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EPIGRAPH

La meccanica è il paradiso delle scienze matematiche,

perché con quella si viene al frutto matematico.

Mechanics is the paradise of the mathematical sciences,

because by means of it one comes to the fruits of mathematics.

--- Leonardo da Vinci
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Symplectic numerical integrators for Hamiltonian systems form the paramount

class of geometric numerical integrators, and have been very well investigated in the past

forty years. By preserving the symplecticity of the flow of Hamiltonian systems, symplectic

integrators generate discrete solutions which enjoy many desirable qualitative properties

such as excellent long-time near-energy preservation over exponentially-long time intervals,

and as a result typically exhibit superior numerical stability and better long-time fidelity

to the continuous dynamics they are resolving.

The purpose of this dissertation is to establish, explore and exploit connections

between symplectic numerical integration and two prominent disciplines of scientific

computing: accelerated optimization for machine learning applications, and structure-

preserving dynamics learning. By leveraging the well-established theory of symplectic

integration, we aspire to design new algorithms for accelerated optimization and dynamics

learning with superior numerical and computational properties.
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Most machine learning algorithms are designed around the minimization of a loss

function or the maximization of a likelihood function. Due to the ever-growing size of the

datasets, obtaining efficient optimization algorithms which can be executed on parallel

and distributed processing architectures is of critical importance. Numerous accelerated

optimization algorithms limit to differential equations as the step size goes to zero, and

the objective function typically converges to its optimal value at an accelerated rate along

the trajectories of these limiting differential equations. As a result, the optimization

problem can be replaced by the problem of evolving dynamics governed by appropriately

defined differential equations. In Part II, we construct novel optimization algorithms via

symplectic integration of carefully designed Hamiltonian systems which converge to the

minimizer at an accelerated rate, both on normed vector spaces and Riemannian manifolds.

Identifying accurate and efficient models for dynamical systems based on observed

trajectories is crucial for predicting and controlling their future behavior. Incorporating

the structure underlying the dynamics in deep learning architectures has proven to be

an efficient approach to learning structured dynamical systems. In Part III, we design

novel deep learning architectures incorporating the geometric structure of nearly-periodic

Hamiltonian systems and controlled Lie group Hamiltonian systems to learn structure-

preserving surrogate evolution maps.
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Introduction

Geometric numerical integration has emerged in the 1990s as the field of mathematics

concerned with the development of numerical methods to simulate the evolution of

dynamical systems governed by differential equations while preserving the geometric

attributes of these dynamical systems. These geometric attributes are typically invariants

or constants of the flow arising from conservation laws and symmetries of the dynamical

system. As a result, these geometric properties constrain the evolution of the dynamical

system to a lower-dimensional manifold. Integrators which respect the geometric attributes

of the dynamical system and its flow typically exhibit superior numerical stability, and

better long-time fidelity to the continuous dynamics they are resolving.

We refer the reader to [Iserles and Quispel, 2018] for a brief recent overview of

geometric numerical integration, and to [Hairer et al., 2006; Blanes and Casas, 2017] for a

more comprehensive presentation of structure-preserving integration techniques.

There is an abundance of qualitatively distinct dynamical behaviours, each of which

possesses its own collection of underlying geometric properties. As a result, it is necessary

to develop and use geometric numerical methods tailored to the geometric structure of

the dynamical system of interest. These could be symplectic integrators for conservative

Hamiltonian systems, symmetric integrators for reversible systems, methods preserving

specific conserved quantities (such as energy, volume, momenta, and flux), numerical

methods specially designed for problems with periodic and highly oscillatory solutions, and

numerical integrators evolving intrinsically on manifolds and Lie groups for constrained

dynamical systems.
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In this dissertation, we focus predominantly on Hamiltonian systems and their

underlying symplectic structure: any solution to a Hamiltonian system is a symplectic

flow and any symplectic flow corresponds to an appropriate Hamiltonian system locally.

Symplectic numerical integrators form the class of geometric numerical integrators which

yield discrete approximations of the flow that preserve the symplectic 2-form when applied

to Hamiltonian systems. This preservation of the symplectic 2-form results in many

desirable qualitative properties for the resulting discrete flow such as excellent long-time

near-energy preservation over exponentially-long time intervals.

Symplectic integrators for Hamiltonian systems are perhaps the most prominent

examples of geometric numerical integrators, and have been very thoroughly investigated

in the past 40 years. As discussed in [Iserles and Quispel, 2018], the theory of symplectic

integration (and more generally of geometric numerical integration) is very well established,

and as a result of its success, all the major challenges in symplectic integration might

have already been achieved. There are however numerous fields in science and engineering

that could benefit from the well-established theory of geometric numerical integration.

This dissertation aims to establish, explore and exploit connections between symplectic

numerical integration and two prominent disciplines of scientific computing: accelerated

optimization for machine learning applications, and structure-preserving dynamics learning.

Part I - Symplectic Numerical Integration

We begin by reviewing the theory of symplectic numerical integration and by

establishing a few extensions which will prove very useful when considering applications of

symplectic numerical integration to optimization and dynamics learning.

In Chapter 1, we introduce the main definitions and notions from differential and

Riemannian geometry, and Lie group theory, that we will use extensively throughout

the dissertation when considering dynamical systems which evolve on manifolds and Lie

groups. We also introduce several important examples of Riemannian manifolds and Lie

groups which will be considered in numerical experiments conducted in this dissertation.
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Chapter 2 is devoted to the general theory of geometric numerical integration of

Hamiltonian and Lagrangian systems. We first introduce Lagrangian and Hamiltonian

mechanics (Section 2.1) and their underlying symplecticity (Section 2.2), and discuss the

benefits of preserving symplecticity when numerically integrating these dynamical systems

(Section 2.3), such as excellent long-time near-energy preservation. We then describe

variational integrators (Section 2.4) which form a class of symplectic integrators, and

discuss how external forcing and control can be included in these integrators (Section 2.5).

Then, in Section 2.6, we investigate how holonomic constraints can be incorporated into

variational integrators to constrain the numerical discretization of a continuous Lagrangian

or Hamiltonian system to a certain constraint manifold, and in particular derive new

results for the Hamiltonian formulation. Finally, in Section 2.7, we discuss how prescribed

variable time-steps can be incorporated in symplectic integrators without losing all the

desirable properties associated with these integrators.

Part II - Accelerated Optimization via Geometric Numerical Integration

Efficient optimization has become one of the major concerns in data analysis and

artificial intelligence. Most machine learning algorithms require the minimization of a

loss function or the maximization of a likelihood function. Due to the ever-growing scale

of the data sets and size of the problems, there has been a lot of focus on first-order

optimization algorithms because of their low cost per iteration and the ease with which they

can be executed on parallel and distributed processing architectures. Standard gradient

descent methods typically converge to the minimum of the convex objective function f

at a O(1/k) rate, where k is the iteration number. Several optimization algorithms have

however been shown to achieve convergence in O(1/k2), which was proven to be optimal

among first-order methods using only information about ∇f at consecutive iterates. This

phenomenon in which an algorithm displays this improved rate of convergence is referred to

as acceleration. It was shown recently that many accelerated optimization algorithms limit

to differential equations as the step size goes to 0, and that the objective function converges

to its optimal value at an accelerated rate in continuous time along the trajectories of
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these differential equations. This effectively replaced the problem of minimizing the convex

objective function by the problem of numerically evolving dynamical systems governed by

appropriately defined differential equations. In [Wibisono et al., 2016], it is shown that

accelerated convergence can be achieved by considering flow maps generated by a family

of time-dependent Bregman Lagrangian and Hamiltonian systems.

In Chapter 3, we first review this variational framework introduced in [Wibisono

et al., 2016] for accelerated optimization on normed vector spaces. We then introduce

a time-adaptive approach to integrate the resulting time-dependent Hamiltonian and

Lagrangian dynamical systems, by exploiting the frameworks for variable time-stepping in

symplectic integrators and the time-rescaling property of the Bregman family of dynamics.

This leads to efficient symplectic algorithms for accelerated optimization, which we carefully

study to investigate how time-adaptivity and symplecticity affect their performance.

In Chapter 4, we generalize the accelerated optimization framework presented in

Chapter 3 to the Riemannian manifold setting, and establish existence and convergence

results for objective functions on Riemannian manifolds that are geodesically convex,

weakly quasi-convex, and strongly convex in Section 4.2. The acceleration is achieved

along solutions of the Euler–Lagrange and Hamilton’s equations corresponding to a

family of time-dependent Bregman Lagrangian and Hamiltonian systems on Riemannian

manifolds. We show in Section 4.4 that this family of Bregman dynamics on Riemannian

manifolds is closed under time rescaling, and take advantage of this invariance property

via a Poincaré transformation that allows for the integration of higher-order dynamics

with the computational efficiency of integrating lower-order dynamics. We introduce

different approaches to design geometric integrators for the Riemannian Bregman family

of dynamics. In the Hamiltonian setting (Section 4.5), we take advantage of embedding

theorems to reduce Riemannian manifolds to submanifolds of Euclidean spaces, and exploit

the structure of the embedding Euclidean spaces using constrained or projection-based

variational integrators. In the Lagrangian setting (Section 4.6), we design time-adaptive

Lagrangian variational integrators which evolve intrinsically on the Riemannian manifold.
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In Chapter 5, we discuss practical considerations which can significantly boost the

computational performance and ease the tuning of symplectic optimization algorithms

that are constructed by integrating Bregman Lagrangian and Hamiltonian systems coming

from the frameworks for accelerated optimization presented in Chapters 3 and 4. We

investigate how momentum restarting ameliorates computational efficiency and robustness

by reducing the undesirable effect of oscillations (Section 5.4), and ease the tuning process

by making time-adaptivity superfluous (Section 5.5). We also discuss how temporal looping

helps avoiding instability issues caused by numerical precision (Section 5.8). We then

compare the efficiency and robustness of different geometric integrators (Section 5.6),

and study the effects of various parameters in the algorithms to inform and simplify

tuning in practice (Section 5.7). This computational study leads to symplectic accelerated

optimization algorithms, the BrAVO algorithms, whose computational efficiency, stability

and robustness have been improved, and which are now much simpler to use and tune

for practical applications. The BrAVO algorithms are then tested in Section 5.9 on more

challenging optimization problems arising from machine learning with a variety of model

architectures, loss functions to minimize, and applications.

Part III - Structure–Preserving Dynamics Learning

Dynamical systems evolve according to the laws of physics, which can usually be

described using differential equations. Identifying accurate and efficient dynamic models

based on observed trajectories is thus critical not only for predicting future behavior, but

also for designing control laws that ensure desirable properties such as safety, stability, and

generalization to different operational conditions. We will consider the problem of learning

dynamics: given a dataset of observed trajectories followed by a dynamical system, we

wish to infer the dynamical law responsible for these trajectories and use it to predict

the evolution of the system from different initial states. We are also interested in the

surrogate modeling problem: the underlying dynamical system is known, but traditional

simulations are either too slow or expensive for some optimization task. This problem can

be addressed by learning a less expensive surrogate for the simulations.
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Dynamical system models obtained from first principles are extensively used in

practice, but tend to over-simplify or incorrectly describe the underlying structure of

the systems, which usually leads to high prediction errors. Deep learning techniques

provide very expressive models for function approximation, but standard neural networks

struggle to learn the symmetries and conservation laws underlying dynamical systems,

and as a result do not generalize well. They are typically over-parameterized, can be very

difficult to interpret, and require large datasets and computational times which make

them prohibitively expensive for many applications. A recent research direction has been

considering a hybrid approach, where physics laws and geometric properties are encoded

in the design of the deep learning architectures or in the learning process. Available

physics prior knowledge can be used to construct physics-constrained neural networks

with improved design and efficiency and a better generalization capacity, which can take

advantage of the function approximation power of deep learning methods to deal with

incomplete knowledge. An important example of geometric structure underlying dynamical

systems is the symplecticity of the flows of Hamiltonian systems. It is important to have

structure-preserving architectures which can learn symplectic maps and ensure that the

learnt surrogates preserve symplecticity. Numerous physics-informed machine learning

approaches have been proposed to learn Hamiltonian dynamics and symplectic maps.

In Chapter 6, we introduce a new structure-preserving deep learning architecture,

the Lie group Forced Variational Integrator Network (LieFVIN), to learn surrogates for

the flow maps of controlled Lagrangian or Hamiltonian dynamics evolving on Lie groups,

either from position-velocity or position-only data. By design, LieFVINs preserve both the

Lie group structure on which the dynamics evolve and the symplectic structure underlying

the controlled Hamiltonian systems of interest. The proposed architecture learns surrogate

discrete-time flow maps allowing accurate and fast prediction without using a numerical

integrator, neural-ODE, or adjoint techniques, which are needed for vector fields. The

learnt discrete-time dynamics can also be used with computationally scalable discrete-time

(optimal) control strategies. Many mechanical and robotic systems can be modeled as

(controlled) Hamiltonian or Lagrangian systems evolving on Lie groups, so the problem of

learning this class of dynamical systems is of considerable importance.
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In Chapter 7, we construct a novel structure-preserving neural network architecture,

capable of approximating nearly-periodic symplectic maps. Nearly-periodic symplectic

maps are the discrete-time analogues of nearly-periodic Hamiltonian systems, where a

dynamical system with parameter ε is said to be nearly-periodic if all its trajectories are

periodic with nowhere-vanishing angular frequency as ε approaches 0. Nearly-periodic

symplectic maps possess approximately conserved discrete-time quantities, called adiabatic

invariants, and our novel neural network architecture, which we call symplectic gyroceptron,

ensures that the resulting surrogate map is nearly-periodic and symplectic, and that it

gives rise to a discrete-time adiabatic invariant and a long-time stability as a consequence.

Symplectic gyroceptrons provide a promising class of architectures for surrogate modeling

of non-dissipative dynamical systems that automatically steps over short timescales without

introducing spurious instabilities, and could have future applications for the Klein–Gordon

equation in the weakly-relativistic regime, for charged particles moving through a strong

magnetic field, and for the rotating inviscid Euler equations in quasi-geostrophic scaling.

Symplectic gyroceptrons could also be used for structure-preserving simulation of non-

canonical Hamiltonian systems on exact symplectic manifolds, which have numerous

applications across the physical sciences.
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Part I

Symplectic Numerical Integration
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1 Preliminaries

1.1 Riemannian Manifolds

1.1.1 Differential Geometry

We first introduce some standard definitions from differential geometry that we will

use throughout this dissertation (see [Lang, 1999; Marsden and Ratiu, 1999; McInerney,

2013] for more details).

Definition 1.1. Given a set M , a chart on M is a pair (U,ϕ) where U ⊂M and ϕ is a

bijective map from U to ϕ(U) ⊂ Rn. Two charts (U1, ϕ1) and (U2, ϕ2) with U1 ∩ U2 ≠ ∅
are compatible if ϕj(U1 ∩U2) is an open subset of Rn and

ϕi ○ (ϕj)−1∣
ϕj(U1∩U2)

∶ ϕj(U1 ∩U2)→ ϕi(U1 ∩U2) (1.1)

is smooth for (i, j) ∈ {(1, 2), (2, 1)}. A smooth manifold is a set M which can be written

as a union of compatible charts. Given a chart (U,ϕ) on a n-dimensional manifold M , we

get associated local coordinates (x1, . . . , xn) for points in U .

Definition 1.2. Two curves s ↦ c1(s) and s ↦ c2(s) on a manifold M are equivalent

at m ∈M if

c1(0) = c2(0) =m and (ϕ ○ c1)′(0) = (ϕ ○ c2)′(0) (1.2)

in some chart ϕ. A tangent vector to a manifold M at a point m ∈M is an equivalence

class of curves at m. The set of tangent vectors to a manifold M at a point m ∈ M is

a vector space called the tangent space to M at m and is denoted by TmM , and the

disjoint union of all the tangent spaces to M forms the tangent bundle TM of M :

TM = {(m,v) ∣ m ∈M, v ∈ TmM}. (1.3)
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Coordinates (x1, . . . , xn) induce a basis ∂j = ∂
∂xj

for the tangent spaces, so that any tangent

vector can be written in the form v = ∑nj=1 v
j∂j.

Definition 1.3. The vector space dual to the tangent space TmM is the cotangent space

T ∗
mM , and the vector bundle over M whose fibers are the cotangent spaces of M is the

cotangent bundle T ∗M :

T ∗M = {(m,p) ∣ m ∈M, p ∈ T ∗
mM}. (1.4)

Elements of the tangent bundle T ∗M are called cotangent vectors. The coordinates

(x1, . . . , xn) induce a dual basis dx1, . . . , dxn for the cotangent spaces by requiring that

dxj(∂k) = ∂k(dxj) = δjk for all j and k, (1.5)

where δjk is the Kronecker delta.

Definition 1.4. A vector field on a manifold M is a map X ∶ M → TM such that

X(m) ∈ TmM for all m ∈ M . The set of all vector fields on M is denoted X(M). In

local coordinates, a vector field X can be represented as X(m) = ∑nj=1X
j(m)∂j. The

integral curve at m of X ∈ X(M) is the smooth curve c on M such that c(0) = m
and c′(t) = X(c(t)). The flow of a vector field X ∈ X(M) is the collection of maps

ϕt ∶M →M such that ϕt(m) is the integral curve of X with initial condition m ∈M .

Definition 1.5. A smooth function f ∶M → R can be differentiated at any point m ∈M
to obtain the tangent map Tmf ∶ TmM → Tf(m)R. By identifying the tangent space

to R at any point to R itself, we obtain a linear map df(m) ∈ T ∗
mM , and we call df the

differential of f .

Definition 1.6. A k-form on a manifold M is a map which assigns to every point m ∈M
a skew-symmetric k-multilinear map on TmM . In other words, α is a k-form if for every

point m ∈ M , α(m) ∶ TmM × . . . × TmM → R is linear in each of its k arguments and

has the property that it changes sign whenever two of its arguments are interchanged. A

general k-form can be written as

αm(v1, . . . , vk) = ∑
i1,...,ik

αi1...ik(m) vi11 . . . v
ik
k (1.6)

where αi1...ik(m) = αm(∂i1 , . . . , ∂ik), for any vectors vi = ∑j vji ∂j ∈ TmM for i = 1, . . . , k.
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Definition 1.7. Given a k-form α and a s-form β on a manifold M , we define their

tensor product α⊗ β at any point m ∈M via

(α⊗ β)m(v1, . . . , vk+s) = αm(v1, . . . , vk) βm(vk+1, . . . , vk+s). (1.7)

Definition 1.8. We define the alternating operator Alt acting on the k-form α via

Alt(α)(v1, . . . , vk) = 1

k!
∑
π∈Sk

sgn(π) α(vπ(1), . . . , vπ(k)) (1.8)

where Sk is the group of all the permutations of {1, . . . , k} and sgn(π) is the sign of the

permutation (+ if π even, -1 if π is odd).

Definition 1.9. Given a k-form α and a s-form β on a manifold M , we define their

wedge product α ∧ β via

α ∧ β = (k + s)!
k!s!

Alt(α⊗ β). (1.9)

Note in particular that the wedge product of two 1-forms α and β is given by

(α ∧ β)(v1, v2) = α(v1)β(v2) − α(v2)β(v1). (1.10)

Definition 1.10. The exterior derivative of a smooth function f ∶ M → R is its

differential df , and the exterior derivative dα of a k-form α with k > 0 is the (k + 1)-

form defined by

d( ∑
i1,...,ik

αi1...ikdx
i1 ∧ . . . ∧ dxik) = ∑

j

∑
i1,...,ik

∂jαi1...ik dxj ∧ dxi1 ∧ . . . ∧ dxik . (1.11)

Note that dα is linear in α and that d(dα) = 0 for any k-form α.

Definition 1.11. We say that a k-form α is closed if

dα = 0, (1.12)

and exact if there is a (k − 1)-form β such that

α = dβ. (1.13)

Note that every exact form is closed, but that the converse only holds partially: by the

Poincaré Lemma, for any closed form α on M and point m ∈M , there exists a neighborhood

of m on which α = dβ.
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Definition 1.12. The interior product ιXα where X is a vector field on M and α is a

k-form is the (k − 1)-form defined via

(ιXα)m(v2, . . . , vk) = αm(X(m), v2, . . . , vk). (1.14)

Definition 1.13. The pull-back ψ∗f of a function f by a smooth map ψ is the function

defined by

ψ∗f = f ○ ψ. (1.15)

The push-forward ψ∗f of a function f by a smooth map ψ is the function defined by

ψ∗f = f ○ ψ−1. (1.16)

The push-forward ψ∗X of a vector field X by a smooth map ψ is defined by

(ψ∗X)(ψ(z)) = dψ(z) ⋅X(z). (1.17)

The pull-back ψ∗X of a vector field X by a smooth map ψ is defined by

ψ∗X = (ψ−1)∗X. (1.18)

The pull-back ψ∗α of a k-form α by a smooth map ψ is the k-form defined by

(ψ∗α)m(v1, . . . , vk) = αψ(m)(dψ ⋅ v1, . . . ,dψ ⋅ vk). (1.19)

The push-forward ψ∗α of a k-form α by a smooth map ψ is the k-form defined by

ψ∗α = (ψ−1)∗α. (1.20)

Definition 1.14. The Lie derivative LXα of the k-form α along a vector field X with

flow ϕt is

LXα = d

dt
∣
t=0
ϕ∗tα, (1.21)

and in particular, for a smooth function f ∶M → R, LXf is the directional derivative

LXf = df ⋅X. (1.22)
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1.1.2 Riemannian Geometry

We now introduce the main definitions and objects from Riemannian geometry

that will be used throughout this dissertation. See [Lang, 1999; Marsden and Ratiu, 1999;

Absil et al., 2008; McInerney, 2013; Godinho and Natário, 2014; Jost, 2017; Lee, 2018;

Boumal, 2020] for a more detailed presentation.

Definition 1.15. A Riemannian metric on a manifold Q is a smooth assignment of

an inner product gq(⋅, ⋅) = ⟨⋅, ⋅⟩q ∶ TqQ × TqQ → R to every point q ∈ Q. More precisely,

the mapping q ↦ ⟨X(q), Y (q)⟩q is smooth for any X,Y ∈ X(Q) and for any tangent

vectors u, v ∈ TpQ, ⟨u, v⟩p = ⟨v, u⟩p and ⟨u,u⟩p ≥ 0 with equality if and only if u = 0.

A Riemannian manifold is a smooth manifold equipped with a Riemannian metric.

Definition 1.16. Let Q be a Riemannian manifold with Riemannian metric g(⋅, ⋅) = ⟨⋅, ⋅⟩,
represented by the positive-definite symmetric matrix (gij) in local coordinates. We define

the musical isomorphism g♭ ∶ TQ → T ∗Q via

g♭(u)(v) = gq(u, v) ∀q ∈ Q and ∀u, v ∈ TqQ, (1.23)

and its inverse musical isomorphism g♯ ∶ T ∗Q → TQ. The Riemannian metric

g(⋅, ⋅) = ⟨⋅, ⋅⟩ induces a fiber metric g∗(⋅, ⋅) = ⟪⋅, ⋅⟫ on T ∗Q via

⟪u, v⟫ = ⟨g♯(u), g♯(v)⟩ ∀u, v ∈ T ∗Q, (1.24)

represented by the positive-definite symmetric matrix (gij) in local coordinates, which is

the inverse of the Riemannian metric matrix (gij).

Definition 1.17. The Riemannian gradient gradf(q) ∈ TqQ at a point q ∈ Q of a

smooth function f ∶ Q → R is the tangent vector at q such that

⟨gradf(q), u⟩ = df(q)u ∀u ∈ TqQ. (1.25)

This can also be expressed in terms of the inverse musical isomorphism,

gradf(q) = g♯(df(q)). (1.26)
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Definition 1.18. A geodesic in a Riemannian manifold Q is defined as a parametrized

curve γ ∶ [0, 1]→ Q which is of minimal local length. It can be thought of as a curve having

zero “acceleration” or constant “speed”, that is as a generalization of the notion of straight

line from Euclidean spaces to Riemannian manifolds.

Definition 1.19. Given two points q, q̃ ∈ Q, a tangent vector in TqQ can be transported

to Tq̃Q along a geodesic γ by an operation Γ(γ)q̃q ∶ TqQ → Tq̃Q called parallel transport

along γ. We will simply write Γq̃q to denote the parallel transport along some geodesic

connecting the two points q, q̃ ∈ Q, and given A ∈X(Q), we will denote by Γ(A) the parallel

transport along integral curves of A. Note that parallel transport preserves inner products:

given a geodesic γ from q ∈ Q to q̃ ∈ Q,

gq(u, v) = gq̃ (Γ(γ)q̃qu,Γ(γ)q̃qv) ∀u, v ∈ TqQ. (1.27)

Definition 1.20. A function f ∶ Q → R is called L-smooth if for any two points q, q̃ ∈ Q
and geodesic γ connecting them,

∥gradf(q) − Γ(γ)qq̃gradf(q̃)∥ ≤ L length(γ). (1.28)

Definition 1.21. The Riemannian Exponential map Expq ∶ TqQ → Q at q ∈ Q is

defined via

Expq(v) = γv(1), (1.29)

where γv is the unique geodesic in Q such that γv(0) = q and γ′v(0) = v, for any v ∈ TqQ.

Expq is a diffeomorphism in some neighborhood U ⊂ TqQ containing 0, so we can define

its inverse map, the Riemannian Logarithm map Logq ∶ Expq(U)→ TqQ.

Definition 1.22. A retraction on a manifold Q is a smooth mapping R ∶ TQ → Q, such

that for any q ∈ Q, the restriction Rq ∶ TqQ → Q of R to TqQ satisfies

● Rq(0q) = q, where 0q denotes the zero element of TqQ,

● T0qRq = IdTqQ with the canonical identification T0qTqQ ≃ TqQ, where T0qRq is the

tangent map of R at 0q ∈ TqQ and IdTqQ is the identity map on TqQ.

The Riemannian Exponential map Exp ∶ TQ → Q is a natural example of a retraction on a

Riemannian manifold Q.
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Definition 1.23. Given two vector fields X,Y ∈ X(Q), the covariant derivative

∇XY ∈X(Q) of Y along X is given by

∇XY (q) = lim
h→0

Γ(γ)q
γ(h)

Y (γ(h)) − Y (q)
h

, (1.30)

where γ is the unique integral curve of X such that γ(0) = q, for any q ∈ Q.

Definition 1.24. Given vector fields X = ∑nj=1X
j∂j and Y = ∑nj=1 Y

j∂j on a Riemannian

manifold Q, the Lie bracket [X,Y ] is defined in local coordinates as the vector field

[X,Y ] =
n

∑
i=1

n

∑
j=1

(Xj∂jY
i − Y j∂jX

i)∂i, (1.31)

and we say that X and Y commute if [X,Y ] = 0.

Definition 1.25. The curvature R of a Riemannian manifold Q is a map that associates

to each pair of vector fields X,Y ∈X(Q) the map R(X,Y ) ∶X(Q)→X(Q) defined by

R(X,Y )(Z) = ∇X(∇YZ) −∇Y (∇XZ) −∇[X,Y ]Z, (1.32)

for any vector field Z ∈X(Q).

Definition 1.26. We can define the Riemannian curvature tensor R as the tensor

which takes four vector fields X,Y,Z,W ∈X(Q) and returns a scalar via

R(X,Y,Z,W ) = ⟨R(X,Y )(Z),W ⟩. (1.33)

Definition 1.27. Suppose we have two vector fields X,Y ∈X(Q) such that for all q ∈ Q,

the tangent vectors X(q) and Y (q) are linearly independent. These tangent vectors span

a two-dimensional subspace σq of TqQ at each q ∈ Q and thus generate a plane field σ

on Q of two-dimensional subspaces. The sectional curvature K(σ) with respect to σ is

given by

K(σ) =K(X,Y ) = R(X,Y,Y,X)
⟨X,X⟩⟨Y,Y ⟩ − ⟨X,Y ⟩2

. (1.34)

The sectional curvature can be thought of as a “curvature per unit area”.
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1.1.3 Convexity on Riemannian Manifolds

Definition 1.28. Given a Riemannian manifold Q, a set A ⊂ Q is called geodesically

uniquely convex if every two points of A are connected by a unique geodesic in A.

Definition 1.29. A function f ∶ Q → R is called geodesically convex if for any two

points q, q̃ ∈ Q and a geodesic γ connecting them,

f(γ(t)) ≤ (1 − t)f(q) + tf(q̃) ∀t ∈ [0,1]. (1.35)

Remark 1.1. If f is a smooth geodesically convex function on a geodesically uniquely

convex subset A,

f(q) − f(q̃) ≥ ⟨gradf(q̃),Logq̃(q)⟩ ∀q, q̃ ∈ A. (1.36)

Definition 1.30. A function f ∶ A→ R is called geodesically λ-weakly quasi-convex

with respect to q ∈ Q for some λ ∈ (0,1] if

λ (f(q) − f(q̃)) ≥ ⟨gradf(q̃),Logq̃(q)⟩ ∀q̃ ∈ A. (1.37)

Definition 1.31. A function f ∶ A → R is called geodesically µ-strongly convex for

some µ > 0 if

f(q) − f(q̃) ≥ ⟨gradf(q̃),Logq̃(q)⟩ +
µ

2
∥Logq̃(q)∥2 ∀q, q̃ ∈ A. (1.38)

Remark 1.2. Remark 1.1 implies that a geodesically convex or strongly convex function is

also λ-weakly quasi-convex with λ = 1. Thus, algorithms introduced for weakly quasi-convex

functions can also be used in the geodesically convex and strongly convex cases.

Remark 1.3. A local minimum of a geodesically convex or weakly quasi-convex function

is also a global minimum. Furthermore, a geodesically strongly convex function either has

no minimum or a unique global minimum.
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1.1.4 Examples of Riemannian Manifolds

Example 1.1 (Unit Sphere Sn−1). The unit sphere

Sn−1 = {x ∈ Rn ∣ x⊺x = 1} (1.39)

can be thought of as a Riemannian submanifold with constant positive curvature K = 1

of Rn endowed with the Riemannian metric inherited from the Euclidean inner product

gv(u,w) = u⊺w. The tangent and normal spaces at any v ∈ Sn−1 are given by

TvSn−1 = {u ∈ Rn ∣ u⊺v = 0}, and (TvSn−1)⊥ = {kv ∣ k ∈ R}, (1.40)

and the orthogonal projections onto TvSn−1 and (TvSn−1)⊥ are given by

Pvξ = (In − xx⊺)ξ and P ⊥v ξ = xx⊺ξ. (1.41)

The obvious choice of projection from Rn to Sn−1 is the rescaling v ↦ v
∥v∥2

. This projection

can be associated to a retraction on Sn−1,

Rx(ξ) =
x + ξ

∥x + ξ∥2

. (1.42)

More information concerning the geometry of Sn−1 can be found in [Absil et al., 2008].

Example 1.2 (Stiefel manifold St(m,n)). When endowed with the Riemannian metric

gX(A,B) = Trace(A⊺B), the Stiefel manifold

St(m,n) = {X ∈ Rn×m ∣ X⊺X = Im} (1.43)

is a Riemannian submanifold of Rn×m. The tangent space at any X ∈ St(m,n) is given by

TXSt(m,n) = {Z ∈ Rn×m ∣ X⊺Z +Z⊺X = 0}, (1.44)

and the orthogonal projection PX onto TXSt(m,n) is given by

PXZ = Z − 1

2
X(X⊺Z +Z⊺X). (1.45)
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We can define a projection of any matrix X̃ ∈ Rn×m onto St(m,n) as the solution

of the optimization problem

argmin
X∈St(m,n)

∥X − X̃∥F . (1.46)

From [Hairer et al., 2006], the solution of this minimization problem is given by X = UV ⊺

where X̃ = UΣV ⊺ is the Singular Value Decomposition of X̃ where Σ is a square diagonal

m×m matrix. The solution X of this problem can also be thought of as the first component

of the polar decomposition X̃ = XS1/2 where X ∈ St(m,n) and S is a m ×m symmetric

positive-definite matrix. This solution can be written in closed form as X = X̃(X̃⊺X̃)−1/2

(and S = X̃⊺X̃). Thus, a first projection of any given matrix Q ∈ Rn×m with Singular Value

Decomposition Q = UΣV ⊺ onto St(m,n) is given by

Q↦ Q(Q⊺Q)−1/2 or equivalently Q↦ UV ⊺. (1.47)

Another method to project a matrix Y ∈ Rn×m onto St(m,n) is obtained via the

matrix orthogonalization Y ↦ qf(Y ), which maps the matrix Y to the Q factor of its QR

factorization Y = QR where Q ∈ St(m,n) and R is an upper triangular n ×m matrix with

strictly positive diagonal elements [Absil et al., 2008].

Note that these polar decomposition and matrix orthogonalization can also be used

as the basis for the construction of the following two retractions on St(m,n):

RX(ξ) = (X + ξ)(Im + ξ⊺ξ)−1/2, RX(ξ) = qf(X + ξ). (1.48)

More information concerning the geometry of St(m,n) can be found in [Absil et al., 2008].

Example 1.3 (Lie Groups). Consider a Lie group G with associated Lie algebra g, and

a left trivialization TG ≃ G × g, obtained via (q, q̇) ↦ (q,Lq−1 q̇) ≡ (q, ξ). Suppose g is

equipped with an inner product which induces an inner product on TqG via left trivialization

(v ● w)TqG = (TqLq−1v ● TqLq−1w)g ∀v,w ∈ TqG. (1.49)

With this inner product, we identify g ≃ g∗ and TqG ≃ T ∗
q G ≃ G × g∗ via the Riesz

representation. Let J ∶ g→ g∗ be chosen such that (J(ξ) ● ζ) is symmetric positive-definite

as a bilinear form of ξ, ζ ∈ g. Then, the metric ⟨⋅, ⋅⟩ ∶ g × g → R with ⟨ξ, ζ⟩ = (J(ξ) ● ζ)
serves as a left-invariant Riemannian metric on G. Lie groups are much more structured

than Riemannian manifolds and will be described in greater details in the next section.
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1.2 Lie Groups

We now introduce the main definitions and objects from Lie group theory, and

some examples of common Lie groups that will be considered throughout this dissertation.

See [Varadarajan, 1984; Marsden and Ratiu, 1999; Hall, 2015; Lee et al., 2017; Gallier and

Quaintance, 2020] for a more detailed description of Lie Group theory and mechanics on

Lie Groups.

1.2.1 Lie Group Theory

Definition 1.32. A group is a nonempty set G with a group operation

G ×G→ G, (g, h)↦ gh,

such that the following axioms hold:

1. Associativity: (ab)c = a(bc) for all a, b, c ∈ G,

2. Existence of an identity: ∃e ∈ G such that eg = ge = g for all g ∈ G,

3. Existence of the inverse: for every g ∈ G, there exists a ∈ G such that ag = ga = e.

The inverse of g ∈ G is unique and denoted g−1.

Definition 1.33. A Lie group is a differentiable manifold G that has a group structure

such that the group operation is a smooth map.

In a Lie group, the inversion map g ↦ g−1 is smooth.

Definition 1.34. The left translation map and right translation map are given by

Lg ∶ G→ G, h↦ gh, and Rg ∶ G→ G, h↦ hg. (1.50)

Definition 1.35. A vector field X on G is called left-invariant if

(ThLg)X(h) =X(gh) ∀g, h ∈ G.
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Definition 1.36. A Lie algebra g is the tangent space of the Lie group G at the identity

element TeG equipped with a Lie bracket [⋅, ⋅] ∶ g × g→ g which is bilinear, skew symmetric,

and satisfies the Jacobi identity

[[a, b], c] + [[c, a], b] + [[b, c], a] = 0 ∀a, b, c ∈ G. (1.51)

Definition 1.37. Given ξ ∈ g, we define a vector field Xξ ∈ X(G) via Xξ(g) = TeLg(ξ)
for any g ∈ G. Note that for any ξ ∈ g, the vector field Xξ is left-invariant. There is a

unique integral curve γξ ∶ R→ G of Xξ starting at the identity e. The exponential map

exp ∶ g→ G is defined by

exp(ξ) = γξ(1), (1.52)

and satisfies

exp(sξ) = γξ(s). (1.53)

The exponential map is a local diffeomorphism from a neighborhood of 0 in g onto a

neighborhood of e in G.

