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The work summarized in this thesis focuses on the application of optimization

techniques to solve power system design problems concerned with sizing/scheduling of

loads and energy storage systems with optimal energy dispatch. Three critical power

system problems are discussed in the thesis.

The first portion of this thesis solves the sizing and scheduling problem of stand-

alone loads and generators for optimal energy utilization. The main application of this

work is water treatment or desalination plants which are powered by stand-alone solar
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farms in off-grid setup. The techniques can also be applied to large loads operating in

island modes - such as motors or pumps, steel manufacturing, and data centers. Mixed

integer linear programming is used for sizing and scheduling the loads, whereas historical

solar data is used to optimally schedule the available resources in a selected location.

The approach is illustrated for both static and dynamic loads.

The second portion of this thesis focuses on methods to mitigating macrogrid

power outages by utilizing available Distributed Energy Resources (DER) to supply load

locally, but across several customers. The algorithm schedules load and demand to meet

certain objective functions such as minimizing power losses or maximizing solar energy

utilization and is implemented in the framework of mixed integer linear programming.

Reliability metrics increased significantly through power sharing and the approach is

illustrated on power data from actual households when subjected to a power outage.

Finally, optimization methods are applied to size a Battery Energy Storage Sys-

tems (BESS) from an economic perspective. As BESS can mitigate effects of intermittent

energy production from renewable energy sources they play a critical role in peak shaving

and demand charge management. The trade-off between BESS investment costs, lifetime,

and revenue from utility bill savings along with microgrid ancillary services are taken

into account to determine the optimal size of a BESS. The optimal size of a BESS is

solved via a stochastic optimization problem considering wholesale market pricing. A

stochastic model is used to schedule arbitrage services for energy storage based on the

forecasted energy market pricing while accounting for BESS cost trends, the variability

of renewable energy resources, and demand prediction. The approach is illustrated with

an application to various realistic case studies based on pricing and demand data from the

California Independent System Operator (CAISO). The case study results give insight

in optimal BESS sizing from a cost perspective, based on both long-term installation

schedules and daily BESS operation.
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Chapter 1

Introduction

1.1 Highlights

1. Billions of people are lacking power access. Electrification problem and the

need of water is a key element for surviving.

2. The grid outage problem and how we proposed a solution.

3. The rapped wholesale ISO price model changing needs a solution that microgrid might

be. Determining when and what size of storage to be installed and how to operate the

storage is also a contribution in this thesis.

The need for island system (stand-alone) has been driven by poor electrification of

rural areas and supply power to the weak infrastructure countries. More than 1.5 Billion

of people are lacking power access or unstable connectivity which is a real challenge

for surviving UN (2014). The majority of those people are in rural areas of developing

countries, largely in Africa and South-East Asia Doll and Pachauri (2010). In India, for

instance, it was identified that electricity through renewable energy-based decentralized

generation options can be financially more attractive in comparison to extending the grid

Nouni et al. (2008). This a motivation to study how can sizing this renewable energy in

rural areas specially in solving the problem of water and food nexus which guided the first
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part of this thesis. A application was to investigate the water treatment and desalination

powered by island (stand-alone) power application which is solar. This was a motivation

to look into the sizing and load scheduling in a planning of some of the power system

infrastructure. In this work, we tried to integrate this application with renewables (solar

power to be specific) and investigate how such process’ efficiency can be improved. This

problem would be easier if the site/ location was grid connected. Sizing and scheduling

in island power system (stand-alone system) are two different problems. In Chapter 2

and 3, the mathematical formulation is described for both problem separately as well as

the scheduling problem by itself.

Another related topic is the effect of poor/ weak electricity infrastructure on

customers and society. Power system outages are huge issue both modern and developing

countries. Each year eight million customers suffer from power outages in the USA only.

The second part of the thesis focuses on how can power sharing improves the effect of

grid outages. This contribution is valid for both modern and developing countries, but it

also set the floor for state of the art new outage management system as part of the future

shared economy. This thesis shed some light on this model and its application with real

data from residential network in Chapter 4.

The rapid changing pattern of the grid which introduced the duck curve or more

even the negative price phenomena sooner that most model expected/forecasted. The

idea of a microgrid is one approach to solve this problem where this thesis is looking

into size and scheduling in a given microgrid.

The power system applications studied in this thesis are convex application

(or ways to convexify the non-convex ones were applied), such load sizing and load

scheduling both on grid-connected and island application. The focus is not to investigate

any new optimization techniques rather than applying some of the existing ones.
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Chapter 2

Load sizing and scheduling for island
system (stand-alone) application

The variability of solar energy in off-grid systems dictates the sizing of energy

storage systems along with the sizing and scheduling of loads present in the off-grid

system. Unfortunately, energy storage may be costly, while frequent switching of loads

in the absence of an energy storage system causes wear and tear and should be avoided.

Yet, the amount of solar energy utilized should be maximized and the problem of finding

the optimal static load size of a finite number of discrete electric loads on the basis of a

load response optimization is considered in this paper. The objective of the optimization

is to maximize solar energy utilization without the need for costly energy storage systems

in an off-grid system. Conceptual and real data for solar photovoltaic power production

is provided the input to the off-grid system. Given the number of units, the following

analytical solutions and computational algorithms are proposed to compute the optimal

load size of each unit: mixed-integer linear programming and constrained least squares.

Based on the available solar power profile, the algorithms select the optimal on/off switch

times and maximize solar energy utilization by computing the optimal static load sizes.

The effectiveness of the algorithms is compared using one year of solar power data from

San Diego, California and Thuwal, Saudi Arabia. It is shown that the annual system solar
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energy utilization is optimized to 73% when using two loads and can be boosted up to

98% using a six load configuration.

2.1 Introduction

Increasing global energy demand and human population growth have triggered

a need for standalone renewable applications. Recent estimates show that 1.4 billion

people do not have access to energy services and one billion are suffering from unreliable

electricity services IEA, International Energy Agency (2013). Standalone application of

clean energy, (E.g., fresh water pumping), has become more critical for humanity IEA,

International Energy Agency (2013); UN (2014). Often such systems are powered by

solar photovoltaic (PV) due to ubiquitous high solar resource availability and scalability.

However, solar production exhibits high variability over a broad range of time scales

Wan (2012). Power variability is the main obstacle facing solar energy in standalone or

islanded mode applications. High penetrations of solar power sources create large power

swings which influence electric power quality Nguyen et al. (2015), and can cause loss

of load or generation curtailment Energy (2010). Variability of solar PV generation is a

result of seasonal and diurnal changes in the sunpath as well as short-lived cloud cover.

Solar variability limits the operation of off-grid loads at maximum capacity Saber and

Venayagamoorthy (2012); Egido and Lorenzo (1992); Sreeraj et al. (2010).

Optimal load switching can be applied to microgrids with any hybrid forms of re-

newable energy resources such as solar and wind Mohammadi et al. (2012); Kobayakawa

and Kandpal (2015); Lee et al. (2014); Atia and Yamada (2015) to capture as much

renewable energy as possible. Although partial or modulated load operation is conducive

to the problem, there are numerous types of load units which can only be switched on or

off, such as non-dimmable lighting, standard electric motors, and Magnetic Resonance

Imaging (MRI) machines at hospitals and load aggregation such as demand side manage-

4



ment Shafie-khah et al. (2016); Negnevitsky and Wong (2015). Dispatching such binary

load units, which are referred as switchable loads hereafter, to follow available renewable

energy resources have been discussed in the literature for different microgrid applications

such as water desalination Smaoui et al. (2015), pumping systems Bakelli et al. (2011),

irrigation systems Olcan (2015), and cooking appliancesMandelli et al. (2016); Fux et al.

(2013); Bouabdallah et al. (2015).

Different optimization techniques are used for planning and design of such

systems. For instance, mixed-integer linear programming (MILP) has been used in many

fields, such as unit commitment of power production Viana and Pedroso (2013) and

power transmission network expansion Bahiense et al. (2001); Zhang et al. (2012), as

well as scheduling problem of the generation units in off-grid in order to maximize supply

performance of the system Morais et al. (2010). Nonlinear approaches have also been

applied to load scheduling Hung and Robertazzi (2008). For example, neural networks

and genetic algorithms have been applied to size stand-alone PV Mellit et al. (2010a);

Mellit and Kalogirou (2008); Mellit et al. (2010b). The on/off control optimization

problem is similar to the unit commitment problem in power systems and bio-fuelChen

et al. (2015); Amir et al. (2008). However, limited studies have been conducted on the

optimal load sizing in a standalone (islanded) grid application with switchable loads.

Most of other research has been in the demand/supply side while very few looked into

the unit/load sizing for many reasons, such as, the load is assumed to be fixed and has

to meet by any supply way Ashok (2007) or the accessibility of designing load for

certain application is harder and not easy process. This work focuses on optimal load

sizing for standalone applications in rural areas or off-grid sites. While the present paper

assumes an off-grid system, similar challenges exist for a power system with a weak grid

connection, i.e. with a line carrying capacity that could only balance variability that is a

small fraction of local solar generation or load capacity.
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Energy storage systems (ESS) have been applied to solve the variability challenges

Pickard and Abbott (2012a); Kousksou et al. (2014).An alternative or complementary

approach is optimal sizing and scheduling of load units which follow power generation

variability to maximize solar energy utilization and load uptime. Clearly, the solar energy

utilization could be improved with an ESS, but an ESS that eliminates solar variability

would need to be large enough to store several days’ worth of solar power which is

uneconomical at present. Smaller ESS would experience significant cycling and deep

discharge events if not properly maintained, increasing maintenance costs and requiring

replacement much before the end-of-life of a PV system. Our objective is to improve

solar utilization without an ESS and use load demand response only and show that high

efficiencies can still be obtained. In practice, a combination of a small ESS with high

cycle life such as an ultracapacitor ESS and the proposed load sizing and scheduling

system would probably be the best solution. The ESS would absorb solar variability at

time scales of seconds to minutes while the loads would balance variability at longer

time scales. This approach would allow limiting ESS energy capacity making it more

economical. While practical challenges of implementing such a system are significant,

e.g. in maintaining system stability during switching, this paper focuses on the critical

algorithmic work that permits such a system to operate efficiently and economically.

In a properly planned system the solar system would be optimally sized to power

the load required for the intended application. This paper does not consider this scenario.

Often in practice the conditions are not as plannable. Load growth will occur and a solar

power system may be initially oversized to accommodate such growth. Sizing the solar

system may also be limited by land ownership and topographic constraints. The solutions

proposed in this paper apply in such a context where solar capacity is fixed and loads are

sized to optimize solar energy utilization.

This paper proposes an optimization model to capture the maximum amount of
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variable solar generation, which sizes and schedules a finite number of loads to track

available solar PV power. The objective is to maximize solar utilization, given the

projected power generation of the renewable energy resources. Here, solar utilization is

defined as percentage of energy captured by the units over total solar energy produced.

This is akin to terms such as solar utilization factor Vermeulen and Nieuwoudt (2015)

and loss of power supply (LPS) Gupta (2011) which are commonly used in the literature.

The loads are assumed to switch between a binary ”on” or ”off” statuses, where both the

switching times and the size of the static power demand (static load size) determines the

ability to track available solar power.

The main contribution of this paper is to develop both analytical solutions and

computational approaches based on Equality Constrained Least Squares (ECLS), In-

equality Constrained Least Squares (ICLS), and Mixed-Integer Linear Programming

(MILP) in order to solve the optimization problem. The rest of the paper is organized as

follows. The mathematical formulation is given in Section 2.2 along with an analytical

example and the motivation for a computational procedure for optimal load size selection.

One year of solar resource data for San Diego is analyzed and discussed in Section2.3.

Section 2.4 presents different computational procedures for optimal load size selection

based on a bi-linear optimization problem involving a mix of binary and real numbers.

The simulation results are presented and discussed in Section 2.5. Finally, Section 2.7

concludes the paper.

2.2 Problem Formulation

The sizing and scheduling problem computes the distribution of the optimal load

size of a finite number load units, given an available (solar) power profile. For the optimal

load size selection, the loads are assumed to operate in a binary manner, off or on, and

therefore only the static load size is optimized.
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2.2.1 Static Load Response Optimization Problem

To formalize the notation for the optimization approach presented in this paper,

we assume knowledge of the (solar) power delivery S(t) sampled at regular time intervals

t = tk = k∆T , where 1/∆T is a fixed sampling frequency and k is the sample index. In

this way, we have a data set of T points on the solar power production S(tk), k = 1, ...,T .

Typically, S(tk) is close to a daily periodic function and S(tk)≥ 0 over a daily time interval

tk ∈ [tb, te], where b is the beginning and e is the ending of the day, with a maximum value

Smax = max
k

S(tk),

that is typically equal to the AC rating of the solar power system. The data S(tk) and

Smax may be available from historical solar power measurements or from solar radiation

measurements in conjunction with a model of the solar power conversion efficiency.

In the static load response optimization we consider n loads, where each load

i = 1, ...,n is characterized only by a static power value xi that can be either turned on or

off. Given the number n of loads, the objective of the static load response optimization

is to find the optimal distribution of static load values xi, i = 1,2, . . . ,n so that the

time sampled solar power delivery S(tk) can be approximated as closely as possible to

maximize the energy captured.

As indicated in Figure 2.1, the power mismatch E(tk) at any time tk can be

characterized by

E(tk) = S(tk)−
n

∑
i=1

ui
kxi

where ui
k ∈ [0,1] are n binary numbers reflecting the on/off switch state of the individual
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Figure 2.1. Problem illustration for one clear and symmetric day. Loads xi are scheduled
hourly to follow the increase or decrease in solar power generation S(tk).

loads i = 1, . . . ,n with their (to be determined) static load size xi. Defining the vectors

uk =

[
u1

k u2
k ... un

k

]
, ui

k ∈ [0,1]

x =

[
x1 x2 ... xn

]T

, xi > 0
(2.1)

the static power mismatch E(tk) at a particular time tk can be written with an inner

product

E(tk) = S(tk)−ukx,

of the time dependent binary switch state vector uk and the static load size distribution

vector x. Static load response optimization can now be written as

argmin
uk,x

N

∑
k=1

E(tk)2, E(tk) = S(tk)−ukx (2.2)

where the variables uk and x are given in (2.1). The optimization in (2.2) is a least squares

optimization in which both the time dependent binary switch state vector uk and the static

load size distribution vector x must be determined on the basis of the T data points on

the solar production S(tk), k = 1, . . . ,T .

Clearly, the least squares optimization in (2.2) is non-standard for several reasons.

First of all, the error E(tk) is bi-linear due to the product of the optimization variable uk
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and x. Furthermore, the optimization variable uk is a binary vector, whereas the elements

xi of the static load size distribution. Vector x must likely satisfy (linear) constraints

xi ≥ xi−1 ≥ 0 (2.3)

to ensure a unique load distribution solution with real valued positive loads. An additional

linear constraint
n

∑
i=1

xi = |x|1 =CSmax (2.4)

where C can be chosen in the range of 0.5 <C < 1 ensures that the sum of the load

distribution is bounded to avoid oversizing of the loads in trying to match the anticipated

maximum power production Smax. Finally, the number of loads (n) also needs to be

determined. It is clear that a larger value n of will enable smaller power mismatch errors

E(tk) but would likely increase the investment cost as the per kWh cost of a load unit

typically decreases with the size of the unit.

The process can be described in a flow chart as Figure 2.2 illustrates, starting with

annual solar irradiance data for at least one year to capture the seasonal changes. Then

followed by a power model to compute solar power and then sort solar power annual

data followed by inputting number of desired units then the optimal unit sizing will be

computed then followed by a daily unit scheduling.

2.3 Solar Resource Data and its Distribution

To capture the interannual variability of solar irradiance, solar resource data

should be collected for several years, such as in the production of a typical meteorological

year (TMY). In this paper, only one year of solar power generation is used to demonstrate

the model application, but most large solar system developers rely on multidecadal

modeled power production based on site adoption of long-term satellite records with short-
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Figure 2.2. Flow chart of the proposed optimization process in this paper.

term local measurements for their financial calculations Thevenard and Pelland (2013).

Such long-term data would be preferable in practice although interannual variability of

solar energy generation is small. For example, Pitz-Paal et al. (2011) specifies that the

interannual variability of GHI for 7-10 years of measurement at Potsdam, Germany and

Eugene, USA is about 5%.

Here, only one year of data was available which allows characterizing most of

the important seasonal and diurnal variability.

