

Figure 1. The VEGF signaling pathways and inhibitors. The two VEGF tyrosine kinase receptors are expressed primarily in endothelial
cells. The VEGF-related molecules PlGF and VEGFB bind selectively to VEGFR-1, while VEGF binds VEGFR-1 and VEGFR-2. VEGFC and
VEGFD bind to VEGF3, a key regulator of lymphangiogenesis, but following proteolytic processing also have the ability to bind and
activate VEGFR-2.56 Heparin binding VEGF isoforms and PlGF also bind the coreceptor neuropilin (NRP)1.67 NRP1 increase the binding
affinity to VEGFR-2.68 Direct effects of VEGF or PlGF on NRP1, independent of VEGF receptor activation, also have been reported.68 In
some circumstances, VEGFR-1 may function as a ‘‘decoy’’ receptor, preventing VEGF from binding to VEGFR-2. However, VEGFR-1 is able
to regulate the expression of a variety of genes in the endothelium, including MMP9 and certain growth factors, such as hepatocyte
growth factor and connective tissue growth factor, which are known to have an important role in tissue homeostasis and regeneration.69

Also, VEGFR-1 is expressed in monocytes and macrophages and, in some cases, also in tumor cells where in it can mediate tumor
proliferation in response to VEGF or PlGF.70 VEGFR-2 is the main signaling receptor that mediates endothelial cell mitogenesis and
vascular permeability.56 Multiple inhibitors can block VEGF-induced signaling. Bevacizumab and ranibizumab bind VEGF. The soluble
chimeric receptor aflibercept binds VEGF, PlGF, and VEGFB. The anti-VEGFR-2 monoclonal antibody ramucirumab prevents VEGFR-2
dependent signaling. Also, numerous small molecule kinase inhibitors (e.g., sunitinib, sorafenib, and axitinib) inhibit VEGFR signaling
(reproduced from the study of Ferrara and Adamis56).
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antibody29 (bevacizumab), which has been approved
for therapy of multiple tumor types.30 The impact of
these findings, however, went beyond the tumor
angiogenesis field. They rapidly stimulated studies
aimed at directly probing the role of VEGF in other
biological contexts, including intraocular neovascu-
larization.

Inactivation of the vegf gene in mice provided
evidence for the crucial role of this molecule in the
early development of the vasculature. These findings,
reported in 1996 by our group31 and by Carmeliet et
al.,32 were nothing short of striking. Loss of even a
single vegf allele resulted in defective vascular
development and early embryonic lethality. This
phenotype was even more dramatic than that of
VEGFR2 knockout, which requires inactivation of
both alleles to elicit a lethal phenotype.33 A few years
later, we developed VEGF loxP mice.34 Crossing
these mice with various Cre-transgenic lines enables
conditional VEGF inactivation in specific cell types
or tissues.34 These studies reinforced the notion that
VEGF is required for angiogenesis in many tissues
and organs (reviewed previously27). In parallel with
the genetic reagents, we developed soluble chimeric
VEGF receptors (or ‘‘VEGF-traps’’), which, unlike
many monoclonal antibodies, can block VEGF
across species.35 Also, structure–function studies of
VEGFR-1 led to the discovery that of the seven
extracellular Ig-like domains, domain two is the
critical element for high-affinity VEGF binding,36

enabling the design of smaller and more stable
soluble receptors. The availability of these tools
allowed us to establish the role of VEGF in
neovascularization associated not only with such
essential physiological processes as organ and
skeletal growth34,37 or cyclical growth of the ovarian
corpus luteum,38 but also with pathological retinal
neovascularization.39

Looking back at that period, it is almost impos-
sible not to recall a sense of excitement permeating
through the angiogenesis field. After decades of
largely descriptive work, it finally was possible to
unravel some of the secrets of this process and provide
a molecular explanation for a variety of fundamental
pathophysiological processes. A commentary by
Klagsbrun and Soker,40 published in 1993, reflects
this excitement. According to the authors, ‘‘. . .VEGF/
VPF may be the best candidate for the principle
regulator of normal and tumor angiogenesis.’’40 I feel
extremely fortunate that my lab was at the forefront
of this revolution.

VEGF as a Mediator of Intraocular

Neovascularization

As pointed out above, by the early 1990s it was
apparent that VEGF was implicated in normal as well
as in pathologic angiogenesis. Vascular endothelial
growth factor also had several features consistent with
‘‘Factor X,’’5 being diffusible and selective for
vascular endothelial cells. Also, in 1992 two studies
reported that VEGF mRNA expression is induced by
hypoxia.41,42 Therefore, it is not surprising that
VEGF became the top candidate as a mediator of
retinal ischemia-related neovascularization. In 1994,
in a collaborative study with Lloyd Aiello and George
King at the Joslin Diabetes Center in Boston, we
tested this hypothesis. Taking advantage of sensitive
assays newly developed in our group, we measured
the VEGF levels in the eye fluids from 164 patients.43

We found a striking correlation between VEGF
concentrations and active proliferative retinopathy
associated with diabetes, occlusion of central retinal
vein, or prematurity.43 Adamis et al.44 at the
Massachusetts Eye & Ear Infirmary in Boston also
reported elevated VEGF levels in the vitreous of
patients with diabetic retinopathy.44 At approximate-
ly the same time, a French group also reported similar
findings.45