Definition 1.38. Given g ∈ G, we define the inner automorphism Ig ∶ G→ G via

Ig(h) = ghg−1 ∀h ∈ G. (1.54)

Differentiating the inner automorphism Ig(h) with respect to h at the identity e gives the

adjoint operator Adg ∶ g→ g, where

Adgη = TeIgη = (Tg−1Lg ⋅TeRg−1)η ∀η ∈ g, (1.55)

which can be thought of as the linearization of conjugation. Differentiating Adgη with

respect to g at the identity e gives the ad operator adξ ∶ g→ g, given by

adξη = Te(Adgη)ξ = [ξ, η] ∀ξ, η ∈ g. (1.56)

Now, let ⟨⋅, ⋅⟩ be a pairing between g and g∗. the coadjoint operator Ad∗g ∶ g∗ → g∗ and

the co-ad operator ad∗η ∶ g∗ → g∗ are defined by

⟨Ad∗gα, ξ⟩ = ⟨α,Adgξ⟩ and ⟨ad∗ηα, ξ⟩ = ⟨α,adηξ⟩ ∀g ∈ G, ∀ξ, η ∈ g, ∀α ∈ g∗. (1.57)
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1.2.2 Examples of Lie Groups

Example 1.4 (Real General Linear Group GL(n,R)). The Real General Linear

Group GL(n,R) is the Lie group of isomorphism of Rn to Rn, with composition as the

group operation. Given a basis in Rn, any A ∈ GL(n,R) can be represented as an invertible

n × n matrix, so GL(n,R) can be thought of as the group of real invertible n × n matrices.

Then, the group operation is matrix multiplication (A,B)↦ AB, the identity element e is

the identity matrix In×n, and the inverse operation is matrix inversion A↦ A−1. The Lie

algebra of GL(n,R) is the vector space gl(n) of all linear transformation from Rn to Rn,

with the commutator bracket

[A,B] = AB −BA. (1.58)

The exponential mapping exp ∶ gl(n)→ GL(n,R) is given by the usual matrix exponential

expA =
∞

∑
k=0

Ak

k!
. (1.59)

and IAB = ABA−1 for any A,B ∈ GL(n,R), so the adjoint operator is defined via

AdAη = AηA−1 ∀η ∈ gl(n). (1.60)

Definition 1.39. A matrix Lie group is a closed subgroup of GL(n,R) for some n ∈ N.

Example 1.5 (Orthogonal Group O(n)). The Orthogonal Group O(n) is the set

of all orthogonal n × n matrices:

O(n) = {R ∈ Rn×n ∣ R⊺R = In}. (1.61)

It is a matrix Lie group of dimension 1
2n(n − 1). The Orthogonal Group O(n) can be

thought of as the special case of the Stiefel manifold St(m,n) where m = n.

Its Lie algebra o(n) is the space of skew-symmetric n × n matrices with the matrix

commutator [A,B] = AB −BA as the Lie bracket.
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Example 1.6 (Special Orthogonal Group SO(n)). Special Orthogonal Group

SO(n) is the set of all orthogonal n × n matrices with determinant equal to +1:

SO(n) = {R ∈ Rn×n ∣ R⊺R = In, det (R) = +1} = {R ∈ O(n) ∣ det (R) = +1}. (1.62)

It is a matrix Lie group of dimension n. A Special Orthogonal Group of particular interest

is SO(3) since R ∈ SO(3) can be viewed as the attitude of a rigid body, or as defining a rigid

body rotation on R3. Note that any matrix in SO(3) can be written in some orthonormal

basis as
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1.63)

for some angle of rotation θ. In other words, SO(3) is the Lie group of rotations about the

origin in R3.

The Lie algebra so(3) of SO(3) is the space of skew-symmetric 3 × 3 matrices

so(3) = {S ∈ R3×3 ∣ S⊺ = −S}, (1.64)

with the matrix commutator [A,B] = AB −BA as the Lie bracket. The Lie algebra so(3)
can be identified with R3 via the hat map ⋅̂ ∶ R3 → so(3),

x = (x1, x2, x3) ↦ x̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (1.65)

which is such that x̂y = x × y for any x, y ∈ R3. The hat map is also sometimes denoted by

S(⋅) ∶ R3 → so(3), that is S(x)y = x × y for any x, y ∈ R3. The inverse of the hat map is

called the vee map (⋅)∨ ∶ so(3)→ R3.

On SO(3), for any u, v ∈ R3 and F ∈ SO(3),

adûv̂ = [û, v̂] = ûv̂ − v̂û = û × v, AdF û = FûF ⊺ = F̂ u. (1.66)

Identifying so(3)∗ ≃ so(3) ≃ R3, we have for any u, v ∈ R3 and F ∈ SO(3) that

aduv = ûv = u × v, ad∗uv = −ûv = v × u, (1.67)

AdFu = Fu, Ad∗Fu = F ⊺u. (1.68)
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For every matrix R ∈ SO(3), there is a skew-symmetric matrix ξ ∈ so(3) such that

R = exp ξ =
∞

∑
k=0

ξk

k!
, (1.69)

and x ∈ R3 such that R can be expressed in terms of the Cayley transformation as

R = (I3 − S(x))(I3 + S(x))−1. (1.70)

Furthermore, the exponential map on SO(3) can be computed explicitly using Rodrigues’

formula

expS(v) = I3 +
sin ∥v∥
∥v∥ S(v) + 1 − cos ∥v∥

∥v∥2
S(v)2 ∀v ∈ R3. (1.71)

Example 1.7 (Special Euclidean Group SE(n)). The Special Euclidean group in

3 dimensions, SE(3), is a semidirect product of R3 and SO(3) and is diffeomorphic to

R3 × SO(3). Elements of SE(3) can be written as (x,R) ∈ R3 × SO(3), and the Lie algebra

se(3) of SE(3) is composed of elements (y,A) ∈ R3 × so(3).

The pose of a rigid body can be described by an element (x,R) of SE(3), consisting

of position x ∈ R3 and orientation R ∈ SO(3).

Example 1.8 (Circle Group U(1)). The Circle Group U(1), also known as first

unitary group, is the one-dimensional Lie group of complex numbers of unit modulus with

the standard multiplication operation. It can be parametrized via eiθ for θ ∈ [0,2π), and is

isomorphic to the special orthogonal group SO(2) of rotations in the plane.

A circle action on a manifold M is defined as a one-parameter family of smooth

diffeomorphisms Φθ ∶M →M that satisfies the three properties

Φθ+2π = Φθ (periodicity), Φ0 = IdM (identity), Φθ1+θ2 = Φθ1 ○Φθ2 (additivity),

for any θ, θ1, θ2 ∈ U(1) ≅ R mod 2π. The infinitesimal generator of a circle action Φθ

on M is the vector field on M defined by

m ↦ d

dθ
∣
θ=0

Φθ(m). (1.72)

Given a vector field X on M , a U(1) symmetry for X is a circle action Φθ such that

Φ∗
θX =X ∀θ ∈ U(1). (1.73)
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2 Symplectic Numerical Integration

2.1 Lagrangian and Hamiltonian Mechanics

We begin this chapter with a standard description of Lagrangian and Hamiltonian

mechanics, inspired by [Marsden and Ratiu, 1999; Leimkuhler and Reich, 2004; Hairer

et al., 2006; Holm et al., 2009].

Given a n-dimensional manifold Q, a Lagrangian is a function L ∶ TQ → R.

The corresponding action integral S is defined to be the functional

S(q) = ∫
T

0
L(q, q̇)dt, (2.1)

over the space of smooth curves q ∶ [0, T ] → Q. Hamilton’s Variational Principle

states that δS = 0 where the variation δS is induced by an infinitesimal variation δq of

the trajectory q that vanishes at the endpoints. Given local coordinates (q1, . . . , qn) on

the manifold Q, Hamilton’s Variational Principle can be shown to be equivalent to the

Euler–Lagrange equations

d

dt
( ∂L
∂q̇k

) = ∂L

∂qk
for k = 1, . . . , n. (2.2)

The Legendre transform FL ∶ TQ → T ∗Q of L is defined fiberwise by

FL ∶ (qi, q̇i)↦ (qi, ∂L
∂q̇i

) . (2.3)

We say that a Lagrangian L is regular or nondegenerate if the Hessian matrix ∂2L
∂q̇2

is invertible for every q and q̇, and hyperregular if the Legendre transform FL is a

diffeomorphism. Note that hyperregularity implies regularity.
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Given a hyperregular Lagrangian L on a manifold Q, we can define the associated

energy function E ∶ TQ → R via

E(q, q̇) = ⟨FL(q, q̇), q̇⟩ −L(q, q̇) = ⟨∂L
∂q̇

(q, q̇), q̇⟩ −L(q, q̇). (2.4)

Note that

dE

dt
=

n

∑
j=1

[ d
dt

( ∂L
∂q̇j

) q̇j +
∂L

∂q̇j
q̈j −

∂L

∂qj
q̇j −

∂L

∂q̇j
q̈j] =

n

∑
j=1

[ d
dt

( ∂L
∂q̇j

) − ∂L

∂qj
] q̇j, (2.5)

so in particular, along solutions to the Euler–Lagrange equations (2.2),

dE

dt
= 0, (2.6)

and therefore, the energy function E is conserved along trajectories of the corresponding

Euler–Lagrange equations.

By defining the conjugate momentum p ∈ T ∗Q of q via the Legendre transform

pk =
∂L

∂q̇k
, for k = 1, . . . , n, (2.7)

we can then obtain a Hamiltonian H ∶ T ∗Q → R corresponding to L via

H = E ○ (FL)−1
, (2.8)

or in coordinates

H(q, p) = ⟨FL(q, q̇), q̇⟩ −L(q, q̇) =
n

∑
j=1

pj q̇
j −L(q, q̇)∣

pi=
∂L

∂q̇i

. (2.9)

Therefore, hyperregular Lagrangians on TQ induce Hamiltonian systems on T ∗Q.

Now, a Hamiltonian H is called hyperregular if FH ∶ T ∗Q → TQ defined by

FH(α) ⋅ β = d

ds
∣
s=0

H(α + sβ), (2.10)

is a diffeomorphism. As for the Lagrangian, hyperregularity of the Hamiltonian H implies

invertibility of the Hessian matrix ∂2H
∂p2 and thus the Hamiltonian H is nondegenerate.
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Theorem 7.4.3 in [Marsden and Ratiu, 1999] states that hyperregular Lagrangians

and hyperregular Hamiltonians correspond in a bijective manner, and if we denote the

Hamiltonian and Lagrangian vector fields a by XH and XE respectively, the following

diagram from [Marsden and Ratiu, 1999] commutes:

We can also define a Hamiltonian Variational Principle on the Hamiltonian

side in momentum phase space

δ∫
T

0

n

∑
j=1

[pj q̇j −H(q, p)]dt = 0, (2.11)

where the variation is induced by an infinitesimal variation δq of the trajectory q that

vanishes at the endpoints. This is equivalent to Hamilton’s equations, given by

ṗk = −
∂H

∂qk
(p, q), q̇k = ∂H

∂pk
(p, q) for k = 1, . . . , n, (2.12)

which can also be shown to be equivalent to the Euler–Lagrange equations (2.2), provided

the Lagrangian is hyperregular. Hamilton’s equations can be written as

ż = J−1∇H(z), (2.13)

where z = (q, p) and

J =
⎡⎢⎢⎢⎢⎣

0 In
−In 0

⎤⎥⎥⎥⎥⎦
. (2.14)

We say that a differential equation ż = f(z) is locally Hamiltonian if for every

point z0 in some open set U ⊂ R2n, there exists a neighbourhood where f(z) = J−1∇H(z)
for some function H.
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The above discussion can be extended to the case where the Lagrangian is a function

L ∶ TQ ×R→ R which depends explicitly on time t. In this case, Hamilton’s Variational

Principle can also be shown to be equivalent to the Euler–Lagrange equations (2.2). We

can then define the extended Legendre transform F̄L ∶ TQ ×R→ T ∗Q ×R via

F̄L ∶ (q, q̇, t)↦ (q, ∂L
∂q̇

(q, q̇, t), t) . (2.15)

and the same notions of regularity and hyperregularity of Lagrangians as was done earlier

in the autonomous case.

Given a hyperregular Lagrangian, we can define the associated time-dependent

energy function E ∶ TQ ×R→ R via

E(q, q̇, t) = ⟨∂L
∂q̇

(q, q̇, t), q̇⟩ −L(q, q̇, t), (2.16)

and now,
dE

dt
= −∂L

∂t
(2.17)

along solutions of the Euler–Lagrange equations (2.2).

Using the conjugate momentum p ∈ T ∗Q of q defined via the Legendre transform

pk =
∂L

∂q̇k
, for k = 1, . . . , n, (2.18)

we can then obtain a corresponding time-dependent Hamiltonian H ∶ T ∗Q × R → R
corresponding to L via

H = E ○ (F̄L)−1
, (2.19)

or in coordinates

H(q, p, t) = ⟨F̄L(q, q̇, t), q̇⟩ −L(q, q̇, t) =
n

∑
j=1

pj q̇
j −L(q, q̇, t)∣

pi=
∂L

∂q̇i

. (2.20)

The corresponding Hamiltonian variational principle on the Hamiltonian side in

momentum phase space can be shown to be equivalent to Hamilton’s equations (2.12), which

are also equivalent to the Euler–Lagrange equations (2.2), provided the time-dependent

Lagrangian is hyperregular.

27



2.2 Hamiltonian Systems and Symplecticity

Hamiltonian systems possess a long list of structural invariants and constants of

motion, the most important of which are the conservation of the Hamiltonian energy and

the conservation of the symplectic 2-form.

Recall from Definition 1.6 that a 2-form α can be written as

αm(v1, v2) = ∑
i1,i2

αi1i2(m)vi11 vi22 , (2.21)

where αi1,i2(m) = αm(∂i1 , ∂i2), for any point m ∈M and vectors vi = ∑j vji ∂j ∈ TmM .

Definition 2.1. A 2-form α is called non-degenerate if its associated matrix αij is

invertible. A symplectic form ω is a closed non-degenerate 2-form, and a map is

symplectic if it preserves the symplectic form.

We will now give a geometric interpretation for symplecticity in R2n. Given

coordinates (q1, . . . , qn, p1, . . . , pn) on R2n, the canonical symplectic form ω on R2n is given

by

ω =
n

∑
k=1

dqk ∧ dpk. (2.22)

Now, any two-dimensional parallelogram lying in R2n can be parametrized as

P = {tξ + sη ∣ s, t ∈ [0,1]}, (2.23)

where ξ = ( ξpξq ) and η = ( ηpηq ) are linearly independent vectors in the 2n-dimensional (p, q)
space with components ξp, ξq, ηp, ηq ∈ Rn. Now, ω is the sum of the oriented areas of the

projections of the parallelogram P onto the coordinate planes (pi, qi):

ω(ξ, η) =
n

∑
i=1

RRRRRRRRRRRR

ξpi ηpi

ξqi ηqi

RRRRRRRRRRRR
=

n

∑
i=1

(ξpi η
q
i − ξ

q
i η

p
i ). (2.24)

This can be rewritten as ω(ξ, η) = ξ⊺Jη where J is given by equation (2.14). It follows

from Definition 2.1 that a linear mapping A ∶ R2n → R2n is symplectic if

A⊺JA = J, or equivalently ω(Aξ,Aη) = ω(ξ, η) ∀ξ, η ∈ R2n. (2.25)
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Similarly, a differentiable map ϕ ∶ U → R2n where U is an open subset of R2n is symplectic

if the Jacobian matrix ϕ′(p, q) is everywhere symplectic, that is

ϕ′(p, q)⊺Jϕ′(p, q) = J, (2.26)

or equivalently

ω(ϕ′(p, q)ξ,ϕ′(p, q)η) = ω(ξ, η) ∀ξ, η ∈ R2n. (2.27)

As a consequence, for n = 1, symplectic mappings are area preserving, and in higher

dimensions, symplecticity means that the sum of the oriented areas of the projections of

P onto the coordinate planes (pi, qi) is preserved.

We will now describe more precisely the relation between Hamiltonian systems and

symplecticity of flows, with results presented in greater details in the more comprehensive

books [Leimkuhler and Reich, 2004; Hairer et al., 2006; Holm et al., 2009].

The flow ϕt ∶ U → R2n of a Hamiltonian system is the mapping that advances the

solution by time t, that is

ϕt(p0, q0) = (p(t, p0, q0), q(t, p0, q0)) , (2.28)

where (p(t, p0, q0), q(t, p0, q0)) is the solution of the Hamiltonian system with initial values

p(0) = p0 and q(0) = q0. We first state an important theorem concerning the symplecticity

of the flow of a Hamiltonian system.

Theorem 2.1 ([Poincaré, 1899]). Let H(p, q) be a twice continuously differentiable function

on some open set U ⊂ R2n. Then for each fixed t, the flow ϕt is a symplectic transformation

wherever it is defined.

Furthermore, symplecticity of the flow is a characteristic property of Hamiltonian systems:

Theorem 2.2 ([Hairer et al., 2006]). Let f ∶ U → R2n be continuously differentiable on

some open set U ⊂ R2n. Then ẏ = f(y) is locally Hamiltonian if and only if its flow ϕt(y)
is symplectic for all y ∈ U and for all t sufficiently small.

In other words, any solution to a Hamiltonian system is a symplectic flow and any

symplectic flow corresponds to an appropriate Hamiltonian system.
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2.3 Symplectic Numerical Integration

We begin with defining what it means for an integrator to be symplectic.

Definition 2.2. A numerical one-step method is said to be symplectic if the one-step

map y0 ↦ y1 is symplectic whenever the method is applied to a smooth Hamiltonian system.

Symplectic integrators form a class of geometric numerical integrators of interest

since, when applied to Hamiltonian systems, they yield discrete approximations of the flow

that preserve the symplectic 2-form. The preservation of the symplectic 2-form results in

the preservation of many qualitative aspects of the underlying dynamical system. We refer

the reader to [Iserles and Quispel, 2018] for a brief recent overview of geometric numerical

integration, and to [Hairer et al., 2006; Blanes and Casas, 2017] for a more comprehensive

presentation of structure-preserving integration techniques.

We now look more carefully at one of these preservation properties, namely that

when applied to conservative Hamiltonian systems, symplectic integrators show excellent

long-time near-energy preservation. This result was first established in 1994 in [Benettin

and Giorgilli, 1994] and is presented with great clarity in [Hairer et al., 2006] through

Backward Error Analysis. Backward Error Analysis ( BEA ) is a way to investigate

the error in a numerical solution, first used in [Wilkinson, 1960], where the idea is to find

a nearby problem which is solved exactly by the numerical method instead of finding the

error of the method.

Original Problem
exact //

numerical

''

Exact Solution

��

Modified Problem
exact // Numerical Solution

Forward Error

OO

Backward Error Analysis

kk
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Consider an ordinary differential equation

ẏ = f(y), y(0) = y0, (2.29)

with associated exact time-t flow ϕt(y0), and a numerical method Φh(y) which produces

the approximations y1, . . . , yn.

ϕt(y0)

ẏ = f(y)

exact
22

numerical

,,
yn+1 = Φh(yn)

˙̃y = fh(ỹ)

exact
33

Instead of studying the local error y1 − ϕh(y0) and the global error yn − ϕnh(y0) as

in forward error analysis, the idea of backward error analysis is to search for a modified

differential equation ˙̃y = fh(ỹ) of the form

˙̃y = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + . . . (2.30)

such that yn = ỹ(nh), and to study the difference between the vector fields f(y) and fh(y).
The global error is then yn − y(nh) = ỹ(nh) − y(nh).

It can be shown that when applied to a Hamiltonian system, a symplectic method

solves exactly a nearby Hamiltonian problem:

Theorem 2.3 ([Benettin and Giorgilli, 1994; Hairer et al., 2006]). If a symplectic method

Φh(y) is applied to a Hamiltonian system with a smooth Hamiltonian H ∶ R2n → R, then

the modified equation

˙̃y = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + . . . (2.31)

is also Hamiltonian. More precisely, there exist smooth functions Hj ∶ R2n → R for

j = 2,3, . . . such that

fj(y) = J−1∇Hj(y). (2.32)
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Furthermore, it can be shown that the symplectic method exhibits excellent near-

preservation of the modified nearby Hamiltonian H̃ over exponentially long time intervals:

Theorem 2.4 ([Benettin and Giorgilli, 1994; Hairer et al., 2006]). Consider the numerical

solution yn obtained by applying a symplectic integrator of order ρ with time-step h to

a Hamiltonian system with analytic Hamiltonian H on some open set U ⊂ R2n. If the

numerical solution stays in a compact set K ⊂D, there exists a constant h0 such that

H̃(yn) = H̃(y0) +O(e−h0/2h), and H(yn) =H(y0) +O(hρ), (2.33)

over exponentially-long time intervals nh ≤ eh0/2h.

This result shows that the numerical solution of a Hamiltonian system obtained

using a constant time-step symplectic integrator is exponentially-near to the exact solution

of a nearby Hamiltonian system for exponentially-long time. It explains in particular why

symplectic integrators exhibit good energy conservation with essentially no accumulation

of errors in time, when applied to Hamiltonian systems, and why symplectic methods are

best suited to integrate Hamiltonian systems. We refer the reader to [Hairer et al., 2006]

for a comprehensive survey of the different techniques to construct symplectic integrators

and of their properties.

Formulas for the modified Hamiltonian for symplectic integrators can be derived

using B-series [Hairer et al., 2006]. This can be very useful in the context of learning

Hamiltonian dynamics from data, for instance. Numerous neural network architectures

match a discretization of the Hamiltonian flow to the data to learn the Hamiltonian

system. However, the discretization of the Hamiltonian flow is not exact and induces

error. While the learnt discrete flow maps can be used very effectively for predictions, the

original continuous dynamics cannot be recovered exactly in a naive way from the learnt

discrete maps. When we match the updates of a symplectic integrator to the data, we are

effectively learning an inverse modified Hamiltonian. To recover the original continuous

Hamiltonian, we need to apply corrections to obtain the modified Hamiltonian associated

with the symplectic integrator for the learnt Hamiltonian. Recent papers [Zhu et al., 2020;

Offen and Ober-Blöbaum, 2022] have started exploring this direction.
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We present here two very popular symplectic integrators, the Symplectic Euler and

the Störmer–Verlet integrators, and give the formulas for the modified nearby Hamiltonians

which are solved exactly when these integrators are applied to a separable Hamiltonian of

the form

H(q, p) = T (p) +U(q). (2.34)

In this section, we will use the Poisson bracket {F,G} = FqGp − FpGq and the matrix

commutator [A,B] = AB −BA.

The Hamilton equations associated to the separable Hamiltonian (2.34) can be

split in two parts as

⎛
⎝
q̇

ṗ

⎞
⎠
=
⎛
⎝
−Uq(q)

0

⎞
⎠
+
⎛
⎝

0

Tp(p)
⎞
⎠
. (2.35)

We will denote the symplectic flows of
⎛
⎝
q̇

ṗ

⎞
⎠
=
⎛
⎝
−Uq(q)

0

⎞
⎠

and
⎛
⎝
q̇

ṗ

⎞
⎠
=
⎛
⎝

0

Tp(p)
⎞
⎠

by ϕUt and ϕTt .

The Symplectic Euler integrators

SE1 ∶
pn+1 = pn − hUq(qn)

qn+1 = qn + hTp(pn+1)
SE2 ∶

qn+1 = qn + hTp(pn)

pn+1 = pn − hUq(qn+1)
(2.36)

can be thought of as the compositions of symplectic flows

Φ
[SE1]
h = ϕTh ○ ϕUh and Φ

[SE2]
h = ϕUh ○ ϕTh . (2.37)

The Symplectic Euler methods are symplectic integrators of order 1 [Hairer et al., 2006].

We can use the Baker–Campbell-Hausdorff (BCH) formula for this first order splitting

[Hairer et al., 2006, Section III.4],

exp (hA) exp (hB)

= exp(h(A +B) + h
2

2
[A,B] + h

3

12
([B, [B,A]] + [A, [A,B]]) + h

4

24
[[[B,A],A],B] +O (h5)),

to obtain the modified Hamiltonians for the separable Hamiltonian (2.34), as done in

[Yoshida, 1993; Hairer et al., 2006; Blanes and Casas, 2017]:
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H̃ [SE1] =H + h
2
{T,U} + h

2

12
[{U,{U,T}} + {T,{T,U}}] + h

3

24
{{{T,U}, U}, T} +O(h4),

H̃ [SE2] =H + h
2
{U,T} + h

2

12
[{T,{T,U}} + {U,{U,T}}] + h

3

24
{{{U,T}, T}, U} +O(h4),

so when H ∶ R2n → R,

H̃ [SE1] =H − h
2
T ⊺
p Uq +

h2

12
[U⊺

q TppUq + T ⊺
p UqqTp] +

h3

12
T ⊺
p U

⊺
qq (Tpp + T ⊺

pp)Uq +O(h4),

H̃ [SE2] =H + h
2
T ⊺
p Uq +

h2

12
[U⊺

q TppUq + T ⊺
p UqqTp] −

h3

12
T ⊺
p U

⊺
qq (Tpp + T ⊺

pp)Uq +O(h4).

The Störmer–Verlet integrators

SV1 ∶

pn+ 1
2
= pn −

h

2
Uq(qn)

qn+1 = qn + hTp (pn+ 1
2
)

pn+1 = pn+ 1
2
− h

2
Uq(qn+1)

SV2 ∶

qn+ 1
2
= qn +

h

2
Tp(pn)

pn+1 = pn − hUq (qn+ 1
2
)

qn+1 = qn+ 1
2
+ h

2
Tp(pn+1)

(2.38)

can be thought of as the symmetric compositions

Φ
[SV1]
h = ϕUh/2 ○ ϕTh ○ ϕUh/2 and Φ

[SV2]
h = ϕTh/2 ○ ϕUh ○ ϕTh/2, (2.39)

also known as Strang splittings [Strang, 1968]. The Störmer–Verlet methods are symmetric

symplectic methods of order 2. [Hairer et al., 2003] gives a very detailed description of these

methods, their different interpretations and numerical properties. Using the symmetric

Baker–Campbell-Hausdorff (BCH) formula for the Strang splitting [Hairer et al., 2006,

Section III.4] as in [Yoshida, 1993; Hairer et al., 2003, 2006; Blanes and Casas, 2017]

exp(h
2
A) exp (hB) exp(h

2
A) = exp(h(A +B) + h

3

24
(2[B, [B,A]] − [A, [A,B]]) +O (h5)),

the modified Hamiltonians are obtained to be

H̃ [SV1] =H + h
2

24
[2{T,{T,U}} − {U,{U,T}}] +O(h4), (2.40)

H̃ [SV2] =H + h
2

24
[2{U,{U,T}} − {T,{T,U}}] +O(h4), (2.41)

so when H ∶ R2n → R,

H̃ [SV1] =H + h
2

24
[2T ⊺

p UqqTp −U⊺
q TppUq] +O(h4), (2.42)

H̃ [SV2] =H + h
2

24
[2U⊺

q TppUq − T ⊺
p UqqTp] +O(h4). (2.43)
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2.4 Variational Integrators

2.4.1 General Description

Variational integrators are constructed by discretizing Hamilton’s variational

principle, instead of discretizing the Euler–Lagrange equations or Hamilton’s equations

directly. As a result, they are symplectic, and thus benefit from the nice properties of

symplectic integrators presented Section 2.3. In particular, they preserve many invariants

and momentum maps, and have excellent long-time near-energy preservation.

Type I. Traditionally, variational integrators have been designed based on the Type I

generating function known as the discrete Lagrangian, Ld ∶ Q ×Q → R. The exact

discrete Lagrangian LEd ∶ Q ×Q→ R of the true flow of the Euler–Lagrange equations

can be represented both in a variational form and in a boundary-value form. The latter is

given by

LEd (q0, q1;h) = ∫
h

0
L(q(t), q̇(t))dt, (2.44)

where q(0) = q0, q(h) = q1, and the trajectory q(t) satisfies the Euler–Lagrange equations

over the time interval [0, h].
A Lagrangian variational integrator is defined by constructing an approximation Ld

to the exact discrete Lagrangian LEd , and then applying the discrete Euler–Lagrange

equations,

pk = −D1Ld(qk, qk+1), pk+1 =D2Ld(qk, qk+1), (2.45)

which implicitly define the discrete Hamiltonian map F̃Ld ∶ (qk, pk) ↦ (qk+1, pk+1),
where Di denotes a partial derivative with respect to the i-th argument.

Numerical methods constructed in this way are called Lagrangian variational

integrators as they can be derived from a discrete Hamilton’s principle, which involves

extremizing a discrete action sum

Sd ({qk}Nk=0) ≡
N−1

∑
k=0

Ld(qk, qk+1), (2.46)

subject to fixed boundary conditions on q0, qN .
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We can define the discrete Legendre transforms, F±Ld ∶ Q ×Q → T ∗Q via

F+Ld ∶ (qk, qk+1)↦ (qk+1, pk+1) = (qk+1,D2Ld(qk, qk+1)), (2.47)

F−Ld ∶ (qk, qk+1)↦ (qk, pk) = (qk,−D1Ld(qk, qk+1)), (2.48)

and the discrete Hamiltonian map can be expressed as F̃Ld ≡ (F+Ld) ○ (F−Ld)−1.

The error analysis is greatly simplified by Theorem 2.3.1 of [Marsden and West,

2001], which states that if a discrete Lagrangian, Ld ∶ Q ×Q→ R, approximates the exact

discrete Lagrangian LEd ∶ Q ×Q→ R to order r, that is,

Ld(q0, q1;h) = LEd (q0, q1;h) +O(hr+1), (2.49)

then the discrete Hamiltonian map F̃Ld ∶ (qk, pk) ↦ (qk+1, pk+1), viewed as a one-step

method, has order of accuracy r. Many other properties of the integrator, such as

momentum conservation properties of the method, can be determined by analyzing the

associated discrete Lagrangian, as opposed to analyzing the integrator directly.

More recently, variational integrators have been designed based on the framework

of Type II/III generating functions, commonly referred to as discrete Hamiltonians

(see [Lall and West, 2006; Leok and Zhang, 2011; Schmitt and Leok, 2017]). Hamiltonian

variational integrators are derived by discretizing Hamilton’s phase space principle.

Type II. The boundary-value formulation of the exact Type II generating function of the

time-h flow of Hamilton’s equations is given by the exact discrete right Hamiltonian,

H+,E
d (q0, p1;h) = p⊺1q1 − ∫

h

0
[p(t)⊺q̇(t) −H(q(t), p(t))]dt, (2.50)

where (q, p) satisfies Hamilton’s equations on the time interval [0, h] with boundary

conditions q(0) = q0, p(h) = p1.

A Type II Hamiltonian variational integrator is constructed by approximating the

exact discrete right Hamiltonian H+,E
d via an approximate discrete Hamiltonian H+

d , and

applying the discrete right Hamilton’s equations,

p0 =D1H
+
d (q0, p1), q1 =D2H

+
d (q0, p1), (2.51)

which implicitly defines the integrator, F̃H+
d
∶ (q0, p0)↦ (q1, p1).
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Theorem 2.3.1 of [Marsden and West, 2001], which greatly simplified the variational

error analysis for Lagrangian variational integrators, has an analogue for Hamiltonian

variational integrators. Theorem 2.2 in [Schmitt and Leok, 2017] states that if a discrete

right Hamiltonian H+
d approximates the exact discrete right Hamiltonian H+,E

d to order r,

that is,

H+
d (q0, p1;h) =H+,E

d (q0, p1;h) +O(hr+1), (2.52)

then the discrete right Hamilton’s map F̃H+
d
∶ (qk, pk) ↦ (qk+1, pk+1), viewed as a

one-step method, is order r accurate.

Type III. The boundary-value formulation of the exact Type III generating function of

the time-h flow of Hamilton’s equations is the exact discrete left Hamiltonian,

H−,E
d (q1, p0;h) = −p⊺0q0 − ∫

h

0
[p(t)⊺q̇(t) −H(q(t), p(t))]dt, (2.53)

where (q, p) satisfies Hamilton’s equations on the time interval [0, h] with boundary

conditions q(h) = q1, p(0) = p0.

A Type III Hamiltonian variational integrator is constructed by approximating the

exact discrete left Hamiltonian H−,E
d via an approximate discrete Hamiltonian H−

d , and

applying the discrete left Hamilton’s equations,

p1 = −D1H
−
d (q1, p0), q0 = −D2H

−
d (q1, p0), (2.54)

which implicitly defines the integrator, F̃H−
d
∶ (q0, p0)↦ (q1, p1). As mentioned in [Schmitt

and Leok, 2017], the proof of Theorem 2.2 in [Schmitt and Leok, 2017] can be easily

adjusted to derive an equivalent error analysis theorem for the discrete left Hamiltonian

case, which states that if a discrete left Hamiltonian H−
d approximates the exact discrete

left Hamiltonian H−,E
d to order r, i.e.,

H−
d (q1, p0;h) =H−,E

d (q1, p0;h) +O(hr+1), (2.55)

then it follows that the discrete left Hamilton’s map F̃H−
d
∶ (qk, pk) ↦ (qk+1, pk+1),

viewed as a one-step method, is order r accurate.
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Typical examples of Hamiltonian and Lagrangian variational integrators include

Galerkin variational integrators [Marsden and West, 2001; Leok and Zhang, 2011], Taylor

variational integrators [Schmitt et al., 2018], and prolongation-collocation variational

integrators [Leok and Shingel, 2012a].

The Type I and Type II/III approaches will produce equivalent integrators in many

cases. In particular, this equivalence was established in [Schmitt et al., 2018] for Taylor

variational integrators provided the Lagrangian is hyperregular, and in [Leok and Zhang,

2011] for generalized Galerkin variational integrators constructed using the same choices of

basis functions and numerical quadrature formula provided the Hamiltonian is hyperregular.

Note however that Hamiltonian and Lagrangian variational integrators are not

always equivalent. In particular, it was shown in [Schmitt and Leok, 2017] that even

when the Hamiltonian and Lagrangian integrators are analytically equivalent, they might

still have different numerical properties because of numerical conditioning issues. Even

more to the point, Lagrangian variational integrators cannot always be constructed when

the underlying Hamiltonian is degenerate, and in that situation, Hamiltonian variational

integrators are the more natural choice. Depending on the form of the Hamiltonian and the

approximation method used to design the corresponding approximate discrete Hamiltonian,

one of the Type II or Type III approaches might be more convenient than the other, in the

sense that it might allow for an explicit algorithm or might allow for higher-order methods

given some constraints on the type of methods permitted. In Section 2.7.1, we will examine

a transformation commonly used to construct variable time-step symplectic integrators,

which results in a degenerate Hamiltonian in most cases of interest, such as the optimization

application considered in Section 3.3. We will apply Hamiltonian variational integrators to

the resulting transformed Hamiltonian system. For the optimization application presented

in Section 3.3, we will prefer Type II Hamiltonian Taylor variational integrators to their

Type III analogues, and this choice will be justified carefully based on the order and

explicitness of the resulting methods.
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2.4.2 Taylor Variational Integrators

A discrete approximate Lagrangian or Hamiltonian is obtained by approximating

the flow map and the trajectory associated with the boundary values using a Taylor

method, and by approximating the integral using a quadrature rule. The Taylor variational

integrator is then generated implicitly by the discrete Euler–Lagrange equations associated

with the discrete Lagrangian or by the discrete Hamilton’s equations associated with the

discrete Hamiltonian.

More explicitly, we first construct ρ-order and (ρ + 1)-order Taylor methods Ψ
(ρ)
h

and Ψ
(ρ+1)
h approximating the exact time-h flow map Φh ∶ TQ→ TQ corresponding to the

Euler–Lagrange equation in the Type I case or the exact time-h flow map Φh ∶ T ∗Q→ T ∗Q

corresponding to Hamilton’s equation in the Type II/III cases.