2.3.1 Case Study 1: San Diego, USA

Multidecadal PV power projections are typically based on the measured and

modeled GHI which is transposed to the direct, diffuse, and reflected radiation at the plane-

of-arrayBouabdallah et al. (2013a); Wissem et al. (2012); Bouabdallah et al. (2013b)

and input into a PV performance model. We bypass the complexity in the PV power

modeling by using a solar power generation dataset available at two sites. AC power

production and GHI data were collected from a (91.6 kWDC and 100 kWAC) fixed tilt

(non-tracking) polycrystalline PV system (Figure 2.3). The system was installed at 10 ◦

tilt and facing south, at the UC San Diego campus at 32◦53′01.4”N 117◦14′22.6”W. Data

for one year, i.e., May 2011 through April 2012, were used and averaged over 15 minutes.
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The raw data is available at 1 s resolution and the algorithm can be applied to data at any

temporal resolution. Nevertheless, switching loads over such short timescales is generally

impractical and we assume instead that a small energy storage system modulates high

frequency solar variability to create a supply that is stable over 15 min intervals. The solar

power data for these specific sites are not symmetric over a day, and overcast conditions

occur more frequently in the mornings.

Time (Hours)
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P
ow

er
 (

K
W

)

0

10

20

30

40

50

60

70

80

90

100

Figure 2.3. 365 days of solar PV output data from the UC San Diego campus (green)
superimposed with the annual average (red). Hourly boxplots (black) show the median,
25th and 75th percentiles, and range.

The impacts of solar PV generation variability on the utilization of different

combinations of discrete loads is illustrated through 2-dimensional (2D) histograms

in Figure 2.4. In each subplot, similar to Figure 2.3, one year of solar power data is

superimposed over one day and different numbers of units n are used to track the solar

power generation. The quantization idea of the solar power data S(tk) for different

numbers of units is illustrated. N = 2n−1 is the number of discrete combinations of units

for each case described in (2.1), which implies that with more units more discrete load

levels can be served resulting in a better match with the solar generation. Qualitatively,

the best combination of load sizes is expected to be the one that is able to best track the

solar generation levels (or minimize power mismatch as in (2.2)) that are (i) large and (ii)

occur frequently.
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Figure 2.4. 2D histogram of number of occurrences of a combination of discrete loads
for n = 2 to 10 as a function of time of day for one year of solar power generation data
shown in Figure 2.3. Only hours with non-zero power data, i.e., only daytime hours, are
shown. For example, for n = 2, either two units (at different capacity) can be turned on
individually or together resulting in 3 discrete loads. For n = 10, almost 1,000 discrete
load levels exist, The colors show how often each combination of loads is run to utilize
the energy from solar PV generation.

2.3.2 Case Study 2: Thuwal, Saudi Arabia

Another case was selected to prove the robustness of the algorithms to different

input data. Thuwal, north of Jeddah, is a city located in the west coast of Saudi Arabia as

shown in Figure 2 of Habib et al. (2015). Thuwal solar meteorology is predominantly

clear and at a lower latitude and is therefore quite different from San Diego with days

such as clear day (D1) in Figure 2.10 being more common. Data from a monocrystalline

Silicon solar PV power plant at (22◦18′28.5”N 39◦06′17.1”E) with tilt 20◦ and azimuth

of 133◦ and 145◦ (split in two different arrays) was collected by King Abdullah University

of Science and Technology (KAUST).

2.4 Optimization Techniques

This section is initiated by an analytical solution for a small number n≤ 2 of loads

is presented when the available power follows a symmetric daily profile. The analytical
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approach is followed by the motivation for a computational procedure to compute optimal

load size distribution for a larger number n≥ 2 of loads when the available daily power

profile is non-symmetric. After that three different optimization techniques are presented,

discussed and compared.

2.4.1 Analytical and Motivating Example

Consider a (symmetric) time dependent power function y = S(t) which must be

followed by the rectangular power demands created by a simple on/off switching of a

static load over a specified time period. System efficiency is optimized by finding the

largest rectangular window (representing energy demand by the switchable load units) to

be drawn under the power function S(t). For a single load subjected to a symmetric S(t),

this problem reduces to selecting an optimal on/off switch time t̄ to define the width of

the rectangle 2t̄ and height ȳ = S(t̄), as indicated in Figure 2.5.

0 t-t

y=S(t)

tmax-tmax

A

S(t)

Figure 2.5. Single static unit sizing and scheduling optimization over a symmetric power
function S(t), resembling solar power output on a clear day.

The function A(t) that parametrizes the area of the rectangle in Figure 2.5 is equal

to A(t) = 2tS(t) and can be written in terms of y as A(y) = 2S−1(y)y. The derivative or

Jacobian of this function is given as

A′(t) = 2S(t)+2tS′(t), or A′(y) = 2S−1(y)+2y(S−1(y))′
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By setting A′(y) = 0, the optimal value for the load size ȳ = f (t̄) and the resulting

switch time t̄ can be found. In this case, it is clear that A′(y) = 0 leads to the analytical

expression

S−1(y) =−ȳ(S−1(y))′ (2.5)

where solving it for y gives the optimal load size ȳ.

To make this approach applicable to a symmetric solar PV power curve, a clear

sky power solar function S(y) can be modeled as a trigonometric function or a parabola.

Global horizontal irradiance (GHI) models have been extensively studied in the literature

in Reno et al. (2012); Bouabdallah et al. (2013a); Wissem et al. (2012); Bouabdallah et al.

(2013b) take for example equation 20 Reno et al. (2012) as bellow

GHI = 951.39cos(t)1.15

In this paper, a simplified fitting curve is presented using trigonometric and parabola

functions as below (see Appendix for accuracy discussion),

S(t) = y = a cos(bt)+a1sin(bt) = a sin(bt + c) (2.6)

where a = 0.9903, a1 = −0.001192, b = 0.006952, and c = 1.572 based on data ob-

tained from a clear solar day, where axes interception are (0,±ymax) = (0,0.9903) and

(±tmax,0) = (±226,0). The inverse function S−1 is thus as follows,

t = S−1(y) = α arcsin(βy)+ γ (2.7)

where α = 143.8, β = 1.01, and γ =−226.1. More details on the computation of the

numerical values of a, b can be found in Appendix A. The first derivative of (2.7) can be
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expressed as

t ′ = (S−1(y))′ =
αβ√

1+β 2y2
(2.8)

Solving the analytic expression (2.5) numerically for an optimal integer value

t̄, with S−1(y) given in (2.7) and (S−1(t))′ given in (2.8) with a trigonometric function

to compute the optimal values of ȳ analytically, with the following numerical value of

A′(y) = 0

S−1(y)+ y(S−1(y))′ = 0→ y

αβ
√

1− y2/α2
− γ−arcsin(y/α)

β
= 0

then leads to

S(t̄) = ȳ = 0.6489

t̄ = ±123
(2.9)

for the optimal switch time t̄ and normalized load size ȳ.

The resulting optimal switch time and load size lead to a maximum (rectangular)

area of 2t̄ ȳ = 2 · 0.6489 · 123 = 159.6294. With the known (symmetric) solar power

curve S(t), we can also compute ∑
xmax
−xmax

S(t) over the integer values t ∈ [−226,226] to

be 284.8962 and obtain

Solar utilization (SU) =
Total Energy Captured by Units

Total Solar Energy
=

2t̄ ȳ

∑
tmax
−tmax

S(t)dt
= 56.03%.

This means that for a single load, the optimal rectangular area achieved under the given

symmetric power curve S(t) captures 56% of the total (solar) energy. Similar results

can be obtained by a straightforward line search algorithm for the scalar value of t as

provided in Appendix B.
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The approach of finding optimal on/off switching time and load size for a sym-

metric power curve can also be extended to the case of multiple loads. However, the

solution is only analytically tractable for n = 2 loads where the Jacobian becomes a two

dimensional vector or a three dimensional vector with an additional equality constraint

as indicated below.

0 t1t2t3-t3-t2-t1

y3=S(t3)

y2=S(t2)

tmax-tmax

A1
A2A2

A3

-

S(t)

y1=S(t1)

Figure 2.6. Analytical optimization results for a functional clear sky model and two
units. A1, A2, and A3 are the energy captured by loads 1, 2, and both loads together.

Figure 2.6 illustrates the optimal load size distribution and switching to maximize

solar utilization for n = 2 loads. Under this scenario there exists 3 optimal switch times

t1, t2 and t3 for two (optimal) load sizes y1, y2, where y3 = y1 + y2 is used to indicate

when both loads are on. The dark gray shaded area is due to switch time t2, where the

area is A1 = 2t2y2. The area of the light gray shaded areas are functions of t1, t2 and t3,

where the area of the light gray rectangular areas is the sum of A2 = 2(t1− t2)y1 and

A3 = 2t3(y3− y2). The objective is to maximize the sum of the shaded areas

A(y1,y2,y3) =
2n−1=3

∑
i=1

Ai = 2S−1(y2) y2 +2(S−1(y1)−S−1(y2)) y1 +2S−1(y3)(y3− y2)

to solve for the optimal switch times and load sizes as shown in Figure 2.6. The area

A(y1,y2,y3) can be reduced to a function of only two variables Ā(y1,y2) by substituting
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y3 = y1 + y2 to obtain

Ā(y1,y2) = 2y1(S−1(y1)−S−1(y2)+S−1(y1 + y2))+2y2S−1(y2). (2.10)

The maximum solar utilization can now be expressed as an optimization problem:

max
y1,y2,y3

A(y1,y2,y3)

subject to 0≤ y1 ≤ y2 ≤ y3 < ymax

y3 = y1 + y2,

(2.11a)

which alternatively can be written as

max
y1,y2

Ā(y1,y2)

subject to 0≤ y1 ≤ y2 < ymax

(2.11b)

where S(y) is given in (2.7), and ymax is the y intersection of S(y). We consider only the

positive values y > 0 of the symmetric trigonometric approximation S−1(y) as indicated

in Figure 2.6.

Figure 2.7. Area surface plot of equation (2.10) as function of y1 and y2. The z-axis and
the colorbar show the area.
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Since the optimization problem has affine equality constraints, its solution set is

convex. Moreover, the objective function is a concave function. Thus, it has a single

maximum or minimum 1/A(y1,y2,y3) as indicated in Figure 2.7. As a result, solving the

optimization in (2.11b) by an iterative gradient method will lead to the global maximum

solution. The following Jacobian matrix, which is derived in Appendix C,

OJ =


∂A
∂y1

∂A
∂y2

=


S−1(y1)−S−1(y2)+S−1(y1 + y2)+ y1(S−1(y1))

′

(S−1(y2))
′(y1 + y2)+S−1(y2)


can be used in an iterative gradient based method, leading to the optimal load size

solutions [ȳ1, ȳ2, ȳ3] = [ȳ1, ȳ2, ȳ1 + ȳ2] = [0.2727, 0.5758, 0.8485]. The resulting solar

utilization for 2 loads is then characterized by

SU =
A(ȳ1, ȳ2, ȳ3)

∑
tmax
−tmax

S(t)dt
= 79.49%

indicating a significant improvement over the single load solar utilization of 56.0307%

over the same symmetric solar power curve.

The analytic approach indicates that maximizing solar utilization is equivalent to

finding the largest sum of rectangle windows that can be drawn under the power function

S(t). Extending this concept to n number of loads where n > 2 would entail

A(y1, · · · ,y2n−1) =
2n

∑
i=1

2 [S−1(yi)−S−1(yi+1)] yi, (2.12a)
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where y2n = 0 and

yi = bin(i)T ×



y1

y2

...

yn


, i = {1,2, · · · ,2n−1}, (2.12b)

where bin(i) is a reversed vertical vector format representing the binary value of i.

The number of variables of the new area function Ā(y1, · · · ,yn) in (2.12a) reduces to n

variables instead of 2n−1 by substituting (2.12b).

In summary the optimization problem appears to be convex over our solution

set. However, relying on S−1(y) for y > 0 is not possible, as S−1(y) is not guaranteed to

exist. Furthermore, a power curve S(t) may not be symmetric, especially for PV systems

operating on non-clear day conditions. To overcome these obstacles, this paper proposes

optimization approaches that exploit the convexity of the optimization problem that

selects the optimal load size distribution. Although the analytic approach is only viable

for a small number of loads under symmetric power curves, we will use the optimally

computed solar utilization as a benchmark for the solar utilization obtained from the

optimization approaches presented in the following.

2.4.2 Equality Constrained Least Squares Optimization

Although the optimization in 2.2 to minimize the Least Squares of the static

power mismatch E(tk) is bi-linear, it is clear that the entries of the time dependent binary

switch state vector uk is given by a limited number of binary combinations. The number

of binary combinations depends on the choice of n and the number of data points T .

Once the time dependent binary switch state vector uk is fixed, the optimization in (2.2)

reduces to a standard Least Squares (LS) problem to find the optimal value of the static
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load size distribution vector x.

To ensure a unique solution for the static load size distribution vector x, the

constraint (2.3) can be included in the LS optimization implicitly by simply ordering

the T data points of the (solar) power data S(tk). The ordering uses the fact that both

S(tk)≥ 0, xi > 0 and the fact that a larger value of S(tk) would require the switching of a

larger sum of loads ukx. To set up the solution to the optimization to (2.2), the solar data

S(tk) that may be periodic due to daily patterns and irregular due to weather patterns, is

sorted such that

S(tk̄+1)≥ S(tk̄), k̄ = 1, ...,T −1 (2.13)

The ordering in (2.13) ensures that S(tk̄) is monotonically non-decreasing function

represented as the unshaded curve in Figure 2.8 In addition, it allows the ordering of the

n numerical values xi > 0 in the vector x to become unambiguous by properly ordering

the n binary values ui
k̄ in the binary vector uk̄ for each value of k̄ = 1, ...,T −1.
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Figure 2.8. (a) Time series plot for 12 months of solar power data starting from May
2011 through April 2012. (b) Sorted solar power data S(t̄k) sampled at a 15 minute
interval satisfying equation (2.13).

The ambiguity in the ordering of the n numerical values xi > 0 in x given in (2.3)

is implicitly included due to the fact

S(tk̄+1)≥ S(tk̄) ⇒ uk̄+1x≥ uk̄x, k̄ = 1, ...,T −1 (2.14)
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and the fact that xi > 0. In this way, the values of xi can be ordered if we order the values

of ui
k̄ ∈ [0,1] contained in the time ordered binary switch state vector uk̄ by the choice of

a positive real linear function

f (uk̄) =
n

∑
i=1

f iui
k̄, f i > 0 (2.15)

that satisfies the property

f (uk̄+1)≥ f (uk̄), k̄ = 1, ...,T −1 (2.16)

The rationale behind the choice of the function f (·) in (2.15) is as follows. For a given

value of n, there are 2n−1 possible binary combinations of the vector xk̄, excluding the

value 0. Ordering the values of the time ordered binary switch state vector uk̄ according

to (2.16), allows us to choose a fixed x (independent of k̄) with xi > 0 to satisfy (2.14).

An obvious choice for the desired function f (·) in (2.15) is to use the fact that

ui
k̄ ∈ [0,1] and that the vectors uk̄ with length n can be seen as a n bit binary number

representing a signed integer number dk̄ > 0. The conversion from an n bit binary number

uk̄ to a signed integer number dk̄ is given by

f (uk̄) = dk̄ =
n

∑
i=1

ui
k̄ ·2

n−i, (2.17)

which clearly satisfies the conditions of the function f (·) given in (2.15) and (2.16). With

the choice of f (uk̄) = dk̄ and ordering the integer numbers dk̄ according to (2.15), the

static load optimization problem in (2.2) can be rewritten as

x̂ = argmin
x

T

∑
k̄=1

E(tk̄)
2, E(tk̄) = S(tk̄)−uk̄x

f (uk̄+1)≥ f (uk̄), k̄ = 1, ...,T −1

(2.18)

22



with f (uk̄) given in (2.17). It should be noted that for a given value of n, the binary

numbers and the ordering of uk̄ in (2.18) are completely known. As a result, only an

optimization over x is required reducing the optimization in (2.2) to an equivalent standard

least squares (LS) optimization given in (2.18). With the known time ordered binary

switch state vector uk̄, the time ordered error E(tk̄) for k̄ = 1, ...,T in (2.2) can be written

in a matrix notation E = S−Ux where the matrices are given by

S =

[
S(t1) S(t2) · · · S(tT )

]T

∈ RT×1,

E =

[
E(t1) E(t2) · · · E(tT )

]T

∈ RT×1,

U =



u1
1 u2

1 · · · un
1

u1
2 u2

2 · · · un
2

... . . . ...

u1
2n−1 u2

2n−1 · · · un
2n−1


⊗11×L ∈ RT×n

x =

[
x1 x2 · · · xn

]T

∈ Rn×1

(2.19)

and where the block rows of the matrix U will be repeated entries given of the time

ordered binary load switch vector
[

u1
k̄ u2

k̄ · · · un
k̄

]
due to Kronecker product with

the 1×L unity vector 11×L where L = T/(2n−1). The repeated entries are needed to

ensure that U ∈RT×n, as there are only 2n−1 binary load switch combinations (excluding

all loads off), while the available number of (solar) power data points T >> 2n−1. The

typical value of L for the repeating entries in the block rows of U is L = 20, using

20 · (2n−1) points of ordered (solar) power data for computation of the optimal load size

distribution. The standard LS minimization of (2.18) can be rewritten as

x̂ = argmin
x
‖S−Ux‖2
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where the solution can be computed by x̂ = [UTU ]−1[UT S].

