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Abstract

We study the moduli space of three-dimensional N = 2 SQCD with SU(N) gauge group
and F < N massless flavors. In the case of an SU(2) theory with a single massless flavor,
we explicitly calculate the quantum constraint YM = 1 and generalize the calculation to
models with arbitrary N and F = N − 1 flavors. In theories with F < N − 1 flavors, we
find that analogous constraints exist in locally defined coordinate charts of the moduli space.
The existence of such constraints allows us to show that the Coulomb branch superpotential
generated by single monopole effects is equivalent to the superpotential generated by multi-
monopole contributions on the mixed Higgs-Coulomb branch. As a check for our result, we
implement the local constraints as Lagrange multiplier terms in the superpotential and verify
that deformations of a theory by a large holomorphic mass term for the matter fields results in
a flow of the superpotential from the F -flavor model to the superpotential of an (F −1)-flavor
model.
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1 Introduction

The study of non-perturbative dynamics of SUSY gauge theories in three and four dimensions
lead to invaluable insights in understanding quantum field theories. An especially important role
in non-perturbative dynamics is played by instantons in 4D and monopoles1 in 3D. The exact
non-perturbative superpotential in 3D N = 2 SUSY QCD was first calculated on the Coulomb
branch of a pure SYM SU(2) theory in [1]. An analogous instanton calculation in 4D N = 1
SUSY QCD with SU(N) gauge group and F = N − 1 flavors in a fundamental representation
lead to a celebrated ADS superpotential [2,3]. Further breakthroughs came in the 1990s with the
discovery of dualities in 4D theories with N = 2 SUSY [4, 5] as well as in theories with N = 1
SUSY [6, 7]. Understanding the interplay between instantons, monopoles, global symmetries,
anomalies and weakly coupled limits allowed one to understand IR dynamics in a broad class of
non-abelian gauge theories. Similar advances have been made in the study of theories on R3 × S1

and R3 [8–20]. It is often the case that a better understanding of the theory in 3D or 4D provides
feedback to better understand the theory in 4D or 3D, respectively.

Depending on the number of flavors, SUSY QCD with four supercharges exhibits a rich range of
phenomena in 3D and 4D, ranging from non-perturbative Affleck-Dine-Seiberg (ADS) superpoten-
tials to quantum deformed moduli spaces to confinement without chiral symmmetry breaking and
duality. The existence of quantum deformations was first discovered in a 4D SU(N) theory with
F = N flavors. In this theory, the dynamical superpotential is not allowed by symmetries, since
all gauge invariant moduli have charge 0 under anomaly free R-symmetry. The moduli space of
light fields can be described in terms of gauge invariant mesons, Mij , and baryons, B and B. The
moduli space is subject to a classical constraint detM = BB. It was shown by Seiberg [5] that non-
perturbative dynamics deform the moduli space, and the constraint becomes detM −BB = Λ2N .
This constraint can be most easily calculated in the SU(2) theory with 2 flavors by calculating a
two-point chiral scalar correlation function on the Higgs branch in the constraint instanton back-
ground [21] (see also [22]). The low energy physics of the theory can be described in terms of the
gauge invariant mesons and baryons subject to the quantum modified constraint which is enforced
by a Lagrange multiplier term in the superpotential. This is consistent with the argument that the
superpotential is not allowed by symmetries, since the equations of motion for the non-dynamical
Lagrange multiplier force the superpotential to vanish. One could obtain the ADS superpotential
for F = N − 1 flavors by adding one mass term to the Lagrange multiplier superpotential and
integrating out the massive flavor. One could continue this integrating out procedure and obtain
the superpotential for models with F < N − 1 by adding mass terms for additional flavors. In
the F = N − 1 model, one could also obtain the ADS superpotential directly by calculating a
two-point chiral fermion correlation function [2, 3, 23]. No direct calculation of the superpotential
is possible in a theory on R4 when F < N−1. On the other hand, when the theory is compactified
on a circle, multi-monopoles contribute to two-point fermion correlation functions and generate
the pre-ADS superpotential [20] of the 3D theory. Upon taking the large radius limit one recovers
the ADS superpotential with an arbitrary number of flavors. This is one example when the study
of 3D dynamics gives insight into dynamics of 4D theories.

In this paper, we will study quantum deformations of the classical moduli spaces in 3D SUSY
QCD with F < N flavors and investigate their role in the origin of the pre-ADS superpotentials as
well as their role in the flow of superpotentials in the theory space as one adds holomorphic mass
terms and decouples heavy flavors. It has long been known [11] that the classical moduli space

1Topological instantons in 3D non-Abelian field theories are related to 4D monopoles and are often referred to
as instanton-monopoles or simply monopoles.
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is deformed quantum mechanically in a 3D SU(N) theory with F = N − 1 flavors, taking the
form Y detM = g2F , where Y is a globally defined monopole modulus and g2 is a 3-dimensional
coupling. We will derive this constraint by following the approach of [21] and calculating the
two-point holomorphic scalar correlation function in an SU(2) theory with one flavor. In fact,
the physics behind such a modification is clearer in 3D. An SU(2) theory with 4 supercharges
has a Coulomb branch along which the gauge group is broken to U(1). On the Coulomb branch,
the Higgs direction is lifted, and the squark vacuum expectation values (VEVs) are not allowed.
Thus, the meson VEV, M = qq, must vanish classically. Nevertheless, the holomorphic two-point
squark correlation function receives nonvanishing contributions in a single monopole background.
Indeed, the fundamental monopole of the SU(2) theory has two gaugino and two doublet zero
modes. Thus it generates a four-fermion vertex in the low energy effective theory. When this ’t
Hooft operator is combined with supersymmetric gauge couplings, one can construct a two loop
diagram contributing to the two-point scalar correlation function. Such a diagram is naively UV
divergent, but this divergence is cutoff by the finite size of the monopole. We perform a full
calculation of this two-point correlation function in Sec. 3. Then we generalize the result to
SU(N) theories with F = N − 1 flavors and arbitrary N . In Sec. 4, we observe that the classical
moduli space is also deformed in theories with an arbitrary number of flavors, F ≤ N − 1. When
F = N − 1 the deformation is global (constraining the global moduli, Y and M), while in the
case of F < N −1, the deformations exist in locally defined coordinate charts of the moduli space.
These local deformations lead to several important consequences. They guarantee the equivalence
of the Coulomb branch superpotential discussed in [11, 16] and the multi-monopole generated
superpotential on the mixed Higgs-Coulomb branch of the theory found in [20]. Furthermore, the
constraints ensure that the superpotential is valid in all coordinate charts on the moduli space.
In Sec. 4.1, we present detailed analysis of the quantum moduli space of an SU(3) model with
F = 1. In Sec. 4.2, we extend our results to all SU(N) models with F = 1. Finally, in Sec.
4.3, we generalize our discussions to arbitrary F < N and show how the existence of such local
deformations explains the superpotential flow between theories with different numbers of flavors
as mass terms are added. We finish with a summary of our results in Sec. 5.