Let πT ∗Q ∶ (q, p) ↦ p and πQ ∶ (q, p) ↦ q. Given a quadrature rule of order s with

weights and nodes (bi, ci) for i = 1, . . . ,m, the Taylor variational integrators are then

constructed as follows:

Type I Lagrangian Taylor Variational Integrator (LTVI)

(i) Approximate q̇(0) = v0 by the solution ṽ0 of the problem q1 = πQ ○Ψ
(ρ+1)
h (q0, ṽ0).

(ii) Generate approximations (qci , vci) ≈ (q(cih), q̇(cih)) via (qci , vci) = Ψ
(ρ)
cih

(q0, ṽ0).

(iii) Apply the quadrature rule to obtain the associated discrete Lagrangian

Ld(q0, q1;h) = h
m

∑
i=1

biL(qci , vci). (2.56)

(iv) The variational integrator is then defined by the implicit discrete Euler–Lagrange

equations

p0 = −D1Ld(q0, q1), p1 =D2Ld(q0, q1). (2.57)
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Type II Hamiltonian Taylor Variational Integrator (HTVI)

(i) Approximate p(0) = p0 by the solution p̃0 of the problem p1 = πT ∗Q ○Ψ
(ρ)
h (q0, p̃0).

(ii) Generate approximations (qci , pci) ≈ (q(cih), p(cih)) via (qci , pci) = Ψ
(ρ)
cih

(q0, p̃0).

(iii) Approximate q1 via q̃1 = πQ ○Ψ
(ρ+1)
h (q0, p̃0).

(iv) Use the continuous Legendre transform to obtain q̇ci = ∂H
∂pci

.

(v) Apply the quadrature rule to obtain the associated discrete right Hamiltonian

H+
d (q0, p1;h) = p⊺1 q̃1 − h

m

∑
i=1

bi [p⊺ci q̇ci −H(qci , pci)]. (2.58)

(vi) The variational integrator is then defined by the implicit discrete right Hamilton’s

equations

q1 =D2H
+
d (q0, p1), p0 =D1H

+
d (q0, p1). (2.59)

Type III Hamiltonian Taylor Variational Integrator (HTVI)

(i) Approximate q(0) = q0 by the solution q̃0 of the problem q1 = πQ ○Ψ
(ρ+1)
h (q̃0, p0).

(ii) Generate approximations (qci , pci) ≈ (q(cih), p(cih)) via (qci , pci) = Ψ
(ρ)
cih

(q̃0, p0).

(iii) Use the continuous Legendre transform to obtain q̇ci = ∂H
∂pci

.

(iv) Apply the quadrature rule to obtain the associated discrete left Hamiltonian

H−
d (q1, p0;h) = −p⊺0 q̃0 − h

m

∑
i=1

bi [p⊺ci q̇ci −H(qci , pci)]. (2.60)

(v) The variational integrator is then defined by the implicit discrete left Hamilton’s

equations

p1 = −D1H
−
d (q1, p0), q0 = −D2H

−
d (q1, p0). (2.61)
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The following error analysis result concerning the order of accuracy of Lagrangian

Taylor variational integrators can be derived:

Theorem 2.5 ([Schmitt et al., 2018]). Suppose the Lagrangian L is Lipschitz continuous

in both variables and sufficiently regular for Ψ
(ρ+1)
h to be well-defined. Then the discrete

Lagrangian Ld(q0, q1), obtained using the above construction, approximates LEd (q0, q1) with

at least order of accuracy min (ρ + 1, s). By Theorem 2.3.1 in [Marsden and West, 2001],

the associated discrete Hamiltonian map has the same order of accuracy.

Similar error analysis results can be derived for Type II and Type III Hamiltonian

Taylor variational integrators:

Theorem 2.6 ([Duruisseaux et al., 2021]). Suppose the Hamiltonian H and its partial

derivative ∂H
∂p are Lipschitz continuous in both variables, and H is sufficiently regular

for Ψ
(ρ+1)
h to be well-defined. Then, the discrete Hamiltonian H±

d obtained using the

above construction, approximates H±,E
d with at least order of accuracy min (ρ + 1, s). By

Theorem 2.2 in [Schmitt and Leok, 2017] (or its analogue for the left Hamiltonian case),

the associated discrete Hamiltonian map has the same order of accuracy.

Proof. See Appendix A.1

Taylor variational integrators were inspired by a resurgence of interest in high-order

Taylor methods for celestial mechanics that has been fueled by the continued progress

in automatic differentiation software (see for instance [Barrio, 2005; Neidinger, 2005;

Pearlmutter, 2007; Neidinger, 2013; Bettencourt et al., 2019; Biscani and Izzo, 2021]). For

high-order Taylor methods, the key to an efficient implementation relies upon efficient

automatic differentiation software to compute higher-order gradients.

Implicit modified Taylor methods have been proposed to deal with stiff ordinary

differential equations [Kirlinger and Corliss, 1991], while Taylor variational integrators

provide a class of Taylor-based integrators to deal with conservative Hamiltonian systems,

and can be viewed as a predictor-corrector method that applies a symplectic correction to

the Taylor method.
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2.5 Forced Variational Integrators

External forcing and control can be incorporated into the variational integrators

framework [Marsden and West, 2001; Ober-Blöbaum et al., 2011].

Let u(t) be a control parameter in some control manifold U, and consider a

Lagrangian control force fL ∶ TQ ×U → T ∗Q. Hamilton’s variational principle

δ∫
T

0
L(q(t), q̇(t))dt = 0, (2.62)

can be modified into the Lagrange–d’Alembert Variational Principle

δ∫
T

0
L(q(t), q̇(t))dt + ∫

T

0
fL(q(t), q̇(t), u(t)) ⋅ δq(t)dt = 0, (2.63)

where the variation is induced by an infinitesimal variation δq that vanishes at the endpoints.

This variational principle is equivalent to the forced Euler–Lagrange equations

∂L

∂q
(q, q̇) − d

dt
(∂L
∂q̇

(q, q̇)) + fL(q, q̇, u) = 0. (2.64)

Using a discrete Lagrangian Ld to approximate the exact discrete Lagrangian,

Ld(qk, qk+1) ≈ ∫
tk+1

tk
L(q(t), q̇(t))dt, (2.65)

and discrete Lagrangian control forces f±d ∶ Q × Q ×U → T ∗Q to approximate the

virtual work of the Lagrangian control force fL,

f−d (qk, qk+1, uk) ⋅ δqk + f+d (qk, qk+1, uk) ⋅ δqk+1 ≈ ∫
tk+1

tk
fL(q(t), q̇(t), u(t)) ⋅ δq(t)dt, (2.66)

one can obtain a forced variational integrator from the forced discrete Euler–

Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+d (qk−1, qk, uk−1) + f−d (qk, qk+1, uk) = 0, (2.67)

which can also be written in Hamiltonian form as

pk = −D1Ld(qk, qk+1) − f−d (qk, qk+1, uk),

pk+1 = D2Ld(qk, qk+1) + f+d (qk, qk+1, uk).
(2.68)
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2.6 Constrained Variational Integrators

We now investigate how holonomic constraints can be incorporated into the design

of discrete variational integrators to constrain the numerical discretization of a continuous

Hamiltonian or Lagrangian system to a certain constraint manifold. Enforcing holonomic

constraints in geometric numerical integrators has been studied extensively in the past

(see for instance [Marsden and Ratiu, 1999; Marsden and West, 2001; Hairer et al., 2006;

Holm et al., 2009]), and some work has been done from the variational perspective for the

Type I Lagrangian formulation in [Marsden and West, 2001] via augmented Lagrangians

in some appropriate extended spaces.

We will first show in Section 2.6.1 the equivalence between constrained variational

principles and constrained Euler–Lagrange equations, both in continuous and discrete

time, before deriving analogous results for both the Type II and Type III Hamiltonian

formulations of variational integrators in Section 2.6.2. In Section 2.6.3, we will exploit

existing error analysis theorems for unconstrained variational integrators from [Marsden

and West, 2001] and [Schmitt and Leok, 2017] to obtain variational error analysis results

for the discrete maps defined implicitly by the discrete constrained Euler–Lagrange and

discrete constrained Hamilton’s equations.

2.6.1 Constrained Variational Lagrangian Mechanics

Suppose we are given a configuration manifold M, and a holonomic constraint

function C ∶M → Rd. Assuming that 0 ∈ Rd is a regular point of C, we can constrain the

dynamics to the constraint submanifold Q = C−1(0), which is truly a submanifold of M

(see [Abraham et al., 1988; Marsden and West, 2001]).

We will now present a variational formulation of Lagrangian mechanics with

holonomic constraints C(q) using Lagrange multipliers λ ∶ [0, T ]→ Λ.
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Continuous Constrained Variational Lagrangian Mechanics

We first present an equivalence between the continuous constrained variational

principle and the continuous constrained Euler–Lagrange equations:

Theorem 2.7 ([Marsden and West, 2001; Duruisseaux and Leok, 2022a]). Consider the

constrained action functional S ∶ C2([0, T ],Q ×Λ)→ R given by

S(q(⋅), λ(⋅)) = ∫
T

0
[L(q(t), q̇(t)) − ⟨λ(t),C(q(t))⟩]dt. (2.69)

The condition that S(q(⋅), λ(⋅)) is stationary with respect to the boundary conditions

δq(0) = 0 and δq(T ) = 0 is equivalent to (q(⋅), λ(⋅)) satisfying the constrained Euler–

Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= ⟨λ,∇C(q)⟩, C(q) = 0. (2.70)

Proof. See Appendix A.2.1.

Remark 2.1. The constrained equations (2.70) can be thought of as the Euler–Lagrange

equations coming from the augmented Lagrangian L̄ (q, λ, q̇, λ̇) = L(q, q̇) − ⟨λ,C(q)⟩.

Now, consider the function S(q0, qT ) given by the extremal value of the constrained

action functional S over the family of curves (q(⋅), λ(⋅)) satisfying the boundary conditions

q(0) = q0 and q(T ) = qT :

S(q0, qT ) = ext
(q,λ)∈C2([0,T ],Q×Λ)

q(0)=q0, q(T )=qT

S(q(⋅), λ(⋅)). (2.71)

The following theorem shows that S(q0, qT ) is a generating function for the flow of

the continuous constrained Euler–Lagrange equations:

Theorem 2.8 ([Marsden and West, 2001; Duruisseaux and Leok, 2022a]). The exact

time-T flow map of Hamilton’s equations (q0, p0) ↦ (qT , pT ) is implicitly given by the

following relations:

D1S(q0, qT ) = −
∂L

∂q̇
(q0, q̇(0)), D2S(q0, qT ) =

∂L

∂q̇
(qT , q̇(T )). (2.72)

In particular, S(q0, qT ) is a Type I generating function that generates the exact flow of the

constrained Euler–Lagrange equations (2.70).

Proof. See Appendix A.2.4.
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Discrete Constrained Variational Lagrangian Mechanics

We now introduce a discrete variational formulation of Lagrangian mechanics which

includes holonomic constraints.

Suppose we are given a partition 0 = t0 < t1 < . . . < tN = T of the interval [0, T ],
and a discrete curve in Q ×Λ denoted by {(qk, λk)}Nk=0 such that qk ≈ q(tk) and λk ≈ λ(tk).
We will formulate discrete constrained variational Lagrangian mechanics in terms of the

following discrete analogues of the constrained action functional S given by equation (2.69):

S+
d ({(qk, λk)}Nk=0) =

N−1

∑
k=0

[Ld(qk, qk+1) − ⟨λk+1,C(qk+1)⟩], (2.73)

S−
d ({(qk, λk)}Nk=0) =

N−1

∑
k=0

[Ld(qk, qk+1) − ⟨λk,C(qk)⟩], (2.74)

where

Ld(qk, qk+1) ≈ ext
(q,λ)∈C2([tk,tk+1],Q×Λ)

q(tk)=qk, q(tk+1)=qk+1

∫
tk+1

tk
L(q(t), q̇(t))dt. (2.75)

We can now derive discrete analogues to Theorem 2.7 relating discrete Type I

variational principles to discrete Euler–Lagrange equations:

Theorem 2.9 ([Marsden and West, 2001; Duruisseaux and Leok, 2022a]). The Type I

discrete Hamilton’s variational principles

δS±
d ({(qk, λk)}Nk=0) = 0, (2.76)

are equivalent to the discrete constrained Euler–Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = ⟨λk,∇C(qk)⟩, C(qk) = 0, (2.77)

where Ld(qk, qk+1) is defined via equation (2.75).

Proof. See Appendix A.2.7.
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Remark 2.2. These discrete constrained Euler–Lagrange equations can be thought of as

the discrete Euler–Lagrange equations coming from the augmented discrete Lagrangians

L̄+d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − ⟨λk+1,C(qk+1)⟩, (2.78)

L̄−d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − ⟨λk,C(qk)⟩. (2.79)

2.6.2 Constrained Variational Hamiltonian Mechanics

We now derive analogous results to those of Section 2.6.1 from the Hamiltonian

perspective. As in the Lagrangian case, we will assume we have a configuration manifold M,

a holonomic constraint function C ∶M → Rd, and that the dynamics are constrained to

the submanifold Q = C−1(0).

Continuous Constrained Variational Hamiltonian Mechanics

The following theorem presents the equivalence between a continuous constrained

variational principle and continuous constrained Hamilton’s equations in the Type II case,

generalizing Lemma 2.1 from [Leok and Zhang, 2011] to include holonomic constraints:

Theorem 2.10 ([Duruisseaux and Leok, 2022a]). Consider the Type II constrained

action functional S ∶ C2([0, T ], T ∗Q ×Λ)→ R given by

S(q(⋅), p(⋅), λ(⋅)) = p(T )q(T ) − ∫
T

0
[p(t)q̇(t) −H(q(t), p(t)) − ⟨λ(t),C(q(t))⟩]dt. (2.80)

The condition that the action functional S(q(⋅), p(⋅), λ(⋅)) is stationary with respect to the

boundary conditions δq(0) = 0 and δp(T ) = 0 is equivalent to (q(⋅), p(⋅), λ(⋅)) satisfying

Hamilton’s constrained equations

q̇ = ∂H
∂p

(q, p), ṗ = −∂H
∂q

(q, p) − ⟨λ,∇C(q)⟩, C(q) = 0. (2.81)

Proof. See Appendix A.2.2.
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As in the Type II case, we can derive a theorem relating a continuous constrained

variational principle and continuous constrained Hamilton’s equations in the Type III

Hamiltonian case:

Theorem 2.11 ([Duruisseaux and Leok, 2022a]). Consider the Type III constrained

action functional S ∶ C2([0, T ], T ∗Q ×Λ)→ R given by

S(q(⋅), p(⋅), λ(⋅)) = −p(0)q(0)−∫
T

0
[p(t)q̇(t) −H(q(t), p(t)) − ⟨λ(t),C(q(t))⟩]dt. (2.82)

The condition that the action functional S(q(⋅), p(⋅), λ(⋅)) is stationary with respect to the

boundary conditions δq(T ) = 0 and δp(0) = 0 is equivalent to (q(⋅), p(⋅), λ(⋅)) satisfying

Hamilton’s constrained equations

q̇ = ∂H
∂p

(q, p), ṗ = −∂H
∂q

(q, p) − ⟨λ,∇C(q)⟩, C(q) = 0. (2.83)

Proof. See Appendix A.2.3.

Remark 2.3. Hamilton’s constrained equations are the same in the Type II and Type III

formulations of Hamiltonian mechanics, and they can be thought of as the Hamilton’s

equations generated by the augmented Hamiltonian

H̄ (q, λ, p,p) =H(q, p) + ⟨λ,C(q)⟩, (2.84)

where p is the conjugate momentum for the variable λ. Furthermore, they are equivalent

to the constrained Euler–Lagrange equations (2.70), provided that the Lagrangian L is

hyperregular.

Remark 2.4. It is sometimes beneficial to augment the continuous Hamilton’s constrained

equations with the equation ⟨∂H∂p (q, p),∇C(q)⟩ = 0, (and analogously for the discrete case)

to ensure that the momentum p lies in the cotangent space to the manifold, as explained

and illustrated in [Hairer et al., 2006, Chapter VII].

We now generalize Theorem 2.2 from [Leok and Zhang, 2011] for the Type II case

and its Type III analogue to include holonomic constraints C(q) using Lagrange multipliers

λ ∶ [0, T ]→ Λ.
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In the Type II case, consider the function S(q0, pT ) given by the extremal value of

the constrained action functional S over the family of curves (q(⋅), p(⋅), λ(⋅)) satisfying

the boundary conditions q(0) = q0 and p(T ) = pT :

S(q0, pT ) = ext
(q,p,λ)∈C2([0,T ],T ∗Q×Λ)

q(0)=q0, p(T )=pT

S(q(⋅), p(⋅), λ(⋅)). (2.85)

The following theorem shows that S(q0, pT ) is a generating function for the flow of

the continuous constrained Hamilton’s equations:

Theorem 2.12 ([Duruisseaux and Leok, 2022a]). The exact time-T flow map of Hamilton’s

equations (q0, p0)↦ (qT , pT ) is implicitly given by the following relations:

qT =D2S(q0, pT ), p0 =D1S(q0, pT ). (2.86)

In particular, S(q0, pT ) is a Type II generating function that generates the exact flow of

the constrained Hamilton’s equations (2.81).

Proof. See Appendix A.2.5.

In the Type III case, consider the function S(qT , p0) given by the extremal value

of the constrained action functional S over the family of curves (q(⋅), p(⋅), λ(⋅)) satisfying

the boundary conditions q(T ) = qT and p(0) = p0:

S(qT , p0) = ext
(q,p,λ)∈C2([0,T ],T ∗Q×Λ)

q(T )=qT , p(0)=p0

S(q(⋅), p(⋅), λ(⋅)). (2.87)

The following theorem shows that S(qT , p0) is a generating function for the flow of

the continuous constrained Hamilton’s equations:

Theorem 2.13 ([Duruisseaux and Leok, 2022a]). The exact time-T flow map of the

Hamilton’s equations (q0, p0)↦ (qT , pT ) is implicitly given by the following relations:

q0 = −D2S(qT , p0), pT = −D1S(qT , p0). (2.88)

In particular, S(qT , p0) is a Type III generating function that generates the exact flow of

the constrained Hamilton’s equations (2.83).

Proof. See Appendix A.2.6.
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Discrete Constrained Variational Hamiltonian Mechanics

Let us now extend the results of [Leok and Zhang, 2011] to introduce a discrete

formulation of variational Hamiltonian mechanics which includes holonomic constraints.

Suppose we are given a partition 0 = t0 < t1 < . . . < tN = T of the interval [0, T ], and a

discrete curve {(qk, pk, λk)}Nk=0 in T ∗Q ×Λ such that qk ≈ q(tk), pk ≈ p(tk) and λk ≈ λ(tk).
We formulate discrete constrained variational Hamiltonian mechanics in terms of the

following discrete analogues of the constrained action functional S given by equation (2.80):

S+
d ({(qk, pk, λk)}Nk=0) = pNqN −

N−1

∑
k=0

[pk+1qk+1 −H+
d (qk, pk+1) − ⟨λk,C(qk)⟩], (2.89)

S−
d ({(qk, pk, λk)}Nk=0) = −p0q0 −

N−1

∑
k=0

[−pkqk −H−
d (qk+1, pk) − ⟨λk+1,C(qk+1)⟩], (2.90)

where

H+
d (qk, pk+1) ≈ ext

(q,p,λ)∈C2([tk,tk+1],T
∗Q×Λ)

q(tk)=qk, p(tk+1)=pk+1

p(tk+1)q(tk+1) − ∫
tk+1

tk
[p(t)q̇(t) −H(q(t), p(t))]dt

(2.91)

H−
d (qk+1, pk) ≈ ext

(q,p,λ)∈C2([tk,tk+1],T
∗Q×Λ)

q(tk+1)=qk+1, p(tk)=pk

−p(tk)q(tk) − ∫
tk+1

tk
[p(t)q̇(t) −H(q(t), p(t))]dt.

(2.92)

We can now derive a discrete analogue of Theorem 2.10 which relates a Type II

discrete variational principle to discrete constrained Hamilton’s equations, generalizing

Lemma 3.1 from [Leok and Zhang, 2011]:

Theorem 2.14 ([Duruisseaux and Leok, 2022a]). The Type II discrete Hamilton’s phase

space variational principle

δS+
d ({(qk, pk, λk)}Nk=0) = 0 (2.93)

is equivalent to the discrete constrained right Hamilton’s equations

qk+1 =D2H
+
d (qk, pk+1), pk =D1H

+
d (qk, pk+1) + ⟨λk,∇C(qk)⟩, C(qk) = 0, (2.94)

where H+
d (qk, pk+1) is defined via equation (2.91).

Proof. See Appendix A.2.8.
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Similarly, we can obtain a discrete analogue of Theorem 2.11 which relates a

Type III discrete variational principle to discrete constrained Hamilton’s equations:

Theorem 2.15 ([Duruisseaux and Leok, 2022a]). The Type III discrete Hamilton’s phase

space variational principle

δS−
d ({(qk, pk, λk)}Nk=0) = 0 (2.95)

is equivalent to the discrete constrained left Hamilton’s equations

qk = −D2H
−
d (qk+1, pk), pk+1 = −D1H

−
d (qk+1, pk) − ⟨λk+1,∇C(qk+1)⟩, C(qk) = 0, (2.96)

where H−
d (qk+1, pk) is defined via equation (2.92).

Proof. See Appendix A.2.9.

Remark 2.5. These discrete constrained Hamilton’s equations can be thought of as the

discrete Hamilton’s equations generated by the augmented discrete Hamiltonians

H̄+
d ((qk, λk), (pk+1,pk+1)) = H+

d (qk, pk+1) + ⟨λk,C(qk)⟩, (2.97)

and

H̄−
d ((qk+1, λk+1), (pk,pk)) = H−

d (qk, pk+1) + ⟨λk+1,C(qk+1)⟩. (2.98)

This augmented Hamiltonian perspective together with the augmented Lagrangian

perspective described in Remark 2.2 imply that the constrained H̄+
d variational integrator

is equivalent to the constrained L̄+d variational integrator whenever the H+
d variational

integrator is equivalent to the L+d variational integrator (and similarly for the constrained

variational integrators generated by the H̄−
d and L̄−d variational integrators). Examples

where this happens are presented in [Schmitt et al., 2018] for Taylor variational integrators

provided the Lagrangian is hyperregular, and in [Leok and Zhang, 2011] for generalized

Galerkin variational integrators using the same choices of basis functions and numerical

quadrature formula provided the Hamiltonian is hyperregular.
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2.6.3 Error Analysis for Constrained Variational Integrators

Recall Theorem 2.3.1 from [Marsden and West, 2001] which states that if a discrete

Lagrangian, Ld ∶ Q ×Q → R, approximates the exact discrete Lagrangian LEd ∶ Q ×Q → R
to order r, i.e.,

Ld(q0, qh) = LEd (q0, qh) +O(hr+1), (2.99)

then the discrete Hamiltonian map F̃Ld ∶ (qk, pk) ↦ (qk+1, pk+1), viewed as a one-step

method defined implicitly from the discrete Euler–Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0, (2.100)

has order of accuracy r.

Recall as well Theorem 2.2 from [Schmitt and Leok, 2017] which states that if a

discrete right Hamiltonian H+
d approximates the exact discrete right Hamiltonian H+,E

d to

order r, i.e.,

H+
d (q0, ph) =H+,E

d (q0, ph) +O(hr+1), (2.101)

then the discrete right Hamiltonian map F̃H+
d
∶ (qk, pk)↦ (qk+1, pk+1), viewed as a one-step

method defined implicitly by the discrete right Hamilton’s equations

pk =D1H
+
d (qk, pk+1), qk+1 =D2H

+
d (qk, pk+1), (2.102)

is order r accurate.

Similarly, if a discrete left Hamiltonian H−
d approximates the exact discrete left

Hamiltonian H−,E
d to order r, i.e.,

H−
d (q1, p0) =H−,E

d (q1, p0) +O(hr+1), (2.103)

then the discrete left Hamiltonian map F̃H−
d
∶ (qk, pk)↦ (qk+1, pk+1), viewed as a one-step

method defined implicitly by the discrete left Hamilton’s equations

pk+1 = −D1H
−
d (qk+1, pk), qk = −D2H

−
d (qk+1, pk), (2.104)

is order r accurate.
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We will now exploit these error analysis results to derive analogous results for the

constrained versions of Hamiltonian and Lagrangian variational integrators discussed in

Sections 2.6.1 and 2.6.2.

For the Lagrangian case, we can think of the Lagrange multipliers λ as extra

position coordinates and define an augmented Lagrangian L̄ via

L̄ ((q, λ), (q̇, λ̇)) = L(q, q̇) − ⟨λ,C(q)⟩. (2.105)

A corresponding augmented discrete Lagrangian is given by

L̄d ((qk, λk), (qk+1, λk+1)) = Ld(qk, qk+1) − ⟨λk,C(qk)⟩, (2.106)

and the discrete Euler–Lagrange equations (2.100)

D1L̄d ((qk, λk), (qk+1, λk+1)) + D2L̄d ((qk−1, λk−1), (qk, λk)) = 0, (2.107)

yield the discrete constrained Euler–Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = ⟨λk,∇C(qk)⟩, C(qk) = 0, (2.108)

derived in Section 2.6.1.

As a consequence, we can apply Theorem 2.3.1 of [Marsden and West, 2001] to the

augmented Lagrangian (2.105) and obtain the following result:

Theorem 2.16 ([Duruisseaux and Leok, 2022a]). Suppose that for an exact discrete

Lagrangian LEd and a discrete Lagrangian Ld,

Ld(q0, qh) − ⟨λ0,C(q0)⟩ = LEd (q0, qh) − ∫
h

0
⟨λ(t),C(q(t))⟩dt +O(hr+1). (2.109)

Then, the discrete map

(qk, pk, λk)↦ (qk+1, pk+1, λk+1), (2.110)

viewed as a one-step method defined implicitly by the discrete constrained Euler–Lagrange

equations, has order of accuracy r.
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For the Hamiltonian case, we can think of the Lagrange multipliers λ as extra

position coordinates and define conjugate momenta p, which are constants of motion

since the time-derivative of the Lagrange multiplier λ does not appear anywhere, and are

constrained to be zero.

The augmented Hamiltonian H̄, given by

H̄ ((q, λ), (p,p)) = H(q, p) + ⟨λ,C(q)⟩, (2.111)

yields the augmented left Hamiltonian

H̄−
d ((qk+1, λk+1), (pk,pk)) = H−

d (qk+1, pk) + ⟨λk+1,C(qk+1)⟩, (2.112)

and the augmented right discrete Hamiltonian

H̄+
d ((qk, λk), (pk+1,pk+1)) = H+

d (qk, pk+1) + ⟨λk,C(qk)⟩. (2.113)

The corresponding discrete left Hamilton’s equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(pk+1,pk+1) = −D1H̄−
d ((qk+1, λk+1), (pk,pk))

(qk, λk) = −D2H̄−
d ((qk+1, λk+1), (pk,pk))

(2.114)

and discrete right Hamilton’s equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(pk,pk) =D1H̄+
d ((qk, λk), (pk+1,pk+1))

(qk+1, λk+1) =D2H̄+
d ((qk, λk), (pk+1,pk+1))

(2.115)

yield the discrete constrained left Hamilton’s equations

qk = −D2H
−
d (qk+1, pk), pk+1 = −D1H

−
d (qk+1, pk) − ⟨λk+1,∇C(qk+1)⟩, C(qk) = 0, (2.116)

and the discrete constrained right Hamilton’s equations

qk+1 =D2H
+
d (qk, pk+1), pk =D1H

+
d (qk, pk+1) + ⟨λk,∇C(qk)⟩, C(qk) = 0, (2.117)

derived in Section 2.6.2.
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As a consequence, we can apply Theorem 2.2 in [Schmitt and Leok, 2017] for

Type II unconstrained variational integrators to the augmented Hamiltonian and obtain

the following result:

Theorem 2.17 ([Duruisseaux and Leok, 2022a]). Suppose that given an exact discrete

right Hamiltonian H+,E
d and a discrete right Hamiltonian H+

d , we have

H+
d (q0, ph) + ⟨λ0,C(q0)⟩ = H+,E

d (q0, ph) + ∫
h

0
⟨λ(t),C(q(t))⟩dt +O(hr+1). (2.118)

Then, the discrete map

(qk, pk, λk)↦ (qk+1, pk+1, λk+1), (2.119)

viewed as a one-step method defined implicitly by the discrete constrained right Hamilton’s

equations, has order of accuracy r.

Similarly, we can apply the analogue of Theorem 2.2 in [Schmitt and Leok, 2017]

for Type III unconstrained variational integrators to the augmented Hamiltonian and

obtain the following result:

Theorem 2.18 ([Duruisseaux and Leok, 2022a]). Suppose that given an exact discrete

left Hamiltonian H−,E
d and a discrete left Hamiltonian H−

d , we have

H−
d (qh, p0) + ⟨λh,C(qh)⟩ = H−,E

d (qh, p0) + ∫
h

0
⟨λ(t),C(q(t))⟩dt +O(hr+1). (2.120)

Then, the discrete map

(qk, pk, λk)↦ (qk+1, pk+1, λk+1), (2.121)

viewed as a one-step method defined implicitly by the discrete constrained left Hamilton’s

equations, has order of accuracy r.
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2.7 Symplectic Integrators with Variable Time-steps

We will now discuss how prescribed variable time-steps can be incorporated in

symplectic integrators.

The use of prescribed variable time-steps is motivated by the observation that

the global error estimates for a numerical method depend in part on the maximum local

truncation error, and this in turn is related to both the time-step and the magnitude of

the (r+1)-derivatives of the solution of a r-order numerical method. For a fixed number of

time-steps, the maximum local truncation error is minimized if the local truncation error

is equidistributed over the time intervals. In turn, this can be achieved if, for example,

the time-step is chosen to be an appropriate function of the reciprocal of the relevant

derivative of the solution. This derivative can be estimated a posteriori by comparing

methods with different orders of accuracy, or methods with the same order of accuracy

but different error constants. Alternatively, in the Kepler 2-body problem, for example,

Kepler’s second law states that the line joining the planet and the Sun sweeps out equal

areas during equal intervals of time, so the angular velocity of the planet is proportional

to the reciprocal of the radius squared, which gives an a priori bound. In essence, variable

time-steps are chosen to control the error incurred at each time-step, which in turn affects

the global accuracy of the numerical trajectory.

As discussed earlier in Section 2.3, symplectic integrators form a class of geometric

numerical integrators of interest since, when applied to Hamiltonian systems, they yield

discrete approximations of the flow that preserve the symplectic 2-form. The preservation

of symplecticity results in the preservation of many qualitative aspects of the underlying

dynamical system. In particular, when applied to conservative Hamiltonian systems,

symplectic integrators show excellent long-time near-energy preservation.

However, when symplectic integrators were first used in combination with variable

time-steps, the near-energy preservation was lost and the integrators performed poorly

(see [Gladman et al., 1991; Calvo and Sanz-Serna, 1993]). Backward error analysis

provided justification both for the excellent long-time near-energy preservation of symplectic
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integrators and for the poor performance experienced when using variable time-steps (see

Chapter IX of [Hairer et al., 2006]). We saw in Section 2.3 using backward error analysis

that symplectic integrators can be associated with a modified Hamiltonian in the form

of a powers series in terms of the time-step. The use of a variable time-step results in a

different modified Hamiltonian at every iteration where the time-step is changed, which is

the source of the poor energy conservation.

There has been a great effort to circumvent this problem, and there have been many

successes. However, there has yet to be a unified general framework for constructing adap-

tive symplectic integrators. We contribute to this effort in this section by demonstrating

how variational integrators can be used to systematically construct symplectic integrators

that allow for the use of prescribed variable time-steps, both on the Hamiltonian and

Lagrangian sides.

In this section, we will first review a mechanism for variable time-stepping, the

Poincaré transformation, based on an autonomous monitor function on the Hamiltonian

side, and then extend it to time-dependent monitor functions and provide a novel variational

derivation for the Poincaré transformation. We will then combine this approach with

Hamiltonian variational integrators and derive corresponding error analysis results. We

will then construct a framework for variable time-stepping on the Lagrangian side which

mimics the Poincaré transformation.

The resulting integrators will prove very useful later on in this dissertation when

we design efficient geometric integrators with variable time-steps based on a precise time-

rescaling for accelerated optimization.

In this section, we will consider a time reparameterization t↦ τ , given explicitly

by a monitor function
dt

dτ
= g(q, t, p), (2.122)

and we will refer to t and τ as the physical and fictive times, respectively. We will use dots

on top of variables to denote derivatives with respect to physical time t, and apostrophes

to denote derivatives with respect to fictive time τ .
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2.7.1 Hamiltonian Integrators with Prescribed

Variable Time-steps

We now demonstrate how to construct symplectic integrators that allow for the

use of a prescribed variable time-steps, on the Hamiltonian side.

The Poincaré Transformation

The Poincaré transformation is one way to incorporate variable time-steps in

geometric integrators without losing the nice conservation properties associated with

these integrators. This transformation for time-adaptive symplectic integrators on the

Hamiltonian side was first introduced in [Zare and Szebehely, 1975] in the case where the

monitor function g(q, p) is autonomous.

Given an autonomous Hamiltonian H(q, p), and a desired transformation of time

t↦ τ described by the monitor function g(q, p) via

dt

dτ
= g(q, p), (2.123)

a new Hamiltonian system is constructed using the Poincaré transformation,

H̄(q̄, p̄) = g(q, p) (H(q, p) + p) , (2.124)

in the extended phase space defined by

q̄ =
⎡⎢⎢⎢⎢⎣

q

q

⎤⎥⎥⎥⎥⎦
∈ Q̄ and p̄ =

⎡⎢⎢⎢⎢⎣

p

p

⎤⎥⎥⎥⎥⎦
(2.125)

where p = −H(q(0), p(0)) is the conjugate momentum for q = t, so that H̄(q̄, p̄) = 0 along

all integral curves through (q̄(0), p̄(0)). The time t shall be referred to as the physical

time, while τ will be referred to as the fictive time.

57



We can then use a symplectic integrator with constant time-step in fictive time τ

on the Poincaré transformed Hamiltonian system, which will have the effect of integrating

the original Hamiltonian system with the desired variable time-step in physical time t via

the relation dt
dτ = g(q, p). Indeed, the Poincaré transformed Hamiltonian is chosen in such

a way that the corresponding component dynamics satisfy Hamilton’s equations in the

original space.

Note that in general, along an integral curve through (q̄(0), p̄(0)),

∂2H̄

∂p̄2
=

⎡⎢⎢⎢⎢⎣

∂H
∂p ∇pg(q, p)⊺ + g(q, p)∂

2H
∂p2 +∇pg(q, p)∂H∂p

⊺ ∇pg(q, p)
∇pg(q, p)⊺ 0

⎤⎥⎥⎥⎥⎦
, (2.126)

which can become singular for many choices of initial Hamiltonian H and time-rescaling

monitor function g.

This Poincaré framework can also be extended to the case where the original

Hamiltonian H and the chosen monitor function g depend explicitly on time t, based

on ideas from [Hairer, 1997]. Given a time-dependent Hamiltonian H(q, t, p), consider a

desired transformation of time t↦ τ , given by the monitor function

dt

dτ
= g(q, t, p). (2.127)

Then, consider the new Hamiltonian system given by the Poincaré transformation

H̄(q̄, p̄) = g(q,q, p) (H(q,q, p) + p) (2.128)

in the extended phase space defined by

q̄ =
⎡⎢⎢⎢⎢⎣

q

q

⎤⎥⎥⎥⎥⎦
∈ Q̄ and p̄ =

⎡⎢⎢⎢⎢⎣

p

p

⎤⎥⎥⎥⎥⎦
(2.129)

where p is the conjugate momentum for q = t and satisfies p(0) = −H(q(0),0, p(0)). The

corresponding equations of motion in the extended phase space are then given by

q̄′ = ∂H̄
∂p̄

, p̄′ = −∂H̄
∂q̄

. (2.130)
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As before, we can then use a symplectic integrator with constant time-step in fictive

time τ on the Poincaré transformed Hamiltonian system, which will have the effect of

integrating the original Hamiltonian system with the desired variable time-step in physical

time t via the relation dt
dτ = g(q, t, p).