The standard LS solution in (2.18) will solve the Least Squares error of the static

power mismatch, but does not ensure yet that the sum of the load distribution is bounded

as in (2.4) to avoid oversizing of the loads in trying to match the anticipated maximum

power production Smax Miller and de Callafon (2012). The additional linear equality

constraint on the sum of the load distribution can easily be incorporated via an Equality

Constrained Least Square (ECLS) problem

x̂, λ̂ = argmin
x,λ

T

∑
k̄=1

E(tk̄)
2 +λ (Dx−C)), E(tk̄) = S(tk̄)−uk̄x (2.20)

that also includes a Lagrange multiplier λ and the unit equality constraint vector D =

[1 1 · · · 1] = 11×n and a chosen value of C in the range 0.5≤C ≤ 1 to satisfy (2.4). The

ECLS solution is now given by

 x̂

λ̂

=

UTU 1

1 0


−1UT S

C

 .
with U and S as given in (2.19). Since the optimal value C in the range 0.5≤C ≤ 1 to

avoid oversizing of the loads by bounding the sum of the load distribution as in (2.4) is

unknown, an additional line search along C can be used to determine the optimal load

oversizing constraint.

2.4.3 Inequality Constrained Least Squares Optimization

Although the ECLS approach presented above computes the optimal load size

distribution x = [x1 x2 · · · xn]T , the optimal solution x̂ to (2.20) still depends on the

choice of the time ordered binary load switch vector uk̄ due to the bi-linear nature of the

optimization problem in (2.2). Even when the (solar) power data S(tk) has been ordered,
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it is still not clear when exactly the loads will be turned on/off. Referring to Figure 2.9

to illustrate this concept, it is not clear what the optimal load switch time m1 for the

first load 1 will be and how many samples m2 the first load should remain on before the

second load is switched on at m1 +m2 samples. Clearly, the optimal static values x̂1 and

x̂2 of the loads depend on these switching times.

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

x1+x2

m
1+m

2+m
3

m
1+m

2

m
1

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

x1+x2

0

0. 2

0.4

0.6

0.8

1

1.2

S(tm )

S
or

te
d
 N

or
m

al
iz

ed
 P

ow
er

S(tm )2

S(tm )+1 S(tm )2

1

Figure 2.9. Illustration of variable switching time in optimal load switching and load
size optimization.

To explicitly incorporate the ordering constraint (2.3) and allow for variability

in the switch time, both the optimization variable x and the matrix U in (2.19) can be

modified., while still allowing for a convex optimization. First we define

x = T x̄, T =



1 1 · · · 1

0 1 · · · 1
... . . . ...

0 0 · · · 1


∈ Rn×n

where the upper diagonal matrix T ensures that x̄ now reflect the incremental change

in the load size distribution. In this way the ordering constraint (2.3) can be enforced
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explicitly by x̄ > 0. Secondly, we define

U(m) =



U1
1 U2

1 · · · Un
1

U1
2 U2

2 · · · Un
2

... . . . ...

U1
2n−1 U2

2n−1 · · · Un
2n−1


∈ RT×n

where now the block rows of U are defined by

[
U1

k U2
k · · · Un

k

]
=


[

u1
k u2

k · · · un
k

]
⊗11×mk , k = 1,2, . . . ,2n−2[

u1
k u2

k · · · un
k

]
⊗11×T−∑m, k = 2n−1

in which the integer vector

m =

[
m1 m2 · · · m2n−1

]
with m > 0, ∑m < T

is the set of 2n− 1 possibilities of incremental switching time values in the case of n

loads.

The incremental switching time values m allow variable timing when loads are

switched, similar as in Figure 2.9 for the case of n = 2 loads. Moreover, given the vector

of incremental switching time values m, the optimal incremental load size distribution

can be computed with a Inequality Constrained Least Squares (ICLS) problem

x̂ = argmin
x̄
‖S−U(m)T x̄‖2, subject to Ax̄≤ b (2.21)

where the matrix A and b can be used to enforce inequality constraints. In particular, the
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choice

A =

 −In×n

U(m)T

 , b =

 0n×1

S


enforces the ordering constraint (2.13) via x̄ ≥ 0 and ensures load power demand is

always under the (solar) power curve via U(m)T x̄ =U(m)x≤ S to avoid oversizing of

the loads directly.

The solution to the ICLS problem can be solved with standard convex optimiza-

tion tools and will lead directly to optimal results for the static load distribution, given

the integer vector

m =

[
m1 m2 · · · m2n−1

]
with m > 0, ∑m < T

of 2n−1 possibilities of incremental switching time values. An additional line search or

non-linear optimization can be used on top of the ICLS problem to compute an optimal

set of incremental switching time values to further improve the solar utilization of the

static load distribution. Theoretically, such an additional search along the switching

time values via an additional iterative or gradient based optimization should lead to the

globally optimal solution to the bi-linear optimization problem of (2.2), as one can use the

full number of T data points on the (solar) power data, while using the smallest number

of optimization variables. A drawback is that the iterative search for switching time

values may get stuck in a local minimum. This was performed based on gradient search

over m using the Nonlinear programming solver (fmincon) in the MATLAB optimization

toolbox
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2.4.4 Mixed-integer Linear Programming (MILP) Method

Since the optimization problem (2.2) is a bi-linear optimization problem involving

a mix of binary and real numbers, a limited range of optimization solvers can be applied

and none of which may guarantee global optimality. To guarantee the optimality, we

employ the Big-M relaxation method Griva et al. (2009) to convert the optimization

problem into a mixed-integer linear programming (MIPL) problem. The convexity of

MILP therefore fulfills the zero duality gap. In addition, MILP has the capability of

determining the exact switching schedule of load units, which the other approaches

discussed in this paper lack. In fact, solving the optimization problem through MILP is

equivalent to simultaneous solution to planning and scheduling problems.

There exist many mature MILP solvers which are capable of solving large-scale

MILP problems with millions of variables within a reasonable time frame Bonami et al.

(2012). Proper selection of optimization variables and use of the disjunctive methods

discussed in Bahiense et al. (2001) make it possible to reformulate the original problem

as an MILP problem.

Denoting the binary variable ui(tk) as the on/off status of the unit i at time step tk,

the optimization problem (2.2) is presented as below,

minui,xi

T

∑
tk=1

[S(tk)−
n

∑
i=1

yi(tk)]

subject to ui(tk) ∈ {0,1},∀tk

S(tk)≥∑
i

yi(tk),∀tk

yi(tk) = ui(tk)xi,

(2.22)

where i and tk are the index for units and time steps respectively. S(tk) denotes the solar

power timeseries of length T . x ∈ Rn is the vector of load sizes. yi(tk) also denotes the
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committed demand by load i at time tk.

The last constraint in (2.22) is a bi-linear equality constraint and makes (2.22)

nonconvex. To resolve the nonconvexity issue, the big-M technique is used to replace the

constraint with the two following sets of constraints,

 yi(tk)≤ ui(tk)M,

yi(tk)≥ 0,
(2.23a)

 yi(tk)≤ xi,

yi(tk)≥ xi +(ui(tk)−1)M,
(2.23b)

where M is a big-enough positive number, e.g. 106 as utilized in the numerical examples

here. The constraint sets (2.23a) and (2.23b) are binding and relaxed respectively when

ui(tk) = 1, guaranteeing yi(tk) = xi. Likewise, yi(tk) exactly equal to zero ui(tk) = 0.

One great advantage of this method is that the input data can be one certain day

(clear or cloudy), that is the data does not need to be sorted as compared to the other

approaches. In addition, as no change is required in the order of PV power profile while

solving the optimization problem via MILP, additional constraints and technologies such

as minimum uptime and downtime of load units and employing energy storage systems

could be considered in the optimization process. Since this paper is focused on optimal

load sizing, these options will be discussed in detail in the future research works.

MILP was implemented using the CVX toolbox and Gurobi 6.50 to solve the

integer problem in our optimization. To reduce computational expense, down-sampling

the original data was needed. As the sequence of PV data does not affect the optimization

results, down-sampling with the ratio of 1 : n can be performed by arbitrarily selecting

one data point from every n data points from either the original or sorted data set further
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discussed in Section 2.5.3.

2.5 Results

In this paper, two levels of optimization are performed. The first level is toward

unit sizing for a given number of units. After the size of the units is determined, they

are scheduled through an optimization process to capture the maximum solar power.

For example Figure 2.10, which will be discussed more in section 2.6, illustrates the

scheduling results on three sample days for different number of units.
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Figure 2.10. Scheduling results for four different days (D1 clear, D2 mostly clear with
scattered clouds, and D3: overcast. The unit sizes of the Inequality Constrained Least
Squares (ICLS) method are presented.

San Diego solar power data, described earlier in Section 2.3 is investigated in the

following subsection using the different optimization techniques. This is followed by an

additional case study and concluded with a discussion.
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2.5.1 Equality Constrained Least Squares Optimization (ECLS)
Results

The optimal unit sizes x are obtained from equation (2.20). Subsequently, the

operation is simulated for one year of solar power data. These results do not constrain

the units with any minimum up or down time meaning the units are instantly turned on or

off. After that the solar utilization (SU) was calculated by dividing energy consumed by

the loads over the solar power data for one year.

Table 2.1. ECLS results for unit sizes and solar utilization for n between 2 and 6.

n x1 x2 x3 x4 x5 x6 ∑(x) SU
2 0.4670 0.1450 0.6120 0.7071
3 0.5068 0.2025 0.0857 0.7950 0.8277
4 0.5111 0.2269 0.1175 0.0585 0.9140 0.9117
5 0.4769 0.2138 0.1117 0.0565 0.0290 0.8880 0.9571
6 0.4476 0.2015 0.1060 0.0544 0.0287 0.0158 0.8540 0.9790

A Sensitivity analysis for ECLS method was performed for n = 3 showing the

75th percentile of the maximum solar utilization in 42 points and showing the range of

the unit sizes. The maximum solar utilization for n = 3 as shown in Table 2.1 is 0.8277

but for other x combinations the solar utilization can be as low as 0.7542 (Figure 2.11).

Unit size appears to be closely related to solar utilization. For example the size of x1

varies between 0.5752 and minimum is 0.4385 with quartiles of 0.5418, 0.5068, 0.5418.

This results in a 9% change in solar utilization with this unit size range. The smallest unit

sizes are associated with the smallest solar utilization. Then there appears a bifurcation

where the largest and mid-size units achieve medium solar utilization. The largest solar

utilization are associated with medium-to-large unit sizes.

2.5.2 Inequality Constrained Least Squares (ICLS) Results

The Inequality Constrained Least Squares (ICLS) optimization results are shown

in Table 2.2 and will be discussed in section 2.6.
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Figure 2.11. Sensitivity analysis for the CLS method. Blue line is solar utilization
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Table 2.2. Same as Table 2.1, but for ICLS method.

n x1 x2 x3 x4 x5 x6 ∑(x) SU
2 0.4078 0.1994 0.6053 0.7274
3 0.4210 0.2076 0.1028 0.7314 0.8601
4 0.3957 0.1954 0.0989 0.0467 0.7367 0.9273
5 0.4180 0.2063 0.1034 0.0508 0.0228 0.8013 0.9614
6 0.3913 0.1935 0.0973 0.0473 0.0233 0.0115 0.7642 0.9796

2.5.3 MILP Optimization Results

To mitigate the adverse effect of down-sampling on the simulation results in this

paper, down-sampled data points are selected uniformly from sorted data set, which

represents the original data set more accurately. Figure 2.12 examines the impact of

downsampling on computational speed and solar utilization for the case of 3 units (n = 3).

The final solar utilization is the nearly the same for different down-sampling rates (with

in 1% variation) while the computational cost varies remarkably. Table 2.3 shows the

best solar utilization obtained in Figure 2.12.

For comparison Thuwal, Saudi Arabia case was performed using the ICLS ap-

proach and the results are shown in Figure 2.13. The resulting unit sizes are expected

to be larger than San Diego due to the lack of cloudy days driving the need for smaller,
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Figure 2.12. Convergence rate for system efficiency for difference down-sampling rates.
The x-axis is nonuniform and shows computational cost on a MATLAB based modeling
system named CVX using gurobi solver.

Table 2.3. Same as Table 2.1, but for Mixed-Integer Linear Programming.

n x1 x2 x3 x4 x5 x6 ∑(x) SU
2 0.3933 0.1899 0.5832 0.7274
3 0.4126 0.1899 0.1008 0.7033 0.8586
4 0.4074 0.2100 0.0914 0.0438 0.7526 0.9243
5 0.3811 0.2150 0.1082 0.0515 0.0240 0.7798 0.9597
6 0.4505 0.2049 0.0837 0.0598 0.0327 0.0162 0.8478 0.9765

more adaptive units.

2.6 Discussion

Looking at the solar utilization comparison between the three optimization ap-

proaches shows close results for each n number of units as shown in Figure 2.14. Figure

2.14 shows summary of optimal unit size achieved by each method as well as solar

utilization. ECLS was chosen as the reference case and assigned a solar utilization of 1 as

shown in Figure 2.15. Theoretically the ICLS optimization approach should lead to the

largest solar utilization, as it uses the full data set and the smallest number of optimization

variables. ICLS indeed yielded the best results, but improvements compared to ECLS

only ranged from 3.9% to 0.1% decreases as n increases. However, MILP results were

slightly less than ICLS. From Figure 2.14, it is also clear that as n increases the different

among the approaches decreases.
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Figure 2.13. Comparison of results for the ICLS optimization between San Diego and
Thuwal.
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Figure 2.14. Unit sizes for difference optimization approaches and different number of
units n. ICLS is Inequality Constrained Least Squared, ECLS is Equality Constrained
Least Squared, and MILP is Mixed-integer Linear Programming.

Figure 2.13 summarizes the differences between the unit sizes for both case stud-

ies (San Diego, USA and Thuwal, Saudi Arabia) as well as the optimal solar utilization

obtained. Keep in mind that these results are normalized for both solar power and unit

size. The main difference between the two sites is larger units are preferred in the Thuwal

case with an average size increase of 25%. For n = 2 the solar utilization for Thuwal was

larger compared to San Diego, mainly due to a higher clear day count over the year. As n

increases both site solar utilization tend to get closer until they nearly match for N = 6.

Each method proposed in this paper carries advantages and drawbacks when

solving the unit sizing problem, as summarized in Table 2.4. From a global optimality
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reference case.

point of view, the analytic approach is proven to achieve the global optimum, but it

can not be generalized for all solar day patterns. The other approaches on the other

hand were proven to be robust and suitable for real sizing problems. MILP approach

guarantees global optimality, but its computation expense increases exponentially with

the number of decision variables and constraints. ECLS required downsampling as

well, and that explains the decreases in solar utilization difference between different

methods as n increases, where downsampling get more accurate. Finally, ICLS is not

guaranteed to converge to the global optimal, rather could get stuck in a local minimum.

Thus, the final solution highly depends on initial conditions. This could be avoided by

slightly perturbing the initial or final solution and restarting the optimization and thereby

exploring the solution space

The analytic approach can not be generalized for all solar day patterns; it requires

a functional form for the solar data and function inverse has to be known which limits

this approach to be applied to run yearly data. For that reason, the analytic method can

not be used for real sizing problems. The MILP technique is the most flexible approach

especially given the ability of adding more constraints to the problem, such as battery

or minimum up and downtime. It can also solve a daily pattern which is suitable for
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schedule peruses with global optimality claims in case of convergence, still the number of

variables play a big role in convergence and determining optimality. The main obstacles

with the MILP are the high computational cost due to a large number of variables as

well as the approximation or the relaxation applied to the problem. ECLS and ICLS are

both scalable to solve multiple number of years with fast computation time. The main

disadvantages of these approaches are that they do not consider the daily solar profile in

addition to that they have limited capability to add constraints or improve the case as in

adding batteries or minimum up and downtime.