2 Review of 3D N = 2 SUSY gauge theories

In this section, we review basic properties of 3D SUSY QCD with four supercharges (N = 2)
(see, for example, [10, 11] for a more detailed introduction). We restrict our attention to SU(N)
theories with F < N massless flavors in the fundamental representation. The 3D action can be
easily obtained by a dimensional reduction of the corresponding 4D theory:

S =

∫

d3x

[
∫

d4θK(Q, Q̄, V ) +

∫

d2θW (Q, Q̄) +
1

g2

∫

d2θTr(WαW
α) + H.c.

]

. (2.1)

We use supersymmetric normalization with an explicit factor 1/g2 in front of the gauge kinetic
term. In this normalization, the vector multiplet has the same mass dimension as in 4D, since the
gauge coupling, g2, has mass dimension one in 3D. On the other hand, the chiral multiplet has
mass dimension 1/2. Expanding in component fields, the vector multiplet is given by

V = −iθθ̄σ − θγiθ̄Ai + iθ̄2θλ− iθ2θ̄λ† +
1

2
θ2θ̄2D , (2.2)
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where γi = {iσ2, σ1, σ3} and σ is the real scalar field in the adjoint representation, and the chiral
multiplet is given by

Q = q + ψθ + θ2F . (2.3)

The classical moduli space of the pure N = 2 SYM SU(N) theory is described by the Coulomb
branch parameterized by VEVs of the adjoint, 〈σ〉 = diag(v1, . . . , vN), subject to the tracelessness
condition,

∑

i vi = 0. At a generic point on the Coulomb branch, the unbroken gauge symmetry
is U(1)N−1. The theory on the Coulomb branch retains the Weyl symmetry of SU(N) which
interchanges the eigenvalues of σ. Without loss of generality we will restrict our attention to a
positive Weyl chamber2 defined by vi ≥ vi+1. Quantum effects further divide the Weyl chamber
into subwedges defined by the number of positive eigenvalues. We define the kth subwedge by
requiring there to be exactly k positive eigenvalues (vk > 0 > vk+1). The subwedge boundaries lie
at the points where one of the eigenvalues of σ vanishes. We will call the boundary between the
kth and (k + 1)st subwedges the kth boundary. When l = dim(ker(〈σ〉)) > 1, i.e. when several
eigenvaues of σ vanish simultaneously, l − 1 subwedges become degenerate, and the symmetry
breaking pattern is SU(N) −→ U(l)× U(1)N−l−1.

As first realized by Polyakov [24], Abelian gauge theories without charged matter fields have a
dual description in terms of compact scalar fields. The compact scalar fields, γ, obey the relation,

∂iγ =
π

g2
ǫijkF

jk , (2.4)

where γ has a shift symmetry from its role as a Lagrange multiplier enforcing the Bianchi identity.
In supersymmetric theories, this duality provides Abelian vector superfields with a dual description
in terms of chiral superfields, Φ, with scalar components, φ = 4πσ/g2 + iγ. The compactness of
γ ensures that the low energy theory depends on chiral superfields Y = exp(Φ) charged under the
global symmetry U(1)Jcorresponding to the shift symmetry of γ.

The duality can be easily generalized to the Coulomb branch of non-Abelian gauge theories. In
the case of an SU(N) theory, the group is broken to a product of N−1 U(1)’s and each is dualized
to a chiral superfield, obtaining a description in terms of N − 1 chiral superfields, Yi, defined as

Yi = exp
[

2Tr
(

φT i
)]

. (2.5)

The (T i)ab =
1
2
(δa,i − δa,i+1)δab are the generators of the corresponding non-orthogonal U(1) sub-

groups of SU(N).3 After the duality transformation, the theory has no gauge symmetry. Instead,
the moduli Yi are charged under topological global symmetries U(1)Ji associated with each abelian
factor in the original gauge theory. The topological symmetry is broken by non-perturbative
dynamics and is not a symmetry of the low energy physics.

On the Coulomb branch of the 3D theory, there exist monopole solutions charged under the
corresponding U(1)Ji factors. All of the monopole and multimonopole solutions on the Coulomb
branch can be constructed out of N − 1 fundamental monopoles. In the positive Weyl chamber,

2The Weyl chamber is a wedge subspace of Rr (r = rank(G)) given by R
r/W , where W is the Weyl group [11].

The equivalence class from modding out the Weyl symmetry can be represented by a choice of r positive, simple
roots, {αi}, such that αi · 〈σ〉 ≥ 0 or equivalently vi ≥ vi+1. Sometimes this is referred to as the positive Weyl
chamber [29].