More precisely, suppose that the curve (Q̄(τ), P̄ (τ)) is a solution to these extended

Hamilton’s equations of motion, and let (q(t), p(t)) solve Hamilton’s equations for the

original Hamiltonian H. Then

H̄(Q̄(τ), P̄ (τ)) = H̄(Q̄(0), P̄ (0)) = 0. (2.131)

Therefore, the components (Q(τ), P (τ)) in the original phase space of the augmented

solutions (Q̄(τ), P̄ (τ)) satisfy

H(Q(τ), τ, P (τ)) = −p(τ), H(Q(0),0, P (0)) = −p(0) =H(q(0),0, p(0)). (2.132)

Then, (Q(τ), P (τ)) and (q(t), p(t)) both satisfy Hamilton’s equations for the original

Hamiltonian H with the same initial values, so they must be the same.

As before, the matrix

∂2H̄

∂p̄2
=
⎡⎢⎢⎢⎢⎣

∂H
∂p ∇pg(q̄, p)⊺ + g(q̄, p)∂

2H
∂p2 +∇pg(q̄, p)∂H∂p

⊺ ∇pg(q̄, p)
∇pg(q̄, p)⊺ 0

⎤⎥⎥⎥⎥⎦
, (2.133)

will be singular in many cases.

Most of the prior literature on variable time-step symplectic integrators cited in

this dissertation focuses exclusively on monitor functions g that only depend on position,

in which case the Hessian matrix ∂2H̄
∂p̄2 is singular, and as a result the associated Legendre

transformation, FH̄ ∶ T ∗Q → TQ is noninvertible, and thus the resulting transformed

Poincaré Hamiltonian is degenerate and there is no corresponding Lagrangian formulation.

Therefore, the Type II and Type III Hamiltonian variational integrator frameworks are the

most natural ways to derive variable time-step symplectic integrators using the Poincaé

transformation.
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The Poincaré Transformation and Hamiltonian Variational Integrators

Variational integrators provide a systematic method for constructing symplectic

integrators of arbitrary order based on the discretization of Hamilton’s principle [Marsden

and West, 2001; Hall and Leok, 2015], or equivalently, by the approximation of generating

functions. However, there has not been a systematic attempt to incorporate time-adaptivity

into the setting of variational integrators. This is due to the fact that the Poincaré

transformed Hamiltonian that is used is in general degenerate, so there is no corresponding

Lagrangian analogue, which prevents the use of traditional variational integrators that are

based on a Lagrangian formulation of mechanics and involve the construction of a discrete

Lagrangian that approximates a Type I generating function given by Jacobi’s solution of

the Hamilton–Jacobi equation.

Instead, we propose the use of Hamiltonian variational integrators [Leok and Zhang,

2011], which are based on Type II and Type III generating functions that have no difficulty

with this degeneracy. We develop an analogue of the methods derived using the Poincaré

transformation framework but directly in terms of generating functions of symplectic

maps. These prior results are based on symplectic (partitioned) Runge–Kutta methods,

which are related to Type I generating functions [Suris, 1990], but we desire an explicit

characterization of the flow maps of time-adaptive Hamiltonian systems so that we can

employ the Hamiltonian variational integrator framework instead.

The exact Type II generating function for the Poincaré transformed Hamiltonian is

given by

H̄+,E
d (q̄0, p̄1;h) = p̄⊺1 q̄1 − ∫

h

0
(p̄(τ)⊺ ˙̄q(τ) − H̄(q̄(τ), p̄(τ)))dτ, (2.134)

where the curve (q̄(τ), p̄(τ)) satisfy the Hamilton’s equations associated with the Poincaré

transformed Hamiltonian H̄, with boundary conditions q̄(0) = q̄0 and p̄(h) = p̄1. This

exact discrete right Hamiltonian implicitly defines a symplectic map with respect to the

symplectic form ω̄(p̄k, q̄k) on T ∗Q̄ via the discrete Legendre transforms given by

p̄0 =
∂H̄+,E

d

∂q̄0

, q̄1 =
∂H̄+,E

d

∂p̄1

. (2.135)
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Similarly, the exact Type III generating function for the Poincaré transformed

Hamiltonian is given by

H̄−,E
d (q̄0, p̄1;h) = −p̄⊺0 q̄0 − ∫

h

0
(p̄(τ)⊺ ˙̄q(τ) − H̄(q̄(τ), p̄(τ)))dτ, (2.136)

where the curve (q̄(τ), p̄(τ)) satisfy the Hamilton’s equations associated with the Poincaré

transformed Hamiltonian H̄ with boundary conditions q̄(h) = q̄1 and p̄(0) = p̄0. This exact

discrete left Hamiltonian implicitly defines a symplectic map with respect to the symplectic

form ω̄(p̄k, q̄k) on T ∗Q̄ via the discrete Legendre transforms given by

p̄1 = −
∂H̄−,E

d

∂q̄1

, q̄0 = −
∂H̄−,E

d

∂p̄0

. (2.137)

Our approach is to construct Hamiltonian variational integrators using a discrete

Hamiltonian H̄±
d that approximates the corresponding exact discrete Hamiltonian H̄±,E

d

to order r. The resulting integrator will be symplectic with constant time-step in fictive

time τ and more importantly with the desired variable time-step in physical time t via

dt
dτ = g(q, t, p). It is important to note that this method will be symplectic in two different

ways. It will be symplectic both with respect to the symplectic form dp̄ ∧ dq̄ and with

respect to the symplectic form dp ∧ dq. Since the derivative of p is 0, p is constant and

dpk ∧ dqk = 0, so the symplectic form in generalized coordinates is given by

ω̄(p̄k, q̄k) = dp̄k ∧ dq̄k =
n+1

∑
i=1

dp̄k,i ∧ dq̄k,i =
n

∑
i=1

dpk,i ∧ dqk,i = ω(pk, qk). (2.138)

A symplectic integrator with variable time-stepping was proposed independently

in [Hairer, 1997] and [Reich, 1999], which applied a symplectic integrator to the Poincaré

transformed Hamiltonian. In [Hairer, 1997], it is noted that one of the first applications

of the Poincaré transformation framework was by Levi–Civita, who applied it to the

three-body problem. A more in-depth discussion of such time transformations can be

found in [Struckmeier, 2005]. Further work using this type of transformation has been

published, such as [Blanes and Budd, 2004; Blanes and Iserles, 2012], which focused on

developing symplectic, explicit, splitting methods with variable time-steps.
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The novelty of our approach consists in discretizing the Type II or Type III

generating function for the flow of Hamilton’s equations, where the Hamiltonian is given

by the Poincaré transformation. Thus, we are constructing variational integrators, and in

particular Hamiltonian variational integrators [Lall and West, 2006; Leok and Zhang, 2011].

The use of Type II or Type III integrators is justified by the degeneracy of the Hamiltonian,

which implies that there is no corresponding Type I Lagrangian formulation. This

approach works seamlessly with existing methods and theorems of Hamiltonian variational

integrators, but now the system under consideration is the transformed Hamiltonian

system resulting from the Poincaré transformation. The methods presented in [Hairer,

1997; Reich, 1999] include the possibility of applying a given variational integrator to

the transformed differential equations. Our approach gives a framework for constructing

variational integrators at the level of the generating function by using the Poincaré

transformed discrete right Hamiltonian.

Remark 2.6. Other approaches to variable time-step variational integrators can be found

in [Kane et al., 1999; Modin and Führer, 2006; Nair, 2012]. In particular, the variational

integrator in [Kane et al., 1999] is inspired by the result of [Ge and Marsden, 1988],

which states that constant time-step symplectic integrators of autonomous Hamiltonian

systems cannot exactly conserve the energy unless it agrees with the exact flow map up to

a time reparametrization. As a result, they sought a variable time-step energy-conserving

symplectic integrator in an expanded nonautonomous system. However, symplecticity

is with respect to the space-time symplectic form dp ∧ dq + dH ∧ dt. The time-step is

determined by enforcing discrete energy conservation, which arises as a consequence of

the fact that energy is the Noether quantity associated with time translational symmetry.

An extended Hamiltonian is used, similar in spirit to the Poincaré transformation. An

approach that builds off this idea and space-time symplecticity was presented in [Nair,

2012], and a less constrained choice of time-step was allowed. In [Modin and Führer, 2006],

adaptive variational integrators are constructed using a transformation of the Lagrangian,

which is motivated by the Poincaré transformation, but it is not equivalent. The lack of

equivalence is not surprising, since the Poincaré transformed Hamiltonian is degenerate for

their choice of monitor functions. As a consequence, the phase space path is not preserved.
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Variational Error Analysis

The standard error analysis for Hamiltonian variational integrators assumes a

nondegenerate Hamiltonian, i.e., det (∂2H̄
∂p̄2 ) ≠ 0 (see [Schmitt and Leok, 2017]), which might

not be the case for the Poincaré transformed Hamiltonian. The nondegeneracy of the

Hamiltonian ensures that we can apply the usual implicit function theorem to the discrete

Hamilton’s equations, and the proof of the standard error analysis theorem relies upon

the following result:

Lemma 2.1 ([Schmitt and Leok, 2017]). Let f1, g1, e1, f2, g2, e2 be r-times continuously

differentiable functions such that

f1(x,h) = g1(x,h) + hr+1e1(x,h), f2(x,h) = g2(x,h) + hr+1e2(x,h). (2.139)

Then, there exist functions e12 and ē1 bounded on compact sets such that

f2(f1(x,h), h) = g2(g1(x,h), h) + hr+1e12(g1(x,h), h), (2.140)

f−1
1 (y) = g−1

1 (y) + hr+1ē1(y). (2.141)

Given a discrete Hamiltonian H±
d , we introduce the discrete fiber derivatives

(or discrete Legendre transforms), F±H±
d :

F+H+
d (q0, p1) ∶ (q0, p1) ↦ (D2H

+
d (q0, p1), p1), (2.142)

F+H−
d (q1, p0) ∶ (q1, p0) ↦ (q1,−D1H

−
d (q1, p0)), (2.143)

F−H+
d (q0, p1) ∶ (q0, p1) ↦ (q0,D1H

+
d (q0, p1)), (2.144)

F−H−
d (q1, p0) ∶ (q1, p0) ↦ (−D2H

−
d (q1, p0), p0). (2.145)

We observe that the following diagrams commute:

(q0, p0)
F̃H+

d // (q1, p1) (q0, p0)
F̃H−

d // (q1, p1)

(q0, p1)
F−H+

d

]]

F+H+
d

AA

(q1, p0)
F−H−

d

]]

F+H−
d

AA
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As such, the discrete left and right Hamiltonian maps can be expressed in terms of

the discrete fiber derivatives,

F̃H±
d
(q0, p0) = F+H±

d ○ (F−H±
d )−1(q0, p0) = (q1, p1), (2.146)

and this observation together with Lemma 2.1 ensures that the order of accuracy of the

integrator is at least of the order to which the discrete Hamiltonian H±
d approximates the

exact discrete Hamiltonian H±,E
d .

However, the Poincaré transformed Hamiltonian might be degenerate so we cannot

apply the usual implicit function theorem, and we need to establish the invertibility of the

discrete Legendre transform F−H±
d in a different way.

The strongest general result we have been able to establish involves the case where

the original Hamiltonian is autonomous, i.e., H = H(q, p), and nondegenerate, and the

monitor function is autonomous as well. These assumptions hold for an interesting and

useful class of problems, and we will show that the exact discrete left and right Hamiltonians

can be reduced to a particular form and that the extended variables p1 and q1 can be

solved for explicitly. As a result, the implicit function theorem is not needed with respect

to these variables.

Hamilton’s equations for the Poincaré transformed Hamiltonian

H̄(q̄, p̄) = g(q, p) (H(q, p) + p) , (2.147)

are given by

q̄′ =
⎡⎢⎢⎢⎢⎣

∇pg(q, p)(H(q, p) + p) + ∂H
∂p g(q, p)

g(q, p)

⎤⎥⎥⎥⎥⎦
, (2.148)

p̄′ = −
⎡⎢⎢⎢⎢⎣

∇qg(q, p)(H(q, p) + p) + ∂H
∂q g(q, p)

0

⎤⎥⎥⎥⎥⎦
. (2.149)

Using these equations, the corresponding exact discrete Hamiltonians are of the form

H̄+,E
d (q̄0, p̄1;h) = p⊺1q1 + p1q1 − ∫

h

0
[p(τ)⊺q′(τ) − g(q(τ), p(τ))H(q(τ), p(τ))]dτ, (2.150)

H̄−,E
d (q̄1, p̄0;h) = −p⊺0q0 − p0q0 −∫

h

0
[p(τ)⊺q′(τ) − g(q(τ), p(τ))H(q(τ), p(τ))]dτ. (2.151)
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As a result, only one part of these exact discrete left and right Hamiltonians requires

approximations of the extended variable q and p. Furthermore, the derivative of p is 0 so

p1 = p0.

Now, let H̄±
d be approximations to the exact discrete left and right Hamiltonians of

the form

H̄+
d (q̄0, p̄1;h) = p⊺1 q̂1(q0, p1;h) + p1q̂1(q0, q0, p1;h) − I1(q0, p1;h), (2.152)

H̄−
d (q̄1, p̄0;h) = −p⊺0 q̂0(q1, p0;h) − p0q̂0(q1, q1, p0;h) − I2(q1, p0;h), (2.153)

where ⋅̂ denotes an approximation and where I1(q0, p1;h) and I2(q1, p0;h) both approximate

the integral

∫
h

0
[p(τ)⊺q′(τ) − g(q(τ), p(τ))H(q(τ), p(τ))]dτ. (2.154)

Then, the discrete right Legendre transforms give the following relations for p1 and q1:

⎡⎢⎢⎢⎢⎣

p0

p0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

∂q̂1
∂q0

⊺
p1 + p1

∂q̂1

∂q0
− ∂I1
∂q0

∂q̂1

∂q0
p1

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

q1

q1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

q̂1 + ∂q̂1
∂p1

⊺
p1 + ∂q̂1

∂p1

⊺
p1 − ∂I1

∂p1

q̂1

⎤⎥⎥⎥⎥⎦
. (2.155)

Now, the analytic solution satisfies p1 = p0, so there is no need to approximate p1.

Therefore, ∂q̂1

∂q0
= 1. The resulting two systems can both be solved by first setting p1 = p0,

then implicitly solving for p1 in terms of (q0, q0,p1, p1), explicitly solving for q1 and finally

explicitly solving for q1. Since p1 is not determined by q1, the implicit function theorem is

simply needed for finding p1. Thus, we need det (∂2H̄
∂p2 ) ≠ 0, and from equation (2.126), this

is the same as det (∂H∂p ∇pg(q, p)⊺ + g(q, p)∂
2H
∂p2 +∇pg(q, p)∂H∂p

⊺) ≠ 0. Note that this holds

for nondegenerate Hamiltonians H and p-independent monitor functions.

Similarly, the discrete left Legendre transforms give relations for p1 and q1:

⎡⎢⎢⎢⎢⎣

p1

p1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

∂q̂0
∂q1

⊺
p0 + p0

∂q̂0

∂q1
+ ∂I2
∂q1

∂q̂0

∂q1
p0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

q0

q0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

q̂0 + ∂q̂0
∂p0

⊺
p0 + ∂q̂0

∂p0

⊺
p0 + ∂I2

∂p0

q̂0

⎤⎥⎥⎥⎥⎦
, (2.156)

which can be solved provided det (∂H∂p ∇pg(q, p)⊺ + g(q, p)∂
2H
∂p2 +∇pg(q, p)∂H∂p

⊺) ≠ 0.
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The results that we have established are summarized in the following theorem:

Theorem 2.19 ([Duruisseaux et al., 2021]). Suppose H is a nondegenerate Hamiltonian

and g ∈ C1([0, h]) is a monitor function such that

det(∂H
∂p

∇pg(q, p)⊺ + g(q, p)
∂2H

∂p2
+∇pg(q, p)

∂H

∂p

⊺

) ≠ 0. (2.157)

If the discrete Hamiltonian H̄±
d approximates the exact discrete Hamiltonian H̄±,E

d to a

given order r, that is,

H̄±
d (q̄0, p̄1;h) = H̄±,E

d (q̄0, p̄1;h) +O(hr+1), (2.158)

then the discrete Hamiltonian map

F̃H̄±
d
∶ (q̄k, p̄k)↦ (q̄k+1, p̄k+1), (2.159)

viewed as one-step method, is order r accurate.

Remark 2.7. It should be noted that the assumptions that the original Hamiltonian is

nondegenerate and autonomous fail to hold in the application of time-adaptive variational

integrators to the discretization of the Bregman Hamiltonian associated with accelerated

optimization which we will consider in Section 3.3, as it is time-dependent. This is

unavoidable, as it models a system with dissipation, which cannot be described with an

autonomous Hamiltonian, as the Hamiltonian would otherwise be an integral of motion, as

it is the Noether quantity associated with time translational symmetry.

In the cases when the original Hamiltonian is degenerate or nonautonomous, we

need to analyze the solvability of the discrete Hamiltonian equations on a case-by-case basis,

but as we demonstrate, this can be done in the case of the Bregman Hamiltonian with the

given choices of monitor function g(t) and discrete Hamiltonians that we consider.
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Variational Derivation of the Poincaré Hamiltonian

All the literature to date on the Poincaré transformation have constructed the

Poincaré transformed system by reverse-engineering. We now depart from this traditional

strategy and describe a new way to think about the Poincaré transformed Hamiltonian by

deriving it from a variational principle. This simple derivation, originally introduced in

[Duruisseaux and Leok, 2023a], gives additional insight into the transformation mechanism

and will provide natural candidates later on for time-adaptivity on the Lagrangian side

and for more general frameworks.

As before, we work in the extended space (q,q, p,p) where q = t and p is the

corresponding conjugate momentum, and consider a time transformation t→ τ given by

dt
dτ = g(q, t, p). We define an extended action functional S ∶ C2([0, T ], T ∗Q̄)→ R by

S(q̄(⋅), p̄(⋅)) = p̄(T )q̄(T ) − ∫
T

0
[p̄(t) ˙̄q(t) −H(q(t), t, p(t)) − p(t)]dt (2.160)

= p̄(T )q̄(T ) − ∫
τ(t=T )

τ(t=0)
[p̄(τ)dτ

dt
q̄′(τ) −H(q(τ),q(τ), p(τ)) − p(τ)] dt

dτ
dτ

= p̄(T )q̄(T ) − ∫
τ(t=T )

τ(t=0)
{p̄(τ)q̄′(τ) − dt

dτ
[H(q(τ),q(τ), p(τ)) + p(τ)]}dτ ,

where we have performed a change of variables in the integral. Then,

S(q̄(⋅), p̄(⋅)) = p̄(T )q̄(T ) (2.161)

− ∫
τ(t=T )

τ(t=0)
{p̄(τ)q̄′(τ) − g(q(τ),q(τ), p(τ)) [H(q(τ),q(τ), p(τ)) + p(τ)]}dτ .

Computing the variation of S yields

δS = q̄(T )δp̄(T ) + p̄(T )δq̄(T ) (2.162)

− ∫
τ(t=T )

τ(t=0)
[q′δp + pδq′ − (g∂H

∂q
+ ∂g
∂q

(H + p)) δq − (g∂H
∂p

+ ∂g
∂p

(H + p)) δp]dτ

− ∫
τ(t=T )

τ(t=0)
[q′δp + pδq′ − (g∂H

∂q
+ ∂g
∂q

(H + q)) δq − gδp]dτ ,

and using integration by parts and the boundary conditions δq̄(0) = δp̄(T ) = 0 gives

δS = ∫
τ(t=T )

τ(t=0)
[p′ + g∂H

∂q
+ ∂g
∂q

(H + p)] δqdτ − ∫
τ(t=T )

τ(t=0)
[q′ − g] δpdτ (2.163)

+ ∫
τ(t=T )

τ(t=0)
[p′ + g∂H

∂q
+ ∂g
∂q

(H + p)] δqdτ + ∫
τ(t=T )

τ(t=0)
[g∂H
∂p

+ ∂g
∂p

(H + p) − q′] δpdτ .
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Thus, the condition that S(q̄(⋅), p̄(⋅)) is stationary with respect to the boundary conditions

δq̄(0) = 0 and δp̄(T ) = 0 is equivalent to (q̄(⋅), p̄(⋅)) satisfying Hamilton’s canonical

equations corresponding to the Poincaré transformed Hamiltonian,

q′ = g(q,q, p), (2.164)

q′ = g(q,q, p)∂H
∂p

(q,q, p) + ∂g
∂p

(q,q, p) [H(q,q, p) + p] , (2.165)

p′ = −g(q,q, p)∂H
∂q

(q,q, p) − ∂g
∂q

(q,q, p) [H(q,q, p) + p] , (2.166)

p′ = −g(q,q, p)∂H
∂q

(q,q, p) − ∂g
∂q

(q,q, p) [H(q,q, p) + p] . (2.167)

An alternative way to reach the same conclusion is by interpreting equation (2.161) as the

usual Type II action functional for the modified Hamiltonian, which coincides with the

Poincaré transformed Hamiltonian:

g(q(τ),q(τ), p(τ)) [H(q(τ),q(τ), p(τ)) + p(τ)] . (2.168)

Numerical Tests on Kepler’s Planar 2-Body Problem

We now demonstrate the approach using Hamiltonian Taylor variational integrators,

presented in Section 2.4.2, on Kepler’s planar 2-body problem. For a lucid exposition, we

assume at first that g(q, p) = g(q) and H(q, p) = 1
2p

⊺M−1p + V (q).

Consider the discrete right Hamiltonian given by approximating q̄1 with a first-order

Taylor method about q̄0, approximating p̄0 with a zeroth-order Taylor expansion about p̄0,

and using the rectangular quadrature rule about the initial point:

H̄+
d = p⊺1 (q0 +

1

2
hg(q0)M−1p1) + p1(q0 + hg(q0)) + hg(q0)V (q0). (2.169)

The corresponding variational integrator is given by

p̄1 =
⎡⎢⎢⎢⎢⎣

p0 − hg(q0)∇V (q0) − h∇g(q0) (1
2p

⊺
1M

−1p1 + V (q0) + p0)
p0

⎤⎥⎥⎥⎥⎦
, (2.170)

q̄1 =
⎡⎢⎢⎢⎢⎣

q0 + hg(q0)M−1p1

q0 + hg(q0)

⎤⎥⎥⎥⎥⎦
. (2.171)
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This integrator is merely the symplectic Euler-B method applied to the transformed

Hamiltonian system

q̄1 = q̄0 + h
∂H̄(q̄0, p̄1)

∂p̄
, p̄1 = p̄0 − h

∂H̄(q̄0, p̄1)
∂q̄

. (2.172)

This is precisely the adaptive symplectic integrator first proposed in [Hairer, 1997] and

presented in [Leimkuhler and Reich, 2004, page 254]. Most existing symplectic integrators

can be interpreted as variational integrators, but there are also new methods that are

most naturally derived as variational integrators. We will also consider a fourth-order

Hamiltonian Taylor variational integrator (HTVI4), which is distinct from any existing

known symplectic method.

One of the most important aspects of implementing a variable time-step symplectic

integrator of this form is a well-chosen monitor function, g(q). We need g to be positive-

definite, so that we never stall or march backward in time. Noting that the above integrator

is first-order, so a natural choice is to use the second-order truncation error given by

− (q1 − q0)2

2
M−1∇V (q0). (2.173)

Let δ be some desired level of accuracy. Then, using q1 − q0 = hg(q0), one choice for g is

obtained implicitly via the equation

g(q0) = δ

∥ (q1−q0)2

2 g(q0)M−1∇V (q0)∥
= 2δ

∥h2g(q0)3M−1∇V (q0)∥
. (2.174)

Explicitly,

g(q0) = ( 2δ

∥h2M−1∇V (q0)∥
)

1/4

. (2.175)

Experimentally, the fourth root in equation (2.175) did not affect results very much, but

made computations messier, which is why we have chosen the simpler yet very similar

monitor function

g(q0) =
2δ

∥h2M−1∇V (q0)∥
, (2.176)

which achieves an error which is comparable to the chosen value of δ.
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Alternative choices for the monitor function g(q), proposed in [Hairer, 1997], include

the p-independent arclength parameterization

g(q) = [2(H0 − V (q)) +∇V (q)⊺M−1∇V (q)]−1/2
, (2.177)

and a choice particular to Kepler’s 2-Body problem,

g(q) = q⊺q, (2.178)

which is motivated by Kepler’s second law, which states that a line segment joining the

two bodies sweeps out equal areas during equal intervals of time.

We have tested the algorithm given by equation (2.170) on Kepler’s planar 2-body

problem, with an eccentricity of 0.9, using the three choices of monitor function g given

by (2.176), (2.177), and (2.178). Of these three choices, (2.178) is specific to Kepler’s

2-body problem, while (2.176) and (2.177) are more general choices. Unlike (2.177), which

is independent of the order of the method, (2.176) is based on the truncation error and

thus the corresponding cost of computing this function will increase as the order of the

method increases.

Simulations using Kepler’s 2-body problem with an eccentricity of 0.9 over a time

interval of [0, 1000] were run using the three different choices of g and the usual symplectic

Euler-B. Results indicate that symplectic Euler-B takes the most steps and computational

time to achieve a level of accuracy around 10−5. To achieve this level of accuracy, the

choice of the truncation error monitor function, (2.176), resulted in the least number of

steps, and the second lowest computational time. The lowest computational time belonged

to (2.178), but it used significantly more steps than (2.176). The lower computational cost

can be attributed to the cheaper evaluation cost of the monitor function and its derivative.

Finally, the monitor function (2.177) required the most steps and computational time of

the adaptive algorithms, but it is still a good choice in general given its broad applicability.

Figures 2.1 and 2.2 present the energy and angular momentum errors for the fixed time-step

method versus adaptive time-step method, and the time-steps for the different monitor

functions, respectively.

70



0 10 20 30 40 50 60 70 80 90 100

0

2

4

E
n
e
r
g
y
 
E
r
r
o
r

10
-4

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

A
n
g
u
l
a
r
 
M
o
m
e
n
t
u
m
 
E
r
r
o
r

10
-14

0 10 20 30 40 50 60 70 80 90 100

0

1

2

E
n
e
r
g
y
 
E
r
r
o
r

10
-4

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

A
n
g
u
l
a
r
 
M
o
m
e
n
t
u
m
 
E
r
r
o
r

10
-13

Figure 2.1: Symplectic Euler-B (top two graphs) and the adaptive algorithm with monitor

function given by equation (2.176) (bottom two graphs) were applied to Kepler’s planar

2-body problem over a time interval of [0,100] with an eccentricity of 0.9.
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Figure 2.2: Time-steps taken for the various choices of monitor functions. The top,

middle and bottom plots correspond to the monitor functions (2.176), (2.177), and (2.178),

respectively. All of the monitor functions appear to increase and decrease the time-step at

the same points along the trajectory, but clearly (2.176) allowed for larger steps.

Next, we consider a Type II fourth-order Hamiltonian Taylor variational integrator

(HTVI4) constructed using the strategy from Section 2.4.2 and the automatic differentiation

package from [Neidinger, 2010; Patterson et al., 2013]. We now drop the assumption of

p-independent monitor functions and consider the following monitor functions:

g(q) = (q⊺q)γ for γ = 0.5 and 1, (Gamma) (2.179)

g(q) = [2(H0 − V (q)) +∇V (q)⊺M−1∇V (q)]−
1
2 , (Arclength) (2.180)

g(q, p) = ∥p −L(q,M−1p)∥−1
2 . (Energy) (2.181)

The monitor function (2.181) was originally intended to be ∥p+H(q, p)∥−1
2 , but experimental

results suggested that (2.181) is the better choice. We will discuss the shortcomings of

using the inverse energy error in the next paragraph. Note that ∥L(q,M−1p)∥−1
2 also

performs well, but the addition of p = −H(q0, p0) showed noticeable improvement. It was

noted in [Hairer, 1997] that the inverse Lagrangian has been considered as a possible choice

for g in the Poincaré transformation, but not in the framework of symplectic integration.
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While the choice of (2.179) was generally the most efficient, (2.181) was very close in terms

of efficiency and offers a more general monitor function. This also implies that efficiency is

not limited to only q-independent or p-independent monitor functions. However, various

attempts to construct separable transformed Hamiltonians (see [Blanes and Budd, 2004;

Blanes and Iserles, 2012]) required the use of q-independent or p-independent monitor

functions, so this is where such monitor functions are most useful.

In the case of monitor functions involving the gradient, higher-order derivatives will

be required for higher-order Taylor variational integrators, but there are efficiencies to be

had when leveraging the higher-order derivatives already being calculated for the underlying

Taylor method and Hessian-vector multiplication that can be done efficiently without

needing to explicitly construct the full Hessian [Christianson, 1992]. The calculation of

higher-order derivatives come with a higher computational cost, and in the case of Kepler’s

2-body problem there is a clear computational advantage in using the gradient-free gamma

monitor function (2.179), as shown in Tables 2.1 and 2.2. However, the gamma monitor

function (2.179) is more specific to Kepler’s 2-body, while the energy and arclength monitor

functions are applicable to a wider range of problems. Monitor functions that are both

general and efficient would be highly desirable.

Figure 2.3 displays the time-steps taken for the different choices of monitor functions

for this fourth-order Hamiltonian Taylor variational integrator.
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Figure 2.3: Time-steps taken for the different choices of monitor functions g. The

energy (2.181) and gamma (2.179) monitor functions performed better, in terms of fewest

steps, lowest computational cost, and lowest global error, than the arclength monitor

function (2.180). Note that (2.181) did not take the largest nor the smallest steps.
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The truncation error monitor function (2.176) performed quite well for first-order

methods, and this motivated the choice of using Taylor variational integrators, since

derivatives would be readily available. However, its success cannot as easily be applied to

higher-order methods. This is due to the fact that for higher-order truncation errors, one

obtains an implicit differential-algebraic definition of the monitor function. This deviates

from the first-order case, where the monitor function can be solved for explicitly.

Another seemingly natural choice for the monitor function is the inverse of the energy

error. However, Taylor variational integrators are constructed using Taylor expansions

about the initial point, and consequently the monitor function is mostly evaluated at or

near the initial point. If the initial point is at a particularly tricky part of the dynamics

and requires a small first step, then the energy error at the first step will not reflect this,

since initially the energy error is zero. In contrast, the inverse Lagrangian will be small at

an initial point that requires a small first step. The inverse energy error may work well for

methods that primarily evaluate the energy error at the end point rather than the initial

point. It is also often advantageous to bound the time-step below or above. As noted

in [Leimkuhler and Reich, 2004, page 248], this can be done by defining the new monitor

function as

ĝ = bg + a
g + b , where a = ∆tmin

∆τ
and b = ∆tmax

∆τ
. (2.182)

Tables 2.1 and 2.2 display a comparison of bounds, computational time, steps,

and error. We note that for numerical methods such as the Taylor variational integrator,

bounding g(q, p) bounds the time-step, but not directly. Also, compared to non-adaptive

variational integrators, such as the non-adaptive Taylor variational integrator and the

Störmer–Verlet (SV) method, the adaptive methods showed a significant gain in efficiency

for Kepler’s 2-body planar problem with high eccentricity, while low eccentricity models

do not need nor do they benefit from adaptivity. A Hamiltonian dynamical system with

regions of high curvature in the vector field and its norm will in general benefit from an

adaptive scheme such as the one outlined here.
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Table 2.1: Kepler Planar 2-Body Problem, Eccentricity = 0.9

Method Monitor g(q, p) h min Step max Step min g max g Energy Error Global Error Steps Time
HTVI4 Gamma 0.1 0.0020 0.2493 0.01 8 1.43E-05 7.09E-06 181 26.9
HTVI4 Energy 0.1 0.0051 0.1809 1E-04 2 1.93E-06 4.76E-06 146 28.3
HTVI4 Arclength 0.1 0.0040 0.1458 3E-03 0.3 1.10E-04 3.69E-05 185 70.2
HTVI4 - 0.0025 0.0025 0.0025 - - 2.50E-06 2.89E-05 4000 120

SV - 5E-05 5E-05 5E-05 - - 3.12E-06 4.68E-05 2E05 1.9

Table 2.2: Kepler Planar 2-Body Problem, Eccentricity = 0.99

Method Monitor g(q, p) h min Step max Step min g max g Energy Error Global Error Steps Time
HTVI4 Gamma 0.1 6E-05 0.2648 5E-04 8 4.88E-05 5.60E-06 372 49.3
HTVI4 Energy 0.03 1.5E-04 0.1462 1E-06 5 9.13E-06 4.63E-06 383 58.4
HTVI4 Arclength 0.1 5E-05 0.1379 8E-04 10 1.31E-05 1.49E-05 691 146.0
HTVI4 - 5E-04 5E-04 5E-04 - - 1.38E-01 7.83E-01 2E04 525.2

SV - 5E-07 5E-07 5E-07 - - 3.34E-06 2.68E-05 2E07 189.2

2.7.2 Lagrangian Integrators with Prescribed

Variable Time-steps

We now demonstrate how to construct symplectic integrators that allow for the use of

a prescribed variable time-steps, on the Lagrangian side. This framework will be particularly

useful in the Riemannian manifold setting and on Lie groups, where Lagrangian variational

integrators are well-defined while the current formulations of Hamiltonian variational

integrators do not make intrinsic sense. Indeed, the current Hamiltonian variational

approach involves Type II and III generating functions H+
d (qk, pk+1), H−

d (pk, qk+1), which

depend on the position at one boundary point, and the momentum at the other boundary

point. However, this does not make intrinsic sense on a manifold, since one needs the

base point in order to specify the corresponding cotangent space. On the other hand,

Lagrangian variational integrators involve a Type I generating function Ld(qk, qk+1) which

only depends on the position at the boundary points and is thus well-defined on manifolds,

and many Lagrangian variational integrators have been derived on Riemannian manifolds,

especially in the Lie group [Leok, 2004; Lee et al.; Hussein et al., 2006; Lee et al., 2007a,b;

Lee, 2008; Bou-Rabee and Marsden, 2009; Nordkvist and Sanyal, 2010; Hall and Leok,

2015] and homogeneous space [Lee et al., 2009] settings.
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The well-definedness of Lagrangian variational integrators on manifolds gives an

incentive to construct a mechanism to incorporate variable time-stepping in Lagrangian

variational integrators. On the Hamiltonian side, the Poincaré transformation was at the

heart of the construction of time-adaptive geometric integrators via Hamiltonian variational

integrators. This provided a systematic method for constructing symplectic integrators of

arbitrarily high-order based on the discretization of Hamilton’s principle [Marsden and

West, 2001; Hall and Leok, 2015], or equivalently, by the approximation of the generating

function of the symplectic flow map. However, the Poincaré transformed Hamiltonian is

degenerate and therefore does not have a corresponding Type I Lagrangian formulation. As

a result, we cannot exploit the usual correspondence between Hamiltonian and Lagrangian

dynamics and need to come up with a different strategy to allow time-adaptivity from the

Lagrangian perspective.

