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Article

Perturbations in Endocytotic and
Apoptotic Pathways Are Associated With
Chemotherapy-Induced Nausea

Komal Singh, RN, PhD1, Huangshen Cao, PhD2,
Christine Miaskowski, RN, PhD3, Yvette P. Conley, PhD4 ,
Marilyn Hammer, RN, PhD5, Fay Wright, RN, PhD6 ,
Jon D. Levine, MD, PhD7, and Kord M. Kober, PhD3

Abstract
Background: While vomiting is well controlled with current antiemetic regimens, unrelieved chemotherapy-induced nausea
(CIN) is a significant clinical problem. Perturbations in endocytotic and apoptotic pathways in the gut can influence the functioning
of the microbiome-gut-brain-axis and the occurrence of gastrointestinal (GI) symptoms. However, limited information is available
on the mechanisms that underlie unrelieved CIN. Objectives: The purpose of this study was to evaluate for perturbed biological
pathways associated with endocytosis and apoptosis in oncology patients who did (n ¼ 353) and did not (n ¼ 275) report CIN
prior to their second or third cycle of chemotherapy (CTX). Methods: Oncology patients (n ¼ 735) completed study
questionnaires in the week prior to their second or third cycle of CTX. CIN occurrence was evaluated using the Memorial
Symptom Assessment Scale. Pathway impact analyses (PIA) were performed in 2 independent samples using RNA-sequencing
(sample 1, n ¼ 334) and microarray (sample 2, n ¼ 294) methodologies. Fisher’s combined probability method was used to
identify signaling pathways related to endocytotic and apoptotic mechanisms that were significantly perturbed between the
2 nausea groups across both samples. Results: CIN was reported by 63.6% of the patients in sample 1 and 48.9% of the
patients in sample 2. Across the 2 samples, PIA identified 4 perturbed pathways that are involved in endocytosis
(i.e., endocytosis, regulation of actin cytoskeleton) and apoptosis (i.e., apoptosis, PI3K/Akt signaling). Conclusions: Our
findings suggest that CTX-induced inflammation of the GI mucosa, that results in the initiation of endocytotic and apoptotic
processes in the gut, is associated with the occurrence of CIN.
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Chemotherapy-induced nausea (CIN) is one of the most

feared and debilitating side effects of chemotherapy (CTX;

Kuchuk et al., 2013). While antiemetic prophylaxis controls

vomiting, persistent CIN remains a significant clinical prob-

lem (Roila et al., 2016). In our recent study (Singh, Kober, et

al., 2018), 48% of the patients reported CIN prior to their

second or third cycle of CTX. Findings from 2 studies suggest

that CIN could be the sentinel symptom for the occurrence

and severity of a wide array of CTX-induced symptoms

(Donovan et al., 2016; Papachristou et al., 2019). Little is

known about the molecular mechanisms that are associated

with occurrence and/or severity of CIN. Findings from a

recent review of candidate gene studies noted that the major-

ity of the genes that were selected based on 3 hypothesized

mechanisms for CIN (i.e., alterations in serotonin receptor,

drug metabolism, and/or drug transport pathways) were not

associated with either its occurrence or severity (Singh,

Dhruva, et al., 2018).

An increased understanding of the mechanisms that underlie

CIN may guide the development of targeted interventions

for this persistent symptom that does not respond to
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evidence-based antiemetic regimens. Emerging evidence

suggests that CTX-induced alterations in the functioning of the

microbiome-gut-brain-axis (MGBA) are associated with

the occurrence of CIN (Donovan et al., 2016; Singh, Dhruva,

et al., 2020). Specifically, in our previous gene expression (GE)

study (Singh, Dhruva, et al., 2020), perturbations in pathways

involved in mucosal inflammation and disruption of the gut

microbiome, that are known to effect the functioning of the

MGBA, were associated with the occurrence of CIN. In terms

of mucosal inflammation, the perturbed Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways included those