3We chose to describe the low energy U(1)N−1 theory in terms of linearly independent but non-orthogonal U(1)
factors so that Yi are easily identified with fundamental monopoles of the positive Weyl chamber. One could also
give a basis independent description of the Coulomb branch moduli in terms of the positive simple roots, {αi},
where Yi = exp(~αi · φ).
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the fundamental monopoles are the monopoles charged under one of the U(1)Ji’s corresponding to
the Abelian factor generated by T i. The action of the ith fundamental monopole is given by

Si,cl =
4π(vi − vi+1)

g2
. (2.6)

Comparing the classical monopole action with the VEVs of the Coulomb branch moduli Yi, we
note that the monopole weights are given by4 1/Yi.

If we add F massless flavors of chiral superfields in the fundamental representation of SU(N),
the theory possesses mixed Higgs-Coulomb branches of the moduli space (and a pure Higgs branch
when F ≥ N − 1) in addition to the Coulomb branch. The mixed branch of the moduli space is
not accessible from a generic point on the Coulomb branch – the flat directions parameterized by
squark VEVs are lifted by the D-term potential. Squark VEVs are only classically allowed when
one or more vi’s vanish.

First consider the case when only one adjoint VEV, say vk, vanishes. The unbroken gauge
symmetry is U(1)N−1. Of the 2NF chiral superfields, 2(N −1)F of them obtain large real masses,
and the low energy effective theory is left with 2F massless chiral superfields. These fields are
charged under one linear combination of the unbroken U(1)’s, and their VEVs must obey the D-
flatness condition

∑

f

(

|qkf |2 − |qkf |2
)

= 0. By flavor symmetry transformations, the squark VEVs
can be rotated into a single flavor. Alternatively, we could parameterize the vacua by the VEV of
the meson superfield, M , which is classically defined as M = QQ̄ and has maximal rank one in
this region of the moduli space. Thus the space of physically inequivalent vacua on this branch
is N − 1 dimensional and can be parameterized by N − 2 independent combinations of monopole
moduli Yi and a single eigenvalue of M .

Now consider the case when several adjoint VEVs, say l ≤ F , vanish simultaneously. As dis-
cussed above, the unbroken gauge group in this region of the Coulomb branch is U(l)×U(1)N−l−1.
The low energy physics contains 2lF massless chiral multiplets, and D-flatness conditions allow
squark VEVS which further break the gauge group to U(1)N−l−1. The meson matrix has rank l and
once again coordinates along the Higgs direction of this mixed branch can be parameterized by the
l eigenvalues of M . As before, the space of physically inequivalent vacua is (N − 1) dimensional.

It may also be useful to approach U(1)N−l−1 low energy theory from a different direction on
the classical moduli space. If we start at the origin of the classical moduli space, the entire F 2-
dimensional Higgs branch is accessible, and one can turn on l ≤ F meson eigenvalues breaking
SU(N) to SU(N − l). At this point, an (N − l− 1)-dimensional subspace of the Coulomb branch
is accessible, and the gauge symmetry is further broken to U(1)N−l−1. The space of physically
inequivalent vacua remains (N − 1) dimensional. Of course, the superpotential of low energy
theory in the q ≫ v limit should be the same as the superpotential in q ≪ v limit. Considering
the theory in different VEV limits can be used as a tool to both to derive and verify our results.

The introduction of matter fields into the theory has one more important consequence: the
N − 1 fundamental monopole moduli are no longer globally defined throughout the Weyl chamber
because the quantum numbers of the moduli change as one crosses the boundary between different
subwedges of the Weyl chamber. To understand this change of quantum numbers, we need to
recall that quantum numbers of the monopole moduli depend on fermionic zero modes that exist
in the background of the corresponding fundamental monopoles. Each fundamental monopole has
two gaugino zero modes; however, only one fundamental monopole has matter fermion zero modes
in any given subwedge of the Weyl chamber. For instance, in the kth subwedge (denoted by a

4Thus we will refer to Yi’s as monopole moduli.

4



superscript), Y
(k)
k has one zero mode for each massless fundamental (or antifundamental) fermion,

while Y
(k)
i (i 6= k) has no matter fermion zero modes. The quantum numbers of mesons and

fundamental monopoles in the kth subwedge are

U(1)R U(1)B U(1)A SU(F ) SU(F )

Q 0 1 1 F 1

Q̄ 0 −1 1 1 F

M 0 0 2 F F

Y
(k)
k 2(F − 1) 0 −2F 1 1

Y
(k)
i 6=k −2 0 0 1 1

(2.7)

We can see that the quantum numbers of Y
(k)
k and Y

(k)
k+1 monopoles in the kth subwedge are different

from Y
(k+1)
k and Y

(k+1)
k+1 in the (k + 1)st subwedge despite the fact that both pairs of coordinates

correspond to the same semiclassical solutions in each subwedge. One can define a two-monopole
modulus which is continuous across the kth subwedge boundary,

Y
(k)
k,2 = Y

(k)
k Y

(k)
k+1 = Y

(k+1)
k Y

(k+1)
k+1 = Y

(k+1)
k,2 . (2.8)

The introduction of the two-monopole modulus smooths out one combination of the two disconti-
nous coordinates at each subwedge boundary. Specifically, the Y

(k)
k,2 modulus is still discontinuous

at the (k − 1)st subwedge boundary, but a different two-monopole modulus Y
(k)
k−1,2 is continuous

at this boundary. It is possible to define a separate two-monopole modulus for each subwedge
boundary that is continuous across that specific subwedge boundary.

One may hope to patch together the coordinate charts for each subwedge in this manner, but
there are two technical issues which prevent such a construction. The first issue is the existence of
a second modulus that is discontinuous at both subwedge boundaries. In other words, so far we
have been able to define only one transition function for two discontinuous coordinates. A single
continuous two-monopole modulus does not account for the two discontinuous monopole moduli.5

The other issue is that the two adjacent subwedges of the classical Coulomb branch do not overlap,
so the transition functions can not be properly defined. As we will see, the quantum deformations
of the classical moduli space solve these issues by smoothing out the Higgs-Coulomb interface
at each of the subwedge boundaries. The extension of disjoint subwedges onto the intermediate
Higgs-Coulomb branch allows these extended subwedges to overlap, while implementation of the
quantum deformation as a Lagrange multiplier term in the superpotential provides the second
transition function.