Time-adaptivity from a Variational Principle on the Lagrangian side

We will now derive a mechanism for time-adaptivity on the Lagrangian side by

mimicking the variational derivation of the Poincaré Hamiltonian. We will work in the

extended space q̄ = (q,q, λ)⊺ ∈ Q̄ where q = t and λ is a Lagrange multiplier used to enforce

the time rescaling
dt

dτ
= g(t). (2.183)

Consider the action functional S ∶ C2([0, T ], T Q̄)→ R given by

S(q̄(⋅), ˙̄q(⋅)) = ∫
T

0
[L(q(t), q̇(t),q(t)) − λ(t) (dq

dτ
− g(q(t)))]dt (2.184)

= ∫
τ(t=T )

τ(t=0)
[ dt
dτ
L(q(τ), dτ

dt
q′(τ),q(τ)) − λ(τ) dt

dτ
(dq
dτ

− g(q(τ)))]dτ

= ∫
τ(t=T )

τ(t=0)
[q′(τ)L(q(τ), dτ

dt
q′(τ),q(τ)) − λ(τ)q′(τ) [q′(τ) − g(q(τ))]]dτ ,

where, as before, we have performed a change of variables in the integral. This is the usual

Type I action functional for the extended autonomous Lagrangian,

L̄(q̄(τ), q̄′(τ)) = q′(τ)L(q(τ), dτ
dt
q′(τ),q(τ)) − λ(τ)q′(τ) [q′(τ) − g(q(τ))] . (2.185)
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Theorem 2.20 ([Duruisseaux and Leok, 2023a]). If the curve (q̄(τ), q̄′(τ)) satisfies the

Euler–Lagrange equations corresponding to the Lagrangian L̄, then its components satisfy

dt
dτ = g(t) and the original Euler–Lagrange equations

d

dt

∂L

∂q̇
(q, q̇, t) = ∂L

∂q
(q, q̇, t) . (2.186)

Proof. Substituting the expression for L̄ into the Euler–Lagrange equations, d
dτ

∂L̄
∂λ′ = ∂L̄

∂λ ,

and d
dτ

∂L̄
∂q′ = ∂L̄

∂q , gives

q′ [q′ − g(q)] = 0,

and
dq

dτ

d

dq

⎡⎢⎢⎢⎢⎣
q′
∂L (q, dτdq q′,q)

∂q′

⎤⎥⎥⎥⎥⎦
= q′

∂L (q, dτdq q′,q)
∂q

.

Now, q′ = g(q) > 0 so q′ = g(q), and the chain rule gives

d

dq

∂L

∂q̇
(q, dτ

dq
q′,q) = ∂L

∂q
(q, dτ

dq
q′,q) .

Using the equation q̇ = dτ
dq q

′ and replacing q by t recovers the original Euler–Lagrange

equations.

We now introduce a discrete variational formulation of these continuous Lagrangian

mechanics. Suppose we are given a partition 0 = τ0 < τ1 < . . . < τN = T of the interval

[0,T], and a discrete curve in Q ×R ×R denoted by {(qk,qk, λk)}Nk=0 such that qk ≈ q(τk),
qk ≈ q(τk), and λk ≈ λ(τk). Consider the discrete action functional,

S̄d ({(qk, qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, qk, qk+1, qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

, (2.187)

where

Ld(qk,qk, qk+1,qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],Q×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qk+1,qk+1)

∫
τk+1

τk
L(q, q′

g(q) ,q)dτ . (2.188)

S̄d is a discrete analogue of the action functional S̄ ∶ C2([0, T ],Q ×R ×R)→ R given by

S̄(q(⋅),q(⋅), λ(⋅)) = ∫
T

0
L̄ (q(τ),q(τ), λ(τ), q′(τ),q′(τ), λ′(τ))dτ (2.189)

= ∫
T

0
[L(q, q′

g(q) ,q) − λq
′ + λg(q)]q′dτ . (2.190)
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We can derive the following result which relates a discrete Type I variational

principle to a set of discrete Euler–Lagrange equations:

Theorem 2.21 ([Duruisseaux and Leok, 2023a]). The Type I discrete Hamilton’s varia-

tional principle,

δS̄d ({(qk,qk, λk)}Nk=0) = 0, (2.191)

is equivalent to the discrete extended Euler–Lagrange equations,

qk+1 = qk + (τk+1 − τk)g(qk), (2.192)

qk+1 − qk
τk+1 − τk

D1Ld(qk,qk, qk+1,qk+1) +
qk − qk−1

τk − τk−1

D3Ld(qk−1,qk−1, qk,qk) = 0, (2.193)

[D2Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] (2.194)

+ [D4Ldk−1
− λk−1

1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

where Ldk denotes Ld(qk,qk, qk+1,qk+1).

Proof. See Appendix A.3.1.

Defining the discrete momenta via the discrete Legendre transformations,

pk = −D1Ld(qk,qk, qk+1,qk+1), (2.195)

pk = −D2Ld(qk,qk, qk+1,qk+1), (2.196)

and using a constant time-step h in τ , the discrete Euler–Lagrange equations can be

rewritten as

pk = −D1Ld(qk,qk, qk+1,qk+1), (2.197)

pk = −D2Ld(qk,qk, qk+1,qk+1), (2.198)

qk+1 = qk + hg(qk), (2.199)

pk+1 =
g(qk)
g(qk+1)

D3Ld(qk,qk, qk+1,qk+1), (2.200)

pk+1 =
Ldk −Ldk+1

hg(qk+1)
+ λk+1

h
+ λk+1∇g(qk+1) +

g(qk)
g(qk+1)

[D4Ldk −
λk
h

] . (2.201)
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A Second Time-Adaptive Framework obtained by Reverse-Engineering

As mentioned earlier, all the literature to date on the Poincaré transformation

have constructed the Poincaré transformed system by reverse-engineering. The Poincaré

transformed Hamiltonian is chosen in such a way that the corresponding component

dynamics satisfy the Hamilton’s equations in the original space. We will follow a similar

strategy to derive a second framework for time-adaptivity from the Lagrangian perspective.

Given a time-dependent Lagrangian L(q(t), q̇(t), t) consider a transformation of

time t→ τ ,
dt

dτ
= g(t), (2.202)

described by the monitor function g(t). As before, the time t shall be referred to as the

physical time, while τ will be referred to as the fictive time, and we will denote derivatives

with respect to t and τ by dots and apostrophes, respectively.

We define the autonomous Lagrangian,

L̄(q̄(τ), q̄′(τ)) = q′L(q, q′

g(q) ,q) − λ (q′ − g(q)) , (2.203)

in the extended space with q̄ = (q,q, λ)⊺ where q = t, and where λ is a multiplier used to

impose the constraint that the time evolution is guided by the monitor function g(t). Note

that in contrast to the earlier framework, the Lagrange multiplier term lacks an extra

multiplicative factor of q′.

Theorem 2.22 ([Duruisseaux and Leok, 2023a]). If the curve (q̄(τ), q̄′(τ)) satisfies the

Euler–Lagrange equations corresponding to the Lagrangian L̄, then its components satisfy

dt

dτ
= g(t) (2.204)

and the original Euler–Lagrange equations

d

dt

∂L

∂q̇
(q, q̇, t) = ∂L

∂q
(q, q̇, t) . (2.205)
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Proof. Substituting the expression for L̄ in the Euler–Lagrange equations d
dτ

∂L̄
∂λ′ = ∂L̄

∂λ and

d
dτ

∂L̄
∂q′ = ∂L̄

∂q gives

q′ = g(q),

and

dq

dτ

d

dq

⎡⎢⎢⎢⎢⎢⎣

dq

dτ

∂L (q, q′
g(q) ,q)

∂q′

⎤⎥⎥⎥⎥⎥⎦
= dq

dτ

∂L (q, q′
g(q) ,q)
∂q

.

We can divide by dq
dτ and use the chain rule to get q′ = g(q) and

d

dq

∂L

∂q̇
(q, dτ

dq
q′,q) = ∂L

∂q
(q, dτ

dq
q′,q) .

Using the equations q̇ = dτ
dq q

′ and q′ = g(q), and replacing q by t recovers the desired

equations.

We now introduce a discrete variational formulation of these continuous Lagrangian

mechanics. Suppose we are given a partition 0 = τ0 < τ1 < . . . < τN = T of the interval

[0,T], and a discrete curve in Q ×R ×R denoted by {(qk,qk, λk)}Nk=0 such that qk ≈ q(τk),
qk ≈ q(τk), and λk ≈ λ(τk).

Consider the discrete action functional,

S̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=0

{qk+1 − qk
τk+1 − τk

[Ld(qk,qk, qk+1,qk+1) − λk] + λkg(qk)}, (2.206)

where,

Ld(qk,qk, qk+1,qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],Q×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qk+1,qk+1)

∫
τk+1

τk
L(q, q′

g(q) ,q)dτ . (2.207)

This discrete action functional S̄d can be thought of as a discrete analogue of the action

functional S̄ ∶ C2([0, T ],Q ×R ×R)→ R given by

S̄(q(⋅),q(⋅), λ(⋅)) = ∫
T

0
L̄ (q(τ),q(τ), λ(τ), q′(τ),q′(τ), λ′(τ))dτ (2.208)

= ∫
T

0
{q′ [L(q, q′

g(q) ,q) − λ] + λg(q)}dτ . (2.209)
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We can derive the following result which relates a discrete Type I variational

principle to a set of discrete Euler–Lagrange equations:

Theorem 2.23 ([Duruisseaux and Leok, 2023a]). The Type I discrete Hamilton’s varia-

tional principle,

δS̄d ({(qk,qk, λk)}Nk=0) = 0, (2.210)

is equivalent to the discrete extended Euler–Lagrange equations,

qk+1 = qk + (τk+1 − τk)g(qk), (2.211)

qk+1 − qk
τk+1 − τk

D1Ld(qk,qk, qk+1,qk+1) +
qk − qk−1

τk − τk−1

D3Ld(qk−1,qk−1, qk,qk) = 0, (2.212)

qk+1 − qk
τk+1 − τk

D2Ldk −
1

τk+1 − τk
Ldk +

qk − qk−1

τk − τk−1
D4Ldk−1

+ 1

τk − τk−1
Ldk−1

(2.213)

= λk−1

τk − τk−1
− λk
τk+1 − τk

− λk∇g(qk),

where Ldk denotes Ld(qk,qk, qk+1,qk+1).

Proof. See Appendix A.3.2.

Defining the discrete momenta via the discrete Legendre transformations,

pk = −D1Ld(qk,qk, qk+1,qk+1), (2.214)

pk = −D2Ld(qk,qk, qk+1,qk+1), (2.215)

and using a constant time-step h in τ , the discrete Euler–Lagrange equations can be

rewritten as

pk = −D1Ld(qk,qk, qk+1,qk+1), (2.216)

pk = −D2Ld(qk,qk, qk+1,qk+1), (2.217)

qk+1 = qk + hg(qk), (2.218)

pk+1 =
g(qk)
g(qk+1)

D3Ld(qk,qk, qk+1,qk+1), (2.219)

pk+1 =
Ldk −Ldk+1

+ λk+1 − λk + hλk+1∇g(qk+1) + hg(qk)D4Ldk
hg(qk+1)

. (2.220)
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2.7.3 Remarks on the Frameworks for Time-Adaptivity

Time-adaptivity in geometric integrators comes more naturally on the Hamiltonian

side through the Poincaré transformation. Indeed, in the Hamiltonian case, the time-

rescaling equation q′ = g(q,q, p) emerged naturally through the change of time variable

inside the extended action functional. By contrast, in the Lagrangian case, we need to

impose the time-rescaling equation as a constraint via a multiplier, which we then consider

as an extra position coordinate. This strategy can be thought of as being a special case

of the more general framework for constrained Lagrangian variational integrators (see

Section 2.6.1 or [Marsden and West, 2001; Duruisseaux and Leok, 2022a]).

The Poincaré transformation on the Hamiltonian side was presented in [Duruisseaux

et al., 2021] and Section 2.7.1 for the general case where the monitor function can

depend on position, time and momentum, g = g(q, t, p). For the accelerated optimization

application which is our main motivation to develop a time-adaptive framework for

geometric integrators, the monitor function only depends on time, g = g(t). For the sake

of simplicity and clarity, we have decided to only present the theory for time-adaptive

Lagrangian integrators for monitor functions of the form g = g(t) in Section 2.7.2. Note

however that this time-adaptivity framework on the Lagrangian side can be extended to

the case where the monitor function also depends on position, g = g(q, t). The action

integral remains the same with the exception that g is now a function of (q,q). Unlike the

case where g = g(t), the corresponding Euler–Lagrange equation

d

dτ

∂L̄

∂q′
= ∂L
∂q

(2.221)

yields an extra term λ(t)∂g∂q (q, t) in the original phase-space,

d

dt

∂L

∂q̇
(q, q̇, t) − ∂L

∂q
(q, q̇, t) = λ(t)∂g

∂q
(q, t). (2.222)

The discrete Euler–Lagrange equations become more complicated and involve terms with

partial derivatives D1g(qk,qk) of g with respect to q. Furthermore, when g = g(q, t), the

discrete Euler–Lagrange equations involve λk but the time-evolution of the Lagrange

multiplier λ is not well-defined, so the discrete Hamiltonian map corresponding to the
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discrete Lagrangian Ld is not well-defined, as explained in [Marsden and West, 2001, page

440]. Although there are ways to circumvent this problem, this adds some difficulty and

makes the time-adaptive Lagrangian approach with g = g(q, t) less natural and desirable

than the corresponding Poincaré transformation on the Hamiltonian side.

It might also be tempting to generalize further and consider the case where the

monitor function also depends on q̇, that is, g = g(q, q̇, t). However, in this case, the

time-rescaling equation dt
dτ = g(q, q̇, t) becomes implicit and it becomes less clear how to

generalize the variational derivation presented in this section. There are examples where

time-adaptivity with these more general monitor functions proved advantageous (see for

instance Kepler’s problem in Section 2.7.1 and [Duruisseaux et al., 2021]). This motivates

further effort towards developing a better framework for time-adaptivity on the Lagrangian

side with more general monitor functions.

It might be more natural to consider the time-rescaled Lagrangian and Hamiltonian

dynamics as Dirac mechanics [Yoshimura and Marsden, 2006a,b; Leok and Ohsawa, 2011]

on the Pontryagin bundle (q, v, p) ∈ TQ ⊕ T ∗Q. Dirac dynamics are described by the

Hamilton-Pontryagin variational principle where the momentum p acts as a Lagrange

multiplier to impose the kinematic equation q̇ = v,

δ∫
T

0
[L(q, v, t) + p(q̇ − v)]dt = 0. (2.223)

This provides a variational description of both Lagrangian and Hamiltonian mechanics,

yields the implicit Euler–Lagrange equations,

q̇ = v, ṗ = ∂L
∂q
, p = ∂L

∂v
, (2.224)

and suggest the introduction of a more general quantity, the generalized energy,

E(q, v, p, t) = pv −L(q, v, t), (2.225)

as an alternative to the Hamiltonian.
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3 Accelerated Optimization via

Geometric Numerical Integrators

on Normed Vector Spaces

3.1 Motivation

Efficient optimization has become one of the major concerns in data analysis. Many

machine learning algorithms are designed around the minimization of a loss function or the

maximization of a likelihood function. Due to the ever-growing scale of the data sets and

size of the problems, there has been a lot of focus on first-order optimization algorithms

because of their low cost per iteration and the ease with which they can be executed on

parallel and distributed processing architectures.

The first gradient descent algorithm was proposed in [Cauchy, 1847] by Cauchy to

deal with the very large systems of equations he was facing when trying to simulate orbits

of celestial bodies, and many gradient-based optimization methods have been proposed

since Cauchy’s work in 1847. In 1983, Nesterov’s Accelerated Gradient method was

introduced in [Nesterov, 1983],

xk = yk−1 − h∇f(yk−1), yk = xk +
k − 1

k + 2
(xk − xk−1), (3.1)

which converges in O(1/k2) to the minimum of the convex objective function f , improving

on the O(1/k) convergence rate exhibited by the standard gradient descent methods.
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This O(1/k2) rate of convergence was shown in [Nesterov, 2004] to be optimal

among first-order methods using only information about ∇f at consecutive iterates. This

phenomenon in which an algorithm displays this improved rate of convergence is referred

to as acceleration. Note that several other accelerated algorithms have been derived

since Nesterov’s algorithm, such as accelerated mirror descent [Nemirovsky and Yudin,

1983], and accelerated cubic-regularized Newton’s method [Nesterov, 2008].

More recently, it was shown in [Su et al., 2016] that Nesterov’s Accelerated Gradient

method limits to the second-order ODE,

ẍ(t) + 3

t
ẋ(t) +∇f(x(t)) = 0, (3.2)

as the step size h goes to 0. The authors also proved that the objective function f(x(t))
converges to its optimal value at a rate of O(1/t2) along the trajectories of this ODE. It

was then shown in [Wibisono et al., 2016] that in continuous time, the convergence rate

of f(x(t)) can be accelerated to an arbitrary convergence rate, by considering flow maps

generated by a family of time-dependent Bregman Lagrangian and Hamiltonian systems

on normed vector spaces which is closed under time rescaling.

We will present this result in greater details in Section 3.2 together with the

variational framework introduced in [Wibisono et al., 2016] for accelerated optimization on

normed vector spaces. We will then introduce a time-adaptive approach to integrating the

resulting time-dependent Hamiltonian and Lagrangian dynamical systems and exploit the

frameworks for incorporating variable time-stepping in symplectic integrators introduced

in Section 2.7 to design efficient symplectic algorithms for accelerated optimization in

Sections 3.3 and 3.4. We will also conduct a careful computational study to investigate

how time-adaptivity and symplecticity of the numerical schemes affect the performance of

the resulting optimization algorithms, and compare their performance with those of other

popular optimization algorithms.
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3.2 A Variational Formulation of Accelerated

Optimization on Normed Vector Spaces

In this section, we review the variational framework introduced in [Wibisono et al.,

2016] for accelerated optimization on normed vector spaces. In a general space X, given a

convex, continuously differentiable function h ∶X → R such that ∥∇h(x)∥→∞ as ∥x∥→∞,

its corresponding Bregman divergence is given by

Dh(x, y) = h(y) − h(x) − ⟨∇h(x), y − x⟩. (3.3)

We then define the Bregman Lagrangian and Hamiltonian

Lα,β,γ(x, v, t) = eαt+γt [Dh(x + e−αtv, x) − eβtf(x)] , (3.4)

Hα,β,γ(x, r, t) = eαt+γt [Dh∗(∇h(x) + e−γtr,∇h(x)) + eβtf(x)] , (3.5)

which are scalar-valued functions of position x ∈X, velocity v ∈ Rd, momentum r ∈ Rd, and

time t, which are parametrized by smooth functions of time, α,β, γ. Here, the function

h∗ ∶X∗ → R denotes the Legendre transform (or convex dual function) of h, defined by

h∗(w) = supz∈X [⟨w, z⟩ − h(z)]. The Euler–Lagrange equation associated to the Bregman

Lagrangian (3.4) is given by

[∇2h (xt + e−αtẋt)]
−1 (eβt∇f(xt) + (γ̇te−αt − 1) [∇h (xt + e−αtẋt) −∇h(xt)]) (3.6)

+ e−2αtẍt + (e−αt − α̇te−2αt)ẋt = 0.

The parameter functions α,β, γ are said to satisfy the ideal scaling conditions if

β̇t ≤ eαt and γ̇t = eαt . (3.7)

If the ideal scaling conditions are satisfied, then the Euler–Lagrange equation becomes

ẍt + (eαt − α̇t)ẋt + e2αt+βt [∇2h (xt + e−αtẋt)]
−1∇f(xt) = 0, (3.8)

and Theorem 1.1 in [Wibisono et al., 2016] states that

f(x(t)) − f(x∗) ≤ O(e−βt), (3.9)

along the solution x(t) of this Bregman Euler–Lagrange equation, where x∗ is the desired

minimizer of the objective function f .
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Another very important property of this family of Bregman Lagrangians is its

closure under time rescaling:

Theorem 3.1 ([Wibisono et al., 2016]). Suppose the curve x(t) satisfies the Euler–Lagrange

equations corresponding to the Bregman Lagrangian Lα,β,γ. Then the reparametrized

curve y(t) = x(τ(t)) satisfies the Euler–Lagrange equations corresponding to the Bregman

Lagrangian Lα̃,β̃,γ̃ where

α̃t = ατ(t) + log τ̇(t), β̃t = βτ(t), γ̃t = γτ(t), (3.10)

and

Lα̃,β̃,γ̃(x, v, t) = τ̇(t)Lα,β,γ (x,
1

τ̇(t)v, τ(t)) . (3.11)

Furthermore α,β, γ satisfy the ideal scaling equation (3.7) if and only if α̃, β̃, γ̃ do.

A subfamily of Bregman Lagrangians of interest, indexed by a parameter p > 0, is

given by the choice of parameter functions

αt = log p − log t, βt = p log t + logC, γt = p log t, (3.12)

where C > 0 is a constant. The Bregman Lagrangian and Hamiltonian become

Lp(x, v, t) = ptp−1 [Dh (x +
t

p
v, x) −Ctpf(x)] , (3.13)

Hp(x, r, t) = ptp−1 [Dh∗(∇h(x) + tpr,∇h(x)) +Ctpf(x)] , (3.14)

with corresponding Bregman Euler–Lagrange equation

ẍ(t) + p + 1

t
ẋ(t) +Cp2tp−2 [∇2h(x(t) + t

p
ẋ(t))]

−1

∇f(x(t)) = 0. (3.15)

These parameter functions satisfy the ideal scaling conditions (3.7), and the resulting

evolution x(t) satisfies the aforementioned O(1/tp) convergence rate,

f(x(t)) − f(x∗) ≤ O(1/tp), (3.16)

where x∗ is the desired minimizer of the objective function f .
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3.3 Symplectic Accelerated Optimization

via Hamiltonian Integrators

3.3.1 Introduction

For simplicity of exposition, we will consider the case where h(x) = 1
2⟨x,x⟩. Our

new approaches will make use of the adaptive framework developed in Section 2.7.1 via

carefully chosen Poincaré transformations. Recalling the discussion of Section 2.7.1, there is

usually no equivalent Lagrangian formulation for the future Poincaré transformed systems,

so we will work from the Hamiltonian point of view here.

When h(x) = 1
2⟨x,x⟩, the Bregman Hamiltonian with parameters α,β, γ given by

equation (3.12) for a specific value of p > 0 becomes

Hp(q, r, t) =
p

2tp+1
⟨r, r⟩ +Cpt2p−1f(q). (3.17)

From Theorem 1.1 in [Wibisono et al., 2016], any solution q(t) to the corresponding

Hamilton’s equations satisfies the convergence rate

f(q(t)) − f(q∗) ≤ O(1/tp), (3.18)

where q∗ is the desired minimizer of the objective function f .

Together with the time-rescaling property of the Bregman family of dynamical

systems from Theorem 3.1, this implies that this entire subfamily of Bregman trajectories

indexed by the parameter p can be obtained by speeding up or slowing down along the

Bregman curve in spacetime corresponding to any specific value of p. We now present

two approaches based on the adaptive framework developed in Section 2.7.1 to integrate

the Bregman Hamiltonian dynamics, thereby solving the optimization problem, and then

compare their performance.
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3.3.2 Direct Approach

Our first approach will use the adaptive framework from Section 2.7.1 with monitor

function g(q, r) = 1 to design a variational integrator for the Bregman Hamiltonian given

in equation (3.17) for a given value of p > 0. This choice of monitor function will convert

the time-dependent Bregman Hamiltonian into an autonomous Hamiltonian in extended

phase space. More precisely, given a value of p > 0, the time transformation t↦ τ given by

dt

dτ
= g(q, t, r) = 1 (3.19)

generates the Direct approach Poincaré transformed Hamiltonian

H̄p(q̄, r̄) =
p

2qp+1
⟨r, r⟩ +Cpq2p−1f(q) + r, (3.20)

in the phase space with extended coordinates (q̄, r̄).

The corresponding Hamilton’s equations are given by

q̄′ = ∂H̄p

∂r̄
=
⎡⎢⎢⎢⎢⎣

p
qp+1 r

1

⎤⎥⎥⎥⎥⎦
, (3.21)

r̄′ = −∂H̄p

∂q̄
=
⎡⎢⎢⎢⎢⎣

−Cpq2p−1∇f(q)
p(p+1)
2qp+2 ⟨r, r⟩ −Cp(2p − 1)q2p−2f(q)

⎤⎥⎥⎥⎥⎦
. (3.22)

This strategy is equivalent to the usual trick to remove time-dependency consisting

of considering time as an additional position variable and adding a corresponding conjugate

momentum variable, which is the energy (see [Betancourt et al., 2018] for an example with

Hamiltonian given by equation (3.20)). This shows that our adaptive framework from

Section 2.7.1 is very general and can also be used for purposes other than solely enforcing

a desired variable time-stepping.
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3.3.3 Adaptive Approach

Our second approach exploits the time-rescaling property of the Bregman dynamics

together with the adaptive framework from Section 2.7.1 with a carefully tuned monitor

function. More precisely, we will use adaptivity to transform the Bregman Hamiltonian

corresponding to a specific value of p > 0 into an autonomous version of the Bregman

Hamiltonian corresponding to a smaller value p̊ < p in extended phase space. This will

allow us to integrate the higher-order Bregman dynamics corresponding to the value p

while benefiting from the computational efficiency of integrating the lower-order Bregman

dynamics corresponding to the value p̊ < p.

Explicitly, solving equation (3.10) for τ(t) to transform the Bregman dynamics

corresponding to the values of α,β, γ as in equation (3.12) for a given value of p into the

Bregman dynamics corresponding to the values of α̃, β̃, γ̃ as in equation (3.12) for a given

value p̊ < p yields τ(t) = tp̊/p. The corresponding monitor function is given by

dt

dτ
= g(q, t, r) = p

p̊
t1−

p̊
p , (3.23)

and generates the Adaptive approach Poincaré transformed Hamiltonian

H̄p→p̊(q̄, r̄) =
1

p̊

⎡⎢⎢⎢⎢⎣

p2

2qp+
p̊
p

⟨r, r⟩ +Cp2q2p− p̊
pf(q) + prq1− p̊

p

⎤⎥⎥⎥⎥⎦
. (3.24)

The corresponding Hamilton’s equations are given by

q̄′ = ∂H̄p→p̊

∂r̄
= 1

p̊

⎡⎢⎢⎢⎢⎣

p2q−p−
p̊
p r

pq1− p̊
p

⎤⎥⎥⎥⎥⎦
, (3.25)

r̄′ = −∂H̄p→p̊

∂q̄
= 1

p̊

⎡⎢⎢⎢⎢⎣

−Cp2q2p− p̊
p∇f(q)

p3+pp̊

2qp+1+p̊/p ⟨r, r⟩ −C(2p3 − pp̊)q2p− p̊
p
−1f(q) − p−p̊

qp̊/p r

⎤⎥⎥⎥⎥⎦
. (3.26)
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3.3.4 Presentation of Numerical Methods

We will now test the performance of the new adaptive framework presented in

Section 2.7.1 by implementing variational and non-variational integrators in the case where

X = Rd and ⟨x,x⟩ = x⊺x, and we will discuss the results obtained. Keeping in mind the

machine learning application where data sets are very large, we will restrict ourselves to

explicit first-order optimization algorithms.

Looking at the forms of Hamilton’s equations in the Direct and Adaptive approaches,

we note that the objective function f and its gradient ∇f only appear in the expression

for r̄′, and are functions of q only. Looking back at the construction of Hamiltonian Taylor

variational integrators from Section 2.4.2, we can note that both the Type II and the

Type III approaches require ρ-order Taylor approximations of r and (ρ + 1)-order Taylor

approximations of q. This means that the highest value of ρ that we can choose to obtain

a gradient-based algorithm is ρ = 1. Now, the starting point of the Type III approach is a

(ρ + 1)-order Taylor approximation q̃0 of q0 around q0. As a consequence, the subsequent

steps in the Type III method with ρ = 0 and ρ = 1 will contain evaluations of the objective

function f and its gradient ∇f at this approximation q̃0. Aside from the inconvenience of

the function evaluations not being at the iterates q0 and q1 themselves, if f is a nonlinear

function, this will also generate nonlinearity in the equations for the updates. As a result,

we will not be able to design an explicit algorithm, or at least not a general explicit

algorithm that would work for all the functions f considered. On the other hand, the

starting point of the Type II approach is a ρ-order Taylor approximation p̃0 of p0 around

p0. A similar issue as for the Type III case arises when ρ = 1 due to the approximations

(qci , pci) = Ψ
(ρ)
cih

(q̃0, p0). Therefore, we cannot design a general explicit algorithm for the

Type II case with ρ = 1. The remaining possibility is to construct a Type II HTVI using

ρ = 0. This will produce explicit gradient-based algorithms, where all the evaluations of

the objective function f and its gradient ∇f are performed at the iterates q0 and q1. Note

that when ρ = 0, we have (qci , pci) = Ψ
(0)
cih

(q̃0, p0) = (q̃0, p0) for all i, so for given values of

p and p̊, every quadrature rule generates the same integrator. Following the method of

Section 2.4.2, with time-step h, we will now derive explicit gradient-based Hamiltonian

Taylor variational integrators.
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Type II Hamiltonian Taylor Variational Integrators (HTVIs) with ρ = 0.

As mentioned earlier, since ρ = 0, the choice of quadrature rule does not matter, so we

can take the rectangular quadrature rule about the initial point (c1 = 0 and b1 = 1).

We approximate r̄(0) = ˜̄r0 via r̄1 = πT ∗Q̄ ○Ψ
(0)
h (q0, ˜̄r0) = ˜̄r0 and generate approximations

(q̄c1 , r̄c1) = Ψ
(0)
c1h

(q̄0, ˜̄r0) = (q̄0, ˜̄r0). The Direct Approach and Adaptive Approach HTVIs

are then constructed as follows:

(i) Direct Approach Type II HTVI with ρ = 0

Approximate r̄(0) = ˜̄r0 via r̄1 = πT ∗Q̄ ○Ψ
(0)
h (q0, ˜̄r0) = ˜̄r0.

Approximate

˜̄q1 = πQ̄ ○Ψ
(1)
h (q̄0, ˜̄r0) = q̄0 + h ˙̄q0 =

⎡⎢⎢⎢⎢⎢⎣

q0 + h pr0
qp+1
0

q0 + h

⎤⎥⎥⎥⎥⎥⎦
. (3.27)

The approximated discrete right Hamiltonian (2.58) is then given by

H+
d (q̄0, r̄1;h) = r⊺1q0 + r1q0 + h( p

2qp+1
0

r⊺1r1 +Cpq2p−1
0 f(q0) + r1) . (3.28)

Solving the implicit discrete right Hamilton’s equations

q1 =D2H
+
d (q0, p1), p0 =D1H

+
d (q0, p1), (3.29)

yields the explicit variational integrator

r1 = r0 − hCpq2p−1
0 ∇f(q0),

r1 = r0 + h
p(p + 1)

2qp+2
0

r⊺1r1 − hCp(2p − 1)q2p−2
0 f(q0),

q1 = q0 + h
p

qp+1
0

r1,

q1 = q0 + h.

(3.30)

When solving a given optimization problem, we are typically not interested in the

evolution of the variable r, and since it does not affect the other variables, we can

instead implement the simpler algorithm

r1 = r0 − hCpq2p−1
0 ∇f(q0),

q1 = q0 + h
p

qp+1
0

r1,

q1 = q0 + h.

(3.31)
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(ii) Adaptive Approach Type II HTVI with ρ = 0

Approximate r̄(0) = ˜̄r0 via r̄1 = πT ∗Q̄ ○Ψ
(0)
h (q0, ˜̄r0) = ˜̄r0.

Approximate

˜̄q1 = πQ̄ ○Ψ
(1)
h (q̄0, ˜̄r0) = q̄0 + h ˙̄q0 =

⎡⎢⎢⎢⎢⎢⎣

q0 + hp
2

p̊ q
−p− p̊

p

0 r0

q0 + hpp̊q
1− p̊

p

0

⎤⎥⎥⎥⎥⎥⎦
. (3.32)

The approximated discrete right Hamiltonian (2.58) is then given by

H+
d (q̄0, r̄1;h) = r⊺1 [q0 +

p2

2p̊
hq

−p− p̊
p

0 r1] + r1 [q0 +
p

p̊
hq

1− p̊
p

0 ] + Cp
2

p̊
hq

2p− p̊
p

0 f(q0). (3.33)

Solving the implicit discrete right Hamilton’s equations

q1 =D2H
+
d (q0, p1), p0 =D1H

+
d (q0, p1), (3.34)

yields the explicit variational integrator

r1 = r0 −
p2

p̊
hCq

2p− p̊
p

0 ∇f(q0),

r1 =
⎡⎢⎢⎢⎢⎣
1 − h

q
p̊/p
0

(1 − p
p̊
)
⎤⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎣
r0 +

p3 + pp̊
2p̊q

1+p+p̊/p
0

hr⊺1r1 +
pp̊ − 2p3

p̊q
1−2p+p̊/p
0

hCf(q0)
⎤⎥⎥⎥⎥⎦
,

q1 = q0 +
p2

p̊
hq

−p− p̊
p

0 r1,

q1 = q0 +
p

p̊
hq

1− p̊
p

0 .

(3.35)

When solving a given optimization problem, we are typically not interested in the

evolution of the variable r, and since it does not affect the other variables, we can

instead implement the simpler algorithm

r1 = r0 −
p2

p̊
hCq

2p− p̊
p

0 ∇f(q0),

q1 = q0 +
p2

p̊
hq

−p− p̊
p

0 r1,

q1 = q0 +
p

p̊
hq

1− p̊
p

0 .

(3.36)

95



Different first-order optimization algorithms based on variational integrators can be

constructed for the Poincaré transformed Hamiltonians, such as prolongation-collocation

variational integrators [Leok and Shingel, 2012a], and higher-order Hamiltonian Taylor

variational integrators [Schmitt et al., 2018], and Galerkin variational integrators [Leok

and Zhang, 2011]. We will not consider these integrators here since they require that one

solves systems of nonlinear equations and cannot be implemented explicitly in general.

Note however that in practice, implicit methods for the numerical solution of ODEs that

can be solved using fixed-point iterations (as opposed to Newton iterations) can be quite

competitive, as there is a good initial guess which may allow them to converge in a small

number of iterations, and the iterations are inexpensive as they do not require the assembly

of a Jacobian. The convergence of the fixed-point iteration depends on the conditioning of

the system of equations, and may impose a stringent time-step restriction. This numerical

conditioning issue can be overcome by the use of exponential integrators [Hochbruck

and Ostermann, 2010], and in particular, symplectic and energy-preserving exponential

integrators [Shen and Leok, 2019].

We have also implemented non-variational symplectic methods for the Poincaré

Hamiltonian from these Direct and Adaptive approaches.

Non-Variational Symplectic Integrators for the Poincaré Hamiltonians.

(i) Direct and Adaptive Approaches with Splitting of the Hamiltonian.

The Direct approach with splitting of the Hamiltonian is the approach presented

in [Betancourt et al., 2018]. The three components of the Poincaré transformed

Hamiltonian (3.20) are considered separately. These components generate dynamics

in the extended phase space via six vector fields, and a symmetric leapfrog composition

of the corresponding component dynamics is constructed to obtain a symplectic

integrator (referred to in this dissertation as “Direct Splitting”):
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t← t + h
2
,

r← r + h
2

p(p + 1)
2tp+2

r⊺r − h
2
Cp(2p − 1)t2p−2f(q),

r ← r − h
2
Cpt2p−1∇f(q),

q ← q + h p

tp+1
r,

r ← r − h
2
Cpt2p−1∇f(q),

r← r + h
2

p(p + 1)
2tp+2

r⊺r − h
2
Cp(2p − 1)t2p−2f(q),

t← t + h
2
.