involved in cytokine-cytokine receptor interactions,

mitogen-activated protein kinase activity, nuclear factor kappa

beta (NF-kB) signaling, and chemokine signaling. In addition,

the KEGG pathways that suggested that CIN occurrence was

associated with disruptions in the MGBA included: intestinal

immune network for immunoglobulin A production, NF-kB

signaling, peroxisome-proliferation-activated receptor signal-

ing, interleukin (IL)-17 producing helper T cell differentiation,

tight junctions, and antigen processing and presentation. Taken

together with several lines of preclinical (Logan et al., 2007)

and clinical (Donovan et al., 2016; Keefe et al., 2004) evidence

that suggest that CTX-induced activation of the MGBA may

result in a variety of gastrointestinal (GI) symptoms (e.g.,

abdominal bloating), we suggested that CTX-induced mucosal

inflammation and disruption of the gut microbiome can alter

the bidirectional communication within the MGBA (Bajic

et al., 2018) and result in the development of CIN and other

GI symptoms reported by oncology patients receiving CTX.

A growing body of evidence suggests that perturbations in

endocytotic (Lechuga & Ivanov, 2017) and apoptotic

(Carneiro-Filho et al., 2004; Gibson et al., 2005; Keefe

et al., 1997; Logan et al., 2007; Sonis et al., 2004) pathways

in the gut can influence the functioning of the MGBA and

the occurrence of GI symptoms. Endocytosis is a fundamen-

tal biological process that carries out essential cellular func-

tions in epithelial cells. Within the GI system, enterocytes are

regulated by endocytotic signals that result in: digestion and

absorption of nutrients and drugs; barrier permeability to

microorganisms, toxins, and antigens; and transcytotic cross-

talk between the intestinal lumen and the lamina propria cells

that have access to the circulation (Zimmer et al., 2016).

While not studied in association with the administration of

CTX, findings from a number of studies, in a variety of

inflammatory bowel diseases, suggest that intestinal inflam-

mation is an “upstream event” that results in alterations in

endocytotic processes in enterocytes that are associated with

disruptions in the functioning of the MGBA (Lechuga &

Ivanov, 2017; Zimmer et al., 2016). Given that the adminis-

tration of CTX produces intestinal inflammation and

increases in gut permeability (Montassier et al., 2015), it is

reasonable to hypothesize that the administration of CTX

results in perturbations in endocytotic pathways that may

be associated with occurrence of CIN.

Within the GI tract, apoptosis, a form of programmed cell

death, is a fundamental mechanism that contributes to

homeostasis by maintaining a strict equilibrium between cell

proliferation in intestinal crypts and cell shedding from villus

tips (Negroni et al., 2015). A growing body of both pre-clinical

(Al-Dasooqi et al., 2011; Bowen, Gibson, Cummins, et al.,

2007; Bowen et al., 2005, 2010; Gibson et al., 2005; Papacon-

stantinou et al., 2001) and clinical (Bowen et al., 2005; Keefe

et al., 2000) evidence suggests that following the administra-

tion of CTX, small intestinal crypts undergo apoptosis that

results in GI mucositis.

Given the limited amount of clinical research on associa-

tions between CTX-induced alterations in endocytotic and/or

apoptotic processes and GI symptoms, including CIN, in the

current study, we extend the findings from our previous GE

study (Singh, Dhruva, et al., 2020) and evaluated for perturbed

biological pathways associated with endocytosis and apoptosis

in oncology patients who did and did not report CIN prior to

their second or third cycle of CTX.

Methods

Patients and Settings

This study is part of a larger, longitudinal study, of the symp-

tom experience of oncology outpatients receiving CTX whose

details are published elsewhere (Miaskowski et al., 2014;

Singh, Kober, et al., 2020; Singh, Paul, et al., 2020; Singh,

Dhruva, et al., 2020; Singh, Kober, et al., 2018; Wright et al.,

2015). Eligible patients were� 18 years of age; had a diagnosis

of breast, GI, gynecological (GYN), or lung cancer; had

received CTX within the preceding 4 weeks; were scheduled

to receive at least two additional cycles of CTX; were able to

read, write, and understand English; and gave written informed

consent. Patients were recruited from two Comprehensive Can-

cer Centers, a Veteran’s Affairs hospital, and four community-

based oncology programs.