3 F = N − 1: Quantum Deformed Moduli Space

In this section, we derive the 3D quantum constraint by calculating two-point holomorphic squark
correlation function in SU(2) theory with one flavor and generalizing the result to SU(N) with
F = N − 1 flavors. As discussed in the previous section, the classical moduli space of the SU(2)
theory has two one-dimensional branches: a Higgs branch parameterized by a squark VEV q = q̄

5One could define the global modulus, Y =
∏

i Yi, which is continuous across all subwedge boundaries as has
been done in previous studies [11, 16]. However, working only in terms of globally defined moduli does not allow
one to investigate dynamics in the interior of the moduli space.
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(or, in a gauge invariant language, by the meson M ∼ qq) and a Coulomb branch parameterized
by the VEV of the adjoint scalar component of the gauge multiplet. Along the Coulomb branch,
the gauge symmetry is broken to U(1), and it is convenient to describe the physics in terms of the
monopole modulus Y . Classical Higgs and Coulomb branches only intersect at the origin of the
moduli space. Therefore, on the Coulomb branch, the holomorphic squark-antisquark correlation
function must vanish clasically. However, as we explicitly show below, this correlation function
obtains a nonvanishing contribution 〈M〉 = 〈qq̄〉 = g2/Y in the monopole background on the
Coulomb branch. The corresponding semiclassical calculation is weakly coupled and under control
for sufficiently large v. Holomorphy guarantees that this result remains valid everywhere on the
Coulomb branch, implying a well known 3D quantum constraint YM = g2.

Our calculation is similar to 4D calculations of quantum constraints in [21]. The instanton
monopole of the SU(2) theory with one flavor has two gaugino and two fundamental zero modes and
contributes to chiral four-fermion correlation function. This correlation function can be converted
to holomorphic two-point squark correlation function by the insertion of two supersymmetric gauge
couplings. The resulting contribution can be visualized in Fig. 1.

Yq(x) q̄(x)

λ
[1]
0

ψ0

λ
[2]
0

ψ̄0

Figure 1: Diagram illustrating the monopole contribution to squark correlation functions

In the language of the path integral, we must evaluate

〈

q̄i(x)qi(x)
〉

=

∫

[Dφ]qu
(

q̄i(x)qi(x)
)

e−Scl.−S[φqu] , (3.1)

where [φqu] is shorthand for all quantum field fluctuations around the monopole background. We
present the details of the calculation in the Appendix. The resulting correlation function is

〈

q̄i(x)qi(x)
〉

=
v2

g4
e
− 4πv

g2 g2I , (3.2)

where I is a positive definite integral. At first sight, this is nonholomorphic, but as explained
in [14, 27], the nonholomorphic prefactor, v2/g4, can be absorbed into redefinition of the Kähler
potential. The required field redefinition leads to a finite renormalization of the gauge coupling

1

g2
−→ 1

g2
− 2

v
. (3.3)

In terms of the rescaled modulus Y , the two-point scalar correlation function becomes

〈M〉 = g2

Y
. (3.4)

The generalization to SU(N) theories with F = N − 1 flavors is reasonably straightforward.
Consider the theory on the mixed Higgs-Coulomb branch where the rank of the meson M is N −2
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and the low energy physics is described by an F = 1 SU(2) theory. The calculation of the two-
point holomorphic scalar correlation function is illustrated in Fig. 2 where crosses represent VEV
insertions. As before, the coupling constant of the low energy theory is renormalized due to the
contributions of nonzero modes and is shifted by terms of the form 1/v. The fundamental monopole
of the low energy SU(2) can be written in terms of the fundamental monopoles and mesons
of the high energy theory YL =

∏

i Yi det
′M/g2(F−1), where the prime denotes the determinant

over N − 2 flavors with nonvanishing VEVs. The scalar correlation function for the remaining
massless flavor of the low energy SU(2) follows from our earlier calculation and gives the quantum
constraint Y detM = g2F . One could also derive the constraint by calculating the 2(N − 1)-point
scalar correlation function at a generic point on the Coulomb branch in the background of N − 1
fundamental monopoles, but this calculation would be difficult in practice.

The existence of quantum deformations of the classical moduli space for an arbitrary number of
flavors implies that the rank of the meson superfield is maximal (rank(M) = N−1). We will later
see that M will have maximal rank (rank(M) = F ) for any number of flavors. This means that,
quantum mechanically, the gauge symmetry is always maximally broken and some fundamental
monopoles can not contribute to the superpotential despite the fact that, at a generic point on
a pure Coulomb branch, these monopoles have exactly the two-fermion zero modes necessary to
generate two-fermion correlation function and the corresponding superpotential terms.