Sample results were selected in Figure 2.10 for n = 2 up to n = 6 using the ICLS

approach as shown in Table 2.2 and Figure 2.14. The algorithm solves for the optimal

unit sizing over one year which contains various daily patterns based on the prevailing

weather conditions. For the clear day (D1), clearly a large area of the peak of the day

is wasted but lost energy is reduced as the number of units n increases. On the other

hand, on the most cloudy day D3, the loss was reduced. This is a reflection of the input

data where clear midday periods that yield normalized power output close to 1 are less

common than cloudy days and morning and evening periods. Consequently, the unit

sizes are selected to track lower power outputs more closely and clear midday periods

are curtailed. If the algorithm was intended to solve the optimization over just one of the

days pattern or for a different site, the results would be different.

Moreover, the computational time for the different methods was performed in a

3.4 GHz Intel Core i7 processor with 32 GB of RAM. As discussed earlier the analytic

approach can not solve the planning problem, but it is very fast routine since it only

computes derivative of existing function and substitute variables. MILP is the slowest,

for the full set of variables, whereas Figure 2.12 shows it takes 7000 seconds to solve

for input with 1:50 samples ratio and only 170 second for 1:200 downsample ratio. As

discussed before the ICLS optimization is expected to return the optimal sizing of units,
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it does not require removing the zero solar radiation data. The main advantage of ICLS

is that it searches for the optimal unit size and switching time by avoiding the equidistant

constraints giving by the ECLS method. The main disadvantage for ICLS, it is sensitive

to the initial condition, especially for larger n (n > 4) which means that global optimality

is not guaranteed. The computation time for ICLS varies from 11 seconds for n = 2

to around 150 seconds for n = 6. ECLS is the fastest approach even though it has to

search for the optimal C given in (2.20). ECLS forces the results of the switch time to be

equidistant outdistance spaced from each other which is not the optimal decision. Also it

requires removal of zeros in the input data; otherwise the results and the solar utilization

will be negatively affected. Each run of ECLS costs 0.01 seconds so solution time is

dependent on the resolution of the line-search (C). For our purposes, ECLS is the fastest

approach. Assuming the resolution of the line-search is 100 steps, ECLS is 10 times

faster than ICLS for n = 2 and 140 faster for n = 6.

Table 2.4. Comparison of the advantages and disadvantages of the optimization algo-
rithms.

ICLS ECLS MILP Analytic

A
dv

an
ta

ge -Fast
-Considering all

sorted data
-Not equidistant

-Fast

-Unique minimum
for fixed constraint

-Convex (Global optimality)∗

-Any data profile for limited
variables

- More constraints
could be added

-Fast
-Exact (no approx.)
-Guarantees global
optimum

D
is

ad
va

nt
ag

e

-No guaranteed global
optimality

-Sensitive to initial
conditions

-Down-sampling required
-Equidistant
-Requires line-search

for constraint

-Computationally expensive
-Requires down-sampling

-Only for symmetric,
i.e., clear days

-Can not be used for
planning algorithms

∗ Note: convexity for MILP approach is assumed in case of convergence

2.7 Conclusions

Solar PV is a desirable energy source for many standalone applications. Variabil-

ity of solar irradiance is one of the main challenges of PV utilization. State-of-the-art

optimization techniques were developed and applied to optimize the solar utilization by
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sizing a given number of load units based on one year of data collected in San Diego and

Saudi Arabia. The algorithm switches the units on and off to “load follow” the available

solar power during the day to maximize the solar energy utilization. The primary output

of the algorithms is the optimum sizing for a given number of units, but unit scheduling

is a byproduct of the analysis. Three different optimization methods are proposed to

solve for the optimal unit size: Equality Constrained Least Squares (ECLS), Inequality

Constrained Least Squares (ICLS), and Mixed-Integer Linear Programming (MILP). The

performance of the three methods was compared with two case studies. Results for the

San Diego case indicate a solar utilization (i.e., percentage of energy captured by units

over available energy) differed by less than 5% between the algorithms. It was shown the

utilization increased from 73% for two units up to 98% for six units for San Diego case.

As expected, the ICLS optimization yields the largest utilization. The results obtained

will differ by location and may even vary year-to-year due to spatio-temporal patterns

in the solar resources and cloud coverage as evident from the differing results between

San Diego, USA and Thuwal, KSA. The methodology proposed in this paper allows

computationally efficient solutions even when several years of solar resource data are

available and yield the optimal sizing for the given data. For practical applications, the

economics also need to be considered as smaller units typically cost more per kW and an

optimization based on cost would therefore yield larger and prefer fewer units. Within

our framework, it is possible to assign a cost function to the number of units and to the

solar utilization to provide solutions for practical applications.
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Appendices

Appendix A: Clear Day Fitting

To obtain a function close to a clear day solar power data for the analytical

optimization, San Diego data from a clear day was used as a template to fit a quadratic

function

S1(x) = p1t2 + p2t + p3,

and a combination of sin and cos functions

S2(x) = a1sin(bt)+a2cos(bt)

as shown in Figure 2.16. The quadratic function parameters were p1 = −2.001×

10−11, p2 = 9.035×10−6, p3 =−0.04926. Once shifting S1(t) to be symmetric over the

y-axis p1 =−2.001×10−5, p2 =−7.884×10−6, p3 = 0.9708

. The sin and cos parameters were a1 = a2 = 0.99,b = 0.007. For the symmetric S2(t),

a1 = 0.99,a2 = 8.3×10−4,b = 7×10−6.

Both functions are suitable to be used as fitting for clear sky model, where the

S2(x) resulted in better fitting. This was discussed in detailed in the the motivation section

2.4.1. The San Diego solar data was recorded at 15 min resolution. The function where

shifted to be symmetric over the y-axis to simplify calculation.

Appendix B: Numerical Optimization

An alternative way to the Jacobian method in section 2.4.1 is the numerical search

or the line-search for all possible numbers which can draw the rectangle. By doing

so the line-search started from around zero up to the peak of the parabola which is

around 1. The results were very close the Jacobian method and difference is due the
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sampling errors. The area of the simulation results is 15985 while the analytical result is

2×123×0.6489 = 15963. The error is 0.14%
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Figure 2.17. Numerical optimization of sizing a single rectangle under a parabola.

Appendix C: Newton’s Method

Showing the results of the optimization using the Jacobian method is not straight-

forward, since the area function is nonlinear for more than 2 variables.

A(y1,y2,y3) = y1(S−1(y1)−S−1(y2))+ y2S−1(y2)+(y3− y2)S−1(y3)

substituting y3 = y1 + y2

Ā(y1,y2) = y1(S−1(y1)−S−1(y2)+S−1(y1 + y2))+ y2S−1(y2)
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OJ =


∂A
∂y1

∂A
∂y2

=


S−1(y1)−S−1(y2)+S−1(y1 + y2)+ y1(S−1(y1))

′

(S−1(y2))
′(y1 + y2)+S−1(y2)


This problem was solved by plotting the derivative of the area over all variables ( ∂A

∂y1
and

∂A
∂y2

) and equate them to zero or find their intersection. Since the area function is 2D and

so its derivative Figure 2.18 shows each of the OJ equation surface graph plotted over

each other and sliced over the area function at zero.

Figure 2.18. A slice of the 3-dimensional graph in Figure 2.7 at area = 0 showing the
intersection of the area derivative with respect to the variables (x1 and x2).

The text and data in Chapter 2, in full, is a reprint of the material as it appears

in “Optimal switchable load sizing and scheduling for standalone renewable energy

systems”, Habib, Abdulelah; Disfani, Vahid R.; Kleissl, Jan; de Callafon, Raymond,

Solar Energy, 144 (2017), 707 - 720. The dissertation author is the primary investigator

and author of this article.
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Chapter 3

Quasi-Dynamical Load sizing and
scheduling

Considering the intermittency of renewable energy systems, a sizing and schedul-

ing model is proposed in this Chapter for a finite number of static electric loads. The

model objective is to maximize solar energy utilization with and without storage. For the

application of optimal load size selection, the energy production of a solar photovoltaic

is assumed to be consumed by a finite number of discrete loads in an off-grid system

using mixed-integer linear programming. Additional constraints are battery charge and

discharge limitations and minimum uptime and downtime for each unit. For a certain

solar power profile the model outputs optimal unit size as well as the optimal scheduling

for both units and battery charge and discharge (if applicable). The impact of different

solar power profiles and minimum up and down time constraints on the optimal unit and

battery sizes are studied. The battery size required to achieve full solar energy utilization

decreases with the number of units and with increased flexibility of the units (shorter

on and off-time). A novel formulation is introduced to model quasi-dynamic units that

gradually start and stop and the quasi-dynamic units increase solar energy utilization.

The model can also be applied to search for the optimal number of units for a given cost

function.
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3.1 Introduction

Standalone solar energy systems are increasingly deployed in rural and off grid

areas, especially to provide basic societal needs, for example, water treatment, pumping,

and cooking or heating Rickerson et al. (2012). The main obstacles in optimal sizing

and scheduling problems of electric power systems are the variability and intermittency

of renewable energy generation. The most challenging scenario is the standalone or

islanded mode where high penetration of variable renewable power sources such as wind

and solar causes power variability that is large enough to affect electric power quality

and efficiency Wan (2012) and Nguyen et al. (2015). Solar energy production depends

foremost on the solar resource availability, which suffers from high variability over a

broad range of time scales.

Sizing of power generators for standalone application was discussed in many

papers such as Egido and Lorenzo (1992) and Kellogg et al. (1998), where solar energy

was sized to meet the load. In this paper, we consider the opposite case where both the

generators, unit load size, and number of units are designed to optimize system efficiency

or minimize energy loss. Such a tool is helpful if a complete microgrid (generators and

loads) is designed from scratch, such as for a desalination plant without local grid power

supply, or if additional loads are connected to an existing off-grid solar system.

Load scheduling plays an important role in optimizing efficiency as well. It

has been applied in many ares, for example thermal loads and domestic appliances

Ferhatbegovic et al. (2011). Optimal scheduling a wind farm with a storage system

constrained by states of charge of the battery was considered in Ma and Chen (2015).

Game theory and customers effect on the grid and EVs was studied in Kim et al. (2013).

Load scheduling is also used in water network system where the number of pumps are

scheduled to meet the water demand and optimize the cost Sun et al. (2014). Forecasts for
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solar generation and uncontrollable loads are required inputs for the scheduling problem

yet solar forecast research is still ongoing and errors can be substantial especially on

short time scales. In our previous work we defined number and size of units and solved

the scheduling problem with the solar forecast. We also proposed ideas to overcome

forecast error in standalone cases Habib et al. (2016b).

Energy storage systems can solve the variability and intermittency problem

Pickard and Abbott (2012b) and balance forecast errors, but energy storage will add cost

and complexity to the standalone system. An alternative way is load sizing, where loads

on the standalone system are adjusted to accommodate power variability to consume as

much as possible of the available solar energy thereby reducing energy losses. While the

need for energy storage can be substantially reduced through scheduling, the addition of

a battery can be cost effective for standalone applications be it wind Savkin et al. (2014)

or solar PV Vieira and Mota (2010). The sizing and scheduling of such a battery will

also be optimized in this work.

This paper is organized as follows, some background and problem explanation are

discussed in Section 3.2. In Section 3.3 the problem formulation is given explaining the

optimization techniques, objective functions and the constraints. Also the two principal

optimization approaches are presented in this section. In Section 3.4 different scenarios

are discussed and compared for different solar generation pattern, e.g., clear, cloudy and

partially cloudy days as well as different minimum up and downtime constraints both

with and without storage.

3.2 Background

Planning algorithms for solar standalone applications are needed to overcome

solar radiation variability. The standalone PV sizing problem inputs are solar PV and the

load. Energy storage is an optional component. PV power performance models are well
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understood and PV output timeseries can be generated globally and for different days of

the year given existing solar resource databases and models. For brevity we will deal with

sample daily solar power profiles from a PV system at UC San Diego and normalized it to

one for generality. In practice, sizing decisions should be based on several years of solar

resources data to capture the annual variability and possible even inter-annual variability.

While typical meteorological year (TMY) or typical solar year are often used for this

purpose, large solar system developers increasingly rely on multidecadal modeled power

production based on site adaption of long-term satellite records with short-term local

measurements for their financial calculations Thevenard and Pelland (2013). Such long-

term data would be preferable in practice although interannual variability of solar energy

generation is small. For example, Pitz-Paal et al. (2011) specifies that the interannual

variability of GHI for 7-10 years of measurement at Potsdam, Germany and Eugene,

USA is about 5%.

The sizing of load is determined to maximize the solar utilization factor that will

be referred to in this paper as efficiency (Eff). We proposed a unit sizing design for each

a clear and a cloudy day. The approach can be extended to yearly data which allows

characterizing most of the important seasonal and diurnal variability. Considering longer

timeseries merely adds computational cost to the implementation of our proposed model.

If computation power is limited, the sizing could be based on these two or a few more

characteristic days with a weighing factor based on the probability of occurrence of a

daily pattern is for a selected location.

In our previous work we targeted the sizing of standalone PV reverse osmosis

units (PVRO) by searching among different unit numbers and sizes. A financial model

allowed the optimization to achieve the lowest water cost Habib et al. (2015). Then we

developed a mathematical data driven optimization to optimally size the PVRO units

in Habib et al. (2017). In Habib et al. (2016b,a), we developed a model predictive
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load scheduling to optimally schedule units. In this paper we describe a method that

can consider all of these objectives at the same time; we provide a model to optimally

size, choose the number of units, and schedule. The addition of energy storage is also

considered. The algorithm can also be applied to problems where units sizes and numbers

are known and only the scheduling is of interest.
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Figure 3.1. Problem illustration for one clear and symmetric day. Loads xi are scheduled
hourly to follow the increase or decrease in solar power generation S(tk).
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3.3 Problem Formulation

The optimization problem tackled in this paper is generally presented as

min
U,X,P̄b,Ps

f(U,X, P̄b,Ps)

s.t. g(U,X, P̄b,Ps)≤ 0

h(U,X, P̄b,Ps) = 0

φ(U,R,Q,W,V)≤ 0

ψ(U,R,Q,W,V) = 0

R,Q,W,V⊂ {0,1}|U|

U⊂ {0,1/2,1}|U|

(3.1)

where the decision variables X = [x1,x2, · · · ,xn]
T and

U =



u1
1 u2

1 · · · uk
1

u1
2 u2

2 · · · uk
2

... . . . ...

u1
n u2

n · · · uk
n


are load vector and switching matrices, respectively, such that utk

i denotes the portion of

the load i which is turned on at time tk, and xi is the size of unit i. The size of the battery

connected is a scalar and called Pb, while Ps is a column vector representing the battery

scheduled discharging power at all t. The variable matrices V and W respectively denote

the start-up and shut-down signals, whereas the variable matrices R and Q are defined

such that U = R+Q
2 . Also, the functions f, g and h denote the mathematical formulations

of the objective function, inequality constraints, and equality constraints respectively.

The functions φ and ψ also represent the inequality and equality constraints that involve
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U and the binary matrices.

3.3.1 Objective Function

As indicated in Figure 3.1, the power mismatch between available solar power

and power used by load units at any time tk can be characterized by

E(tk) = S(tk)−∑
n
i=1 ui

kxi

for the case without a battery. Considering a battery system that is discharged by Ptk
s at

time tk, the definition of power mismatch changes to

E(tk) = S(tk)+Ps(tk)−∑
n
i=1 ui(tk) · xi

Therefore, the objective function is to minimize the mismatched power and

maximize the efficiency (defined as matched energy over total solar energy)

f(U,X, P̄b,Ps) = 1T · (S+Ps−diag(X) ·U ·1) (3.2)

where S is a column vector denoting the PV power available at all time steps. The

objective function in (3.2) is nonlinear due to the bilinear product function, i.e. diag(X) ·

U . To remove nonlinearity, a new decision variable matrix Y = diag(X) ·U is defined

which denotes the scheduled power. Thus, the objective function becomes linear as

f(U,X, P̄b,Ps) = 1T · (S+Ps−Y ·1) (3.3)

Adding the definition of Y to the set of constraints guarantees identical solutions

for Eqs. (3.1) and (3.3). The definition of Y moves nonlinearity from objective function

to constraints. The big-M method is the common solution to remove such nonlinearities

Griva et al. (2009), when U is a binary matrix. In this paper, a novel application of big-M
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method is proposed to remove these nonlinearities when the elements of U belong to the

set of {0,1/2,1}.

3.3.2 Constraints

Resource Adequacy

To prevent frequency issues, the maximum total load that the microgrid can

supply must be less than the total PV energy available at each time interval:

1T .Y≤ S+Ps, (3.4)

Definition of Scheduled Power

In order to apply the new format of big-M method, two auxiliary binary matrices R

and Q are defined such that U = R+Q
2 and R−Q≥ 0. These two constraints guarantee that

the vector U = [0,1/2,1] is uniquely mapped to the vectors R = [0,1,1] and Q = [0,0,1].