Study Procedures

As described previously (Singh, Kober, et al., 2020), the study

was approved by the Institutional Review Board at each of the

study sites. Of the 2,234 patients approached, 1,343 consented

to participate (60.1% response rate). The major reason for refu-

sal was being overwhelmed with their cancer treatment. Eligi-

ble patients were approached in the infusion unit during their

first or second cycle of CTX by a member of the research team

to discuss study participation and obtain written informed con-

sent. Data from the enrollment assessment (i.e., the assessment

of nausea in the week prior to the patient’s second or third cycle

of CTX) were used in this analysis to create the nausea groups.

Blood for ribonucleic acid (RNA) isolation was collected at the

enrollment assessment. Medical records were reviewed for dis-

ease and treatment information. For this paper, a total of 735

patients provided blood samples for the GE analyses (see Sup-

plementary Figure 1).
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Instruments

Demographic and clinical characteristics. Patients completed a

demographic questionnaire, the Karnofsky Performance Status

(KPS) scale (Karnofsky, 1977), and the Self-Administered

Comorbidity Questionnaire (SCQ; Sangha et al., 2003).

Nausea assessment. The Memorial Symptom Assessment Scale

(MSAS) was used to assess nausea as reported elsewhere

(Singh, Dhruva, et al., 2020). Briefly, patients’ reports of the

occurrence of nausea were used to dichotomize the sample

(Portenoy et al., 1994). Patients who provided a rating for

occurrence, frequency, severity, and/or distress for the nausea

item were coded as having nausea. Patients who indicated “no”

to the occurrence item were coded as not having nausea.

Coding of the Emetogenicity of the CTX Regimens

Using the Multinational Association for Supportive Care in

Cancer (MASCC) guidelines (Roila et al., 2016), each CTX
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Figure 1. Graph summary of the perturbation propagation on the apoptosis KEGG signaling pathway (hsa04210) for Patients in Sample 2 (i.e.,
having Gene Expression Measured by Microarray). The Square Nodes Denote Genes with Gene Expression Changes and the Circle Nodes Denote
All Other Nodes. The color of each node represents the perturbation (Red¼ Positive, Blue¼Negative) and the Shade represents the strength of
the perturbation. Note that the Square Nodes with No Parents will have no Accumulation. Colored version of this figure is available online.
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drug in the regimen was classified as having minimal, low,

moderate, or high emetogenic potential. The emetogenicity

of the regimen was categorized into three groups (i.e., low/

minimal, moderate, or high) based on the CTX drug with the

highest emetogenic potential.

Coding of the Antiemetic Regimens

Each antiemetic was coded as a neurokinin-1 (NK-1) receptor

antagonist, a serotonin receptor antagonist, a dopamine recep-

tor antagonist, anti-psychotic, anti-anxiety, or a steroid. The

antiemetic regimens were coded into four groups: none

(i.e., no antiemetics administered); steroid alone or serotonin

receptor antagonist alone; serotonin receptor antagonist and

steroid; or NK-1 receptor antagonist and two other antiemetics

(e.g., a serotonin receptor antagonist, dopamine receptor

antagonist, prochlorperazine, lorazepam, and/or a steroid).

Acquisition and Processing of Gene Expression Data

The methods used for the GE analyses are described in detail

elsewhere (Singh, Dhruva, et al., 2020). In brief, GE of total

RNA isolated from peripheral blood of the 735 patients who

provided a blood sample was quantified for 375 patients using

RNA-sequencing (RNA-seq) (i.e., sample 1) and for 360

patients using microarray (i.e., sample 2). After quality control,

the final dataset evaluated for GE for 334 patients in sample 1

and 294 in sample 2 (Supplementary Figure 1).

Data Analyses

Demographic and clinical data. Demographic and clinical data

from the two patient samples were analyzed separately using

SPSS Version 23 (IBM, Armonk, NY) and are described in

detail elsewhere (Singh, Dhruva, et al., 2020). Univariate and

multiple logistic regression analyses were used to determine

significant covariates for inclusion in the differential expres-

sion (DE) analysis.