(3.37)

A new symplectic integrator (referred to in this dissertation as “Adaptive Splitting”)

can also be obtained by adapting the approach presented in [Betancourt et al., 2018]

to the adaptive Poincaré transformed Hamiltonian (3.24):

t← (tp̊/p + h
2
)
p/p̊

,

θ ← p̊

p̊ − p [(p
3

2p̊
+ p

2
) t−p−1r⊺r + (p − 2p3

p̊
) t2p−1Cf(q)] ,

r← (r + θ) exp((1 − p
p̊
) h

2
t−p̊/p) − θ,

r ← r − hCp
2

2p̊
t2p−p̊/p∇f(q),

q ← q + h p2

p̊tp+p̊/p
r,

r ← r − hCp
2

2p̊
t2p−p̊/p∇f(q),

θ ← p̊

p̊ − p [(p
3

2p̊
+ p

2
) t−p−1r⊺r + (p − 2p3

p̊
) t2p−1Cf(q)] ,

r← (r + θ) exp((1 − p
p̊
) h

2
t−p̊/p) − θ,

t← (tp̊/p + h
2
)
p/p̊

.

(3.38)
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As before, we are typically not interested in the evolution of the variable r, and since

it does not affect the other variables, we can instead implement the simpler “Direct

Splitting” algorithm

t← t + h
2
,

r ← r − h
2
Cpt2p−1∇f(q),

q ← q + h p

tp+1
r,

r ← r − h
2
Cpt2p−1∇f(q),

t← t + h
2
,

(3.39)

and the simpler “Adaptive Splitting” algorithm

t← (tp̊/p + h
2
)
p/p̊

,

r ← r − hCp
2

2p̊
t2p−p̊/p∇f(q),

q ← q + h p2

p̊tp+p̊/p
r,

r ← r − hCp
2

2p̊
t2p−p̊/p∇f(q),

t← (tp̊/p + h
2
)
p/p̊

.

(3.40)

This method will be presented in greater generality and details in Section 5.3.1.

(ii) Phase Space Cloning and Splitting.

A very natural approach to integrate nonseparable Hamiltonian dynamics consists

in defining a new Hamiltonian via two copies of the original Hamiltonian in a phase

space of dimension twice as large [Pihajoki, 2015]:

H̃(q, q̃, p, p̃) =H1(q, p̃) +H2(q̃, p), (3.41)

where H1 =H2 =H. Hamilton’s equations are then given by

q̇ = ∇pH2, ˙̃q = ∇p̃H1, ṗ = −∇qH1, ˙̃p = −∇q̃H2. (3.42)
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We can then use symmetric symplectic splittings to integrate this new Hamiltonian

system explicitly:

exp (hH̃) =
K

∏
k=1

exp (ckhH1) exp (dkhH2) +O(hr+1), dK = 0. (3.43)

Note that we can exchange the roles of H1 and H2 in the splitting to get a different

integrator. Letting c0 = d0 = 0, the above integrator can be implemented via

1 while convergence criterion is not met do

2 q ← qn, q̃ ← q̃n, p← pn, p̃← p̃n

3 for k = 1 to K do

q ← q + ckh∇pH2(q̃, p) and p̃← p̃ − ckh∇q̃H2(q̃, p)

q̃ ← q̃ + dkh∇p̃H1(q, p̃) and p← p − dkh∇qH1(q, p̃)

4 qn+1 ← q + cKh∇pH2(q̃, p), q̃n+1 ← q̃

5 p̃n+1 ← p̃ − cKh∇q̃H2(q̃, p), pn+1 ← p

Note that when applied to the Poincaré transformed Hamiltonians for optimization,

this splitting will require a significantly larger number of evaluations of the objective

function f and of its gradient ∇f at each step.

The Strang Splitting ([Strang, 1968]) is the splitting of order r = 2, obtained with

K = 2, and c1 = c2 =
1

2
, d1 = 1, d2 = 0. (3.44)

This method will be referred to as “CloningStrang” in this dissertation.

The Yoshida 4 Splitting ([Yoshida, 1990]) is the splitting of order r = 4, obtained

with K = 4, and

c1 = c4 =
1

4 − 24/3
, c2 = c3 =

1 − 21/3

4 − 24/3
, (3.45)

d1 = d3 =
1

2 − 21/3
, d2 =

1

1 − 22/3
d4 = 0. (3.46)

This method will be referred to as “CloningY4” in this dissertation.
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The Yoshida 6 Splitting ([Yoshida, 1990]) is the splitting of order r = 6, obtained

with K = 10, d10 = 0 and

x0 =
1

1 − 22/3
, x1 =

1

2 − 21/3
, y0 =

1

1 − 24/5
, y1 =

1

2 − 21/5
, (3.47)

d1 = d3 = d7 = d9 = x1y1, d2 = d8 = x0y1, d4 = d6 = x1y0, d5 = x0y0, (3.48)

c1 =
1

2
d1, c10 =

1

2
d9, ck =

1

2
(dk−1 + dk) for k = 2,3, ...,9. (3.49)

This method will be referred to as “CloningY6” in this dissertation.

Lastly, we have also implemented non-symplectic methods based on the Direct and

Adaptive approaches (the Classical 4th Order Explicit Runge–Kutta Method (RK4), and

MATLAB’s explicit adaptive ODE solvers ode23, ode45), and other popular optimization

algorithms have been tested as well such as Nesterov’s Accelerated Gradient (3.1), Trust

Region Steepest Descent, ADAM [Kingma and Ba, 2014], AdaGrad [Duchi et al., 2011],

and RMSprop [Tieleman and Hinton, 2012].

3.3.5 Numerical Results

We have implemented the numerical methods presented earlier in this section to

test their performance on the problem of minimizing the quartic function

f(x) = [(x − 1)⊺Σ(x − 1)]2
, (3.50)

where x is a high-dimensional variable and the matrix Σ is obtained via Σij = 0.9∣i−j∣. This

convex function achieves its minimum value 0 at x∗ = 1.

Unless specified otherwise, the termination criterion used in this section is

∣f(xk) − f(xk−1)∣ < δ and ∥∇f(xk)∥ < δ, where δ = 10−10. (3.51)
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Direct versus Adaptive approach

Numerical experiments conducted with all the symplectic algorithms presented

earlier showed that a carefully tuned Adaptive approach enjoys a significantly better rate of

convergence and a much smaller number of steps required to achieve convergence than the

Direct approach, as can be seen in Figure 3.1 and Table 3.1 for the HTVI and CloningY4

methods. Although the Adaptive approach requires a smaller fictive h than the Direct

approach, the physical time-steps resulting from t = τ p/p̊ in the Adaptive approach grow

rapidly to values larger than the physical time-step of the Direct approach.
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Figure 3.1: Comparison of the rates of convergence between the Direct and Adaptive

approach for the HTVI method and the Cloning method with a Yoshida 4 splitting. We

can clearly see that the Adaptive approach outperforms the Direct approach.

Table 3.1: Comparison of the Direct and Adaptive approach for the HTVI method and the

Cloning method with a Yoshida 4 splitting. The Adaptive approach clearly outperforms

the Direct approach in terms of number of iterations required.

Approach p p̊ h Iterations Approach p p̊ h Iterations
Direct HTVI 4 - 8.00E-04 77 878 Direct CloneY4 4 - 9.00E-04 106 530
Adap. HTVI 4 0.5 1.21E-04 6 867 Adap. CloneY4 4 0.5 1.15E-04 7 101
Direct HTVI 10 - 4.00E-04 13 872 Direct CloneY4 10 - 3.30E-04 15 498
Adap. HTVI 10 0.5 1.95E-05 5 564 Adap. CloneY4 10 0.5 1.62E-05 6 300
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Comparison of Methods within the Direct and Adaptive approaches

Numerical experiments were conducted to compare the various algorithms presented

in Section 3.3.4, and the results are presented in Figure 3.2 and Table 3.2.
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Figure 3.2: Comparison of the convergence, in terms of gradient evaluations needed, of

the different symplectic integrators within the Direct approach (on the left), and within

the Adaptive approach (on the right).

Table 3.2: Number of iterations needed until convergence of the different symplectic

integrators within the Direct (on the left) and Adaptive (on the right) approaches.

Method p h Iterations Method p p̊ h Iterations
Direct HTVI 4 8.7E-04 57 504 Adaptive HTVI 4 1 2.4E-04 9 361
Direct Splitting 4 9.5E-04 60 881 Adaptive Splitting 4 1 2.9E-04 8 313
Direct CloneStrang 4 9.7E-04 81 367 Adaptive CloneStrang 4 1 2.4E-04 10 638
Direct CloneY4 4 8.9E-04 74 747 Adaptive CloneY4 4 1 2.9E-04 10 721
Direct CloneY6 4 7.9E-04 87 075 Adaptive CloneY6 4 1 2.0E-04 11 549

Although the number of iterations for all methods were of the same order of

magnitude, the HTVI methods and the Splitting methods performed much better than

the methods based on the phase-space Cloning idea of [Pihajoki, 2015]. This is mostly

due to the fact that these phase-space Cloning methods require several evaluations of

the objective function f and of its gradient ∇f at each iteration (3 for Strang splitting,

7 for Yoshida’s 4th order splitting, and 19 for Yoshida’s 6th order splitting), while the

HTVI and Splitting methods only required one such evaluation at each iteration. As a
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result, these phase space cloning methods also required much more computational time

to achieve convergence. It might be possible to improve the performance of these phase

space cloning methods by adding an extra term in the final Hamiltonian which binds the

two copies of the Poincaré transformed Hamiltonian, as was done in [Tao, 2016]. However,

this additional term is likely to require a larger number of compositions when splitting

the final Hamiltonian, which would require more gradient evaluations of the objective

function at each step. Thus, even though the trick presented in [Tao, 2016] could reduce

the number of iterations required to achieve convergence, it seems very unlikely that the

resulting algorithm would be competitive against the HTVI and the Splitting methods, in

terms of computational time and total number of gradient evaluations needed.

Dependence on p and p̊ in the Adaptive approach

We conducted numerical experiments with the HTVI method to study the evolution

of the performance of the Adaptive approach as the parameters p and p̊ are varied. We can

see from the results presented in Figure 3.3 and Table 3.3 that the Adaptive HTVI method

becomes more and more efficient as p is increased and p̊ is decreased. The improvement in

efficiency is very important as we increase p from p = 2 to p = 4, while it is minor but still

noticeable as we increase p from p = 4 to p = 8. A possible explanation for this behavior is

that the integrator might not be of high enough order to distinguish between the p = 6 and

p = 8 Bregman dynamics. Note that the fictive time-step h must be reduced as p increases

or p̊ decreases, but the time relation t = τ p/p̊ ensures that the resulting physical time-steps

do not become significantly smaller.

Table 3.3: Evolution of the fictive time-step h and number of iterations until convergence

for the HTVI method as p increases (left), and as p̊ decreases (right).

Method p p̊ h Iterations Method p p̊ h Iterations
Adaptive HTVI 2 1 8.0E-04 77 855 Adaptive HTVI 4 2 3.8E-04 22 128
Adaptive HTVI 4 1 2.4E-04 9 361 Adaptive HTVI 4 1 2.4E-04 9 361
Adaptive HTVI 6 1 9.4E-05 7 785 Adaptive HTVI 4 0.5 1.2E-04 7 099
Adaptive HTVI 8 1 6.1E-05 6 133 Adaptive HTVI 4 0.1 2.4E-05 5 689
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Figure 3.3: Evolution of the rates of convergence of the HTVI method as p is increased

(on the left), and as p̊ is decreased (on the right).

Comparison to non-symplectic integrators

We now investigate the role that symplecticity plays when integrating the Bregman

dynamics. We first implemented fixed time-step integrators such as the 4th-order explicit

Runge–Kutta method

uk+1 = uk +
h

6
(ξ1 + 2ξ2 + 2ξ3 + ξ4), with u = [q̄, r̄]⊺ , (3.52)

where

ξ1 = F (uk), ξ2 = F (uk +
1

2
ξ1) , ξ3 = F (uk +

1

2
ξ2) , ξ4 = F (uk + ξ3) , (3.53)

and F (u) = [∂H̄∂r̄ ,−∂H̄∂q̄ ]
⊺

, but these failed to converge both in the Direct and Adaptive

approaches. The reason why convergence cannot be achieved may have to do with the

nonautonomous aspect of the differential equation. More precisely, explicit Runge–Kutta

methods are conditionally stable, where stability intervals for the time-steps depend on

the expansivity of the differential equation. Since the differential equations considered

here are not autonomous, the stability intervals are time-dependent, and thus any fixed

choice of time-step may eventually violate the stability condition. It might be possible

to achieve low accuracy convergence using these methods, but the fact that they cannot

achieve higher accuracy and are likely to lose stability eventually makes them undesirable.
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We then considered variable time-step explicit Runge–Kutta methods. To this

end, we tested the differential equation solvers ode45 and ode23 of MATLAB, which are

explicit variable time-step Runge–Kutta pairs, and the corresponding numerical results

are presented in Figure 3.4.
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Figure 3.4: Comparison of the HTVI method with the ode23 and ode45 MATLAB

functions in the Direct (left) and Adaptive (right) approaches with p = 10 and p̊ = 0.5. The

HTVI method requires outperforms the MATLAB solvers.

The HTVI method required a significantly smaller number of iterations than the

MATLAB solvers. Furthermore, an inherent part of the time-step control in embedded

Runge–Kutta methods is that, at each iteration, the underlying Runge–Kutta method

may be executed several times to determine the appropriate time-step that satisfies the

prescribed tolerances. For this reason, the MATLAB solvers require more evaluations of

f and ∇f at each iteration, and since they also required more iterations than the HTVI

method, these MATLAB solvers are much less competitive.

It should also be noted that the MATLAB solvers did not exhibit any improvements

when used with the Adaptive approach instead of the Direct approach, while the HTVI

method improved significantly. This is not surprising since the MATLAB solvers ode23

and ode45 both use a variable time-step strategy, regardless of the approach chosen.
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Note that our Adaptive approach and the embedded Runge–Kutta methods use

adaptivity in two fundamentally different ways. Our approach uses a priori adaptivity

based on known global properties of the family of differential equations considered (i.e. the

time-translation symmetry of the family of Bregman dynamics). In contrast, embedded

Runge-Kutta methods use adaptivity based on a posteriori local error estimates. This

distinction could explain why the embedded Runge–Kutta methods do not perform as

well as our Adaptive approach: a posteriori estimators might focus mostly on the fast

local oscillations of the Bregman dynamics and not on the slower global decay, and these

fast oscillations might be forcing the embedded Runge–Kutta methods to adaptively take

smaller time-steps than necessary.

We can also see from Figure 3.4 that for both the symplectic and non-symplectic

adaptive methods, a significant number of iterations are needed before the error effectively

starts decaying. The fact that this slow initial behavior persists with those two approaches,

which use time-adaptivity in the two fundamentally different ways described in the

previous paragraph, suggests that this behavior might be intrinsic to the continuous

Bregman trajectory being discretized and that time-adaptivity might not be able to help

accelerate this initial phase.

Comparison to popular optimization methods

Finally, we have compared the performance of our Adaptive HTVI algorithm to

that of Nesterov’s Accelerated Gradient (NAG) (3.1) with the same initial time-step

h = 2 × 10−6, and of popular adaptive optimization algorithms such as Trust Region

Steepest Descent (TRUST), ADAM [Kingma and Ba, 2014], AdaGrad [Duchi et al., 2011],

and RMSprop [Tieleman and Hinton, 2012].

Figure 3.5 and Table 3.4 present the numerical results obtained when applying

these algorithms to the quartic objective function (3.50). Although the Adaptive HTVI

method is not the most efficient method, it significantly outperformed certain popular

optimization algorithms on this particular convex problem. This suggests that the Adaptive

HTVI method might be a competitive first-order explicit algorithm, and that it might be

worth considering it as one of several possible options to use in practice, as the relative

performance often depends on the specific choice of objective function.
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Figure 3.5: Comparison of the computational efficiency of HTVI, NAG, and other popular

adaptive optimization algorithms (ADAM, AdaGrad, RMSprop, Trust Region Steepest

Descent (TRUST)) to achieve convergence on the quartic objective function (3.50). Note

that HTVI and NAG were implemented with the same initial time-step.

Table 3.4: Comparison of the number of iterations needed for HTVI, for NAG, and for other

popular adaptive optimization algorithms (ADAM, AdaGrad, RMSprop, Trust Region

Steepest Descent (TRUST)) to achieve convergence on the quartic objective function (3.50),

with different values of δ as termination criterion (3.51). Note that HTVI and NAG were

implemented with the same initial time-step. For all these algorithms, the number of

gradient evaluations equals the number of iterations.

δ = 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

HTVI 2 182 2 486 2 750 3 233 3 434 3 593 4 014 4 097 4 566
NAG 4 143 10 949 27 660 65 724 154 258 341 928 745 292 1.7E6 >1E10

ADAM 29 665 32 733 35 802 38 871 41 939 45 008 48 076 51 145 54 215
AdaGrad 520 482 2.4E06 1.1E07 5.2E07 2.4E08 — — — —
RMSprop 276 305 334 363 393 422 452 498 682

TRUST 32 48 71 106 154 215 288 366 455
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Remark 3.1. In [Betancourt et al., 2018], it was observed that Nesterov’s Accelerated

Gradient algorithm transitions into an exponential rate of convergence once it is sufficiently

close to the minimum of certain objective functions, and suggested that this behavior

requires strong convexity of the objective function in the neighborhood of the minimum.

Similarly to the strategy presented in [Betancourt et al., 2018], a gradient flow can be

incorporated into the updates of the algorithms presented here so that for certain objective

functions, the same exponential rate of convergence can be achieved close to the minimizer.

Remark 3.2. In high-dimensional nonconvex optimization problems of practical interest,

it has been observed empirically that a main source of difficulty is not resulting from

the presence of local minima but rather from the ubiquity of saddle points surrounded

by high error plateaux [Dauphin et al., 2014; Jin et al., 2021]. These numerous saddle

points can significantly slow down gradient-based algorithms and give the illusion of the

existence of local minima. It was demonstrated in [Jin et al., 2018] via a variant of

Nesterov’s Accelerated Gradient algorithm that momentum techniques can escape saddle

points faster than standard gradient methods and can thereby accelerate convergence in the

nonconvex setting as well. This suggests that the variational framework for accelerated

optimization and our Adaptive approach to obtain symplectic optimization algorithms may

also be promising with regards to nonconvex optimization.

Conclusion. We used our adaptive framework together with the variational approach to

accelerated optimization presented in [Wibisono et al., 2016] to design efficient explicit

Hamiltonian integrators for symplectic accelerated optimization. We observed that a

careful use of adaptivity and symplecticity can result in better algorithms: time-adaptive

Hamiltonian variational discretizations, which are automatically symplectic, with adaptive

time-steps informed by the time-rescaling of the Bregman family of dynamics yielded the

most robust and computationally efficient optimization algorithms, outperforming fixed-

timestep symplectic discretizations, adaptive-timestep non-symplectic discretizations, and

Nesterov’s accelerated gradient algorithm which is neither time-adaptive nor symplectic.

We will discuss more practical considerations that can be implemented to improve

the performance of our optimization algorithms in Chapter 5.
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3.4 Symplectic Accelerated Optimization

via Lagrangian Integrators

Time-Adaptive Lagrangian Taylor Variational Integrator

We now construct a time-adaptive Lagrangian Taylor variational integrator (LTVI)

for the p-Bregman Lagrangian,

Lp (q, q′,q) =
qp+1

2p
⟨q′, q′⟩ −Cpq2p−1f(q), (3.54)

using the strategy outlined in Section 2.4.2 together with the two sets of discrete Euler–

Lagrange equations derived in Section 2.7.2.

Looking at the form of the continuous p-Bregman Euler–Lagrange equations,

q̈ + p + 1

q
q̇ +Cp2qp−2∇f(q) = 0, (3.55)

we can note that ∇f appears in the expression for q̈. Now, the construction of a Lagrangian

Taylor variational integrator as presented in Section 2.4.2 requires ρ-order and (ρ+1)-order

Taylor approximations of q. This means that if we take ρ ≥ 1, then ∇f and higher-order

derivatives of f will appear in the resulting discrete Lagrangian Ld, and as a consequence,

the discrete Euler–Lagrange equations,

p0 = −D1Ld(q0, q1), p1 =D2Ld(q0, q1), (3.56)

will yield an integrator which is not gradient-based. Keeping in mind the machine learning

applications where data sets are very large, we will restrict ourselves to explicit first-order

optimization algorithms, and therefore the highest value of ρ that we can choose to obtain

a gradient-based algorithm is ρ = 0. Now, with ρ = 0, the choice of quadrature rule does

not matter, so we can take the rectangular quadrature rule about the initial point (i.e.,

c1 = 0 and b1 = 1).
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We first approximate ˙̄q(0) = v̄0 by the solution ˜̄v0 of the problem

q̄1 = πQ ○Ψ
(1)
h (q̄0, ˜̄v0) = q̄0 + h˜̄v0, (3.57)

that is ˜̄v0 = q̄1−q̄0
h . Then, applying the rectangular quadrature rule about the initial point

gives the associated discrete Lagrangian,

Ld(q̄0, q̄1) = hLp (q0,
ṽ0

g(q0)
,q0) = qp+1

0

2p(g(q0))2
h⟨ṽ0, ṽ0⟩ −Chpq2p−1

0 f(q0). (3.58)

A variational integrator can then be defined using one of the two sets of discrete

extended Euler–Lagrange equations derived in Section 2.7.2. In practice, we are not

interested in the evolution of the conjugate momentum r, and since it will not appear

in the updates for the other variables, the two sets of discrete extended Euler–Lagrange

equations derived in Section 2.7.2 both reduce to the same updates,

rk = −D1Ld(qk,qk, qk+1,qk+1),

rk+1 =
g(qk)
g(qk+1)

D3Ld(qk,qk, qk+1,qk+1),

qk+1 = qk + hg(qk).

(3.59)

For the adaptive approach, substituting the monitor function

g(q) = p
p̊
q1− p̊

p (3.60)

and the discrete Lagrangian

Ld(qk,qk, qk+1,qk+1) =
p̊2

2hp3
q
p−1+2p̊/p
k ⟨qk+1 − qk, qk+1 − qk⟩ −Chpq2p−1

0 f(qk), (3.61)

yields the Adaptive LTVI algorithm,

qk+1 = qk + h
p

p̊
q

1−p̊/p
k ,

qk+1 = qk +
hp3

p̊2q
p−1+2p̊/p
k

rk −
Ch2p4

p̊2
q
p−2p̊/p
k ∇f(qk),

rk+1 =
p̊2q

p+p̊/p
k

hp3q
1−p̊/p
k+1

(qk+1 − qk).

(3.62)
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In the direct approach, p̊ = p so g(q) = 1 and we obtain the Direct LTVI algorithm,

qk+1 = qk + h,

qk+1 = qk +
hp

qp+1
k

rk −Ch2p2qp−2
k ∇f(qk),

rk+1 =
qp+1
k

hp
(qk+1 − qk).

(3.63)

An Analogous Hamiltonian Taylor Variational Integrator (HTVI)

In [Duruisseaux et al., 2021] and in Section 3.3.4, a Type II Hamiltonian Taylor

Variational Integrator (HTVI) was derived following the strategy from Section 2.4.2 with

ρ = 0 for the adaptive approach p→ p̊-Bregman Hamiltonian,

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
rq1−p̊/p. (3.64)

This adaptive HTVI is the most natural Hamiltonian analogue of the LTVI described

earlier in this section, and its updates are given by

qk+1 = qk + h
p

p̊
q

1−p̊/p
k ,

rk+1 = rk −
p2

p̊
Chq

2p−p̊/p
k ∇f(qk),

qk+1 = qk +
p2

p̊
hq

−p−p̊/p
k rk+1.

(3.65)

When p̊ = p, it reduces to the direct HTVI,

qk+1 = qk + h,

rk+1 = rk − hCpq2p−1
k ∇f(qk),

qk+1 = qk + hpq−p−1
k rk+1.

(3.66)
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Numerical Results

Numerical experiments using the numerical methods presented in the previous

section have been conducted to minimize the convex quartic function,

f(x) = [(x − 1)⊺Σ(x − 1)]2
, (3.67)

where x ∈ Rd and Σij = 0.9∣i−j∣. This function achieves its minimum value 0 at x∗ = 1.

As was observed in [Duruisseaux et al., 2021] and in Section 3.3.5 for the HTVI

algorithm, the numerical experiments showed that a carefully tuned adaptive approach

algorithm enjoyed a significantly better rate of convergence and required a much smaller

number of steps to achieve convergence than the direct approach, as can be seen in

Figure 3.6 for the LTVI methods. Although the adaptive approach requires a smaller

fictive time-step h than the direct approach, the physical time-steps resulting from t = τ p/p̊

in the adaptive approach grow rapidly to values larger than the physical time-step of the

direct approach. The results of Figure 3.6 also show that the adaptive and direct LTVI

methods become more and more efficient as p is increased, which was also the case for the

HTVI algorithm in [Duruisseaux et al., 2021] and Section 3.3.5.
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Figure 3.6: Comparison of the direct and adaptive approaches for the LTVI algorithm,

when applied to the quartic function (3.67).
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The Lagrangian and Hamiltonian Taylor variational integrators presented in this

section perform empirically almost exactly in the same way for the same parameters

and time-step, as can be seen for instance in Figure 3.7. As a result, the computational

analysis carried in [Duruisseaux et al., 2021] and in Section 3.3.5 for the HTVI algorithm

extends to the LTVI algorithm. In particular, this means that the LTVI algorithm

is much more efficient than non-adaptive non-symplectic and adaptive non-symplectic

integrators for the Bregman dynamics. It also means that the adaptive LTVI method can

be a competitive first-order explicit algorithm since it can outperform certain popular

optimization algorithms such as Nesterov’s Accelerated Gradient [Nesterov, 1983], Trust

Region Steepest Descent, ADAM [Kingma and Ba, 2014], AdaGrad [Duchi et al., 2011],

and RMSprop [Tieleman and Hinton, 2012], for certain choices of objective functions.
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Figure 3.7: Comparison of the HTVI and LTVI algorithms with the same parameters.

Conclusion. Overall, we observed empirically that our time-adaptive Lagrangian

variational integrators performed almost exactly in the same way as the time-adaptive

Hamiltonian variational integrators coming from the Poincaré framework, whenever they

are used with the same parameters and time-step. While time-adaptivity arises more

naturally on the Hamiltonian side, our time-adaptive Lagrangian approach will prove very

useful in Chapter 4 when we consider accelerated optimization on more general spaces

such as Riemannian manifolds and Lie groups and will not have to face the difficulties

experienced on the Hamiltonian side.
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â Chapter 3 contains original material from

¬ “Adaptive Hamiltonian Variational Integrators and Applications to Symplectic

Accelerated Optimization” by V. Duruisseaux, J. Schmitt, and M. Leok. SIAM

Journal on Scientific Computing, Vol.43, No.4, A2949-A2980, 2021

 “Time-adaptive Lagrangian Variational Integrators for Accelerated Optimiza-

tion on Manifolds” by V. Duruisseaux and M. Leok. Journal of Geometric

Mechanics, Vol.15, Issue 1, pages 224-255, 2023.

The dissertation author was the primary investigator and author of these papers.
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4 Accelerated Optimization via

Geometric Numerical Integrators

on Riemannian Manifolds

4.1 Introduction and Motivation

4.1.1 Optimization on Riemannian Manifolds

Riemannian optimization provides powerful alternatives to more general constrained

optimization methods. We refer the reader to [Absil et al., 2008; Boumal, 2020] for

a thorough introduction to optimization on manifolds. By exploiting the symmetries

and special structure of the cost function, one can sometimes reformulate an ill-defined

optimization problem on Rn into a nicer optimization problem on Riemannian manifolds,

which then allows the design of optimization algorithms with better numerical properties.

A simple example is the Rayleigh quotient problem: eigenvectors corresponding to

the largest eigenvalue of a symmetric n × n matrix A can be obtained as the solutions of

the maximization problem on Rn of the Rayleigh quotient v⊺Av
v⊺v . These maximizers are

however not isolated and as a consequence, important convergence results for optimization

methods do not apply and many standard optimization algorithms fail. Restricting the

Rayleigh quotient to the unit sphere Sn−1 guarantees that the minimizers are isolated, and

allows to design Riemannian optimization algorithms on Sn−1 with convergence guarantees.

It is thus natural to ask whether the accelerated optimization framework presented

in Chapter 3 can be extended to the Riemannian manifold setting.
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4.1.2 Optimization Problems on Riemannian Manifolds

We will consider the following optimization problems:

Problem 4.1 (Distance Minimization on H2). Consider the problem presented in [Al-

imisis et al., 2020b] of minimizing the (strongly convex) distance function f(x) = 1
2d(x, q)2

for a given point q, on a subset of chosen finite diameter of the hyperbolic plane H2, which

is a manifold with constant negative curvature K = −1.

Problem 4.2 (Rayleigh Quotient Optimization on Sn−1). Eigenvectors correspond-

ing to the largest eigenvalue of a symmetric n×n matrix A maximize the Rayleigh quotient

v⊺Av
v⊺v over Rn. Thus, a unit eigenvector v∗ corresponding to the largest eigenvalue of the

matrix A is a minimizer of the function f(v) = −v⊺Av, over the unit sphere Q = Sn−1 (see

Example 1.1). Solving the Rayleigh quotient optimization problem efficiently is challenging

when the given symmetric matrix A is ill-conditioned and high-dimensional. Note that

an efficient algorithm that solves the above minimization problem can also be used to

find eigenvectors corresponding to the smallest eigenvalue of A by using the fact that the

eigenvalues of A are the negative of the eigenvalues of −A.

Problem 4.3 (Generalized Eigenvector Problem on St(m,n)). A generalized eigen-

vector problem consists of finding the m smallest eigenvalues of a n × n symmetric matrix

A and corresponding eigenvectors. This problem can be formulated as a Riemannian

optimization problem on the Stiefel manifold St(m,n) (see Example 1.2) via the Brockett

cost function

f ∶ St(m,n)→ R, X ↦ f(X) = Trace(X⊺AXN), (4.1)

where N = diag(µ1, . . . , µm) for arbitrary 0 ≤ µ1 ≤ . . . ≤ µm. The columns of a global

minimizer of f are eigenvectors corresponding to the m smallest eigenvalues of A (see [Absil

et al., 2008]). If we define f̄ ∶ Rn×m → R via X ↦ f̄(X) = Trace(X⊺AXN), then f is the

restriction of f̄ to St(m,n) so

gradf(X) = PXgradf̄(X), where gradf̄(X) = 2AXN. (4.2)
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Problem 4.4 (Unbalanced Orthogonal Procrustes Problem on St(m,n)). The

unbalanced orthogonal Procrustes problem consists of minimizing the function

f ∶ St(m,n)→ R, X ↦ f(X) = ∥AX −B∥2
F , (4.3)

on the Stiefel manifold St(m,n) (see Example 1.2), for given matrices A ∈ Rl×n and

B ∈ Rl×m with l ≥ n and l >m, where ∥ ⋅ ∥F is the Frobenius norm

∥X∥2
F = Trace(X⊺X) = ∑

ij

X2
ij. (4.4)

If we define f̄ ∶ Rn×m → R via X ↦ f̄(X) = ∥AX −B∥2
F , then f is the restriction of f̄ to

St(m,n) so

gradf(X) = PXgradf̄(X), where gradf̄(X) = 2A⊺(AX −B). (4.5)

Note that the special case where n = m is the balanced orthogonal Procrustes problem.

In this case, St(m,n) = O(n) so ∥AX∥2
F = ∥A∥2

F and the problem of minimizing the

function f(X) = ∥AX −B∥2
F is replaced by the problem of maximizing Trace(X⊺A⊺B) over

X ∈ O(n). A solution is then given by X∗ = UV ⊺ where B⊺A = UΣV ⊺ is the Singular

Value Decomposition of B⊺A with square orthogonal matrices U and V , and the solution is

unique provided B⊺A is nonsingular [Eldén and Park, 1999; Golub and Van Loan, 2013].

Problem 4.5 (Wahba’s problem on SO(3)). Remember that can think of Lie groups

as Riemannian manifolds (see Example 1.3), and this applies in particular to the Special

Orthogonal group SO(3) (see Example 1.6). Wahba’s problem [Wahba, 1965] on SO(3)
concerns the least-squares estimation of attitude. More precisely, we wish to minimize the

objective function,

f(R) = 1

2
∥A −R∥2

F = 1

2
(∥A∥2

F + 3) −Trace(A⊺R), (4.6)

over R ∈ SO(3), where ∥ ⋅ ∥F denotes the Frobenius norm. Its left-trivialized gradient is

given by

∇Lf(R) = (A⊺R −R⊺A)∨ . (4.7)

The optimal attitude is explicitly given by

R∗ = Udiag [1,1,det(UV )]V ⊺, (4.8)

where A = USV ⊺ is the singular value decomposition of A with U,V ∈ O(3) and S diagonal.
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4.1.3 Outline of the Chapter

In recent years, there has been some effort to derive algorithms for accelerated

optimization on Riemannian manifolds setting [Zhang and Sra, 2016; Liu et al., 2017; Zhang

and Sra, 2018; Alimisis et al., 2020b,a; Ahn and Sra, 2020]. In particular, a second-order

ODE was proposed in [Alimisis et al., 2020b] as the continuous-time limit of a Riemannian

accelerated algorithm, and it was shown that the objective function f(x(t)) converges to

its optimal value at a rate of O(1/t2) along solutions of this ODE, thereby generalizing

the Euclidean result obtained in [Su et al., 2016] to the Riemannian manifold setting.

We will show in Section 4.2 that in continuous time, the convergence rate of f(x(t))
to its optimal value can be accelerated to an arbitrary convergence rate on Riemannian

manifolds by considering a family of time-dependent Riemannian Bregman Lagrangian

and Hamiltonian systems, thereby generalizing the results of [Wibisono et al., 2016] to the

Riemannian setting. This also provides a variational framework for Riemannian accelerated

optimization, generalizing the vector space variational framework introduced in [Wibisono

et al., 2016]. In particular, we will establish results for objective functions on Riemannian

manifolds that are geodesically convex, weakly quasi-convex, and strongly convex. We will

then illustrate the derived theoretical convergence rates in Section 4.3 by integrating the

Bregman Euler–Lagrange equations using a simple numerical scheme to solve eigenvalue

and distance minimization problems on Riemannian manifolds.

We will also show that the family of Bregman dynamics on Riemannian manifolds

is closed under time rescaling in Section 4.4, and we will draw inspiration from the

Adaptive approach from Section 3.3 to take advantage of this invariance property via a

Poincaré transformation that will allow for the integration of higher-order dynamics with

the computational efficiency of integrating lower-order dynamics. This lays the foundation

for constructing similarly efficient optimization algorithms on Riemannian manifolds. The

experience with the numerical discretization of variational accelerated optimization flows

on vector spaces suggests that the combination of time-adaptivity and symplecticity is

important for the efficient, robust, and stable discretization of these variational flows

describing accelerated optimization. One expects that a geometric numerical integrator

that is time-adaptive, symplectic, and Riemannian manifold preserving will yield a class

of similarly promising optimization algorithms on manifolds.

118



Finally, this time-adaptive variational framework for accelerated optimization

will be exploited in Sections 4.5 and 4.6. In the Hamiltonian setting, we will take

advantage of the Whitney and Nash Embedding Theorems [Whitney, 1944a,b; Nash, 1956]

to reduce Riemannian manifolds to submanifolds of Euclidean spaces, and exploit the

structure of the embedding Euclidean spaces. More precisely, we will construct discrete

constrained variational integrators by incorporating the manifold constraint directly into

variational principles in Section 4.5.2, and design projection-based variational integrators

in Section 4.5.3. In the Lagrangian setting, we will design integrators which evolve

intrinsically on the Riemannian manifold in Section 4.6 by leveraging the framework for

time-adaptive Lagrangian integrators from Section 2.7.2.

4.2 A Variational Formulation of Accelerated

Optimization on Riemannian Manifolds

We now extend the normed vector space results of Section 3.2 to the Riemannian

manifold setting. We will make the following assumptions on the function f ∶ Q → R to be

minimized and on the ambient Riemannian manifold Q, which are standard assumptions

in Riemannian optimization [Zhang and Sra, 2016, 2018; Alimisis et al., 2020b,a]:

Assumption 1. Solutions of the differential equations derived in this chapter remain

inside a geodesically uniquely convex subset A of a complete Riemannian manifold Q (that

is, any two points in Q can be connected by a geodesic), such that diam(A) is bounded

above by some constant D, that the sectional curvature is bounded from below by Kmin

on A, and that Expq is well-defined for any q ∈ A, and its inverse Logq is well-defined and

differentiable on A for any q ∈ A. Furthermore, f is bounded below, geodesically L-smooth

and all its minima are inside A.