With the definitions of the matrices R and Q, the constraint Y = diag(X) ·U is

equivalent to the following set of constraints,

−Y≤ 0

Y− R+Q
2

M≤ 0

Y− 1 ·1T ·diag(X)

2
− R+1 ·1T−Q

2
M≤ 0

−Y+
1 ·1T ·diag(X)

2
− R+1 ·1T−Q

2
M≤ 0

Y−1 ·1T ·diag(X)≤ 0

−Y+1 ·1T ·diag(X)− 1 ·1T−R+Q
2

M≤ 0

(3.5)

where M is a real constant number, e.g, 106.

In (3.5) the first two and the last two constraints correspond to the case that u = 0
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and u = 1, respectively. the third and fourth inequalities guarantee any y = x/2 if the

corresponding u is 0.5, while they are relaxed otherwise.

Dynamic Model Constraint

One of the novelties in this paper is to consider dynamics of load switching in the

start up and shut down processes. The dynamics in this paper is modeled by adding an

intermediate step u = 1/2 for the load units while switching on or off.

To model these dynamics, several constraints must be considered. First, no

immediate transitions between u = 0 and u = 1 are allowed. Second, if u(t) = 1/2, then

at the following timestep u(t + 1) = 1− u(t− 1), which means that u may not stay in

the state u = 1/2 for any two consecutive time steps and no switching is allowed during

dynamics. These constraints are summarized as:

ut
i−ut−1

i ≤ 1/2 ∀i,t

ut−1
i −ut

i ≤ 1/2 ∀i,t

rt+1
i ≤ 1− rt−1

i +(1− rt
i +qt

i)M ∀i,t

rt+1
i ≥ 1− rt−1

i − (1− rt
i +qt

i)M ∀i,t

qt+1
i ≤ 1−qt−1

i +(1− rt
i +qt

i)M ∀i,t

qt+1
i ≥ 1−qt−1

i − (1− rt
i +qt

i)M ∀i,t

(3.6)

Minimum Up-time and Minimum Down-time

To avoid increased wear and tear to load units and inconvenience to microgrid

customers because of frequent start-ups and shut-downs, a set of constraints are defined

to guarantee that the unit is switched on (off) for at least m+ (m−) time steps before it is

switched off (on). These constraints are called minimum up (down) time and are defined
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as:

ri,tk−
tk

∑
h=tk−m+

i +2

vi,h ≤ 0 ∀m+
i ≤tk≤T

(1− ri,tk)−
tk

∑
h=tk−m−i

wi,h ≤ 0 ∀m−i ≤tk≤T ,

(3.7)

where the matrix V⊂ {0,1}|V| and W⊂ {0,1}|W| are denoted as start-up and shut-down

matrices respectively, and their elements are defined as:

vi,tk−wi,tk = ri,tk− ri,tk−1 ∀1≤i≤N∀2≤tk≤T

vi,tk +wi,tk ≤ 1 ∀1≤i≤N∀2≤tk≤T

vt,1 = wi,1 = 0 ∀1≤i≤N

(3.8)

Battery Constraints

There are also some constraints associated with the battery such as maximum

charge and discharge power, minimum and maximum limits of state of charge (SOC),

and initial and final SOC, which are described as:

Ps ≤ P̄b ·1

Ps
T ·1 = 0

t

∑
h=1

P̄h
b +E0

b ≤ Ēb

t

∑
h=1

P̄h
b +E0

b ≥ 0,

(3.9)

where the efficiency of the battery is assumed to be 1, and E0
b denotes the initial energy

stored in the battery. As Ps
T ·1 is equal to the net energy stored in the battery during the

entire day, the second constraint in (3.9) keeps the final SOC of the battery on its initial

value.
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3.3.3 Static and Quasi-Dynamic MILP Strategies

Static MILP

Static MILP considers loads to be either on or off, i.e. transient dynamics are

neglected. In this case, R and Q in equation (3.5) have to be equal which forces U to be

in the set of {0,1}. Static MILP still allows optimizing the size of a given number of

units, minimum up and down time constraints, and the battery size and battery schedule

for a given solar power profile.

Quasi-Dynamic MILP

The quasi-dynamic MILP strategy is more sophisticated than static MILP. Here

the units are assumed to go from off state to half operational state and finally to the final

state, and vice versa. So the loads will go from 0% to 50% and then to 100% of unit size

xi. This case is more realistic since most large loads are ramped up over a period of time

before they reach to steady state. The quasi-dynamic strategy also yields all the variables

in the static strategy; the only difference is that U is in the set {0,1/2,1}.

3.4 Numerical Results

In this section results from both static and quasi-dynamic MILP strategies are

presented using using the CVX toolbox and Gurobi 6.50. Figure 3.2 illustrates the results

corresponding to three different representative solar power profiles of D1 clear day, D2

cloudy day and D3 partly cloudy day. The units are scheduled and stacked as area plots.

The numeric values for units and battery are shown in Table 3.2. Without storage (upper

row in the figure) the total unit power cannot exceed the solar power. With storage (lower

row) the total unit power can temporarily exceed solar power.

The optimal unit sizes clearly decrease on the overcast day with small solar

resource as units of the size of x1 in D1 would rarely be able to run. The addition of
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storage also effects the unit sizes. Storage will allow the units to ride through short-lived

dips in solar power by utilizing battery energy which results in larger unit sizes and

increased solar utilization. This is most apparent in the D3 case at around 1100 Local

Standard Time (LST) where the green units ride through the temporary cloud cover on

partial battery power and both blue and green units are enlarged for the storage case.
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Figure 3.2. Results of load sizing and scheduling without (top) and with (bottom) storage
for the Quasi-Dynamic MILP strategy for three different days and three units. The clear
day (first from left) is referred to D1, the overcast day in the middle is D2, and the
partially cloudy day (right) is D3. The minimum on and off times are 3 time steps (45
minutes) for all units. The initial storage of the battery is P̄b

2 and equal to [0.07, 0.13,
0.14]/2 for D1, D2, and D3 respectively

In both Table 3.1 and Table 3.2 different unit sizes and efficiency for the case

n = 3 are shown with different minimum up time and down time constraints. The left

hand side column shows different minimum uptime and downtime constraints for each

unit represented in terms of time steps in square brackets. At the right of the same

column day types are shown as D1, D2, and D3. The middle column shows results for

unit sizes and solar energy utilization or efficiency (Eff) without battery. Finally the

last column displays the results with storage and the optimal battery size P̄b required to

achieve Eff equal to one which corresponds to utilizing all solar power on a given day.
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All results including the battery sizes are normalized as per unit (pu) of the maximum

solar power production on the clear day. Eff equal one can be achieved as the battery

model is assumed ideal without losses from charging or discharging.

Table 3.1. Static MILP strategy results (pu) for three units and different on and off times
(left column)m+

1
m+

2
m+

3

m−1
m−2
m−3

Day
type

Without Storage With Storage

x1 x2 x3
Eff
(%) x1 x2 x3 P̄b

3
3
3

 3
3
3

 D1 0.50 0.30 0.12 0.90 0.54 0.33 0.12 0.11
D2 0.32 0.14 0.07 0.82 0.40 0.16 0.08 0.18
D3 0.56 0.24 0.09 0.87 0.62 0.27 0.11 0.13

3
2
1

 3
2
1

 D1 0.55 0.25 0.12 0.92 0.57 0.30 0.12 0.10
D2 0.29 0.15 0.11 0.84 0.38 0.18 0.12 0.12
D3 0.56 0.24 0.09 0.88 0.64 0.23 0.13 0.10

7
6
5

 3
2
1

 D1 0.60 0.30 0.08 0.89 0.57 0.31 0.11 0.11
D2 0.25 0.20 0.11 0.81 0.33 0.24 0.10 0.18
D3 0.58 0.22 0.08 0.86 0.67 0.23 0.10 0.16

3
2
1

 7
6
5

 D1 0.50 0.30 0.16 0.91 0.52 0.32 0.14 0.10
D2 0.25 0.20 0.11 0.81 0.55 0.22 0.11 0.19
D3 0.56 0.24 0.13 0.84 0.54 0.30 0.19 0.17

For three time steps (45 min) up and down time Table 3.1 shows that clear and

partly cloudy days (D1 and D3) were associated with larger units compared to the

overcast day D2, as expected. Maybe unexpectedly, D3 had larger x1 units compared

to D1 but x2,3 were smaller. D2 had smaller units to align with the smaller range of the

solar resource and significant cloud variability. Efficiency was largest for the clear day as

expected.
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Four different minimum uptime and downtime combinations were performed for

3 different daily patterns to illustrate the model sensitivity to different constraints. Larger

minimum uptime and down time reduce the flexibility of scheduling and are expected to

reduce efficiency and trigger larger unit sizes. When flexibility increases (from [3 3 3] to

[3 2 1]) efficiency increases by about two percentage points and the required battery size

for Eff= 1 decreases by 10% to 60%. The results for different minimum on and off times

for the same case are inconclusive and dependent on the time scales of solar resource

fluctuations on different days.

Adding storage always increase Eff as our model solves for the co-optimization

problem for both battery size and units size. All unit sizes increase when batteries are

added especially on the more variables days D2 and D3. For all minimum uptime and

downtime cases D2 requires the largest battery size to smooth out the variability even

though the total solar production on D2 is far smaller than on D1 or D3.

Applying different minimum up and down times for different units are shown

in the second row of results; the largest unit still has a 3 time step requirement, but

the smallest unit does not have any constraint. The unit sizes for D3 remain largely

unaffected, while for D1 x1 is in fact larger and x2 correspondingly smaller and vica versa

for D2. The main noticeable difference here is the battery size of D2 which resulted in

smaller size and due to the smaller minimum up/downtime constraints for the smaller

units x2 and x3.

The last 2 cases are distinguishing both uptime downtime and units as shown in

row 3 of the results, where the largest units x3 has to be on for 7 times step (105 min)

but downtime is only 45 min, and so on. These cases are based on the load application

assuming the units need to be on for double or more the time that they need to be off.

Effects are mostly restricted to a redistribution of the unit sizes (e.g. for D2 x2 increases

while x1 decreases) while the total unit sizes x1 + x2 + x3 changes only slightly. Eff
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Table 3.2. Quasi-dynamic model results (pu)m+
1

m+
2

m+
3

m−1
m−2
m−3

Day
type

Without Storage With Storage

x1 x2 x3
Eff
(%) x1 x2 x3 P̄b

3
3
3

 3
3
3

 D1 0.50 0.30 0.12 0.93 0.54 0.32 0.12 0.07
D2 0.32 0.14 0.07 0.85 0.42 0.18 0.08 0.13
D3 0.56 0.24 0.07 0.87 0.71 0.22 0.11 0.14

3
2
1

 3
2
1

 D1 0.54 0.30 0.13 0.94 0.61 0.27 0.11 0.05
D2 0.34 0.15 0.11 0.86 0.39 0.20 0.10 0.10
D3 0.56 0.24 0.09 0.88 0.57 0.29 0.14 0.10

7
6
5

 3
2
1

 D1 0.67 0.18 0.13 0.92 0.51 0.36 0.13 0.10
D2 0.40 0.15 0.11 0.83 0.34 0.25 0.12 0.18
D3 0.56 0.24 0.06 0.86 0.68 0.22 0.08 0.14

3
2
1

 7
6
5

 D1 0.55 0.37 0.25 0.91 0.63 0.35 0.18 0.10
D2 0.41 0.16 0.09 0.82 0.35 0.24 0.13 0.17
D3 0.59 0.36 0.24 0.84 0.54 0.37 0.20 0.17

generally decreases with the reduced flexibility. In terms of storage, increasing the on

time requirement did not effect much the D1 results, while the storage size increase

substantially for D2 and D3. Lastly, flipping the previous cases assuming the load

required longer off time, the effect is mainly in the unit sizes of D1 and D3. The Eff and

P̄b remains similar as expected because the same solar profile results in similar battery

scheduling.

Table 3.2 shows results for the Quasi-Dynamic MILP strategy. The main change

from the Static MILP results is increasing Eff in almost all cases since the half-on units

effectively add additional discretizations beyond the 23 unit size combinations for the

three units. Therefore the loads can better track the solar curve. For the same reason P̄b
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became smaller. In general, unit sizes stayed the same or increased and in some cases

like the last case in D1 ([3, 2, 1] and [7, 6, 5]) no small units resulted. For the clear day

D1 usually x3 is small as the middle of the day favors large base-load and the two smaller

units primarily capture the shoulders of the day. However, long downtime constraints

appear to favor larger units probably because the units are unable to capture the evening

shoulder after the downtime requirement.
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Figure 3.3. Overcast day example of load sizing and scheduling with storage for quasi-
dynamic MILP (top). Same as the bottom center graph in Fig. 3.2, but the power and the
energy of the battery are shown as well (bottom).

An overcast day example of load sizing and scheduling with storage is given in

Figure 3.3. The initial energy stored in the battery E0
b is half of the battery size which is

0.13 pu and an additional constraint was added to the end charge state of the battery Et
b =

E0
b or (Ps ≤ P̄b ·1). For the first few time steps after sunrise the battery charged allowing

the smallest unit x3 to be on for one hour. Then x3 was shut down allowing the battery

to charge up allowing x2 to be turned on 30 min before the solar power was sufficient.

Following the charging and discharging battery curves shows that the battery was never

charging or discharging for more than four consecutive time steps. The battery shifts

57



Table 3.3. Different number of units (n) comparison for static MILP.

D1
n 2 3 4 5 2 3 4 5
P̄b 0 0 0 0 0.28 0.11 0.07 0.05
x1 0.67 0.50 0.48 0.49 0.67 0.54 0.49 0.50
x2 0.25 0.30 0.32 0.18 0.28 0.33 0.33 0.32
x3 0.12 0.12 0.14 0.12 0.13 0.20
x4 0.06 0.12 0.05 0.08
x5 0.05 0.07
Eff 0.82 0.90 0.93 0.94 1 1 1 1

D2
n 2 3 4 5 2 3 4 5
P̄b 0 0 0 0 0.40 0.18 0.09 0.05
x1 0.31 0.41 0.31 0.31 0.45 0.40 0.36 0.23
x2 0.14 0.14 0.15 0.26 0.15 0.16 0.22 0.21
x3 0.07 0.08 0.15 0.08 0.15 0.16
x4 0.05 0.08 0.06 0.12
x5 0.05 0.05
Eff 0.67 0.82 0.89 0.93 1 1 1 1

D3
n 2 3 4 5 2 3 4 5
P̄b 0 0 0 0 0.36 0.13 0.08 0.07
x1 0.56 0.56 0.56 0.40 0.69 0.62 0.58 0.51
x2 0.24 0.24 0.24 0.36 0.24 0.27 0.28 0.36
x3 0.09 0.24 0.18 0.11 0.12 0.18
x4 0.09 0.08 0.06 0.08
x5 0.04 0.06 0.06
Eff 0.80 0.87 0.91 0.93 1 1 1 1

small amounts of energy to allow units to come on earlier during increasing solar power

production and turn off later during decreasing solar power production.

Table 3.3 summarizes the results for different n from two units up to five units to

illustrate the ability of the model to simulate a varying number of units as well the size

of each unit. The left side shows the sizing without storage based on optimal Eff. Eff

increased from 82% for two units up to 94% for five units in the clear case and from 67%

to 93% in the overcast case. On the right side storage is considered. For the clear day the
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system reaches optimal efficiency by using 28% pu battery size for two units and reduces

up to 5% pu in the case of 5 units. For the overcast storage sizes decrease from 40% to

5%.

The optimization code was performed in a 3.4 GHz Intel Core i7 processor with

32 GB of RAM. The computational time varies based on the day and the number of units,

for the case of n = 2 and an overcast day the computational time for the static method

takes 2.5 seconds while quasi-dynamic method takes 10 seconds the computational time.

3.5 Conclusions

Considering the intermittency of renewable energy systems, a sizing and schedul-

ing model is proposed for a finite number of static or quasi-dynamic electric loads. The

model objective is to maximize system efficiency, which is also defined as solar utiliza-

tion, with and without storage. For the application of optimal load size selection, the

power production of a solar PV is assumed to be consumed by a finite number of discrete

loads in an off-grid system using mixed-integer linear programming with constraints,

such as, battery charge and discharge limits, and minimum uptime and downtime for

each unit. The method was applied to three characteristic daily solar profiles. Different

minimum up and down time constraints are also investigated.

By means of a case study, three different days results indicate a system efficiency

increased from 82% for two units up to 94% for five units for the clear day and from

67% to 93% for the overcast day. Including battery storage for the clear day, the system

requires a 28% pu battery size to reach 100% efficiency for two units, but the battery size

reduces to 5% pu for five units.