Pathway impact analysis. DE was quantified using generalized

linear models separately for both samples (Singh, Dhruva, et

al., 2020). These analyses were adjusted for demographic and

clinical characteristics that differed between patients who did

and did not have nausea. In addition, the models included sur-

rogate variables generated by surrogate variable analysis

(SVA) (Leek & Storey, 2007) using the sva Bioconductor/R

package (https://bioconductor.org/packages/release/bioc/html/

sva.html) to adjust for potential batch effects. For sample 1,

three characteristics (i.e., KPS score, CTX cycle length, type of

prior cancer treatment) and two surrogate variables were

retained in the final model. For sample 2, four characteristics

(i.e., having childcare responsibilities, KPS score, emetogeni-

city of the CTX regimen, cancer diagnosis) and 23 surrogate

variables were retained in the final model. The DE results were

summarized as the log fold change and p-value for each gene.

As previously reported (Singh, Dhruva, et al., 2020), to

evaluate these results and interpret them in the context of apop-

totic and endocytotic processes, we used pathway impact anal-

ysis (PIA) to test for patterns in higher orders of biology. PIA

includes potentially important biological factors (e.g., gene-

gene interactions, flow signals in a pathway, pathway topolo-

gies), the magnitude (i.e., log fold-change), and p-values from

the DE analysis (reviewed in Mitrea et al., 2013). The PIA

included the results of the DE analysis for all genes (i.e., cutoff

free) to determine probability of pathway perturbations

(pPERT) using Pathway Express (Draghici et al., 2007). A total

of 208 signaling pathways were defined using the KEGG data-

base (Aoki-Kinoshita & Kanehisa, 2007). Sequence loci data

were annotated with Entrez gene identifier. The gene symbols

were annotated using the HUGO Gene Nomenclature Commit-

tee resource database (Gray et al., 2013).

Fisher’s combined probability test was used to combine the

DE tests from both datasets using the uncorrected p-values

(Fisher, 1925, 1948). The two datasets (i.e., sample 1 and

sample 2) were merged at the gene level using the Entrez gene

identifier. Significance of the combined transcriptome-wide

PIA analysis was assessed using a family wise error rate

(FWER) of 1% under the Bonferroni method (Draghici et al.,

2007). Finally, we evaluated these results specifically for path-

ways in the context of apoptotic and endocytotic processes.

Results

Differences in Demographic and Clinical Characteristics

As previously reported (Supplementary Tables 1–3) (Singh,

Dhruva, et al., 2020), after the multiple logistic regression

analyses, patients in sample 1 who had a lower KPS score were

more likely to be in the nausea group. Compared to patients

who received CTX on a 14 day cycle, patients who received

CTX on a 21-day cycle were less likely to be in the nausea

group. Compared to patients who received only surgery, CTX,

or RT, patients who received surgery and CTX, or surgery and

RT, or CTX and RT were less likely to be in the nausea group.

Patients in sample 2 who had childcare responsibilities and a

Table 1. Perturbed and Endocytosis and Apopotosis Related KEGG
Pathways Between Oncology Patients With and Without
Chemotherapy-Induced Nausea.

Pathway ID Pathway Name
Adjusted Global

pPERT

Endocytosis
hsa04144 Endocytosis 0.00084
hsa04810 Regulation of actin

cytoskeleton
0.00785

Apoptosis
hsa04210 Apoptosis 0.00851
hsa04151 PI3K/Akt signaling pathway 0.00584

Note. KEGG ¼ Kyoto Encyclopedia of Genes and Genomes; FWER ¼
family-wise error rate; PI3K-Akt ¼ phosphatidylinositol kinase-protein kinase
B; pPERT ¼ Perturbation p-value; RNA-seq ¼ Ribonucleic acid sequencing.
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lower KPS score were more likely to be in the nausea group.

Compared to patients who received a CTX regimen with min-

imal or low emetogenicity, patients who received a CTX regi-

men with high emetogenicity were more likely to be in the

nausea group. Compared to patients who had lung cancer,

patients who had GI cancer were 5 times more likely to be in

the nausea group. Compared to patients who had GI cancer,

patients who had GYN cancer were less likely to be in the

nausea group.