Y1

Y2

YN−1

q(x)

q̄(x)

λ
[1]
0

ψ0

λ
[2]
0

ψ̄0

Figure 2: Diagram illustrating the multimonopole contribution to a 2F squark correlation function

4 F < N−1: Quantum Constraints as Transition Functions

As discussed in Sec. 2, the space of physically inequivalent classical vacua consists of several distinct
(N −1)-dimensional branches. One might expect that the moduli space becomes a smooth, locally
connected manifold in the quantum theory. We could attempt to describe such a manifold in terms
of globally defined moduli Y andM . However,M has maximal rank F , and there are an insufficient
number of globally defined moduli (F +1) to parameterize the entire (N − 1)-dimensional moduli
space when F < N − 1. The fundamental monopoles can not serve as additional coordinates on
the moduli space, since they are discontinous at subwedge boundaries. To resolve the problem, one
would need to introduce new composite coordinates valid in two or more subwedges and transition
functions between the composite coordinates that are valid on overlapping sets of subwedges. For
example, one could use the two-monopole modulus Y

(k)
k,2 discussed earlier. However, this is not

7



sufficient, because there are two discontinous coordinates at each subwedge boundary. One of
these coordinates can be replaced by the two-monopole modulus, but the existence of a second
discontinous coordinate will prevent us from patching together disjoint subwedges. As we will
show below, quantum effects deform the classical moduli space even in theories with F < N − 1,
but such deformations are local (i.e. they are only valid in specific subwedges of the classical
moduli space). Moreover, these deformations smooth out the interface between the subwedges
and make the mixed Higgs-Coulomb branch accessible from either adjacent subwedge. These
quantum deformations also provide necessary transition functions to cover the entire quantum
moduli space with overlapping coordinate charts. The quantum deformed moduli space is further
lifted by monopoles, and the exact superpotential of the theory can be written down in terms of
the appropriate coordinates in all coordinate patches.

In Sec. 4.1, we will show how this plays out in the case of an SU(3) theory with F = 1.
While the SU(3) example is illuminating, it is not sufficiently general. In this case, there are two
globally defined moduli Y = Y1Y2 and M which can describe dynamics everywhere on the moduli
space. In Sec. 4.2, we extend these results to all SU(N) theories with F = 1. We show that once
again quantum effects deform the classical moduli space, relating monopole and meson moduli
at each boundary. This deformation allows us to cover the moduli space by a set of overlapping
coordinate charts, with each patch covering two neighboring subwedges. We will demonstrate
that calculations of the pre-ADS superpotential generated by single monopole contributions in any
subwedge of the Coulomb branch lead to the same result, and this is the same superpotential that
can be found by considering monopole and multimonopole contributions on mixed Higgs-Coulomb
branches emanating from the boundaries between subwedges. In Sec. 4.3, we further generalize
the results to SU(N) models with F < N − 1 flavors. Here the quantum deformation relates the
mesons to F -monopole composite operators

Yk,F detM =

(

k+F−1
∏

i=k

Y
(k)
i

)

detM = g2F . (4.1)

This local deformation allows us to introduce the (F+1)-monopole modulus Yk,F+1 =
∏k+F+1

i=k Y
(k)
i

which is continuous across the intermediary boundaries Y
(k)
k,F+1 = Y

(k+1)
k,F+1 = . . . = Y

(k+F )
k,F+1 . We can

then cover the moduli space by a set of overlapping coordinate charts with well defined transition
functions and show that superpotentials calculated on all of the quantum-mechanically accessible
branches of the moduli space are equivalent.

4.1 SU(3) theory with F = 1

Consider a one flavor SU(3) model on the Coulomb branch in the positive Weyl chamber. Classi-
cally, the Weyl chamber is split into two subwedges depending on the sign of v2, while at v2 = 0, the
Higgs branch is accessible. In the v2 < 0 subwedge, it is convenient to parameterize the Coulomb
branch coordinate by monopole moduli, Y1 and Y2, which in a semiclassical regime are approxi-
mated by Y1 ∼ exp [4π(v1 − v2)/g

2] and Y2 ∼ exp [4π(v2 − v3)/g
2]. In the v2 > 0 subwedge, we

need to choose different Coulomb branch moduli Y ′
1 and Y ′

2 . As explained earlier, despite similar
behavior in the semiclassical regime, the quantum numbers of Y ′

1 and Y ′
2 differ from those of Y1

and Y2 respectively and do not represent the same degrees of freedom in the quantum theory.
Consider the first subwedge of the Weyl chamber defined by v1 > 0 > v2 > v3. Here the

first fundamental monopole Y1 has four (two gaugino and two matter) fermion zero modes, while
the second fundamental monopole Y2 has two gaugino zero modes. Only the second fundamental
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monopole contributes to the superpotential, and we find W = Y −1
2 . In addition, we can calcu-

late two-point scalar correlation function in Y1 background. Since the fields of the Y1 monopole
(including the fermion zero modes) can be embedded in an SU(2) subgroup of SU(3), the cal-
culation is nearly identical to the one we performed in the previous section. There are two new
features that must be taken into account. First, the contributions of nonzero modes of the matter
doublets are modified since, from the point of view of the Y1 monopole, the matter fermions have
real mass (v1 + v2)/2. Second, the gaugino contains components that transform as doublets in
the Y1 monopole background. These components of the gaugino do not have zero modes, but
their nonzero modes contribute to the path integral just like matter doublets with a real mass
3(v1+ v2)/2 would. Similar to the nonholomorphic prefactor in the SU(2) theory, these effects can
be understood as finite renormalization of the U(1) gauge coupling of the low energy theory, and
we find Y1M ∼ g2. This result can be enforced in the first subwedge of the Weyl chamber through
a Lagrange multiplier term in the superpotential,

W =
g4

Y2
+ λ1(Y1M − g2) . (4.2)

In the v1 > v2 > 0 > v3 sub-wedge, we similarly find

W =
g4

Y ′
1

+ λ2(Y
′
2M − g2) . (4.3)

To verify that these two expressions are consistent with each other we must compare them at a
jumping point where v2 = 0. Integrating out the Lagrange multiplier terms, both forms of the
superpotential lead to the same result

W =
g6

Y1Y2M
=

g6

Y ′
1Y

′
2M

, (4.4)

where the composite two-monopole modulus, Y = Y1Y2 = Y ′
1Y

′
2 , is continous across the boundary

between the two subwedges as explained in Sec. 2. It is tempting to interpret the superpotential
(4.4) as a two-monopole contribution to the superpotential, and indeed it agrees with the results of
the two monopole superpotential calculation on the mixed Higgs-Coulomb branch of the theory [20].
We conclude that Y and M are valid in both coordinate charts of the F = 1 SU(3) theory and
are related to moduli of the two coordinate charts by {Y1 = g2/M, Y2 = YM/g2} and {Y ′

1 =
YM/g2, Y ′

2 = g2/M}.
Note that the above procedure is precisely that described at the beginning of this section. The

quantum constraints enforced by λ1 and λ2 provided a transition functions from the two sets of
Coulomb branch coordinates to the mixed Higgs-Coulomb branch coordinates, while the continuity
of the two-monopole modulus ensures that the two Coulomb branch coordinate charts overlap on
the Higgs branch. Together, these effects guarantee agreement between all three expressions for
the superpotential.