The results obtained are specific to the location and days presented differ by loca-

tion and may even vary year-to-year due to spatio-temporal patterns in the solar resources

and clouds coverage. The methodology proposed in this paper allows computationally
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efficient solutions even when several years of solar resource data are available and yield

the optimal sizing for the given data.

For practical applications, the economics also need to be considered as smaller

units typically cost more per kW and an optimization based on cost would therefore yield

larger and fewer units. Within our framework, it is possible to assign a cost function

to the number of units and to the efficiency to allow satisfying needs of practitioners.

Similarly, the competition between reduced battery size and larger unit capital cost for

more units could be considered in such an economic optimization.

The text and data in Chapter 3, in full, is a reprint of the material as it appears in

“Quasi-dynamic load and battery sizing and scheduling for stand-alone solar system using

mixed-integer linear programming,”. Habib, Abdulelah; Disfani, Vahid R.; Kleissl, Jan;

de Callafon, Raymond, in 2016 IEEE Conference on Control Applications (CCA), 2016,

pp. 1476-1481, 2016. The dissertation author is the primary investigator and author of

this article. The following section is a correction on some of this chapter content.

3.6 Correction

X =



x1

x2

...

xn



S =



S(t1)

S(t2)
...

S(tN)
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Ps =



P(t1)

P(t2)
...

P(tN)



Ps ≤ P̄b ·1

f (U,X, P̄b,Ps) = 1T · (S+Ps−diag(X) ·U ·1)

Y = diag(X) ·U

f (U,X, P̄b,Ps) = 1T · (S+Ps−Y ·1)

min
U,X,Pb,Ps

f (U,X, P̄b,Ps)

s.t. g(U,X, P̄b,Ps)≤ 0

h(U,X, P̄b,Ps) = 0

φ(U,R,Q,W,V)≤ 0

ψ(U,R,Q,W,V) = 0

R,Q,W,V⊂ {0,1}|U|

U⊂ {0,1}|U|

(3.10)
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−Y≤ 0

Y−UM≤ 0

Y−1 ·1T ·diag(X)≤ 0

−Y+1 ·1T ·diag(X)+(U−1 ·1T)M≤ 0

(3.11)

where M is a real constant number, e.g, 106.

With

U = [0,1],

−Y≤ 0

Y− R+Q
2 M≤ 0

Y− 1·1T·diag(X)
2 − R+1·1T−Q

2 M≤ 0

−Y+ 1·1T·diag(X)
2 − R+1·1T−Q

2 M≤ 0

Y−1 ·1T ·diag(X)≤ 0

−Y+1 ·1T ·diag(X)−
(

R+Q
2 −1 ·1T

)
M≤ 0

(3.12)

where M is a real constant number, e.g, 106 and

U =
1
2
(R+Q) R−Q≥ 0

U = [0,1/2,1], R = [0,1,1], Q = [0,0,1]
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Chapter 4

Optimal Energy Storage Sizing and
Residential Load Scheduling to Im-
prove Reliability in Islanded Operation
of Distribution Grids

Despite the increase of modern residential rooftop solar PhotoVoltaic (PV) in-

stallation with smart inverters, islanded operation during grid blackouts is limited for

most PV owners. This paper presents an optimization method to construe an resource

sharing algorithm for islanded operation during blackouts by using shared PV energy.

The optimization methods determine if rooftop PV power is either used directly or dis-

tributed to neighbors within a residential subsystem. Residential customers, each with a

fixed size rooftop PV system are assumed to be connected by a single point of common

coupling to a distribution network. The algorithm derives the optimal power distribution

to improve the reliability of electricity supply to each residential customer and the results

are benchmarked against the isolated self-consumption only mode. In addition, an energy

storage system (ESS) is added to quantify the improvement in reliability, whereas a

comparison is made between a distributed and centralized ESS deployment strategy.
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4.1 Introduction

System level power outages or blackouts typically result in millions of dollars

in losses for industry, commercial, and residential customers Horowitz et al. (2010);

Liscouski and Elliot (2004); FERC (2012). The main cause of these outages may be

equipment failures due to a natural disaster, e.g. the 2011 blackout induced by Hurricane

Sandy, where 8 million customers lost power for several days resulting in losses of around

US$ 50B Blake et al. (2013); Mansfield and Linzey (2013).

To improve reliability in the presence of a blackout we consider the notion of a

(grid)subsystem. A subsystem is defined here as a distributed set of loads and generation

assets, identified residential customers, connected to a medium voltage network at a

point of common coupling (PCC) and has the ability to be operated independently in

case of grid outages (emergency operation mode). Voltage collapse, electric faults, or

other drops in power quality at the PCC may trigger the subsystem to operate in island

mode Lasseter (2011). An Energy Storage System (ESS) may be used in a subsystem

to mitigate the effects of a blackout or intermittency of solar photovoltaic (PV) or wind

penetration Jaworsky and Turitsyn (2013); Belloni et al. (2016) and provide ancillary

services such as peak shaving and voltage regulation. An ESS also can be applied to the

problem of harmonic distortion which may occur in the islanding mode of the subsystem

Balasubramaniam et al. (2016) and voltage regulation with many successful examples

Yang et al. (2014); Hanley et al. (2008).

In loss-of-load conditions, subsystem power generation capacity is often insuffi-

cient to meet all loads. Therefore, an optimization method is required to schedule the

critical assets within the subsystem and maximize the utilization of available energy

(or minimize unused or lost energy). This problem is commonly referred to as load

scheduling or shedding and Mixed-integer Linear Programming (MILP) is a promising
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method to exploit convex optimization routines to solve the load scheduling problem.

MILP has been used in a variety of areas of power systems such as power distribution

network expansion Bahiense et al. (2001); Zhang et al. (2012), unit commitment of power

production Viana and Pedroso (2013), and the decentralized energy management problem

of a microgrid Ioli et al. (2015).

In this paper, MILP is applied to an optimization-based problem for scheduling

loads of a group of conjoined premises or residential customers (“houses”), each with

a possible rooftop solar PV system. In the MILP formulation, the optimization aims

to minimize the daily solar generation loss. For illustration of the effectiveness of the

proposed optimization, actual residential customers load and PV data are used from a

case study from the Australian grid Ratnam et al. (2015). Two main operational strategies

were considered: isolated self-consumption for each house and an interconnected sharing

strategy Habib et al. (2016c). In addition, the possibility of adding an ESS is included

in the MILP to improve the reliability of supply and energy losses. Satisfying intuitive

expectations, the optimization results show that a majority of the customers score higher

reliability of electricity supply when connecting to the subsystem via inter-connected

sharing with an ESS.

4.2 Problem Description

4.2.1 Strategies for solar energy sharing in a subsystem

Consider a subsystem with generation units connected to a distribution system

via a main circuit breaker (CB) at the point of common coupling (PCC). The main CB is

used to isolate the subsystem from the main network in case of power quality disruption

or power outages. A residential group of customers (’houses’) denoted by the index

i, each with its own load, PV system, and additional CB is assumed to constitute the
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Figure 4.1. Different ESS configuration for power generation and distribution of a
residential subsystem of ten houses. ui controls the ESS operations based on the house
load and the solar generation. Where it represents decentralized storage at each house
where each house is independently operated (isolated self-consumption) by keeping the
PCC switch on.

Figure 4.2. Representation of centralized storage for the whole subsystem.

subsystem (Fig. 4.1). The status of the switch connected to the PCC of house i is the

decision variable ui in the optimization problem. If there is insufficient solar power to

supply the load at any time step t, then no power is supplied and the solar power is

assumed to unutilized (e.g. lost).

Two main operational modes are considered, each with and without ESS. (1)

Isolated self-consumption as in Fig. 4.1, where each house is isolated from the subsystem

and only able to use whatever available power from PV and/or ESS. (2) Energy sharing,

where all houses can supply their electric loads from any PV system and/or a central-
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ized ESS. In Fig. 4.2, the decision which houses to (dis)connect is coordinated by an

optimization problem that operates with a 30 minutes time step. Minimum up-time and

down-time constraint for a supplied load were considered for all strategies as certain

appliances require a certain minimum operation time to be effective (e.g. dishwasher).

4.2.2 Model Assumptions

Without loss of generality, the following assumption are made on both the ESS

model and power distribution model to formulate a solution to the proposed optimal

power scheduling problem. In the ESS model, no power losses or degradation occur

in the charge/discharge process, although limits to over charge/discharge are included.

Nonlinear effects in energy storage and splly are ignored in the ESS model as well.

In usual power distribution analysis lines losses are computed for large geographical

distance but in our case, the houses are assumed to be close to each other.

To simplify the analysis, solar power is assumed to be known or represented by a

perfect forecast. Load on the side is assumed to be same under grid connected or islanded

conditions and no partial load is permitted in this case study. Knowledge of both solar

and load is assumed to be known over the simulation period but a moving average is also

applicable. Simulation results in this case study are conducted over one year of data.

4.2.3 Illustration of Data

A subset of a dataset with 300 de-identified residential customers with separate

meters for load and rooftop PV from a distribution network in Australia was selected. One

year was considered for the optimization problem to cover many loads and PV scenarios

that may occur. For model validation, the first ten residential customers (N = 10) were

selected with customers ID [2 13 14 20 33 35 38 39 56 69] as defined in Ratnam et al.

(2015) for July 1, 2010, through June 30, 2011.
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Figure 4.3. Average diurnal cycle of PV generation gi and load li for the N = 10 chosen
residential customers (houses) over one year.

While the PV rooftop systems vary in size, the total PV rated capacity is rated at

17.3 kWAC. Daily peak solar power averages around 11 kW. The corresponding daytime

load peak is around 8 kW with a higher peak in the evening that reaches 13 kW. To

understand the diversity of PV generation, the plots in Fig. 4.3 illustrate average PV

generation and load for each of the 10 chosen residential customers.

Two sample days (Fig. 4.4) illustrate the varying potential for PV energy to power

the subsystem. During the summer season (January in the Southern hemisphere), solar

generation is high in comparison to load. On this specific day it happens to exceed load

at the solar peak, which is the case on average as well. On the other hand, during the

winter season loads are smaller, but solar is much smaller and insufficient to supply all

loads at any time of the day.
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Figure 4.4. Stacked bar chart of load and solar generation (red line) on two sample days
in summer (top) and winter (bottom). Each sub bar shows a different house, where the
blue colors show load that could be supplied from solar energy in case of an islanded
subsystem. Note that January is summer in the southern hemisphere. All results later
consider 1 year.

4.3 Problem Formulation

The general form of our optimization problem for residential energy scheduling

is of the form
max

U,Eb,Es,E0
f(U,Eb,Es,E0)

s.t. g(U,Eb,Es,E0)≤ 0

h(U,Eb,Es,E0) = 0

U⊂ {0,1}|U|

(4.1)

where the binary decision variable U= [u1,u2, · · · ,uN ]
ᵀ is the matrix of switching statuses

for all houses at all time steps during a time span such that ui is the vector of switching

statuses for house i. Eb and E0 are vectors of size N denoting the ESS energy nameplate

capacity and initial stored energy in the ESS, and Es is a matrix defining ESS SoC energy

at all times. The notation Pb and Ps will be used to denote the differential of energy

(power). The objective function, inequality constraints, and equality constraints are

denoted respectively by f g and h and discussed in more detail below.
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4.3.1 Objective Functions

The main objective function minimizes PV curtailment or maximizes load supply,

which can be described as f(U)

f(U) = 1ᵀ(Y) ·1−β ·1ᵀ ·Pb (4.2)

where 1 is a vector of ones with length equal to the number of houses N. L= [l1, l2, · · · , lN ]ᵀ

is the load matrix where li is the column load vector of house i at all times. The matrix

Y = U◦L denotes the supplied load of any house at any time step where the notation ◦

is used to show the Hadamard (element-wise) product of the two matrices. β is a dummy

veritable to avoid ESS oversizing.

The switch settings that determines what houses are supplied with power at any

time are considered in the objective function (4.2) and the output of the optimization

problem.

4.3.2 Constraints

Supply load of any house at any time

The definition of Y in (4.2) must be reflected in the constraints, thus

Y−U◦L = 0. (4.3)

Available Power

In islanding mode, the subsystem cannot provide more than the available solar

power. Thus, the total load and ESS charging power that the subsystem can supply must
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be less than the total PV energy available at each time step:

1ᵀ·Y+Ps ≤ 1ᵀ·G, (4.4)

where G = [g1,g2, · · · ,gN ]
ᵀ is the PV generation matrix.

Minimum Up-time and Minimum Down-time

A set of constraints are defined to keep a unit which is switched on (off) in the

same state for at least m+ (m−) time steps before it is switched off (on). This minimum

up (down) time constraints decrease the risk of damage to load units and/or inconvenience

for residents due to frequent start-ups and shut-downs. They are defined as:

u(i, t)−Σ
t
h=t−m+

i +1v(i,h)≤ 0 ∀m+
i ≤t≤T

(1−u(i, t))−Σ
t
h=t−m−i +1w(i,h)≤ 0 ∀m−i ≤t≤T ,

(4.5)

where the matrices V ⊂ {0,1}N×T and W ⊂ {0,1}N×T are start-up and shut-down

matrices with the elements defined as:

v(i, t)−w(i, t) = u(i, t)−u(i, t−1) ∀1≤i≤N∀2≤t≤T

v(i, t)+w(i, t)≤ 1 ∀1≤i≤N∀2≤t≤T

v(i,1) = w(i,1) = 0 ∀1≤i≤N ,

(4.6)

where N is the number of houses and T is the simulation time.

ESS Constraints

Assuming that the efficiency of the ESS is 100%, the ESS constraints are given

by

−Pb(i)≤ Ps(i, t)≤ Pb(i) (4.7a)
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Figure 4.5. Hourly results for four different houses for a summer day (Jan 9), where
the blue line shows load, the red line represents supplied load, and the green line shows
solar power. Isolated and connected scenarios are compared side-by-side for the case (a)
Without ESS, and (b) With ESS. The subsystem solar utilization on Jan 9 is (24, 80.4,
92.2, 100)% and the percentage of load met is (10.8, 35.6, 40.8, 44.6)% for all scenarios
from left to right respectively.

Es(i, t) = Σ
t
h=1Ps(i,h)∆t +E0(i) (4.7b)

ρminEb(i)≤ Es(i, t)≤ ρmaxEb(i) (4.7c)

Es(i,1) = E0(i) (4.7d)

∀i∈N ∀t∈T ∀t1∈{24k hours|k∈N}

where Ps denotes the charging/discharging power schedule matrix for the ESS for each

time step t and house i. The maximum charging/discharging power of the ESS is limited

to the ESS rating Eq. (4.7a). Second Eq. (4.7b) calculates the energy stored in the ESS

at each time step t for house i. Further, deep discharge should be avoided for ESS

health where ρmax and ρmin are applied in Eq. (4.7c) to be usually around 0.9 and 0.1,

respectively. Eq. (4.7d) guarantees that no energy shift happens betweens days by keeping
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the level of energy at the end of each day equal to its initial value E0. The power:energy

ratio is assumed to be 4:1, i.e. 4×Eb = Pb. To allow a cleaner analysis without energy

shifting from one day to the next, the initial (E0) and final state of charge (SoC) during a

day are set to be equal which is fulfilled by the second constraint in Eq. (4.7d).

As the objective function and constraints contain both binary (integer) and real

valued optimization variables and all constraints in (4.1)-(3.9) are linear, the optimization

problem is Mixed-Integer Linear Programming (MILP). Therefore commercial MILP

solvers such as Gurobi through CVX can solve the problem and used in this paper for the

numerical optimization.

4.3.3 Optimization Success Metrics

To compare the simulation results of different strategies with and without ESS,

two metrics are considered in this paper. The first metric is the percentage of supplied

load (the ratio of supplied load to the total load) determined as

% of Load Met = (Y ·1)� (L ·1),

where � denotes element-wise division.

The other metric is the PV utilization percentage (the ratio of utilized PV genera-

tion to total PV generation) defined as

% PV Generation Utilization = (1ᵀ ·G)� (1ᵀ ·L).

4.4 Numerical Results

In this section, the results are presented in three parts. The first two parts are

designed to discuss the results of two main scenarios, i.e. subsystem with and without
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ESS, each of which considers both isolated self-consumption and inter-connected power

sharing cases. The third part summarizes and compares the long-term effects of these

four scenarios on the subsystem operation over the course of one year.

4.4.1 Subsystem without ESS

An hourly example for a summer day (Jan 9 in Australia) and four sample houses

#(2, 8, 9, 10) is presented in Fig. 4.5(a) for both isolated self-consumption and inter-

connected power sharing scenarios. Under ideal conditions of a clear mid-summer day

with high solar production, the load of most houses is met during the middle of the

day. However, excess solar power is lost and no load is served during hours that do not

coincide with peak insolation. For house #2, total solar power generation exceeds total

power demand the most. The excess PV energy could not be captured in the isolated

self-consumption case while is was shared with the other houses in the inter-connected

case.