PIA of the Whole Transcriptome

Annotation with ENTREZ gene identifiers was performed for

both sample 1 and sample 2 (n ¼ 11,577 and n ¼ 20,216,

respectively). Fold changes and p-values from the DE analyses

for these genes were included in the PIA of the 208 KEGG

signaling pathways. In the combined analysis using Fisher’s

combined probability method (Fisher, 1925, 1948), as previ-

ously reported (Singh, Dhruva, et al., 2020), the combined PIA

analysis identified 37 KEGG signaling pathways that were

significantly different between the nausea groups after correct-

ing for multiple hypothesis testing using a strict FWER of 1%
(adjusted global perturbation p < 0.01). Four KEGG signaling

pathways were associated with mechanisms involved in endo-

cytosis and apoptosis (Table 1; Figure 1).

Discussion

This study is the first to provide preliminary evidence that

perturbations in both endocytotic and apoptotic processes are

associated with the occurrence of CIN. These results extend

the findings from our previous report (Singh, Dhruva, et al.,

2020) that described associations with the occurrence of CIN

and perturbations in 10 pathways involved in mucosal

inflammation (four pathways) and disruption of the gut

microbiome (six pathways). The identification of associations

between endocytotic and apoptotic pathways and CIN occur-

rence are supported by the fact that GI intestinal inflamma-

tion from a variety of causes, including the administration of

CTX, is associated with changes in both endocytosis

(Lechuga & Ivanov, 2017) and apoptosis (Blander, 2016;

Ruder et al., 2019).

While previous studies reported associations between

CTX-induced apoptosis and a number of GI symptoms

(e.g., mucositis, diarrhea; Keefe et al., 2000; Logan et al.,

2007; Sonis et al., 2004), no studies were identified that found

associations between either endocytosis and apoptosis and the

occurrence of CIN. A number of mechanisms are involved in

endocytotic (Lechuga & Ivanov, 2017) and apoptotic (Nunes

et al., 2014; Sui et al., 2014) processes in the gut. We frame our

discussion based on the specific biological pathways associated

with endocytotic and apoptotic processes identified in this

study and hypothesize how these two mechanisms are associ-

ated with the occurrence of CIN.

Endocytosis

Endocytosis and regulation of the actin cytoskeleton were the

two KEGG pathways that were identified as perturbed endo-

cytotic pathways (Table 1). While changes in the actin cytos-

keleton have been associated with CTX-induced peripheral

neuropathy (Kober et al., 2019; Malacrida et al., 2019), no

studies were found that evaluated for associations between

CTX-induced changes in the functioning of intestinal epithelial

cells (IEC) and perturbations in pathways involved in endocy-

tosis and regulation of the actin cytoskeleton.

Most of the research on endocytotic processes associated

with the GI tract have focused on irritable bowel disease

(IBD), Crohn’s disease, and celiac disease (Lechuga & Iva-

nov, 2017; Zimmer et al., 2016). Most of these studies eval-

uated for changes in the permeability of the intestinal

epithelial barrier associated with inflammation. Integral to

the maintenance of the intestinal barrier are several multi-

protein adhesive complexes, including apical tight junctions

(Shen et al., 2011). Evidence suggests that the release of pro-

inflammatory cytokines (e.g., tumor necrosis factor alpha

(TNF-a), interferon gamma (INF-g) increases endocytosis

and mediates decreases in the expression of epithelial tight

junction proteins (Capaldo & Nusrat, 2009; Ivanov &

Naydenov, 2013; Onyiah & Colgan, 2016). CTX damages

the epithelial cells of the entire alimentary tract which results

in mucosal inflammation (Logan et al., 2007). Our previous

findings support that perturbations in pathways involved in

mucosal inflammation (e.g., cytokine-cytokine receptor inter-

action, nuclear factor kappa-beta (NF-kB) signaling path-

way), as well as the tight junction pathway are associated

with the occurrence of CIN (Singh, Dhruva, et al., 2020).

Therefore, it is reasonable to hypothesize that alterations in

endocytotic pathways are associated with the occurrence of

CIN.