Given a Riemannian manifold Q with sectional curvature bounded below by Kmin,

and an upper bound D for the diameter of the considered domain, we define

ζ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
−KminD coth (

√
−KminD) if Kmin < 0

1 if Kmin ≥ 0
. (4.9)
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4.2.1 Convex and Weakly Quasi-Convex Cases

Suppose that f ∶ Q → R is a given geodesically λ-weakly quasi-convex function, and

that Assumption 1 holds true. Since a geodesically convex function is λ-weakly quasi-

convex with λ = 1, the following treatment also applies to the case where f is geodesically

convex. We define a family of Bregman Lagrangians Lα,β,γ ∶ TQ ×R→ R parametrized

by smooth functions of time α,β, γ by

Lα,β,γ(X,V, t) = 1

2
eλ

−1ζγt−αt⟨V,V ⟩ − eαt+βt+λ−1ζγtf(X), (4.10)

and the corresponding Bregman Hamiltonians Hα,β,γ ∶ T ∗Q ×R→ R are given by

Hα,β,γ(X,R, t) = 1

2
eαt−λ

−1ζγt⟪R,R⟫ + eαt+βt+λ−1ζγtf(X), (4.11)

where X ∈ Q denotes position on the manifold Q, V is the velocity vector field, R is the

momentum covector field, t is the time variable, and ζ is given by equation (4.9). This

family of functions is a generalization of the Bregman Lagrangians and Hamiltonians

introduced in [Wibisono et al., 2016] for the convex continuously differentiable function

h(x) = 1
2⟨x,x⟩. Throughout this dissertation, we will assume that the parameter functions

α,β, γ satisfy the ideal scaling conditions (3.7).

Theorem 4.1 ([Duruisseaux and Leok, 2022d]). The Bregman Euler–Lagrange equation

corresponding to the Bregman Lagrangian Lα,β,γ is given by

∇ẊẊ + (λ−1ζeαt − α̇t) Ẋ + e2αt+βtgradf(X) = 0. (4.12)

Proof. See Appendix A.4.1.

Theorem 4.2 ([Duruisseaux and Leok, 2022d]). Suppose that f ∶ Q → R is a geodesically

λ-weakly quasi-convex function, and that Assumption 1 is satisfied. Then, any solution

X(t) to the Bregman Euler–Lagrange equation (4.12) converges to a minimizer x∗ of f

with rate

f(X(t)) − f(x∗) ≤
2λ2eβ0 (f(x0) − f(x∗)) + ζ∥Logx0

(x∗)∥2

2λ2eβt
= O(e−βt). (4.13)

Proof. See Appendix A.5.
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A p > 0 parametrized subfamily of Bregman Lagrangians and Hamiltonians, that is

of particular practical interest, is given by the choice of parameter functions

αt = log p − log t, βt = p log t + logC, γt = p log t, (4.14)

where C > 0 is a constant. This yields the p-Bregman Lagrangians and Hamiltonians

given by

Lp(X,V, t) = tλ
−1ζp+1

2p
⟨V,V ⟩ −Cpt(λ−1ζ+1)p−1f(X), (4.15)

Hp(X,R, t) = p

2tλ−1ζp+1
⟪R,R⟫ +Cpt(λ−1ζ+1)p−1f(X), (4.16)

and the corresponding p-Bregman Euler–Lagrange equations are given by

∇ẊẊ + ζp + λ
λt

Ẋ +Cp2tp−2gradf(X) = 0. (4.17)

Theorem 4.3 ([Duruisseaux and Leok, 2022d]). Suppose that f ∶ Q → R is a geodesically

weakly quasi-convex function, and that Assumption 1 is satisfied. Then, the p-Bregman

Euler–Lagrange equation (4.17) has a solution, and any solution X(t) converges to a

minimizer x∗ of f with rate

f(X(t)) − f(x∗) ≤ O(1/tp) . (4.18)

Proof. See Appendix A.6.1 for the existence of a solution to the p-Bregman Euler–Lagrange

equations. The O(1/tp) convergence rate follows directly from Theorem 4.2.

Note that this theorem reduces to Theorem 5 from [Alimisis et al., 2020b] when

p = 2 and C = 1/4.

Remark 4.1. To construct this variational framework for accelerated optimization, we

first constructed candidate p-equations with the desired O(1/tp) convergence rates, and then

designed Lagrangians whose p-Bregman Euler–Lagrange equations matched the candidate

p-equations, by inspection. We then used a similar approach to extend these results to the

general α,β, γ case presented here.
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Remark 4.2. In our generalization of the Bregman Lagrangian and Hamiltonian to

Riemannian manifolds, we have specialized to the case where h(x) = 1
2∥x∥2, because its

Hessian ∇2h(x) is the identity matrix, which significantly simplifies the Euler–Lagrange

equations and the analysis. In addition, it avoids the complication of making intrinsic sense

of terms like X + e−αV in the vector space Bregman Lagrangians and Hamiltonians, which

requires the use of Riemannian geodesics and exponentials since X ∈ Q while V ∈ TXQ.

4.2.2 Strongly Convex Case

Suppose that f ∶ Q → R is a geodesically µ-strongly convex function on Q, and that

Assumption 1 is satisfied. With ζ given by equation (4.9), let

η = ( 1√
ζ
+
√
ζ)√

µ. (4.19)

We define the corresponding Lagrangian LSC ∶ TQ ×R→ R by

LSC(X,V, t) = e
ηt

2
⟨V,V ⟩ − eηtf(X), (4.20)

and the corresponding Hamiltonian HSC ∶ T ∗Q ×R→ R is given by

HSC(X,R, t) = e
−ηt

2
⟪R,R⟫ + eηtf(X). (4.21)

Theorem 4.4 ([Duruisseaux and Leok, 2022d]). The Bregman Euler–Lagrange equation

corresponding to the Lagrangian LSC is given by

∇ẊẊ + ηẊ + gradf(X) = 0. (4.22)

Proof. The derivation of the Euler–Lagrange equation is presented in Appendix A.4.2.

Theorem 4.5 ([Alimisis et al., 2020b; Duruisseaux and Leok, 2022d]). Suppose f ∶ Q → R
is a geodesically µ-strongly convex function, and suppose that Assumption 1 is satisfied.

Then, the Euler–Lagrange equation (4.22) has a solution, and any solution X(t) converges

to a minimizer x∗ of f with rate

f(X(t)) − f(x∗) ≤
µ∥Logx0

(x∗)∥2 + 2 (f(x0) − f(x∗))

2e
√
µ
ζ
t

. (4.23)

Proof. See Appendix A.6.2 for the existence of a solution to the Bregman Euler–Lagrange

equation (4.22), and Theorem 7 from [Alimisis et al., 2020b] for the convergence rate.
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4.3 Numerical Experiments

The p-Bregman Euler–Lagrange equation (4.17) can be rewritten as the first-order

system of differential equations

Ẋ = V, ∇V V = −ζp + λ
λt

V −Cp2tp−2gradf(X), (4.24)

for the geodesically λ-weakly quasi-convex case, and the Euler–Lagrange equation (4.22)

corresponding to the Lagrangian LSC can be rewritten as the first-order system

Ẋ = V, ∇V V = −( 1√
ζ
+
√
ζ)√

µV − gradf(X), (4.25)

for the µ-strongly convex case.

As in [Alimisis et al., 2020b], we can adapt a semi-implicit Euler scheme (explicit

Euler update for the velocity V followed by an update for the position X based on the

updated value of V ) to the Riemannian setting to obtain Algorithm 2:

Algorithm 2: Semi-Implicit Euler Integration of the p-Bregman

Euler–Lagrange Equations

Input: A function f ∶ Q → R. Constants C,h, p > 0. X0 ∈ Q. V0 ∈ TX0Q.

1 while convergence criterion is not met do

2 if f is µ-geodesically strongly convex then

3 bk ← 1 − h ( 1√
ζ
+
√
ζ)√

µ, ck ← 1

4 else if f is λ-weakly quasi-convex then

5 bk ← 1 − ζp+λ
λk , ck ← Cp2(kh)p−2

6 Version I: ak ← bkVk − hckgradf(Xk)
7 Version II: ak ← bkVk − hckgradf (ExpXk(hbkVk))

8 Xk+1 ← ExpXk(hak), Vk+1 ← ΓXk+1

Xk
ak
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Version I of Algorithm 2 corresponds to the usual update for the Semi-Implicit

Euler scheme, while Version II is inspired by the reformulation of Nesterov’s method

from [Sutskever et al., 2013] which uses a corrected gradient ∇f(Xk + hbkVk) instead of

the traditional gradient ∇f(Xk). Note that the Semi-Implicit Riemannian Nesterov’s

Accelerated Gradient algorithm (SIRNAG) presented in [Alimisis et al., 2020b] corresponds

to the special case where p = 2 and C = 1/4.

Numerical experiments carried out in [Alimisis et al., 2020b] showed that SIRNAG

(the convex p = 2 Algorithm 2) and the strongly convex Algorithm 2 were of comparable

efficiency or more efficient than the standard Riemannian Gradient Descent Algorithm 4,

depending on the properties of the objective function and on the geometry of the Rieman-

nian manifold.

We have conducted further numerical experiments to investigate how the simple

discretization of higher-order p = 6 Bregman dynamics compared to its p = 2 counterpart,

and to see whether it matches the O(k−p) convergence rate. The numerical results obtained

for the Distance Minimization Problem 4.1 and Rayleigh Minimization Problem 4.2 are

illustrated in Figure 4.1, where all the algorithms were implemented with the same fixed

time-step. We can see that the p = 6 algorithms outperform their p = 2 counterparts, and

that the efficiency improvement is very important. Furthermore, both versions of the p = 6

Algorithm 2 exhibit a faster convergence rate than O(k−6). While Version I of Algorithm 2

exhibits polynomial rates of O(k−10.8) and O(k−9) on the objective functions considered,

Version II of Algorithm 2 exhibits a much faster exponential rate of convergence on both

examples.

Figure 4.2 displays the evolution of the rates of convergence of Version 1 of the

convex Algorithm 2 as the value of the parameter p is increased from p = 4 to p = 16 for

the Distance Minimization Problem 4.1 and Rayleigh Minimization Problem 4.2. We can

clearly see an improvement in the convergence rates as the value of p increases, and for

each value of p the algorithm achieves a faster rate of convergence than O(k−p).
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Figure 4.1: Comparison of the rates of convergence of the convex Algorithms 2 and the

µ-strongly convex (SC) Algorithm 2 with different values of p and with the two versions

of the update corresponding to the traditional and corrected gradients. Note that all the

algorithms were implemented with the same time-step h.

Note however that an increase in the value of p in Algorithm 2, which corresponds

to an increase in the order of the Bregman dynamics integrated, requires a decrease

in the time-step h, in agreement with intuitive expectations. This time-step reduction

requirement is especially important due to the polynomially growing h(kh)p−2 coefficient
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Figure 4.2: Evolution of the rates of convergence of Version 1 of the convex Algorithm 2

with different values of p. All the algorithms are implemented with the same time-step h.

multiplying the gradient of f in the updates of the algorithm. Such a decrease in the

time-step does not really affect the convergence rate, but the transition between the

initialization and convergence phases takes longer. As a consequence, by using larger

time-steps, the algorithm corresponding to a smaller value of p might achieve a desired

convergence criterion with fewer iterations than the algorithm corresponding to a larger

value of p, despite having a slower convergence rate. Similar issues arise when discretizing

the continuous Euler–Lagrange flow associated with accelerated optimization on vector

spaces, and in that situation, it was observed that time-adaptive symplectic integrators
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based on Hamiltonian variational integrators resulted in dramatically improved robustness

and stability. As such, it will be natural to explore generalizations of time-adaptive

symplectic integrators based on Hamiltonian variational integrators applied to Poincaré

transformed Hamiltonians, that respect the Riemannian manifold structure in order to

yield more robust and stable numerical discretizations of the flows presented in Section 4.2

in order to construct accelerated optimization algorithms on Riemannian manifolds. We

will lay the foundation for such time-adaptive symplectic integrators in Section 4.4.

Finally, Figure 4.3 shows that the semi-implicit discretization of the Bregman

Euler–Lagrange equation empirically converges to the true continuous solution, as the

time-step h goes to 0. Note however that although all the discretizations follow the ODE

trajectory closely, smaller time-steps result in a larger number of iterations, especially to

transition from the initialization plateau to the convergence phase (around time t = 4 in

the example presented in Figure 4.3).

A theoretical shadowing result bounding the error between the discrete-time RGD

and its continuous-time limiting ODE was obtained in [Alimisis et al., 2020b] thanks

to the uniform contraction property of the dynamical system associated with RGD. It

would be desirable to obtain similar shadowing results for discretizations of the class of

ODEs considered in this section, perhaps drawing inspiration from [Zhang et al., 2018].

However, such a result might be very difficult to obtain because momentum methods

lack contraction, are nondescending, and are highly oscillatory [Orvieto and Lucchi, 2019;

Alimisis et al., 2020b].

While it is hoped that the continuous analysis presented earlier in Section 4.2 will

eventually guide the convergence analysis of discrete-time algorithms, this does not appear

to be a straightforward exercise, as one would first need to reconcile the arbitrarily fast

O(1/tp) rate of convergence of the continuous-time trajectories with Nesterov’s barrier

theorem of O(1/k2) for discrete-time algorithms. Even on normed vector spaces, obtaining

theoretical guarantees was a challenging task, achieved in [Zhang et al., 2018] in the

special case where p > 2 under additional assumptions on the objective function and on its
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derivatives. Generalizing these results to the general family of α,β, γ Bregman Lagrangians

on Riemannian manifolds would be much more challenging since the notions of derivatives

become more complicated and all the usual vector space operations and objects have to

be replaced by their Riemannian generalization which involve geodesics, parallel transport,

Riemannian exponentials and Riemannian logarithms.
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Figure 4.3: Discretization errors (top graph) and convergence rates (bottom graphs) of

Version I of the p = 5 convex Algorithm 2 with different values of h for the distance

minimization problem. The true solution of the differential equation was approximated by

the same algorithm with a very small time-step h = 10−5.
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4.4 Time-Invariance Property of the

Riemannian Bregman Family

Let f ∶ Q → R be a given λ-weakly quasi-convex objective function, and suppose that

Assumption 1 is satisfied. We now extend the time-invariance Theorem 3.1 from [Wibisono

et al., 2016] to Riemannian manifolds.

Theorem 4.6 ([Duruisseaux and Leok, 2022d]). Suppose that Assumption 1 is satisfied and

that X(t) satisfies the Riemannian Bregman Euler–Lagrange equation (4.12) corresponding

to Lα,β,γ. Then the reparametrized curve X(τ(t)) satisfies the Bregman Euler–Lagrange

equation (4.12) corresponding to the modified Riemannian Bregman Lagrangian Lα̃,β̃,γ̃

where α̃t = ατ(t) + log τ̇(t), β̃t = βτ(t), and γ̃t = γτ(t). Furthermore α,β, γ satisfy the ideal

scaling conditions (3.7) if and only if α̃, β̃, γ̃ do.

Proof. See Appendix A.7.

As a special case, we have the following theorem:

Theorem 4.7 ([Duruisseaux and Leok, 2022d]). Suppose that f ∶ Q → R is a geodesically

λ-weakly quasi-convex function, and that Assumption 1 is satisfied. Suppose X(t) satisfies

the p-Bregman Euler–Lagrange equation (4.17). Then, the reparametrized curve X(tp̊/p)
satisfies the p̊-Bregman Euler–Lagrange equation (4.17).

Thus, the entire subfamily of Bregman trajectories indexed by the parameter p

can be obtained by speeding up or slowing down along the Bregman curve in spacetime

corresponding to any specific value of p. Inspired by the computational efficiency of the

time-adaptive approaches for optimization presented in Sections 3.3 and 3.4 and first

introduced in [Duruisseaux et al., 2021; Duruisseaux and Leok, 2023a], it is natural to

attempt to exploit the time-rescaling property of the Bregman dynamics together with

a carefully chosen time transformation to transform the p-Bregman dynamics into an

autonomous version of the p̊-Bregman dynamics. This would allow us to integrate the

higher-order p-Bregman dynamics while benefiting from the computational efficiency of

integrating the lower-order p̊-Bregman dynamics.
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4.5 Riemannian Accelerated Optimization via

Time-Adaptive Hamiltonian Integrators

4.5.1 Introduction

As in the normed space setting, we can exploit the time-rescaling property of the

Bregman dynamics together with a carefully chosen Poincaré transformation to transform

the Riemannian p-Bregman Hamiltonian into an autonomous version of the p̊-Bregman

Hamiltonian in extended phase-space, where p̊ < p. Explicitly, the time transformation

τ(t) = tp̊/p is associated to the monitor function

dt

dτ
= gp→p̊(t) =

p

p̊
t1−p̊/p, (4.26)

and generates the Poincaré transformed Hamiltonian

H̄p→p̊(X̄, R̄) = gp→p̊(X) (Hp (X̄,R) +R) , (4.27)

in the extended space Q̄ = Q ×R where

X̄ =
⎡⎢⎢⎢⎢⎣

X

X

⎤⎥⎥⎥⎥⎦
and R̄ =

⎡⎢⎢⎢⎢⎣

R

R

⎤⎥⎥⎥⎥⎦
. (4.28)

We will make the conventional choice X = t, with conjugate momentum R, and

R(0) = −Hp(X(0),R(0),0) = −H0, (4.29)

which is chosen so that H̄p→p̊(X̄, R̄) = 0 along all integral curves through (X̄(0), R̄(0)).
The time t shall be referred to as the physical time, while τ will be referred to as the

fictive time. The corresponding Hamiltonian equations of motion in the extended phase

space are then given by

˙̄X = ∂H̄p→p̊

∂R̄
, ˙̄R = −∂H̄p→p̊

∂X̄
. (4.30)

Now, suppose (X̄(τ), R̄(τ)) are solutions to these extended equations of motion, and let

(x(t), r(t)) solve Hamilton’s equations for the original Hamiltonian Hp. Then

H̄p→p̊(X̄(τ), R̄(τ)) = H̄p→p̊(X̄(0), R̄(0)) = 0. (4.31)
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Thus, the components (X(τ),R(τ)) in the original phase space of (X̄(τ), R̄(τ)) satisfy

Hp(X(τ),R(τ), τ) = −R(τ), Hp(X(0),R(0),0) = −R(0) =Hp(x(0), r(0),0). (4.32)

Therefore, (X(τ),R(τ)) and (x(t), r(t)) both satisfy Hamilton’s equations for the original

Hamiltonian Hp with the same initial values, so they must be the same.

As a consequence, instead of integrating the p-Bregman Hamiltonian system (4.16),

we can focus on the Poincaré transformed Hamiltonian H̄p→p̊ in extended phase-space

given by equation (4.27), with Hp and gp→p̊ given by equations (4.16) and (4.26), that is

H̄p→p̊(X̄, R̄) = p2

2p̊Xλ−1ζp+p̊/p
⟪R,R⟫ + Cp

2

p̊
X(λ−1ζ+1)p−p̊/pf(X) + p

p̊
X1−p̊/pR. (4.33)

The resulting integrator has constant time-step in fictive time τ but variable time-

step in physical time t. Similarly, we also have the Direct approach Riemannian p-Bregman

Hamiltonian in the special case where p = p̊:

H̄p(X̄, R̄) = p

2Xλ−1ζp+1
⟪R,R⟫ +CpX(λ−1ζ+1)p−1f(X) +R. (4.34)

Remark 4.3. In the vector space setting, these Riemannian Bregman Hamiltonians reduce

to the Adaptive and Direct approach Bregman Hamiltonians from Section 3.3 first derived

in [Duruisseaux et al., 2021] for convex functions:

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
q1−p̊/pr. (4.35)

H̄p(q̄, r̄) =
p

2qp+1
⟨r, r⟩ +Cpq2p−1f(q) + r, (4.36)

Outline. We will integrate the Riemannian Poincaré transformed Hamiltonian in two

different ways. The Whitney and Nash Embedding Theorems [Whitney, 1944a,b; Nash,

1956] imply that any Riemannian manifold can be embedded into some Euclidean space,

and both strategies considered here will exploit the structure of the embedding Euclidean

space. In Section 4.5.2, we will construct discrete constrained variational integrators by

incorporating the manifold constraint directly into variational principles, and we will

design projection-based variational integrators in Section 4.5.3.
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4.5.2 Riemannian Accelerated Optimization via

Discrete Constrained Hamiltonian Integrators

The Whitney Embedding Theorems [Whitney, 1944a,b] state that any smooth

manifold of dimension n ≥ 2 can be embedded in R2n and immersed in R2n−1, and is,

as a result, diffeomorphic to a submanifold of R2n. Furthermore, the Nash Embedding

Theorems [Nash, 1956] state that any Riemannian manifold can be globally isometrically

embedded into some Euclidean space. As a consequence of these embedding theorems, the

study of Riemannian manifolds can in principle be reduced to the study of submanifolds of

Euclidean spaces, which motivates the introduction of time-adaptive variational integrators

on Riemannian manifolds which exploit the structure of the embedding Euclidean space.

We will first consider here the case of Riemannian manifolds embedded in some

Euclidean space that can be characterized as the level set of a submersion. Our approach

consists in integrating the Direct and Adaptive Riemannian Bregman Hamiltonian systems

derived in [Duruisseaux and Leok, 2022d] and presented in Sections 4.2 and 4.4, which

evolve on the Riemannian manifold Q, via the discrete constrained variational Hamiltonian

integrators constructed as in Section 2.6.2 to enforce the numerical solution to lie on the

Riemannian manifold Q.

We will use the Direct approach and Adaptive approach r = 0 Type II Hamiltonian

Taylor variational integrators constructed in [Duruisseaux et al., 2021] and Section 3.3.4

based on the Direct and Adaptive discrete right Hamiltonians (respectively)

H+
d (q̄0, r̄1;h) = r⊺1q0 + r1q0 + h

p

2qp+1
0

r⊺1r1 + hCpq2p−1
0 f(q0) + hr1, (4.37)

H+
d (q̄0, r̄1;h) = r⊺1q0 + r1q0 + h

p2

2p̊q
p+ p̊

p

0

r⊺1r1 + hC
p2

p̊
q

2p− p̊
p

0 f(q0) + h
p

p̊
q

1− p̊
p

0 r1. (4.38)
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The resulting HTVI algorithms are presented in Algorithm 3 (the Direct approach

algorithm can be obtained by setting p̊ = p):

Algorithm 3: Riemannian Hamiltonian Taylor Variational Integrators

Input: A function f ∶ Q → R, constants C,h, p, p̊ > 0, q0, r0 ∈ R, and

(q0, r0, λ0) ∈ T ∗
q0Q ×Λ.

1 while convergence criterion is not met, solve the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = rk+1 − rk +
hCp2

p̊
q

2p− p̊
p

k ∇f(qk) + λ⊺k∇C(qk)

0 = rk+1 − rk +
pp̊ − 2p3

p̊
hCq

2p− p̊
p
−1

k f(qk) + h
p3 + pp̊

2p̊q
p+ p̊

p
+1

k

r⊺k+1rk+1 +
p̊ − p

p̊q
p̊
p

k

hrk+1

0 = qk+1 − qk −
p2

p̊
hq

−p− p̊
p

k rk+1

0 = qk+1 − qk −
p

p̊
hq

1− p̊
p

k

0 = C(qk+1)

We will compare these integrators to the Riemannian Euler–Lagrange discretization

presented in Algorithm 2 and to the following Riemannian generalization of Gradient

Descent which involves the Riemannian gradient and a retraction:

Algorithm 4: Riemannian Gradient Descent (RGD)

Input: A function f ∶ Q → R, a retraction R from TQ to Q, h > 0, and X0 ∈ Q.

1 while convergence criterion is not met do

2 Xk+1 = RXk(−h gradf(Xk))

Numerical Results

Numerical experiments were conducted for the Rayleigh quotient Minimization

Problem 4.2 on Sn−1 (see Example 1.1), and for the Generalized Eigenvalue Problem 4.3

and Procrustes Problems 4.4 on the Stiefel manifold St(m,n) (see Example 1.2).
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The results, presented in Figure 4.4, show how the Riemannian Hamiltonian Taylor

variational integrators compare to the Euler–Lagrange discretizations from [Duruisseaux

and Leok, 2022d] and the standard Riemannian gradient descent. Note that for certain

instances of the Procrustes problem with certain initial values, all the algorithms converged

to a local minimizer, and not the global minimizer, of the objective function.

We can observe from Figure 4.4 that for the same value of the time-step h, the

Adaptive Hamiltonian variational integrator clearly outperforms its Direct counterpart,

Riemannian gradient descent and the Euler–Lagrange discretizations in terms of number of

iterations required. Furthermore, unlike the Euler–Lagrange discretizations (Algorithm 2)

and the Riemannian gradient descent (Algorithm 4), the HTVI methods (Algorithm 3) do

not require the use of retractions or parallel transports.

We note that the Rayleigh minimization results indicate that the Euler–Lagrange

discretizations suffer from stability issues leading to a loss of convergence, as the poly-

nomially growing unbounded coefficient Cp2(kh)p−2 is multiplied with gradf , so for this

product to be bounded, the gradient has to decay to zero, but due to finite numerical

precision, the gradient remains bounded away from zero, thereby causing the product to

grow without bound. This issue can be resolved by adding a suitable upper bound to

the coefficient Cp2(kh)p−2 in the updates, as can be seen both for the Euler–Lagrange

discretizations and Hamiltonian variational integrators for the problems on St(m,n).

However, the algorithms generated by these constrained Hamiltonian variational

integrators are implicit, which can significantly increase the cost per iteration as the

dimension of the problem becomes very large. Further, note that the implementation

of the Hamiltonian variational integrators needs a very careful tuning of the various

parameters at play, which may be challenging. It might therefore be beneficial to consider

other options using the unconstrained explicit Hamiltonian Taylor variational integrator.

A first possibility is to incorporate the constraints within the objective function as a

penalty, although this might not constrain the solution trajectory to lie exactly on the

manifold. Another option involves projections if they can be computed efficiently and

accurately for the Riemannian manifold of interest. The latter option, originally explored

in [Duruisseaux and Leok, 2022c], will be presented in Section 4.5.3.
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Figure 4.4: Comparison of the Direct and Adaptive (AD) Type II HTVIs with the

Riemannian Gradient Descent (RGD) method and the Euler–Lagrange discretizations (EL

V1 and EL V2) from [Duruisseaux and Leok, 2022d] with p = 6 and the same time-step

h = 0.001, for the Rayleigh quotient minimization problem on the unit sphere Sn−1, and

for the generalized eigenvalue and Procrustes problems on the Stiefel manifold St(m,n).
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4.5.3 Riemannian Accelerated Optimization via

Projected Hamiltonian Integrators

We have just seen that the time-adaptive Hamiltonian approach to accelerated

optimization relying on a Poincaré transformation in the Riemannian manifold setting

introduced in [Duruisseaux and Leok, 2022d] can be exploited by incorporating holonomic

constraints into variational integrators as discussed in Section 4.5.2 to constrain the

numerical solution to the Riemannian manifold. Although these constrained integrators

were carefully justified geometrically as coming from discrete variational principles, they

were difficult to tune and implicit in nature, which can significantly increase their cost

per iteration and can make them unpractical as the dimension of the problem becomes large.

We now present new algorithms based on explicit variational integrators in the

embedding space where the manifold constraints are enforced via projections. More

explicitly, we use fact that the Bregman Hamiltonian in the embedding space restricts

to the Riemannian Bregman Hamiltonian on the Riemannian submanifold Q, and the

projection of the Bregman Hamiltonian vector field in the embedding space onto the

tangent bundle TQ of the Riemannian submanifold recovers the Hamiltonian vector field

of the Riemannian Bregman Hamiltonian. As such, we will numerically integrate the

Bregman dynamics in the embedding space and use projections to force the numerical

solution to lie on Q. If projections onto the constraint manifold Q can be computed exactly

or approximately very efficiently, we can simply project the updated position onto Q after

every iteration. Furthermore, if projections onto tangent spaces TqQ for any point q ∈ Q
are also available at a low computational cost, it might sometimes be helpful to project

the update vector onto TqQ.

Projections have been found for most Riemannian manifolds of practical interest (see

[Absil et al., 2008; Boumal, 2020]). These typically involve standard matrix factorizations

which can be efficiently computed using iterative methods, and if they are expensive to

compute, there are usually ways to accelerate the computations via approximations.
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We will now use projection-based versions of the Hamiltonian Taylor Variational

Integrators (HTVIs) constructed in [Duruisseaux et al., 2021] and presented in 3.3.4.

Given an objective function f ∶ Q → R, a projection operator PQ onto the manifold Q,

(q0, r0) ∈ T ∗
q0Q, and constants C,h, p, p̊,q0 > 0, the Direct and Adaptive HTVIs are obtained

by iterating the updates given in Algorithm 5:

Algorithm 5: Direct and Adaptive HTVIs

1 Direct HTVI

rk+1 = rk − phCq2p−1
k gradf(qk),

qk+1 = PQ (qk + phq−p−1
k rk+1) ,

qk+1 = qk + h.

2 Adaptive HTVI

rk+1 = rk −
p2

p̊
hCq

2p−p̊/p
k gradf(qk),

qk+1 = PQ (qk +
p2

p̊
hq

−p−p̊/p
k rk+1) ,

qk+1 = qk +
p

p̊
hq

1−p̊/p
k .

We will compare these integrators to the Riemannian Euler–Lagrange discretization

presented in Algorithm 2 and to the Riemannian Gradient Descent Algorithm 4.

Comparison of the Adaptive and Direct approaches

Numerical experiments were conducted for the Rayleigh quotient minimization

Problem 4.2 on the unit sphere Sn−1 with the projection based method (see Example 1.1

for more information about Sn−1). As was observed in [Duruisseaux et al., 2021] in the

vector space setting, Figure 4.5 shows that the Adaptive approach can be significantly

more efficient than the Direct approach, and that both methods enjoy faster convergence

as the value of the parameter p is increased.
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Figure 4.5: Comparison of the Direct and Adaptive (AD) projection-based HTVIs with

different values of p and the same time-step h, for the Rayleigh minimization problem 4.2.

Rayleigh minimization problem on the unit sphere Sn−1

Additional numerical experiments have been conducted for the Rayleigh quotient

minimization problem 4.2 on Sn−1, and the results are presented in Figure 4.6.
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Figure 4.6: Comparison of the Direct and Adaptive (AD) projection-based HTVIs with

the Riemannian Gradient Descent (RGD) method and the Euler–Lagrange discretizations

(EL V1 and EL V2), with p = 4 and the same time-step h.
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The Adaptive HTVI clearly outperforms the other algorithms for this problem.

Note that the Euler–Lagrange discretizations suffer from stability issues leading to a loss

of convergence (after ≈ 104 iterations), due to the polynomially growing unbounded term

Cp2(kh)p−2 paired with the gradf term to 0 which can only achieve a finite order of

accuracy due to numerical roundoff error. This issue can be fixed by adding a suitable

upper bound to the coefficient Cp2(kh)p−2 in the updates, or by stopping the iterating

process once a desired convergence criterion is achieved.

Optimization Problems on the Stiefel manifold St(m,n)

Numerical experiments were conducted for the generalized eigenvalue problem 4.3

and for the Procrustes problem 4.4 on St(m,n) to investigate how the projection based

Hamiltonian Taylor variational integrators compare to the Euler–Lagrange discretizations

from Section 4.3 and [Duruisseaux and Leok, 2022d] and the standard Riemannian gradient

descent. We experimented both with the projection based on polar decomposition and the

projection based on matrix QR orthogonalization presented in Example 1.2. The results

are presented in Figures 4.7 and 4.8. Note that for certain instances of the Procrustes

problem with certain initial values X0 ∈ St(m,n), all the algorithms converged to a local

minimizer which was not a global minimizer.

The projection based Adaptive Hamiltonian Taylor variational integrators clearly

outperform their Direct approach counterparts, Riemannian gradient descent and both

versions of the Euler–Lagrange discretization in terms of number of iterations required,

when all the algorithms are implemented with the same time-step (see the two bottom

plots in Figure 4.4). As can be seen from the top two plots in Figure 4.4, the Adaptive

HTVIs are still the best performing algorithms, even when larger time-steps are taken

for the other algorithms and in particular even when the Riemannian gradient descent

algorithm has been tuned optimally. Note that both the Euler–Lagrange discretizations and

Hamiltonian variational integrators suffered from the numerical roundoff issue described

in the previous subsection, but this issue was resolved by adding a suitable upper bound

to the ever-growing problematic coefficient in the updates.
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Figure 4.7: Direct and Adaptive (AD) HTVIs, Riemannian Gradient Descent (RGD), and

Euler–Lagrange discretizations (EL V1 and EL V2) with different time-steps (top) and

with the same time-step (bottom) for the generalized eigenvalue problem 4.3 on St(m,n).

Our numerical experiments do not suggest that there is a clear benefit in using

the polar decomposition based projection over the matrix orthogonalization, or vice versa.

Both projection strategies led to very efficient algorithms for Riemannian accelerated

optimization with seemingly similar performance and stability properties. Computing the

QR decomposition of a n ×m matrix via the standard Householder QR algorithm requires

approximately 2m2(n −m/3) floating point operations, while computing the Singular

Value Decomposition of a n ×m is more expensive and often relies on intermediate QR

decompositions [Trefethen and Bau, 1997]. Thus, these operations can become very costly

140



10
0

10
1

10
2

10
3

10
4

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0 Procrustes Problem

10
0

10
1

10
2

10
3

10
4

10
5

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0 Procrustes Problem

Figure 4.8: Direct and Adaptive (AD) HTVIs, Riemannian Gradient Descent (RGD), and

Euler–Lagrange discretizations (EL V1 and EL V2) with different time-steps (top plot)

and with the same time-step (bottom plot), for the Procrustes problem 4.4 on St(m,n).

as the dimension of the problem becomes large, in which case it might be beneficial to

use approximate QR decompositions and Singular Value Decompositions. For instance,

the projection based on the polar decomposition Q ↦ Q(Q⊺Q)−1/2 can be rewritten as

Q ↦ Q(Im + (Q⊺Q − Im))−1/2, and provided the distance away from the Stiefel manifold

is sufficiently small, the norm of E = (Q⊺Q − Im) is small and we can approximate the

projection by truncating its series expansion

Q(Im +D)−1/2 = Q(Im − 1

2
D + 3

8
D2 − 5

16
D3 + . . .) . (4.39)
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We have also tested the projection algorithm against the implicit algorithm from

Section 4.5.2 and [Duruisseaux and Leok, 2022a] on the same optimization problems on

Sn−1 and St(m,n). Although both algorithms produced similar graphs for the error as a

function of the iteration number, the explicit nature of our projection algorithm made every

iteration significantly faster and overall the running time was reduced by several orders of

magnitude, even on low-dimensional problems (for instance, 3 orders of magnitude on S5−1

and St(3,2), and 4 orders of magnitude on S100−1). Note that the projection algorithm

was also easier to implement and tune than the implicit algorithm.

Overall, the gain in computational efficiency is preserved when the constraints

are enforced via projections instead of being incorporated directly into the variational

principles, and that the explicit nature of the resulting algorithms makes every iteration

significantly faster and easier to tune than for the implicit algorithms from Section 4.5.2

and [Duruisseaux and Leok, 2022a]. As a consequence, if projections onto the constraint

manifold can be computed efficiently, these projection based variational integrators form

a class of efficient explicit algorithms for Riemannian accelerated optimization, and we

believe that these algorithms are the most efficient methods to date which exploit the

variational framework from [Duruisseaux and Leok, 2022d] on the Hamiltonian side.