As a result of the minimum up-time constraints, no load was met for house #2

between 0900 and 1100h. Alternatively, in the power sharing case, more load was met

between 0900 to 1100h, because only a small amount of energy from other houses is

needed to satisfy the minimum up time constraint. However, some power was not met

around 1100h, which might have been used to supply other houses since every house

is treated equally to achieve the overall smallest solar power losses. For house #10, the

load is higher than solar power at all times except a one-hour period around 1300 h. As a

result, its demand is never met in the isolated self-consumption case (the brief period of

excess solar power is too short to meet the 1.5(0.5) h minimum up(down)-time). House

#10 benefit greatly from power sharing increasing % load met on this day from zero to

46%.

Fig. 4.6 shows average daily results for the subsystem without ESS over the
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Figure 4.6. Yearly average daily cycle of solar and load (equal to the average of Fig.
4.3) for load met for isolated self-consumption and inter-connected sharing modes for
without ESS.

Time [Hour of day]

0 4:00 8:00 12:00 16:00 20:00 24:00

P
o
w

e
r 

[k
W

]

0

5

10

15

Mean Solar

Mean Load

Mean Iso.

Mean Con.

Figure 4.7. ESS allow shifting the load to the shoulders of the day.

course of a year for the isolated self-consumption and the inter-connected sharing. For

the isolated self-consumption case, house load is only met during the day when solar

generation exceeds load consumption for the minimum up-time. As a result, only 9%

of the total load is met as shown in Table 4.1 while the percentage of load met was

almost three times scoring 26.3% for the sharing case. Lost power occurs due to several

scenarios: (i) At the solar peak (noon time) total solar is higher than total load. (ii) The

optimal combination of houses has a discrete load that is usually less than the available

solar power. (iii) Minimum up and down times limit the choice of which houses to

power causing less discrete load levels. No load can be met during periods of no solar

generation at night.
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4.4.2 Subsystem with ESS

The optimization solves for the optimal ESS size Pb [Eb] for every house for the

isolated self-consumption case as shown in Table 4.2 and for the inter-connected sharing

ESS as shown in Table 4.1. The grid connected case resulted in an ESS size of 259.2 kW

[64.1 kWh] which is 43% less than the aggregated ESS size for the isolated case. The

ESS initial SoC for every day is optimized for the isolated case to average around 5 kWh

and 21.6 kWh for the connected case.

Table 4.1. Percent load met and optimal ESS size for different operating strategies over
the year.

% of load
met

Pb[Eb]
kW [kWh]

% of PV
gen. utilized

Iso. without ESS 9.2 0 25.8
Iso. with ESS 33.7 460.1 [115.1] 94.9

Con. without ESS 26.3 0 74.0
Con. with ESS 35.5 259.2 [64.1] 100

Table 4.2. Optimal ESS size Eb and initial SoC E0 for each house in the isolated
self-consumption mode.

Houses Eb (kWh) E0(kWh) % PV of gen. utilized
1 10.6 5.2 99.3
2 12.7 4.5 82.8
3 8.0 3.1 93.3
4 13.5 6.7 79.6
5 17.2 7.2 99.3
6 11.6 5.5 98.9
7 9.1 3.8 99.0
8 8.5 3.6 99.6
9 11.2 6.0 99.4

10 12.7 5.0 99.1
∑Eb 115.1

Fig. 4.5(b) illustrates the summer day example with ESS. For the isolated self-

consumption case ESS are installed locally and only serve a particular house. The ESS
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size is optimized to maximize the local solar utilization. If daily solar energy exceeds

daily load as for house #2, excess solar energy during daytime can be stored in the ESS

and all load is met. If daily solar energy is smaller than daily load, then times with loss of

load remain. For example, houses #(8, 9, 10) were able to meet the smaller load during

the night or early morning but missed some of the peaks due to the limitation of solar

energy.

In the connected case, the subsystem installs a community ESS operated for

the benefit of all. With ESS, the differences between isolated and connected cases are

small. Houses #(8, 9) improved the load met with connection but at the expense of house

#10. Comparing to the case without an ESS, the ESS demonstrates value by storing

unusable solar power that can be shifted to later times to meet load and minimum up-time

constraints.

Fig. 4.7 shows the annual average daily cycle for both isolated and connected

operation modes with ESS. The isolated self-consumption case supplies 33.7% of the

total load while the interconnected sharing case supplies 35.5% of the total load. Adding

an ESS flattens the curves of load met by shifting daytime solar energy to night time.

The connected case performs better, from 0900 till 1500 h. Although ESS installation is

expected to increase the load met for the whole system, the model cannot guarantee the

same for individual houses. For example, House #10 captured less load with the ESS

case because meeting other houses’ load decreases the system loss.

Table 4.2 presents optimal ESS size for each house in the isolated self-consumption

mode as well as the corresponding solar utilization factor. The solar utilization factor

is over 93% for most houses except houses #(2, 4). For houses #2 and #4, the low PV

utilization factor is due to oversized solar systems together with the fact that excess solar

energy cannot be exchanged within the subsystem and cannot be shifted between days.

The problem is exemplified during two weeks, when solar far exceeds the load demand,
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presumably due to the absence of the residents (Fig. 4.8). Most of the solar energy during

these two weeks is lost.
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Figure 4.8. Illustration of one year of solar and load data for house#2. The inset shows a
day of low demand during a period of absence of the residents.

4.4.3 Effects of Various Scenarios on subsystem Operation

Fig. 4.9 presents the different operation scenarios for all months to capture the

seasonal effect on the subsystem. Winter (May till August in Australia) reduces the load

met because of the seasonal drop in solar generation. The peak of load met therefore

occurs during the highest summer month November. As expected, the isolated self-

consumption without ESS captures the least load. The inter-connected sharing mode

scores the best for the subsystem over the year. A comparison of different operation

modes by house is shown in Fig. 4.10. Adding ESS to the isolated case at least triples the

load met for each house. The inter-connected sharing case with ESS supplies the most

load for 5 out of 10 houses, while houses #(2, 5, 6) prefer to be isolated with ESS, and

houses #(4, 10) achieve the same load met for these two scenarios.

Not only does the power sharing case with ESS show slightly better results than

the isolated case with ESS, but it also leads to a 44% reduction in the total size of ESS

installation on the subsystem.
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Figure 4.9. Monthly results for the percentage of load met for different strategies
averaged over all houses.

4.5 Conclusions

An optimization based residential customer scheduling based on mixed-integer

linear programming is proposed to increase the reliability of power delivery for subsystem

customers during (macro)grid blackouts or emergency islanded operation. An actual

yearly dataset for PV and load of ten residential customers was used as a benchmark

study to illustrate the results. The benchmark results illustrate the benefit of the optimal

scheduling: an interconnected scenario in which rooftop PV power is shared across the

members of the subsystem greatly improves solar energy utilization compared to the

isolated scenario in which each residential customer only supplies their own electrical

load.

The isolated and interconnected scenarios are also studied in the presence of

a local and centralized Energy Storage System (ESS). For that purpose, the proposed

optimization is able to compute the optimal ESS size, the daily initial State of Charge

(SoC) and the charge/discharge schedule of the ESS for the isolated and the connected
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Figure 4.10. Yearly optimization results for all houses using different operation scenar-
ios.

scenarios. This paper shows that, despite variability and intermittency of PV power

generation, an ESS can substantially improve electric power reliability by almost four

times compared to the situation without a centralized ESS. In addition, the centralized

ESS strategy results in a smaller ESS size with a higher percentage of load met and solar

utilization.

The decision to install an ESS and whether or not to operate in an isolated and

interconnected scenario can be studied by the proposed optimization based residential

customer scheduling. With an ESS, residential customers with oversized PV systems

fair better when remaining disconnected, but the investments in ESS capacity for the

entire subsystem almost double. Therefore, it may be concluded that the interconnected

centralized ESS strategy is preferred as it supplies 100% of the load for a smaller capital

investment in ESS. As the best strategy may depend on PV size, the results motivate

further research on socio-economic considerations and fairness arguments to incentive

residential customers with large PV systems to participate.

The text and data in Chapter 4, in full, is a reprint of the material as it appears
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in“Optimal Energy Storage Sizing and Residential Load Scheduling to Improve Reliabil-

ity in Islanded Operation of Distribution Grids”. Habib, Abdulelah; Disfani, Vahid R.;

Kleissl, Jan; de Callafon, Raymond, 2017 American Control Conference (ACC), Seattle,

WA, 2017, pp. 3974-3979. The dissertation author is the primary investigator and author

of this article
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Chapter 5

Market-Driven Energy Storage Plan-
ning for Microgrids with Renewable
Energy Systems Using Stochastic Pro-
gramming

Battery Energy Storage Systems (BESS) can mitigate effects of intermittent

energy production from renewable energy sources and play a critical role in peak shav-

ing and demand charge management. To optimally size the BESS from an economic

perspective, the trade-off between BESS investment costs, lifetime, and revenue from

utility bill savings along with microgrid ancillary services must be taken into account.

The optimal size of a BESS is solved via a stochastic optimization problem considering

wholesale market pricing. A stochastic model is used to schedule arbitrage services for

energy storage based on the forecasted energy market pricing while accounting for BESS

cost trends, the variability of renewable energy resources, and demand prediction. The

uniqueness of the approach proposed in this paper lies in the convex optimization pro-

gramming framework that computes a globally optimal solution to the financial trade-off

solution. The approach is illustrated by application to various realistic case studies based

on pricing and demand data from the California Independent System Operator (CAISO).

The case study results give insight in optimal BESS sizing from a cost perspective, based
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on both yearly scheduling and daily BESS operation.

5.1 Introduction

The need for a Battery Energy Storage System (BESS) to serve as a buffer

for electric energy is palpable for microgrid systems that have a large penetration of

intermittent renewable energy sources. A BESS may be economical for both islanded

microgrids and a for grid-connected system, as a BESS increases reliability during

outages and provides revenue or grid services such as peak shaving, voltage regulation,

and arbitrage power trading during normal operation Lasseter (2002); Donadee (2013);

Kousksou et al. (2014) .

Applications of a BESS can be found in various settings to assist with renewable

power integration. It has been applied to the problem of harmonic distortion, generally

known as voltage regulation, which may occur in standalone operation (islanding) of a

microgrid Yang et al. (2014); Hanley et al. (2008). Specifically, a BESS can be used to

reduces the effects of Photo Voltaic (PV) and wind energy production variability Teleke

et al. (2010); Zheng et al. (2015) by different control strategies such as a rule-based

control and a model predictive control (MPC). A BESS in conjunction with PV and

demand forecasting can help shift renewable generation to times of higher power demand

or lower electricity price via an MPC technique Sevilla et al. (2015). A mathematical

model for a large BESS system was performed in Zhang et al. (2015) as a reduced four

state space equations to model the relation between the bulk power grid and a BESS.

The benefits of BESS in coping with variable renewable energy production are

evident, but the costs associated with financing and installing BESS are often prohibitive.

In particular for residential settings Holbert and Chen (2015), a BESS may not produce

sufficient revenue from energy arbitrage to achieve investment payback without govern-

ment incentives to fund the BESS. At the same time, BESS costs are anticipated to drop
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in the near future and investment banks are expecting the payback time for unsubsidized

investment in electric vehicles (EV) combined with rooftop solar and BESS Houchois

et al. (2014) to reduce to around six to eight years. Also, the economies of scale due to

the adoption of EV and rapid improvement of battery technologies will likely reduce

BESS prices. As a result, the projected reduction in pricing of BESS is expected to lead

to a return on investment within a time frame of three years by 2030 Nykvist and Nilsson

(2015); Sachs (2014).

Optimal BESS sizing from an economical perspective must find the optimal trade-

off between critical design parameters that include BESS sizing, BESS life expectancy

due to battery degradation and total revenue from utility bill savings due to energy

arbitrage. Holistic BESS scheduling models that aim to capture all cost aspects were

developed in Nguyen et al. (2012) to maximize the overall profit of an existing wind-

storage system. Economic models were used in Ornelas-Tellez et al. (2014) to predict the

market price to optimize the operation of existing energy resources in a microgrid, but no

future investments were considered. Operational stochastic control and optimization in

Zachar and Daoutidis (2016) were designed as an MPC to ensure sufficient energy as an

economic dispatch problem.

Motivated by the need to find the optimal BESS investment as a function of

time considering capital and O&M costs, as well as operational revenues, this paper

proposes a stochastic optimization approach that leverages mixed integer and real (convex)

optimization to formulate financially optimal BESS sizing solutions. The stochastic

optimization is used to address the variability in prediction and forecasting of energy and

BESS pricing to determine when is the optimal time to invest in a BESS. The convex

optimization is used to compute globally optimal solutions for BESS sizing parameters,

given the operational model and the price variability in the day-ahead market.

The paper is outlined as follows. First, the problem formulation and the system
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topology for financial optimization are summarized in Section 5.2. The mathematical

framework is summarized in Section 5.3, explaining the optimization techniques, ob-

jective functions and the constraints. Different operating scenarios are discussed and

compared in Section 5.4 to cover cases of extreme high/low power variability in solar,

wind and demand patterns. In Section 4.4, different BESS installation cases and optimal

BESS sizing for a case study of a real microgrid are presented.

5.2 System Topology and Pricing

5.2.1 Microgrid and Market Structures

Fig. 5.1 illustrates the structure of power market and microgrids used in this paper.

The microgrid is modelled as a subset of the market µG⊂N , and demand, renewable

generation, and BESS power in both market (m) and microgrid (µ) are denoted by Pd ,

PRE , and Pb, as illustrated in Fig. 5.1.

Market

~

~
Power exchange

Data exchange

MCP

µG µG

µG

Pg,1

~
Pg,2

Pg,N

Pd,1
Pd,2 Pd,N

…
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Pµ

Pb,µ
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Market (m):

Pg,i Generator i

Pd,i Demand i

Microgrid (µG):

Pd,µ Demand

Pb,µ Power from or the BESS

Pµ Power purchased from the market

PRE,µ Power generated from renewables

PRE,1

PRE,2

PRE,N

Figure 5.1. Power market system architecture.

The net demand Pnet , which is the actual market demand (including all microgrids’

demand) minus the total renewable power available in the market, is computed via

Pnet = Σi∈N (Pdi−PREi) = Σi∈N Pgi (5.1)
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where Pgi indicates power provided by generator i and

Pµ = Σ j∈µG
(
Pd j,µ +Pb j,µ −PRE j,µ

)
(5.2)

5.2.2 Market Clearing Price Modeling

Assuming that the microgrids will pay the hourly market clearing price (MCP)

in the future instead of predefined constant or time-of-use (TOU) rates, a price model is

required to anticipate the MCP at different times for optimal operation of microgrids.

Typically, Independent System Operators (ISO) aggregate the bids received from

generators and cross it with the net demand hourly profile of the market to define hourly

MCP. It is assumed that the MCP is solely a function of the net demand in that λP is

linearly correlated with the market net demand Pnet via

λP = α Pnet +β . (5.3)

This pricing modeling has been validated in the literature Huang et al. (2015); Verzijlbergh

et al. (2014). It is assumed for simplicity that the parameters of the MCP model (α,β )

remain constant throughout the 15 year modeling horizon. However, the optimization

could consider more detailed and dynamic models where the pricing model parameters

vary as generators are added or removed.

To model the effects of different generators’ bidding strategies and maintenance

schedules on different days of the week (weekdays and weekend) and different seasons

(summer and non-summer) on MCP, four distinct MCP models are fit from historical

CAISO demand and pricing data.
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5.2.3 Microgrid and Power Market Growth

For realistic financial predictions and optimal sizing of the BESS, the financial

model considers the annual growth of both the market and the microgrid. The growth of

the market and the microgrid takes into account all components, i.e. demand, solar and

wind.

For simplicity, we assume a fixed annual solar growth (ASG) defined by

ASG =
St+1y−St

St
×100%

where St represents the vector of hourly solar profiles of the current year. Hence, with a

fixed ASG, the net solar power St+1 contribution is predicted to grow exponentially as

St+1 =

(
ASG
100

+1
)

St

with ASG > 0. Similarly, we assume a fixed annual wind growth (AWG) as

AWG =
Wt+1y−Wt

Wt
×100%.

The CAISO historical demand data shows different rates of increase at different hours of

the day, specifically power demand at the peak hour has grown faster than at off-peak

hours. to account for this effect, we define an annual demand growth profile (ADGP) that

varies by hour of the day as

ADGP = (Dt+1−Dt)�Dt×100%,

where Dt is the vector of hourly power demand at year t and � denotes element-wise

division.
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5.3 Stochastic BESS Optimization

5.3.1 Objective Function

A stochastic programming model is developed to capture all possible scenarios

of solar and wind generations, demand variations, and supply bidding strategies in the

BESS sizing and operation problem.