The association of apical tight junctions with the cortical

actin cytoskeleton is essential to maintain the integrity and

plasticity of the gut barrier (Ivanov et al., 2010; Shen et al.,

2011). Disruption of the actin cytoskeleton was observed in

IECs exposed to a variety of inflammatory mediators (Musch

et al., 2006; Utech et al., 2005) as well as in tissue samples of

patients with mucosal inflammation (Ivanov et al., 2010).

While CTX drugs like paclitaxel are known to disrupt the

functioning of the cytoskeleton of cancer cells and produce

severe nausea, whether they have direct effects on the cytoske-

leton of IECs warrants investigation.

Apoptosis

Compared to endocytosis, as early as 1983, findings from pre-

clinical studies demonstrated that a variety of CTX drugs (e.g.,

doxorubicin, bleomycin, actinomysin D, cyclophosphamide)

induced apoptosis at different cellular positions in intestinal

crypt cells that was associated with differing degrees of muco-

sal injury (Ijiri & Potten, 1983, 1987). Subsequently,

pre-clinical research focused on an evaluation of the apoptotic

242 Biological Research for Nursing 23(2)



mechanisms associated with the administration of methotrexate

(Bowen et al., 2005; Gibson et al., 2005; Papaconstantinou

et al., 2001), irinotecan (Al-Dasooqi et al., 2011; Bowen,

Gibson, Stringer, et al., 2007; Gibson et al., 2003, 2007; Mayo

et al., 2017), and 5-fluorouracil (5-FU) (Bach et al., 2006; Gao

et al., 2014; Han et al., 2011). In terms of clinical research, in a

study of 23 patients with heterogeneous cancer diagnoses and

CTX regimens who underwent upper GI endoscopy with duo-

denal biopsy (Keefe et al., 2000), apoptosis increased sevenfold

in intestinal crypts 1 day after the administration of CTX. In

another randomized clinical trial of parenteral glutamine in

patients with metastatic colon cancer who received 5-FU

(n ¼ 24; Decker-Baumann et al., 1999), while apoptosis was

not evaluated specifically, patients who received glutamine had

a significant reduction in mucositis and ulcerations of the gas-

tric and duodenal mucosa. However, no between group differ-

ences were found in the incidence and severity in any adverse

effects including nausea.

Under physiologic conditions, programmed apoptosis main-

tains the homeostatic balance of the GI mucosal. However, the

administration of CTX damages IECs which causes the release

of reactive oxygen species (ROS). As a result, the transcription

factor NF-kB is activated which leads to the upregulation of

several genes including those involved in the production of

inflammatory cytokines, as well as adhesion molecules, and

cyclo-oxygenase 2 (Bowen et al., 2006). An amplification cas-

cade ensues that results in the transcription of genes that encode

for mitogen-activated protein kinase (MAPK) signaling mole-

cules. Activation of the NF-kB signaling and MAPK signaling

pathways (Sonis, 2004), as well as continued synthesis and

release of inflammatory cytokines, results in the loss of muco-

sal integrity along the GI tract (Logan et al., 2007; Sonis,

2004).

The NF-kB (Bowen et al., 2006; Tokuhira et al., 2015),

MAPK (Gao et al., 2014; Osaki & Gama, 2013; Sui et al.,

2014; Sun et al., 2015) and phosphatidylinositol 30-kinase/Akt

(PI3K/Akt; Pedersen et al., 2014; Tokuhira et al., 2015) signal-

ing pathways are involved in the regulation of apoptosis (Mayo

et al., 2017; Pedersen et al., 2014; Sui et al., 2014). Perturba-

tions in both the NF-kB and MAPK pathways were associated

with the occurrence of CIN in our previous study (Singh,

Dhruva, et al., 2020). In terms of PI3K/Akt signaling, this

pathway plays a pivotal role in apoptosis that is mediated by

the generation of ROS (Dahan et al., 2008; Garcia et al., 2006),

as well as in the regulation of the NF-kB signaling pathway

(Tokuhira et al., 2015). While not studied in the context of

CTX, the PI3K/Akt and MAPK signaling pathways were found

to be activated in IEC cultures when they were exposed to

lamina propria lymphocytes from patients with IBD. This find-

ing suggests that IEC differentiation is accelerated in patients

with IBD (Dahan et al., 2008). In our study, we found that

perturbations in PI3K/Akt signaling pathway were associated

with occurrence of CIN.