Let us consider some standard checks of ADS and pre-ADS superpotentials. Specifically, we
can study the theory on a Higgs branch where the low energy physics is described by a pure SYM
SU(2) as well as deform the theory by a large holomorphic mass term, m, so that the low energy
description is given in terms of a pure SYM SU(3) theory. In the former case, the low energy
superpotential is given by 1/YL, and by comparing with (4.4), we conclude that the matching of
high and low energy theories requires a rescaling of chiral superfields to absorbM into the definition
of YL = Y1Y2(M/g2). Similarly to nonholomorphic rescaling discussed in [27], this field redefinition
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affects the matching relation between the coupling constants of the high and low energy theories
and should reproduce the finite renormalization of the low energy U(1) coupling constant. When
the theory is deformed by a mass term, the low energy superpotential must be

W =
g4L
Y1L

+
g4L
Y2L

. (4.5)

We can obtain this superpotential by starting either with (4.2) or (4.3) and adding a mass term.
For example, in the v2 < 0 subwedge of the Weyl chamber, the superpotential is

W =
g4

Y2
+ λ1(Y1M − g2) +mM . (4.6)

Integrating out both the Lagrange multiplier and the meson superfield, we find the low energy
superpotential,

W =
g2m

Y1
+
g4

Y2
, (4.7)

which agrees with (4.5) if we identify6 g2L = g2, Y1L = Y1g
2/m and Y2L = Y2. Once again, the

rescaling required to absorb the mass into the YL monopole of the low energy theory determines the
coupling constant matching and correctly reproduces the renormalization of the U(1)1 coupling
constant. We stress that the local deformation of the moduli space, implemented through the
Lagrange multiplier term in (4.6), plays an essential role in reproducing the superpotential of the
SYM low energy theory when the matter fields are decoupled by taking the superpotential mass
term, m, to infinity.

4.2 SU(N) with F = 1

The generalization to SU(N) theories with an arbitrary number of colors and one massless flavor

is straightforward. We will denote monopole moduli in the kth subwedge by Y
(k)
i , i = 1, . . . , N−1.

With the exception of Y
(k)
k , all the fundamental monopoles in this subwedge have two gaugino zero

modes and no matter zero modes. Thus they contribute to the superpotential. Calculating the
two point scalar correlation function, we find a local constraint applicable to the kth subwedge,
Y

(k)
k M = g2. Thus within this subwedge of the Coulomb branch, the physics is described by the

superpotential

W =
∑

i 6=k

g4

Y
(k)
i

+ λk(Y
(k)
k M − g2) . (4.8)

Although this superpotential is calculated in the kth subwedge, it can be extended into the (k+1)st

(or (k − 1)st) subwedges by using the constraint as a transition function and replacing Y
(k)
k+1 (or

Y
(k)
k−1) by the composite two-monopole modulus that is continuous in the appropriate regions. Let

us explicitly carry this out for the (k + 1)st subwedge. Integrating out the Lagrange multiplier,
the superpotential can be written as

W =
∑

i 6=k,k+1

g4

Y
(k)
i

+
g6

Y
(k)
k Y

(k)
k+1M

. (4.9)

6Here we neglect finite non-holomorphic shifts in the coupling discussed earlier.
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The last term can be interpreted as arising from the two monopole contribution considered in [20].
In this form, the superpotential is valid both in the kth and (k + 1)st subwedges due to their
overlap at the mixed Higgs-Coulomb boundary. However, in the (k + 1)st subwedge, the same
superpotential can be written in two more forms. First, it can be written in terms of the monopole

moduli of the (k + 1)st subwedge, Y
(k+1)
i , and the local constraint, λk+1

(

Y
(k+1)
k+1 M − g2

)

, valid in

this subwedge:

W =
∑

i 6=k+1

g4

Y
(k+1)
i

+ λk+1(Y
(k+1)
k+1 M − g2) . (4.10)

Second, it can be written in terms of the composite monopole moduli Y
(k+1)
k+1 Y

(k+1)
k+2 M/g2. Recall

that this term in the superpotential can be interpreted as a two monopole contribution generated
on the mixed Higgs-Coulomb branch accessible from the boundary between the (k+1)st or (k+2)nd
subwedges. This procedure can be used to recursively generate the sets of coordinate charts and
transition functions required to cover the entire quantum moduli space of the theory and to define
it as a smooth, locally connected manifold. Moreover, the calculations on all accessible branches
of the moduli space lead to the same results. It is easy to see that, just like in the case of the
SU(3) theory, the deformation of the theory by the mass term correctly leads to the low energy
physics described by a pure N = 2 SYM SU(N) theory.