Subsequent studies revealed that VEGF upregu-
lation in the eye is not limited to ischemic retinal
disorders. In 1996, two groups reported the immuno-
histochemical localization of VEGF in choroidal
neovascular membranes from patients with wet age-
related macular degeneration (AMD), the leading
cause of irreversible severe vision loss in the adult
population.46,47

Proof-of-concept studies supported the hypothe-
sis that VEGF is, indeed, a major mediator of
intraocular neovascularization. As already men-
tioned, administration of chimeric soluble VEGF
receptors resulted in a marked reduction of retinal
neovascularization in a mouse model of retinopathy
of prematurity.39 Also, in collaboration with Tony
Adamis and Joan Miller, we tested the effects of the
anti-VEGF monoclonal antibody used in the cancer
studies28 in a primate model of iris neovasculariza-
tion induced by central retinal vein occlusion.48

Similar to the tumor models, we observed a
substantial inhibition of blood vessel growth follow-
ing administration of the antibody.48 These effects
were not limited to models of retinal ischemia. As
described in the next section, wet (neovascular)
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AMD became the primary clinical target of our anti-
VEGF efforts in the eye.49 To this end, we
engineered an affinity-matured antibody fragment
(Fab) derived from the murine antibody parent of
bevacizumab.50,51 Krzystolik et al.52 kindly agreed to
support these efforts by testing this Fab, subsequent-
ly known as ranibizumab, in a primate model of
choroidal neovascularization.52 These studies
showed a dramatic inhibition of neovascularization
and leakage following intravitreal administration of
ranibizumab.52

An Anti-VEGF Therapy for the Eye

The development path of anti-VEGF agents for
wet AMD and other intraocular neovascular disor-
ders has been described previously.51 Briefly, devel-
oping an anti-VEGF therapy for wet AMD
presented at that time a number of significant
challenges.51 We initially considered testing the
intravenous administration of bevacizumab, but
the possibility of cardiovascular adverse events in
elderly patients led us to discard this possibility in
favor of the intraocular route of administration.
However, one could not rule out that long-term
injection of full-length antibodies in human eyes
might result in complement-mediated or cell-depen-
dent cytotoxicity that might be triggered by inter-
action of the antibody Fc portion with receptors in
inflammatory or immune cells.53 We felt that
removing the Fc would be prudent. As already
noted, we created an affinity-matured Fab variant of
bevacizumab to further enhance its binding affini-
ty.50 Genentech initiated the first clinical trial in
subjects with wet AMD in February 2000. After
encouraging data from phase I and phase II
studies,54,55 ranibizumab was tested in pivotal phase
III trials. Examining in detail the phase III studies
with ranibizumab and other VEGF inhibitors
(bevacizumab and aflibercept) is beyond the scope
of this article, which mainly focuses on the discovery
and science of VEGF. A very recent review
summarizes such clinical trials and discusses a
decade of clinical experience with VEGF inhibi-
tors.56 Suffice to say here that these agents have had
a dramatic impact in ophthalmology. Patients with
different variants of wet AMD receiving monthly
intravitreal injections of ranibizumab experienced
significantly improved visual acuity compared to
sham-injected57 or verteporfin-treated58 patients. In
addition, near vision, reading speed, and overall
quality of life, were improved.59 Subsequent large

randomized clinical trials have demonstrated the
efficacy of ranibizumab and other VEGF inhibitors
in several other vision-threatening diseases, includ-
ing diabetic macular edema and retinal vein occlu-
sion.56

A few years ago, Bressler et al.60 modeled visual
acuity outcomes in patients with wet AMD in the
United States population based on data from the
ranibizumab phase III trials. Their analysis indicated
that ranibizumab has the potential to reduce the rate
of legal blindness from neovascular AMD over two
years by 72%.60 In good agreement with these
predictions, recent studies have documented a marked
reduction in the incidence rate of legal blindness due
to AMD in some countries following the introduction
of intravitreal VEGF inhibitors in 2006.61,62 Howev-
er, not all patients receive adequate treatment to
experience maximal visual improvement. A recent
multicountry, retrospective study of wet AMD
patients treated with ranibizumab indicated that,
especially in some countries, patients receive fewer
injections and have poorer outcomes than those
reported in clinical trials.63 Therefore, the cost and
burden of chronic therapy in some cases limits benefit
of anti-VEGF treatment. It is hoped that long-acting
delivery technologies will address the gap in visual
outcomes between clinical trials and ‘‘real life’’ clinical
practice.56

Conclusions

I am gratified and humbled that work that I
initiated almost 30 years ago during my years as a
postdoctoral fellow eventually resulted in a therapy
for wet AMD and other intraocular neovascular
disorders. The magnitude of the benefit, particularly
the visual acuity gains, vastly exceeded my expecta-
tions, considering that previous treatments only
slowed down the rate of vision loss.64,65

Numerous trials currently are exploring a variety
of novel therapeutic agents.66 These efforts give hope
that combining VEGF inhibitors with agents that
target additional pathways may go beyond the
benefits achieved so far from targeting VEGF alone.
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