The objective function is defined to minimize the expected energy cost, i.e. the

sum of energy purchase costs and the BESS investment cost over a time period T

while considering annual growth in solar, wind and demand. Mathematically, for an

optimization horizon T and scenario set of Ω, the objective function is defined as

min
Pbmax ,Pb

Σt∈T
{

Jb,t +Σi∈ΩPriJi,t
}
· vt − vb,t · vt , (5.4)

where Pbmax and Pb are the power rating and the vector of dispatched power of the battery

respectively. Pri refers to the probability of a scenario i and

i Jb,t refers to the investment cost of BESS installed in year t.

ii Ji,t is the total cost of energy purchased from the market in year t for the scenario i,

and is given by

Ji,t = Λ
T
i,tPi,t∆t.

Pi,t and Λi,t are respectively the hourly vectors of power demand from the energy

markets and MCP in year t and scenario i, and ∆t is the time difference between

two consecutive time steps.

iii vb,t accounts for the remaining value of the unexpired BESS purchased at time t at

the end of the simulation period.
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iv As is common in economic models vt = (1− γ)t discounts the monetary value in

future years using an annual interest rate of γ .

5.3.2 Constraints

Resource Adequacy:

At any time step, the microgrid control center (MGCC) must ensure that there

is adequate power to supply demand. Therefore, any mismatch between the power

demand and the summation of solar power output, and BESS discharging power must be

purchased from the market to keep the power balance at any time step t and scenario i.

This constraint is summarized as

PREi,t +Pbi,t +Pi,t = Li,t (5.5)

where Pi,t is the power purchased from the market.

Battery Constraints:

First, the battery charging/ discharging power must be between the limits, i.e.

−Pbmax ≤ Pbi,t ≤ Pbmax

To avoid damages due to a deep (dis)charge cycle of the battery, the stored energy

in the battery is constrained by its maximum and minimum SOC limits (ρmin,ρmax) as

ρminEbmax ≤ Ebi,t ≤ ρmaxEbmax

where ρmin and ρmax are typically around 10% and 95%. The energy stored in the battery

89



is denoted by Ebi,t and calculated via

Ebi,t = Σ
t
h=1Pbi,h∆t +Ebi,0

with Ebi,0 as the initial BESS energy.

It is also desired to keep the final SOC of the BESS equal to its initial value at the

end of each day. This constraint is needed to avoid transferring energy between days and

included via

Ebi,t1
= Ebi,0

for any t1 ∈ {24k hours, k ∈ N}. Finally, the ratio between the nominal power rating and

energy rating of the BESS implemented by

2×Ebmaxi
= Pbmaxi

as the last battery constraint. Obviously, more advanced battery constraints that take

into account parasitic loss and efficiency parameters could be used to provide even more

realistic battery constraints.

Power Congestion Constraint

A power congestion constraint limits the power purchased from the market due to

the physical limit of the microgrid at the point of common coupling (PCC) or upstream

power lines. Power congestion constraints may, for example, limit the BESS’ ability to

charge at Pbmaxi
during (or within) the cheapest price. By including a power congestion

constraint

−PL ≤ P≤ PL (5.6)
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the BESS will be charged over a longer time frame to accommodate the congestion limit

PL.

5.3.3 Scenarios

The most accurate results would be obtained by simulating a typical meteoro-

logical and climatologically representative timeseries over a year (or longer), but this is

computationally intensive. Instead, we consider year’s (2015) worth of data, downsam-

pled to a set of typical days and these days are repeated each year.

Subsequently, a manual clustering is applied to classify demand profiles in repre-

sentative patterns. The clustering assembles the data into four main groups that resemble

a summer/non-summer and weekday/weekend separation. Fig. 5.2 illustrates all demand

profiles clustered in those four groups, each identified by a distinct color. The clustering

can then be used to formulate an average for each group as depcited in the top plot of

Fig. 5.3.
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Figure 5.2. Daily demand profiles for the CAISO market for one year (2015). Colors
denote different clusters classified by (week)days and (non)summer season.
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Although usually intermittent in nature, solar and wind power profile over the

complete state of California tends to be smooth and easily separable into a small number

of distinctive patterns. Only a binary classification of high and low is applied in this paper

to cover the state-wide range of patterns in solar and wind power generation. Clusters

were obtained by the popular k-means clustering method MacQueen (1967), which aims

to partition time series data into two clusters. Clear days are presented as the high solar

case, whereas overcast days are denoted by low solar case. The bottom plot of Fig. 5.3

illustrates the 4 different scenarios for high/low solar and wind.
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Figure 5.3. Top: average of demand profiles clustered in 4 categories. Bottom: the 4
categories of high/low solar/wind and used as λP in (5.3) for pricing modeling.

For unambiguous notation we use H and L as abbreviated notations for the high

and low and summer weekday and summer weekend and non-summer weekday and

summer weekend as {SWD,SED,NSWD,NSED} for power/demand conditions, while S,

W, and D are used for solar, wind and demand. The binary classification with the demand

scenarios allows 4 ·2 ·2 = 16 scenarios. A summary of the 16 scenarios based on the
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binary classification of high and low solar, wind and demand

Ω ={HS,LS}×{HW,LW}

×{SWD,SED,NSWD,NSED}
(5.7)

is given in Table 5.1. Clearly, more granular clustering, e.g. by adding seasonal

effects on variables such as (solar, wind), will increase the accuracy of the optimization,

but also the computational cost.

Table 5.1. Scenarios i for CAISO demand and renewable generation. The probability of
each scenario Pri is given in the last row.

D
em

an
d Summer Non-Summer

weekday weekend weekday weekend

So
la

r

H L H L H L H L

W
in

d

H L H L H L H L H L H L H L H L

Sc
en

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pr 3.2 7.4 4.7 11.0 1.2 2.8 1.8 4.1 5.4 12.7 8.1 19.0 2.2 5.2 3.4 7.8

Each scenario is assigned a probability consistent with climatological data in

a certain location. The probability of each scenario is defined by multiplying the cor-

responding individual probabilities and is used as a weighting of that scenario in the

optimization of (5.4), e.g.

Pr({HS,LW,SWD}) = Pr(HS) ·Pr(LW ) ·Pr(SWD). (5.8)

Individual probabilities of solar, wind and demand are mutually independent and the

probability of all possible scenarios sums to 100%.
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5.4 Case Studies and Simulations

5.4.1 Market Clearing Price Models

The MCP models developed for each demand cluster are shown in Fig. 5.4.
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Figure 5.4. CAISO price model fits as a function of net demand for each demand type
(title).

The CAISO MCP λP derived from Eq. (5.3) is the main input to the market model

to determine the size and the daily operation of the BESS. The parameter λP varies based

on the different scenarios as shown in Fig. 5.5. The highest market price is associated

with low solar, low wind and summer weekday demand (scenario 4). Conversely, the

scenario with non-summer weekend demand, high solar, and high wind results in the

smallest λP. Negative pricing may appear also as a result of the assumed inability to

curtail renewables; after renewable generators lose their protected “must-take” status,

they will be curtailed in such a situation to avoid negative pricing. In this case, it is

cheaper to temporarily pay market participants to take power rather than turning off
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Figure 5.5. Market clearing price (MCP) λP for different scenarios (Table 5.1) for the
first year.
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Figure 5.6. BESS installation schedule by year for BESS price scenarios (a) on the left
and (b) on the right.

base-load power plants.

5.4.2 Case Study

The case study uses CAISO demand data and the location marginal pricing (LMP)

node (UCM 6 N001) located at (32◦53’00.9”N 117◦13’21.2”W) which is the trading

node containing UC San Diego. The simulated case has a peak market demand around

45 GW and a low demand (base-load) around 18 MW. The 2015 utility scale solar and

wind peaks are around 5.7 and 2 GW respectively. Clear solar days are assumed to

occur 30% of the time, overcast days 70%, and high wind 40% of the time and low

wind 60%. Different demand scenarios follow the calendar with 96 and 36 days for
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summer (May 1 to Oct 31) weekday and weekend, respectively and 165 and 68 days for

non-summer weekday and weekend, respectively. By that, the Pr shown in (5.8) is given

by Pr(Scen1) = Pr({HS,HW,SWD}) = 0.30 ·0.40 ·96/365 = 3.2%. The time step for

all data and optimization schedules is 15 minutes.

P
o
w

e
r 

[M
W

]

30

35

40

Summer weekday

Non-Summer weekday

Summer weekend

Non-Summer weekend

Time [Hours]

0 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
0

5

10
High Solar

Low Solar

Figure 5.7. Microgrid demand (top) and solar (bottom) profiles.

The characteristics of the microgrid conform to the UC San Diego microgrid.

Similar to CAISO, demand is split into summer and non-summer weekday and weekend

based on actual demand data collected from campus with demand peaks of (42, 36,

35, and 32) MW for summer weekday, summer weekend, non-summer weekday, and

non-summer weekend and base-load of 34 MW for both summer scenarios and 30 MW

for non-summer as shown in Fig. 5.7 (top plot). Those profiles are matched with the

existing market scenarios in Table 5.1. Microgrid generation is 20 MW from gas turbines

and solar power of peak-to-peak ratio is 10 MW and both high and low solar clusters are

shown in Fig. 5.7 (bottom plot). Noted here that the low solar profile for the microgird

is more intermittent compared to the market case because of the geospatial effect. The

maximum allowable power demand from the grid (PL) is 45 MW. Since microgrid energy

sales to the market are not permitted, overgeneration would have to be curtailed.

The growth rates of solar and demand are both 3% for the microgrid. The growth
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Figure 5.8. The market annual demand growth profiles for summer.

of solar and wind are both assumed to be 7% for the microgrid. To compute annual

demand growth profile, CAISO demand data in 2013–2015 is used. The market annual

demand growth profiles for non-summer scenarios are assumed scalar and equal to 2%

while those for summer scenarios are shown in Fig. 5.8.

The BESS pricing cases (Jb,t in Eq. (5.4)), which all include government subsidies

and incentives, are divided into two categories named a and b.Each category includes

10 cases (called a-1, · · · ,a-10,b-1, · · · ,b-10) which start from a price value between

117 $/kWh and 175.5 $/kWh. The price functions of all cases in category a converge

to 100 $/kWh within 15 years Nykvist and Nilsson (2015) while those of the cases

in category b decay with a constant rate of 1% every year. The life cycle of BESS is

assumed 10 years for all cases.

5.5 Numerical Results

Fig. 5.6 shows optimization results for the BESS installation by year. On the y

axis prices increase from lower to higher. On the x axis prices decrease from left to right

as the years progress. For both cases no installation was applied before the year 5 (Y5)

but as the BESS prices drop faster in case a compared to case b the installation went up

to case a-8 compared to case b-4. The yearly installation plan of the BESS results to be

large at one year followed by smaller installation few years before and after. After case

a-8 and case b-4 no installations have resulted.

Fig. 5.9 shows a sample day of price case a-8 as Pu, Pb and λP, where microgrid
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Figure 5.9. First and last year microgrid demand and storage profile (left axis) and
price (right axis). Data are for the first scenario {SWD,HS,HW}. During Y1 no BESS
installation was present and no data is plotted.

power purchase with storage is presented in the left axis and λP is presented in the

right axis for Y1 and Y15. Adding BESS in the microgrid changes the behavior of the

microgrid demand with a new peak between 1 and 3 AM during a market price depression.

Specifying PL = 45 MW limits the charging of the BESS from hour 1AM to 3AM to

not exceed a total microgrid demand of 45 MW. Comparing λP in Y1 and Y15 shows

the effect of larger solar for a midday price minimum and stronger peak demand growth

in the evening. Therefore the price curve shows two peaks and a pronounced evening

peak in Y15. The price curve triggers two BESS cycles per day to leverage the margins

between minima and peaks.

5.6 Conclusions

As the need for Battery Energy Storage System (BESS) is increasing to cope

with intermittent energy production from renewable energy sources, optimal BESS sizing

from an economical perspective is a challenging problem. To optimally size the BESS in
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the design stage of a microgrid, the trade-off between BESS cost, energy bill savings,

and lifetime must be taken into account. Using a stochastic optimization approach we

optimally size and schedule a BESS in a microgrid based on market energy pricing.

Variability of wind and solar energy resources, the variability of energy demand, and a

dynamic market price model that considers feedback from microgrid energy decisions

are considered. Decreasing BESS costs over time are also modeled. The modeling

framework contains significant flexibility and realism for microgrid planning.

Assuming the market clearance price model and net demand forecasts in our case

study for CAISO and a particular trading node, the results show that a microgrid can

start saving money with wholesale market energy trading once BESS prices drop below

$150/kWh. The operational scheduling of BESS is not targeted to shave the microgrid

peak but rather to profit from wholesale energy cost margins. Additional constraints

could be added to achieve a hybrid between local and market objectives.

The text and data in Chapter 5, in full, is a reprint of the material as it appears in

“Market-Driven Energy Storage Planning for Microgrids with Renewable Energy Systems

Using Stochastic Programming,”. Habib, Abdulelah; Disfani, Vahid R.; Kleissl, Jan;

de Callafon, Raymond, IFAC-PapersOnLine, vol. 50, iss. 1, pp. 183-188, 2017. The

dissertation author is the primary investigator and author of this article
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Chapter 6

Concluding Remarks

In this dissertation, the two main operation mode (grid connected and off-grid)

were discussed in the theme of improving system efficiency whether in seeking sizing

or scheduling problems. In the case of islanding, the dissertation’s Chapter 2 and 3

studied the optimal design for standalone system with a specific load type to be on or

off (no partial operation is allowed). This setup is suitable for applications such as water

treatment facility powered by a solar farm in a rural area, where facility consists of a

discrete number of units. Each unit is required to operate on design point (no partial

operation is applicable), the algorithm will determine the optimal number of units and

the size of the units in a given location by studying the annual solar data. The storage

then was introduced to the problem for optimal sizing as well as load scheduling. The

techniques can also be applied to large loads operating in island modes - such as motors

or pumps, steel manufacturing, and data centers. Mixed integer linear programming is

used for sizing and scheduling the loads, whereas historical solar data is used to optimally

schedule the available resources in a selected location. The approach is illustrated for

both static and dynamic loads. As further work for this part of the dissertation will carry

the more realistic application for dynamical loads. Also, another application is load with

nonlinear efficiency for instance if a load is designed to operate without ±20% of the

design point but with high efficiency at the design point. This kind of constraints are
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nonlinear/convex and required to different relaxation techniques to be studied.

In Chapter 4, we investigated methods for mitigating macrogrid power outages by

utilizing available Distributed Energy Resources (DER) to supply load locally, but across

several customers. The algorithm schedules load and demand to meet certain objective

functions such as minimizing power losses or maximizing solar energy utilization and is

implemented in the framework of mixed integer linear programming. Reliability metrics

increased significantly through power sharing and the approach is illustrated on power

data from actual households when subjected to a power outage. One year worth of data

for ten houses was processed from the Australian grid. The algorithm of power sharing

can achieve improvement up to 35% in power system reliability with the availability of

storage and up to 20% with solar only. As future work on this area, there is a lot of work

to proof the concept and implement the hardware and the communication. Although we

proposed that the algorithm can be implemented in the existing power system component

such as smart metering, and smart inverters, but there is a lot of work to be done on the

controls side.

Finally in Chapter 5 an investment and installation scheduling tool to help micro-

grid owners decide on when is the best time to install and size Battery Energy Storage

Systems (BESS) from an economic perspective. As BESS can mitigate effects of inter-

mittent energy production from renewable energy sources they play a critical role in peak

shaving and demand charge management. The trade-off between BESS investment costs,

lifetime, and revenue from utility bill savings along with microgrid ancillary services are

taken into account to determine the optimal size of a BESS. The optimal size of a BESS

is solved via a stochastic optimization problem considering wholesale market pricing. A

stochastic model is used to schedule arbitrage services for energy storage based on the

forecasted energy market pricing while accounting for BESS cost trends, the variability

of renewable energy resources, and demand prediction. The approach is illustrated with
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an application to various realistic case studies based on pricing and demand data from the

California Independent System Operator (CAISO). The case study results give insight

in optimal BESS sizing from a cost perspective, based on both long-term installation

schedules and daily BESS operation. This tool can also help government and decision

makers to determine the incentive program to promote storage installation. In future plans

for this part of the dissertation, the pricing model used is very simplistic to one price node.

This can be improved by matching models for more nodes in a similar black-box way or

in a more advanced neural network approach. The rest of the modeling component can

be tuned and fixed as needed.
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