4.3 SU(N) with F < N − 1

We conclude our study of the pre-ADS superpotentials and quantum deformations of the moduli
space by considering a general case of an SU(N) theory with F massless flavors. We will consider
the first sub-wedge of the Weyl chamber, v1 > 0 ≥ v2 ≥ . . . ≥ vN . By calculating 2F scalar
correlation function in the F -monopole background, one finds there exists a local constraint given

by
(

∏F
i=1 Yi

)

detM = g2F .7 This is easiest to see by performing a calculation on the mixed Higgs-

Coulomb branch where the rank F − 1 meson VEV is allowed. This is the region where vi = 0 for
i = 2, . . . , F − 1. In the presence of VEVs, the multimonopole, Y

(1)
1,F =

∏F
i=1 Y

(1)
i , will collapse into

a single fundamental monopole of the low energy SU(N−F +1) theory, Y1L = Y
(1)
1,F det′M/g2(F−1),

where det′M denotes determinant taken over F − 1 flavors with large VEV. As discussed earlier,
the rescaling used in the definition of Y1L shifts the coupling of the low energy theory. We can
calculate the two-scalar correlation function for the remaining squark flavor in the low energy
effective theory and find

〈MFF 〉 =
g2L
Y1L

=
g2F

Y
(1)
1,F det′M

. (4.11)

One can then write the full nonperturbative superpotential in the form,

W =
N−1
∑

i=F+1

g4

Y
(1)
i

+ λ1

(

Y
(1)
1,F detM − g2F

)

. (4.12)

7Similar to the SU(N) with F = N − 1 case described in Sec. 3, the constraint enforces rank(M) = F and
prohibits the superpotential of F individual fundamental monopoles.
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As expected, integrating out the Lagrange multiplier term, we find the multimonopole generated
superpotential found in [20],

W =
N−1
∑

i=F+2

g4

Y
(1)
i

+
g2F+4

Y
(1)
1,F+1 detM

, (4.13)

where Y
(1)
1,F+1 =

∏F+1
i=1 Y

(1)
i .

Alternatively, we can consider the second subwedge, v1 > v2 > 0 ≥ . . . ≥ vN where the rank of
M is F − 1. Here we find the superpotential

W =
1

Y
(2)
1

+
N−1
∑

i=F+2

g4

Y
(2)
i

+ λ2

(

Y
(2)
2,F detM − g2F

)

. (4.14)

The valid coordinate patches for (4.12) and (4.14) overlap on the mixed Higgs-Coulomb branch
where both superpotentials are

W =
N−1
∑

i=F+2

g4

Y
(1/2)
i

+
g2F+4

Y
(1/2)
1,F+1 detM

. (4.15)

With the help of the constraints, we can construct transition functions that allow us to cover the
full moduli space with coordinate charts and verify that superpotentials calculated in any of these
charts are equivalent.

Finally, we deform the theory by adding the mass term mMFF to the last flavor. Integrating
out the heavy flavor we find the superpotential of low energy SU(N) theory with F − 1 flavors

W =

N−1
∑

i=F+1

g4

Y
(1)
i

+
mg2F

Y
(1)
1,F det′M

. (4.16)

This is precisely the superpotential of the F − 1 flavor theory calculated in [20]. In addition, we

need to compliment this superpotential by a new local constraint Y
(1)
1,F−1 det

′M = g2(F−1). This
superpotential can then be extended to other regions of the F − 1 flavor theory moduli space or
reduced to the superpotential of the F − 2 flavor theory by adding another large mass term.

5 Conclusions

In this paper, we explicitly calculated quantum constraint YM = g2 in the 3D SU(2) theory with
one massless flavor and showed how to generalize the calculation to an F = N − 1 theory with
an arbitrary N . We also showed that a local version of such a constraint exists in 3D SU(N)
theories with an arbitrary number of flavors, F < N − 1 flavors. The existence of local constraints
allowed us to construct a set of coordinate charts that cover the entire moduli space and show
that the superpotential calculations in different charts are equivalent. Additionally, the existence
of local constraints ensures the agreement between the superpotentials generated by fundamental
monopoles on the pure Coulomb branch of an SU(N) theory [11] with the superpotentials aris-
ing from fundamental monopoles and multimonopole contributions on the mixed Higgs-Coulomb
branch of the theory [20]. The validity of the superpotential throughout the entire moduli space
implies that the physics is fully described by a single Coulomb branch of the low energy pure SYM

12



SU(N − F ) theory coupled to dilaton-like moduli, M . We also showed that constraints play an
essential role in the flow of the superpotential between theories with different numbers of flavors.
When a superpotential mass term for one flavor is added to the theory and the heavy flavor is
decoupled, the local constraint guarantees that the low energy superpotential reproduces the one
expected in a theory with F − 1 flavors. To continue the flow in flavor space as additional mass
terms are added, one must include new local constraints that are generated whenever new mass
terms are added to the superpotential. We expect that our analysis of SU(N) gauge theories
by considering deformations of the classical moduli space will be useful in understanding gauge
theories with more general gauge groups and matter content.
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A Squark Correlation Function Calculation

In this Appendix, we discuss the evaluation of the path integral for an SU(2) theory with one
flavor which leads to (3.4). We begin by deriving the instanton monopole integration measure,
collective coordinates, one-loop determinants and all. Then we derive the fermionic zero mode
functions and evaluate the integral. As a preparation for this discussion, let us recall properties
of the single monopole configuration corresponding to the first nontrivial solution of the classical
equations of motion [25, 26],

Aa
i (r) = ǫaij

nj

r
F (vr) , σa(r) = vnaH(vr) ,

F (ρ) = 1− ρ

sinh ρ
, H(ρ) =

cosh ρ

sinh ρ
− 1

ρ
.

(A.1)

Such solutions satisfy the lower bound of the Bogomol’nyi bound and are exact since the adjoint
scalar has no classical potential. There remain quantum fluctuations of the fields in this classical
background. Some of these fluctuations do not have a corresponding change in the action. These
are the zero modes of the instanton monopole. Index theorems guarantee a certain number of zero
modes.

Specifically, the single monopole has four bosonic zero modes: three for the position of the
monopole and one for a leftover U(1) transformation. If we add a fermion ψ to the theory, it also
acquires zero modes satisfying

(iDµσ̄
µ)ψ = (i∂iσ

i + Aa
i σ

iT a + σaT a)ψ = 0 , (A.2)

where the number of zero mode solutions and T a depend on the representation of ψ. We normalize
our generators such that Tr

(

T aT b
)

= δab/2 in the fundamental representation. Fermions in the
adjoint representation have two zero modes, and fermions in the fundamental representation have
a single zero mode.