Four preclinical studies were identified that evaluated for

changes in GE in the epithelial mucosa of the GI tract asso-

ciated with the administration of doxorubicin (de Koning

et al., 2007) and irinotecan (Bowen, Gibson, Cummins,

et al., 2007; Bowen, Gibson, Tsykin, et al., 2007; Bowen

et al., 2010). In addition, one study evaluated for changes

in GE in the oral mucosa of patients with multiple myeloma

who received high-dose melphelan (Marcussen et al., 2017)

and from peripheral blood of patients with esophageal cancer

prior to the receipt of 5-FU, cisplatin, and radiation therapy

(Bowen et al., 2015). Consistent with findings from our pre-

vious (Singh, Dhruva, et al., 2020) and current study, pertur-

bations were found in the following pathways associated with

the administration of irinotecan: MAPK signaling (Bowen,

Gibson, Tsykin, et al., 2007; Bowen et al., 2010), apoptosis

(Bowen, Gibson, Tsykin, et al., 2007), cytokine-cytokine

receptor interaction (Bowen, Gibson, Tsykin, et al., 2007),

regulation of the actin cytoskeleton (Bowen, Gibson, Tsykin,

et al., 2007), NF-kB signaling (Bowen, Gibson, Tsykin, et al.,

2007), and PI3K/Akt signaling (Bowen, Gibson, Tsykin,

et al., 2007). Neither of the human studies did a PIA. How-

ever, in a study that evaluated oral mucosa samples (n ¼ 10;

Marcussen et al., 2017), while genes associated with TNF

pathways that favored anti-apoptotic effects were differen-

tially expressed, their upregulation was independent of muco-

sitis grade. In the study of patients with esophageal cancer

(n ¼ 31; Bowen et al., 2015), of the 84 immune genes

investigated, TNF was significantly elevated (2.05-fold,

p ¼ .025) in the patients with more severe GI toxicity. Nau-

sea and vomiting were the two symptoms with the highest

severity ratings. Taken together, these preclinical and clinical

findings suggest that perturbations in apoptotic pathways

occur with the administration of CTX. Additional research

is warranted to confirm their occurrence with CIN and other

GI symptoms.

Limitations

While our study has numerous strengths including: a large

sample size, stringent quality control procedures, the use of

two complimentary methods to measure GE, strict criteria for

DE and pathway perturbation selection, and the combination of

results from independent tests across two samples, several lim-

itations warrant consideration. While we have indirect evi-

dence from blood samples to support our hypothesis that

CTX-induced changes in endocytosis and apoptosis are asso-

ciated with CIN and preliminary evidence of strong correla-

tions between GE changes in the peripheral blood and small

bowel biopsies of patients with celiac disease (Galatola et al.,

2013), future studies are warranted that obtain tissue samples

along the GI tract to provide direct evidence for this associa-

tion. While our sample was large and representative of patients

with CIN, our findings warrant confirmation in an independent

cohort. Given that our phenotype and GE measures were done

prior to the patients’ second or third cycle of CTX, additional

research is warranted to determine if these changes in GE and

pathway perturbations occur at other time points during the

administration of CTX and/or with the severity of CIN.
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Conclusions and Directions for Future Research

Despite these limitations, our study is the first to report on

associations between perturbations in endocytotic and apopto-

tic pathways and the occurrence of CIN. These findings are

consistent with the growing body of evidence that suggests that

GI inflammation in general, as well as CTX-induced inflam-

mation of the GI mucosa, initiate endocytosis (Lechuga &

Ivanov, 2017; Zimmer et al., 2016) and apoptosis (Ijiri &

Potten, 1983, 1987). Findings from our previous (Singh,

Dhruva, et al., 2020) and current study suggest that complex

mechanisms underlie the occurrence of CIN and provide

insights into why unrelieved CIN remains a significant clinical

problem despite the use of evidence-based antiemetic guide-

lines. Future research needs to consider these mechanisms as

potential targets for the development of new therapeutic agents.
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