A.1 Monopole-Instanton Measure

As discussed in Sec. 3, the monopole contribution to the squark correlation function is (3.1). In this
formula, all fields have been expanded around their classical solution, φ = φcl.+φqu.. The quantum
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fluctuations come in two types: nonzero modes and zero modes. To leading order, the nonzero
mode fluctuations are gaussian and their evaluation reduces to determinants of ∆− = /Dcl /̄Dcl

and ∆+ = /̄Dcl /Dcl. ∆− has zero modes in self-dual configurations which are excluded from the
determinants (denoted with a det′). In 3D, the contributions of nonzero modes do not cancel
even in supersymmetric theories [13, 14]. As a result, the path integral of the N = 2 theory

with F fundamental flavors is proportional to a factor of (Radj)
3/4 (Rfund)

−F/2, where the ratio of
determinants RR for an arbitrary representation R is given by

RR =
det∆+

det′ ∆−

= lim
µ→0

[

µIR(0) exp

(

−
∫ ∞

µ2

dM2

M2
IR(M

2)

)]

. (A.3)

IR(M
2) is the generalized zero mode index for representation R. The ratio of nonzero mode

determinants is Radj = (2v)4 for the adjoint and Rfund = v2 for the fundamental representation [14].
After converting the zero mode integrals to collective coordinates and using zero mode solutions

normalized to one, the path integral measure becomes [13]

∫

[Dφ0] =

∫

d3z

(2π)3/2
(Scl)

3/2

∫

dθ

(2π)1/2

(

Scl

v2

)1/2 ∫

d2ξ

∫

dχ

∫

dχ̄ , (A.4)

where z and θ make up the bosonic collective coordinates, and the ξ, χ and χ̄ are Grassmannian
collective coordinates for the gauginos and quarks respectively. If we expand the effective squark
action in supersymmetric gauge couplings, the correlation function simplifies to

〈

q̄i(x)qi(x)
〉

=
(Radj)

3/4(Rfund)
−1/2

2π

(Scl)
2

v
e−Scl

∫

d3z

∫

d2ξ

∫

dχdχ̄

× q̄(x)q(x)

∫

d3y1 (q
∗λψ)

∫

d3y2
(

q̄∗λψ̄
)

. (A.5)

Now we turn to deriving the fermionic zero modes.

A.2 Gaugino Zero Modes

Reverting to σa being the fourth component of the four-vector gauge field Aµ, the gaugino has zero
mode solutions resulting from supersymmetry transformations on the monopole field configuration

λa [β]
α (r) =

−1√
2
(σµν) β

α F a
µν ≡

√
2(σk) β

α Ba
k(r) , (A.6)

where Ba
k(r) is the kth component of the ath color magnetic field, Ba

k = −1
2
ǫijkF

a ij, in monopole
background and β labels the two zero modes. Explicit evaluation finds

Ba
k(r) = (δak − nkna)

vH(vr)

r
(1− F (vr)) + nknaF (vr)

r2
(2− F (vr)) . (A.7)

After normalizing the gaugino zero modes and introducing a dimensionless function, B̃a
k(vr) =

1
v2
Ba

k , we find

λa [β]
α (r) =

√

g2v3

4π
(σk) β

α B̃a
k(vr) . (A.8)
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A.3 Quark Zero Modes

Zero mode solutions for fundamental fermions were found in [28] and are given by

ψiα(r) = (σ2)iαC exp

[

−
∫ r

0

dr

(

v

2
H(vr) +

F (vr)

r

)]

, (A.9)

where C is the normalization constant. In supersymmetric gauge theories, there is a closed form
solution,

ψiα(r) = (σ2)iα

√

v3

8π

tanh vr
2√

vr sinh vr
:= (σ2)iα

√

v3

8π
X(vr) , (A.10)

where X(r) is implicitly defined. Similar solutions for the antifundamental modes can be found by
raising indices with the antisymmetric tensor, ǫij . Reintroducing the Grassmannian coordinate, χ,
to the fermion field, the zero mode is (ψ0)iα = ψiαχ.

A.4 Evalulating the integral

Inserting (A.8) and (A.10) into (A.5) then performing the Grassmann integration and replacing
the products of squark operators with their Green’s functions,8 one finds

〈

q̄i(x)qi(x)
〉

=
8v2

2π

(4π)2v

g4
g2v8

32π2
e−Scl

∫

d3z
∏

i=1,2

∫

d3yi
4π

e−
v
2
|x−yi|

v|x− yi|
Ω(v|z − yi|) , (A.11)

where Ω(ρ) = δkaX(ρ)B̃a
k(ρ). Shifting the center of integration such that yi → yi+z and z → z+x,

the x dependence drops out. The angular yi integrals can be evaluated and the integral simplifies
to

〈

q̄i(x)qi(x)
〉

=
v2

g4
e−Sclg2I , (A.12)

where I = 4
∫

dρz
∏

i=1,2

∫

dρiρi(e
−|ρz−ρi|/2−e−|ρz+ρi|/2)Ω(ρi). Note that the ρi are the dimensionless

magnitudes of the 3D vectors, ρi = v|~yi|. It takes some work, but one can show that the integrand
of I is positive definite and converges quickly. Thus our answer is

〈

q̄i(x)qi(x)
〉

∼ g2
(

v2

g4

)

e−Scl , (A.13)

which is nonholomorphic due to the factor of v2/g4. As explained in [14,27], this nonholomorphic
factor reflects finite renormalization of g2 and can be absorbed into the definition of the kinetic
terms in the low energy theory. After taking this into account, the correlation function becomes a
holomorphic relation between chiral operators YM = g2.
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