4.5.4 Conclusion

Motivated by the observation made in the vector space setting in Section 3.3.5 and

[Duruisseaux et al., 2021] that a careful use of adaptivity and symplecticity within the

variational formulation of accelerated optimization could result in a significant gain in

computational efficiency, discrete constrained variational integrators and projection-based

variational integrators were constructed on the Hamiltonian side within the variational

framework for Riemannian accelerated optimization of [Duruisseaux and Leok, 2022d].

Both approaches performed well in terms of number of iterations required to achieve

convergence, but the implicit nature of the constrained integrators makes them much less

desirable than the explicit projection-based algorithms which are easier to tune and become

significantly more computational efficient as the dimension of the problem increases.
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Although the Whitney and Nash Embedding Theorems [Whitney, 1944a,b; Nash,

1956] imply that there is no loss of generality when studying Riemannian manifolds only as

submanifolds of Euclidean spaces, there are limitations to the constrained integration and

projection-based strategies which rely on embeddings. Designing intrinsic methods that

would exploit and preserve the symmetries and geometric properties of the Riemannian

manifold and of the problem at hand could have computational advantages and could

help improve our understanding of the acceleration phenomenon on Riemannian manifolds.

Indeed, the embedding approach usually leads to higher-dimensional computations, and

requires an effective way of constructing the embedding or a natural way of writing down

equations that constrain the problem and the numerical solutions to the Riemannian

manifold. Furthermore, most results in Riemannian geometry or results concerning specific

Riemannian manifolds are proven from an intrinsic perspective because the embedding

approach tends to flood intrinsic geometric properties of the manifold with superfluous

information inherited from the additional dimensions of the embedding Euclidean space.

Developing an intrinsic extension of Hamiltonian variational integrators to manifolds

will require some additional work, since the current approach involves Type II/III generating

functions H+
d (qk, pk+1), H−

d (pk, qk+1), which depend on the position at one boundary point,

and on the momentum at the other boundary point. This does not make intrinsic sense on

a manifold, since one needs a base point in order to specify the corresponding cotangent

space, and one should ideally consider constructing Hamiltonian variational integrator

based on discrete Dirac mechanics [Leok and Ohsawa, 2011], which would yield a generating

function E+
d (qk, qk+1, pk+1), E−

d (qk, pk, qk+1), that depends on the position at both boundary

points and the momentum at one of the boundary points. This approach can be viewed

as a discretization of the generalized energy E(q, v, p) = ⟨p, v⟩ − L(q, v), in contrast to

the Hamiltonian H(q, p) = extv⟨p, v⟩ − L(q, v) = ⟨p, v⟩ −L(q, v)∣p= ∂L
∂v

. On the other hand,

the formulation of Lagrangian variational integrators presented in the introduction of

Section 2.6.1 makes sense intrinsically on manifolds,so we will exploit the framework for

variable time-stepping in Lagrangian variational integration from Section 2.7.2 [Duruisseaux

and Leok, 2023a] next, to design intrinsic time-adaptive Lagrangian variational integrators

for accelerated optimization on Riemannian manifolds.
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On a side note, it would also be interesting to extend the approach using discrete

constrained variational integrators to the problem of optimization with nonintegrable

constraints, which naturally leads to the question of whether vakonomic mechanics or

nonholonomic mechanics is the appropriate description [Cortés et al., 2002]. In the

context of optimization with nonintegrable constraints, the relevant extension will likely

involve vakonomic variational integrators [Benito and Mart́ın de Diego, 2005; Jiménez and

Mart́ın de Diego, 2012]. However, it would be interesting to relate the methods introduced

in Section 4.5.2 and in [Duruisseaux and Leok, 2022a] to the existing work on variational

integrators applied to optimal control problems [Junge et al., 2005; de León et al., 2007],

and the discrete optimal control of nonholonomic dynamical systems would likely require a

combination of the methods described in this section and nonholonomic integrators [Cortés

and Mart́ınez, 2001; de León et al., 2004; Fedorov and Zenkov, 2005; McLachlan and

Perlmutter, 2006].

4.6 Riemannian Accelerated Optimization via

Time-Adaptive Lagrangian Integrators

We have just discussed why designing integrators which evolve intrinsically on the

Riemannian manifold and which would exploit and preserve the symmetries and geometric

properties of the Riemannian manifold and of the problem at hand could prove very

advantageous, and why the current formulation of Hamiltonian variational integration is

not suitable to achieve this task. On the other hand, Lagrangian variational integrators are

well-defined on manifolds, and many Lagrangian variational integrators have been derived

on Riemannian manifolds, especially in the Lie group [Leok, 2004; Lee et al.; Hussein et al.,

2006; Lee et al., 2007a,b; Lee, 2008; Bou-Rabee and Marsden, 2009; Nordkvist and Sanyal,

2010; Hall and Leok, 2015] and homogeneous space [Lee et al., 2009] settings.
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The time-adaptive framework developed in Section 2.7.2 and [Duruisseaux and

Leok, 2023a] makes it now possible to design time-adaptive Lagrangian integrators for

accelerated optimization on these more general spaces, where it is more natural and easier

to work on the Lagrangian side than on the Hamiltonian side.

We now construct time-adaptive Lagrangian variational integrators for accelerated

optimization on Riemannian manifolds. Recall from Section 4.2 that the Riemannian

p-Bregman Lagrangian Lp ∶ TQ ×R→ R is given by

Lp(X,V, t) =
tλ

−1ζp+1

2p
⟨V,V ⟩ −Cpt(λ−1ζ+1)p−1f(X), (4.40)

where ζ and λ are constants having to do with the curvature of the manifold and the

convexity of the objective function f .

Although it is possible to work on Riemannian manifolds, we will restrict ourselves

to Lie groups for simplicity of exposition since there is more literature available on Lie

group integrators than Riemannian integrators. We refer the reader to [Iserles et al., 2000;

Christiansen et al., 2011; Celledoni et al., 2014, 2022] for very thorough surveys of the

literature on Lie group methods, which acknowledge all the foundational contributions

leading to the current state of Lie group integrator theory. In particular, the Crouch and

Grossman approach [Crouch and Grossman, 1993], the Lewis and Simo approach [Lewis

and Simo, 1994], Runge–Kutta–Munthe–Kaas methods [Munthe-Kaas, 1995, 1998, 1999;

Casas and Owren, 2003], Magnus and Fer expansions [Iserles and Nørsett, 1999; Zanna,

1999; Blanes et al., 2008], and commutator-free Lie group methods [Celledoni et al., 2003]

are outlined in these surveys.

Variational integrators have also been derived on the Lagrangian side in the Lie

group setting [Leok, 2004; Lee et al.; Hussein et al., 2006; Lee et al., 2007a,b; Lee, 2008;

Bou-Rabee and Marsden, 2009; Nordkvist and Sanyal, 2010; Hall and Leok, 2015].

Note as well that prior work is available on accelerated optimization via numerical

integration of Bregman dynamics in the Lie group setting [Tao and Ohsawa, 2020; Lee

et al., 2021].
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Here, we will work in the setting described in Example 1.3 for considering a Lie

group G with an associated Lie algebra g as a Riemannian manifold. More precisely, we

use a left trivialization TG ≃ G × g, obtained via (q, q̇) ↦ (q,Lq−1 q̇) ≡ (q, ξ), and the Lie

algebra g is equipped with an inner product which induces an inner product on TqG via

left trivialization

(v ● w)TqG = (TqLq−1v ● TqLq−1w)g ∀v,w ∈ TqG. (4.41)

With this inner product, we can identify g ≃ g∗ and also TqG ≃ T ∗
q G ≃ G × g∗ via the Riesz

representation. Then, J ∶ g → g∗ is chosen such that (J(ξ) ● ζ) is positive-definite and

symmetric as a bilinear form of ξ, ζ ∈ g. The resulting metric ⟨⋅, ⋅⟩ ∶ g × g→ R defined via

⟨ξ, ζ⟩ = (J(ξ) ● ζ) serves as a left-invariant Riemannian metric on G.

We now introduce a discrete variational formulation of time-adaptive Lagrangian

mechanics on Lie groups. Suppose we are given a partition 0 = τ0 < τ1 < . . . < τN = T of the

interval [0,T], and a discrete curve in G ×R ×R denoted by {(qk,qk, λk)}Nk=0 such that

qk ≈ q(τk), qk ≈ q(τk), λk ≈ λ(τk). (4.42)

The discrete kinematics equation is chosen to be

qk+1 = qk ⋆ zk, (4.43)

where zk ∈ G represents the relative update over a single step.

Now, consider the discrete action functional,

S̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, zk,qk,qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

, (4.44)

where,

Ld(qk, zk,qk,qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],G×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qkzk,qk+1)

∫
τk+1

τk
L(q, ξ

g(q) ,q)dτ . (4.45)
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We can derive the following result which relates a discrete Type I variational

principle to a set of discrete Euler–Lagrange equations:

Theorem 4.8. The Type I discrete Hamilton’s variational principle,

δS̄d ({(qk,qk, λk)}Nk=0) = 0, (4.46)

where,

S̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, zk,qk,qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

, (4.47)

is equivalent to the discrete extended Euler–Lagrange equations,

qk+1 = qk + (τk+1 − τk)g(qk), (4.48)

Ad∗z−1
k

(T∗
eLzkD2Ldk) = T∗

eLqkD1Ldk +
τk+1 − τk
qk+1 − qk

qk − qk−1

τk − τk−1

T∗
eLzk−1

D2Ldk−1
, (4.49)

and

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] (4.50)

+ [D4Ldk − λk−1
1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

where Ldk denotes Ld(qk, zk,qk,qk+1).

Proof. See Appendix A.3.3.

Now, define two new quantities,

pk = −D3Ld(qk, zk,qk,qk+1), (4.51)

µk = Ad∗z−1
k

(T∗
eLzkD2Ld(qk, zk,qk,qk+1)) −T∗

eLqkD1Ld(qk, zk,qk,qk+1), (4.52)

which imply that

µk+1 =
τk+2 − τk+1

qk+2 − qk+1

qk+1 − qk
τk+1 − τk

T∗
eLzkD2Ld(qk, zk,qk,qk+1). (4.53)
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Then, with these definitions, if we use a constant time-step h in τ and substitute

g(q) = p
p̊
q1−p̊/p, (4.54)

the discrete Euler–Lagrange equations can be rewritten as

µk = Ad∗z−1
k

(T∗
eLzkD2Ld(qk, zk,qk,qk+1)) −T∗

eLqkD1Ld(qk, zk,qk,qk+1), (4.55)

µk+1 =
q

1−p̊/p
k

q
1−p̊/p
k+1

T∗
eLzkD2Ld(qk, zk,qk,qk+1), (4.56)

qk+1 = qk + h
p

p̊
q

1−p̊/p
k , (4.57)

pk+1 =
p̊ [λk+1 − λk +Ldk −Ldk+1

]
hpq

1−p̊/p
k+1

+D4Ldk +
λk+1

qk+1

(1 − p̊
p
) . (4.58)

In the Lie group setting, the Riemannian p-Bregman Lagrangian becomes

Lp(q, ξ, t) =
tκp+1

2p
⟨ξ, ξ⟩ −Cpt(κ+1)p−1f(q), (4.59)

with corresponding Euler–Lagrange equation,

dJ(ξ)
dt

+ κp + 1

t
J(ξ) − ad∗ξJ(ξ) +Cp2tp−2∇Lf(q) = 0, (4.60)

where ∇Lf is the left-trivialized derivative of f , given by ∇Lf(q) = T∗
eLq(Dqf(q)).

We then consider the discrete Lagrangian,

Ld(qk, zk,qk,qk+1) =
qκp+1
k

hp(g(qk))2
Td(zk) −Chpq(κ+1)p−1

k f(qk), (4.61)

where Td(zk) ≈ 1
2⟨hξk, hξk⟩, which approximates

Ld(qk, zk,qk,qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],G×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qkzk,qk+1)

∫
τk+1

τk
L(q, ξ

g(q) ,q)dτ . (4.62)
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Numerical Experiment on SO(3)

We work on the 3-dimensional Special Orthogonal group SO(3) (see Example 1.6

for more details about SO(3)). The inner product on so(3) is given by

(η̂ ● ξ̂)
so(3)

= 1

2
Trace (η̂⊺ξ̂) = η⊺ξ, (4.63)

and the metric is chosen so that

⟨η̂, ξ̂⟩ = (J(η̂) ● ξ̂)
so(3)

= Trace (η̂⊺Jdξ̂) = η⊺Jξ, (4.64)

where J ∈ R3×3 is a symmetric positive-definite matrix and Jd = 1
2Trace(J)I3 − J .

On SO(3), the Riemannian p-Bregman Lagrangian becomes

Lp(R,Ω, t) =
tp+1

2p
Ω⊺JΩ −Cpt2p−1f(R), (4.65)

and the corresponding Euler–Lagrange equations are given by

JΩ̇ + p + 1

t
JΩ + Ω̂JΩ +Cp2tp−2∇Lf(R) = 0, Ṙ = RΩ̂. (4.66)

The discrete kinematics equation is written as

Rk+1 = RkZk, (4.67)

where Zk ∈ SO(3), and κ = 1 so we get the discrete Lagrangian,

Ld(Rk, Zk,Rk,Rk+1) =
p̊2

hp3
R
p−1+2p̊/p
k Td(Zk) −ChpR2p−1

k f(Rk). (4.68)

As in [Lee et al., 2007a, 2021], the angular velocity is approximated with

Ω̂k ≈ 1

h
R⊺
k(Rk+1 −Rk) =

1

h
(Zk − I3) (4.69)

so we can take

Td(Zk) = Trace ([I3 −Zk]Jd) . (4.70)

Differentiating this equation and using the identity Trace(−x̂A) = (A −A⊺)∨ ⋅ x yields

T∗
ILZk (DZkTd(Zk)) = (JdZk −Z⊺

kJd)
∨
. (4.71)
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Then, the discrete Euler–Lagrange equations for µk and µk+1 become

µk =
p̊2

hp3
R
p−1+2p̊/p
k (ZkJd − JdZ⊺

k )
∨ +ChpR2p−1

k ∇Lf(Rk), (4.72)

µk+1 =
q

1−p̊/p
k

q
1−p̊/p
k+1

Z⊺
k [µk −ChpR2p−1

k ∇Lf(Rk)] . (4.73)

Now, as described in [Lee et al., 2021], equation (4.72) can be solved explicitly

when J = I3 :

Zk = exp(sin−1 ∥ak∥
∥ak∥

âk), where ak =
hp3

p̊2
R

1−p−2p̊/p
k [µk −ChpR2p−1

k ∇Lf(Rk)] . (4.74)

Therefore, we get the following Adaptive LLGVI (Adaptive Lagrangian Lie

Group Variational Integrator)

Zk = exp(sin−1 ∥ak∥
∥ak∥

âk), where ak =
hp3

p̊2
R

1−p−2p̊/p
k [µk −ChpR2p−1

k ∇Lf(Rk)] , (4.75)

Rk+1 =Rk + h
p

p̊
R

1−p̊/p
k , (4.76)

µk+1 =
R

1−p̊/p
k

R
1−p̊/p
k+1

Z⊺
k [µk −ChpR2p−1

k ∇Lf(Rk)] , (4.77)

Rk+1 = RkZk. (4.78)

We have tested this Adaptive LLGVI integrator on Wahba’s Problem 4.5 on SO(3)
against the Implicit Lie Group Variational Integrator (Implicit LGVI) introduced in [Lee

et al., 2021]. The Implicit LGVI is a Lagrangian Lie group variational integrator which

adaptively adjusts the stepsize at every step. It should be noted that these two time-

adaptive approaches use adaptivity in two fundamentally different ways: our Adaptive

LLGVI method uses a priori adaptivity based on known global properties of the family

of differential equations considered (i.e. the time-rescaling symmetry of the family of

Bregman dynamics), while the implicit method from [Lee et al., 2021] adapts the stepsize

in an a posteriori way, by solving a system of nonlinear equations coming from an extended

variational principle.
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The results of our numerical experiments are presented in Figures 4.10 and 4.9. In

these numerical experiments, we have used the termination criteria

∣f(Rk) − f(R∗)∣ < δ and ∣f(Rk) − f(Rk−1)∣ < δ. (4.79)

We can see from Figure 4.10 that both algorithms preserve the orthogonality

condition R⊺
kRk = I3 very well. Now, we can observe from Figure 4.10 that although both

algorithms follow the same curve in time t, they do not travel along this curve at the

same speed. Despite the fact that the Adaptive LLGVI algorithm initially takes smaller

time-steps, those time-steps eventually become much larger than for the Implicit LGVI

algorithm, and as a result, the Adaptive LLGVI algorithm achieves the termination criteria

in a smaller number of iterations, which can also be seen more explicitly in the table from

Figure 4.9. Unlike the Implicit LGVI algorithm, the Adaptive LLGVI algorithm is explicit,

so each iteration is much cheaper and is therefore significantly faster, as can be seen from

the running times displayed in Figure 4.9. Furthermore, the Adaptive LLGVI algorithm is

significantly easier to implement.

Figure 4.9: Time and number of iterations needed by the Adaptive LLGVI and Implicit

LGVI algorithms to satisfy the termination criterion (4.79) on Wahba’s Problem 4.5.
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Figure 4.10: Comparison of the Adaptive LLGVI algorithm and of the Implicit LGVI

algorithm from [Lee et al., 2021] with p = 6, to solve Wahba’s problem (4.6).

Overall, we showed that the time-adaptive Lagrangian approach from Section 3.4

extends naturally to more general spaces such as Riemannian manifolds and Lie groups

without having to face the difficulties experienced on the Hamiltonian side, and we saw

that the resulting algorithms were significantly faster and easier to implement than other

recently proposed time-adaptive variational integrators for optimization on Lie groups.
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Conclusion

We have shown that on Riemannian manifolds, the convergence rate in continuous

time of a geodesically convex or weakly quasi-convex function f(x(t)) to its optimal

value can be accelerated to an arbitrary convergence rate, which extended the results

of [Wibisono et al., 2016] from normed vector spaces to the Riemannian manifold setting.

This accelerated rate of convergence is achieved along solutions of the Euler–Lagrange and

Hamilton’s equations corresponding to a family of time-dependent Bregman Lagrangian

and Hamiltonian systems on Riemannian manifolds. As was demonstrated in the normed

vector space setting, such families of Bregman dynamics can be used to construct practical,

robust, and computationally efficient numerical optimization algorithms that outperform

Nesterov’s accelerated gradient method by considering geometric structure-preserving

discretizations of the continuous-time flows. In analogy to what was done in the normed

vector space setting in [Wibisono et al., 2016], we were also able to prove that the family

of time-dependent Bregman Lagrangian and Hamiltonians on Riemannian manifolds is

closed under time rescaling.

Inspired by the computational efficiency of the time-adaptive approach introduced

in [Duruisseaux et al., 2021] in the normed vector space setting, we exploited the time

rescaling property of the Bregman family on the Hamiltonian side via a carefully chosen

Poincaré transformation that allowed us to integrate higher-order Bregman dynamics, using

discrete constrained and variational integrators projection-based variational integrators,

while benefiting from the computational efficiency of integrating a lower-order system.

Both these Hamiltonian variational integrators exploited the structure of Euclidean spaces

embedding the Riemannian manifolds. Although the construction of intrinsic Hamiltonian

integrators that would exploit and preserve the symmetries and geometric properties of the

Riemannian manifold and of the problem at hand could prove very advantageous, technical

difficulties and issues coming from the current formulation of Hamiltonian variational

integrators make the Hamiltonian perspective inadequate for the development of such

intrinsic methods, at least for the moment. On the other hand, we noted that the Type I

Lagrangian formulation of variational integrators was suitable for this task, and equipped
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with the framework for variable time-stepping in Lagrangian integrators from [Duruisseaux

and Leok, 2023a], we were able to construct intrinsic variational integrators for Riemannian

accelerated optimization, with very promising results.

It would be desirable in future work to analyze the resulting discrete-time algorithms

to have some convergence guarantees and rigorously establish their rates of convergence.

However, proving that the discrete time algorithms perform analogously to the continuous

dynamics is far from direct, even in the much simpler normed vector space setting, as the

O(1/tp) convergence rate for the continuous-time dynamics conflicts with the O(1/k2)
Nesterov barrier theorem for discrete-time algorithms. It would be very beneficial to better

understand how to reconcile theoretically the arbitrarily high rate of convergence one

expects from the continuous-time analysis, with Nesterov’s barrier theorem on the rate of

convergence of discrete-time algorithms.

Although some theoretical shadowing results have already been derived for certain

simpler discrete Riemannian optimization algorithms for which the associated dynamical

system is uniformly contracting, such a result might be very difficult to obtain for the

momentum-based algorithms presented in this chapter because momentum methods lack

contraction, are nondescending and highly oscillatory [Orvieto and Lucchi, 2019; Alimisis

et al., 2020b]. Even on vector spaces, obtaining theoretical guarantees was a very challeng-

ing task, achieved in [Zhang et al., 2018] under additional assumptions. Generalizing these

results to the Riemannian manifold setting would be much more challenging than a trivial

generalization of these convergence results since the usual vector space operations and

objects have to be replaced by their much more convoluted Riemannian generalizations

which involve geodesics, parallel transport, covariant derivatives, Riemannian exponentials

and logarithms.

It would also be desirable to improve the performance of the algorithms presented

in this chapter, especially in terms of robustness and stability, and ease the tuning process

before these algorithms can be used more conveniently and efficiently in practice. It could

be advantageous to explore how the practical considerations explored in the normed vector

space setting in the upcoming Chapter 5 extend to the Riemannian manifold setting.
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â Chapter 4 contains original material from

¬ “A Variational Formulation of Accelerated Optimization on Riemannian Mani-

folds” by V. Duruisseaux and M. Leok. SIAM Journal on Mathematics of Data

Science, Vol.4, No.2, pages 649-674, 2022

 “Accelerated Optimization on Riemannian Manifolds via Discrete Constrained

Variational Integrators” by V. Duruisseaux and M. Leok. Journal of Nonlinear

Science, Vol.32, No.42, 2022

® “Accelerated optimization on Riemannian manifolds via Projected Variational

Integrators” by V. Duruisseaux and M. Leok, 2022

¯ “Time-adaptive Lagrangian Variational Integrators for Accelerated Optimiza-

tion on Manifolds” by V. Duruisseaux and M. Leok. Journal of Geometric

Mechanics, Vol.15, Issue 1, pages 224-255, 2023.

The dissertation author was the primary investigator and author of these papers.
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5 Practical Perspectives on

Symplectic Accelerated Optimization

5.1 Motivation

While the symplectic optimization approach provides a very general framework

for constructing accelerated optimization algorithms, the real-world performance of these

methods depends on the choice of numerous parameters.

We will now investigate practical considerations which can significantly boost

the computational performance of the accelerated optimization algorithms presented

in Chapters 3 and 4, and considerably simplify the tuning process. In particular, we

will investigate how momentum restarting schemes ameliorate computational efficiency

and robustness by reducing the undesirable effect of oscillations, and ease the tuning

process by making time-adaptivity superfluous. We will also discuss how temporal looping

helps avoiding instability issues caused by numerical precision, without harming the

computational efficiency of the algorithms. Finally, we will compare the efficiency and

robustness of different geometric integration techniques, and study the effects of the

different parameters in the algorithms to inform and simplify tuning in practice. From this

section will emerge symplectic accelerated optimization algorithms whose computational

efficiency, stability and robustness have been improved, and which are now much simpler

to use and tune for practical applications. The computational study presented in this

chapter was first carried in [Duruisseaux and Leok, 2023b].
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5.2 Special Bregman Subfamilies and

Time-Rescalings of Interest

5.2.1 Review of the General Framework

Recall from Section 3.2 that the general Bregman Lagrangian and Hamiltonian are

scalar-valued functions given by

Lα,β,γ(q, v, t) = eαt+γt [Dh(q + e−αtv, q) − eβtf(q)] , (5.1)

Hα,β,γ(q, r, t) = eαt+γt [Dh∗(∇h(q) + e−γtr,∇h(q)) + eβtf(q)] . (5.2)

Further recall that if the parameter functions α,β, γ satisfy the ideal scaling conditions

β̇t ≤ eαt and γ̇t = eαt , (5.3)

then it follows from Theorem 1.1 in [Wibisono et al., 2016] that

f(q(t)) − f(q∗) ≤ O(e−βt), (5.4)

where q∗ is the desired minimizer of the objective function f .

From now on, we will take h(q) = 1
2⟨q, q⟩. Assuming that the parameter functions

α,β, γ satisfy the ideal scaling conditions (3.7), the Bregman Lagrangian and Hamiltonian

become

Lα,β,γ(q, v, t) = 1

2
eγt−αt⟨v, v⟩ − eαt+βt+γtf(q), (5.5)

Hα,β,γ(q, r, t) = 1

2
eαt−γt⟨r, r⟩ + eαt+βt+γtf(q), (5.6)

with corresponding Euler–Lagrange equation given by

q̈(t) + (eαt − α̇t) q̇(t) + e2αt+βt∇f(q(t)) = 0. (5.7)

We will focus here on two specific subfamilies of Bregman dynamics: polynomial

and exponential Bregman dynamics.
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5.2.2 Polynomial Subfamily

A first subfamily of Bregman dynamics of interest, indexed by a parameter p > 0,

is given by the choice of parameter functions

αt = log p − log t, βt = p log t + logC, γt = p log t, (5.8)

where C > 0 is a constant. These parameter functions α,β, γ satisfy the ideal scaling

conditions (5.3), and the corresponding Lagrangian and Hamiltonian are given by

Lp(q, v, t) = tp+1

2p
⟨v, v⟩ −Cpt2p−1f(q), (5.9)

Hp(q, r, t) = p

2tp+1
⟨r, r⟩ +Cpt2p−1f(q), (5.10)

with corresponding Euler–Lagrange equation given by

q̈(t) + p + 1

t
q̇(t) +Cp2tp−2∇f(q(t)) = 0. (5.11)

From Theorem 1.1 in [Wibisono et al., 2016], the evolution q(t) resulting from this

dynamical system satisfies the convergence rate

f(q(t)) − f(q∗) ≤ O(1/tp). (5.12)

Note that this Bregman subfamily has been exploited extensively in Chapter 3 and

in [Wibisono et al., 2016; Betancourt et al., 2018; Duruisseaux et al., 2021; Duruisseaux

and Leok, 2023a]. Also note that the special case where p = 2 and C = 1/4 corresponds to

the limiting continuous differential equation introduced in [Su et al., 2016] for Nesterov’s

Accelerated Gradient method.

5.2.3 Exponential Subfamily

Another subfamily of Bregman dynamics of interest, indexed by a parameter η > 0,

is given by the choice of parameter functions

αt = log η, βt = ηt + logC, γt = ηt, (5.13)

where C > 0 is a constant.
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These parameter functions α,β, γ satisfy the ideal scaling conditions (5.3), and the

corresponding Lagrangian and Hamiltonian are given by

Lη(q, v, t) = eηt

2η
⟨v, v⟩ −Cηe2ηtf(q), (5.14)

Hη(q, r, t) = η

2eηt
⟨r, r⟩ +Cηe2ηtf(q), (5.15)

with corresponding Euler–Lagrange equation given by

q̈(t) + ηq̇ +Cη2eηt∇f(q(t)) = 0 (5.16)

From Theorem 1.1 in [Wibisono et al., 2016], the evolution q(t) resulting from this

dynamical system satisfies the convergence rate

f(q(t)) − f(q∗) ≤ O (e−ηt) . (5.17)

5.2.4 Time-Rescalings of Interest

Recall from Theorem 3.1 that the family of Bregman dynamics is closed under

time reparameterization: if q(t) satisfies the Euler–Lagrange equations corresponding to

the Bregman Lagrangian Lα,β,γ , then the reparametrized curve y(t) = q(τ(t)) satisfies the

Euler–Lagrange equations corresponding to the Bregman Lagrangian Lα̃,β̃,γ̃ where

α̃t = ατ(t) + log τ̇(t), β̃t = βτ(t), γ̃t = γτ(t). (5.18)

This allows us to transform the time-dependent Bregman dynamics into simpler

autonomous systems in some appropriate extended phase-space via the use of carefully

chosen time reparameterization. In Section 3.3.3, we rescaled time in a solution to the

p-Bregman Euler–Lagrange equations from With the polynomial subfamily of Section 5.2.2

via τ(t) = tp̊/p to obtain a solution to the p̊-Bregman Euler–Lagrange equations. We can

similarly jump from one solution of Bregman dynamics from the exponential subfamily of

Section 5.2.3 to another via τ(t) = η̊
η t, or jump from exponential Bregman dynamics to

polynomial Bregman dynamics via τ(t) = p
η log t, and vice-versa via τ(t) = eηt/p.
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5.2.5 Transformed Extended Hamiltonians and Lagrangians

As before, to benefit from the advantages of symplectic integration of conservative

Hamiltonian and Lagrangian systems while using variable time-steps, we will use the

adaptive time-stepping frameworks presented in Sections 2.7.1 and 2.7.2.

On the Hamiltonian side, the Poincaré transformation from Section 2.7.1 together

with the time reparameterizations presented in Section 5.2.4 allow to jump from one form

of Bregman dynamics to another as follows:

1. Polynomial-p to Polynomial-p̊:

τ(t) = tp̊/p and g(t) = p
p̊
t1−p̊/p (5.19)

yield the Poincaré Hamiltonian

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
rq1−p̊/p. (5.20)

2. Exponential-η to Exponential-η̊:

τ(t) = η̊
η
t and g(t) = η

η̊
(5.21)

yield the Poincaré Hamiltonian

H̄η→η̊(q̄, r̄) = η2

2η̊eηq
⟨r, r⟩ + Cη

2

η̊
e2ηqf(q) + η

η̊
r. (5.22)

3. Exponential-η to Polynomial-p:

τ(t) = p
η

log t and g(t) = η
p
t (5.23)

yield the Poincaré Hamiltonian

H̄η
→p(q̄, r̄) =

qη2

2peηq
⟨r, r⟩ + Cqη

2

p
e2ηqf(q) + η

p
qr. (5.24)

4. Polynomial-p to Exponential-η:

τ(t) = eηt/p and g(t) = p
η
e−ηt/p (5.25)

yield the Poincaré Hamiltonian

H̄→ηp (q̄, r̄) = e−
η
p
q ( p2

2ηqp+1
⟨r, r⟩ + Cp

2

η
q2p−1f(q) + p

η
r) . (5.26)
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On the Lagrangian side, we can use the framework of Section 2.7.2 and consider

the discrete Lagrangian

Ld(qk,qk, qk+1,qk+1) ≈ ext
(q,q)∈C2([τk,τk+1],Q×R)

(q,q)(τk)=(qk,qk), (q,q)(τk+1)=(qk+1,qk+1)

∫
τk+1

τk
L(q, q′

g(q) ,q)dτ , (5.27)

where 0 = τ0 < τ1 < . . . < τN partitions the time interval of interest, and {(qk,qk)}Nk=0 is

such that qk ≈ q(τk) and qk ≈ q(τk). The corresponding discrete extended Euler–Lagrange

equations of interest for the accelerated optimization application are given by

pk = −D1Ld(qk,qk, qk+1,qk+1),

pk+1 =
g(qk)
g(qk+1)

D3Ld(qk,qk, qk+1,qk+1),

qk+1 = qk + hg(qk).

(5.28)

We can then use one of the monitor functions

g(t) = p
p̊
t1−p̊/p, g(t) = η

η̊
, g(t) = η

p
t, g(t) = p

η
e−ηt/p, (5.29)

to jump from one type of Bregman Lagrangian to another.

5.3 Numerical Methods and Problems of Interest

5.3.1 Numerical Methods

We now present four different methods for designing symplectic integrators for the

Bregman Lagrangian and Bregman Hamiltonian systems. Keeping in mind the desired

applications in machine learning where problem sizes and data sets are very large, we restrict

ourselves to explicit first-order optimization algorithms. Each of these four methods will be

used within the four different adaptive approaches presented in Section 5.2.4 (polynomial,

exponential, polynomial-to-exponential, and exponential-to-polynomial), to obtain sixteen

distinct algorithms.
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Hamiltonian Taylor Variational Integrator (HTVI)

Proceeding as in Section 3.3, we can derive the Hamiltonian Taylor Variational

Integrator (HTVI),

pk+1 = pk − hD1H(qk, pk+1),

qk+1 = qk + hD2H(qk, pk+1).
(5.30)

These updates recover the Symplectic Euler method [Hairer et al., 2006], which is a popular

symplectic integrator of order 1.

Lagrangian Taylor Variational Integrator (LTVI)

As in Section 3.4, we can define a discrete Lagrangian,

Ld(q̄0, q̄1) = hLp (q0,
q1 − q0

hg(q0)
,q0) , (5.31)

and the updates for the Lagrangian Taylor Variational Integrator (LTVI) can be obtained

from the discrete extended Euler–Lagrange equations (5.28).

Störmer-Verlet (SV)

A popular symplectic integrator is the Störmer–Verlet (SV) method,

pk+1/2 = pk −
h

2
D1H(qk, pk+1/2),

qk+1 = qk +
h

2
[D2H(qk, pk+1/2) +D2H(qk+1, pk+1/2)] ,

pk+1 = pk+1/2 −
h

2
D1H(qk+1, pk+1/2),

(5.32)

which is a symmetric symplectic integrator of order 2 (see [Hairer et al., 2006]). A very

detailed description of the Störmer–Verlet method, its different interpretations, and its

beneficial numerical properties can be found in [Hairer et al., 2003]. Note however that

in the polynomial and polynomial-to-exponential frameworks, the update for q in the

resulting integrators becomes implicit (see the algorithms PolySV and PolyToExpoSV),

which makes these integrators less desirable. For the accelerated optimization application,

we will usually be able to combine the first and last updates for the momentum vector p

into a single update and save roughly a third of the computational time. This is because

Störmer–Verlet is conjugate to symplectic Euler.
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Symmetric Leapfrog Composition of Component Dynamics (SLC)

The idea is to decompose the vector field into its components,

d

dτ
= dq
dτ

d

dq
+ dq
dτ

d

dq
+ dr
dτ

d

dr
+ dr

dτ

d

dr
= ∂H
∂r

d

dq
+ ∂H
∂r

d

dq
− ∂H
∂q

d

dr
− ∂H
∂q

d

dr
=A +B +C +D,

and then combine the corresponding component dynamics using a symmetric leapfrog

composition

Φh = exp(h
2
D)○exp(h

2
C)○exp(h

2
B)○exp (hA)○exp(h

2
B)○exp(h

2
C)○exp(h

2
D) (5.33)

which satisfies Φh = exp (hH)+O(h3) (can be proven using the Baker–Campbell–Hausdorff

formula). This strategy is similar to the integrator from Section 3.3 of [Betancourt et al.,

2018] and the Splitting algorithms from Section 3.3.4.

As an example, for

H̄p→p̊(q̄, r̄) =
p2

2p̊qp+p̊/p
⟨r, r⟩ + Cp

2

p̊
q2p−p̊/pf(q) + p

p̊
rq1−p̊/p, (5.34)

the components of the vector field are given by

A = p2

p̊qp+p̊/p
r
d

dq
, B = p

p̊
q1−p̊/p d

dq
, C = −Cp

2

p̊
q2p−p̊/p∇f(q) d

dr
, D = −∂H̄p→p̊

∂q

d

dr
. (5.35)

Then, the corresponding component dynamics are given as follows:

● exp (hA) yields the update q ← q + h p2

p̊qp+p̊/p r

● exp (hC) yields the update r ← r − hCp2

p̊ q2p−p̊/p∇f(q)

● exp (hB) yields the differential equation q′ = p
p̊q

1−p̊/p, which can be solved exactly to

obtain the update q← (qp̊/p + h)p/p̊

Note that the updates corresponding to exp (hA), exp (hB), and exp (hC) do not involve

the variable r, and in practice, we are not interested in the evolution of r, so we can

simplify the composition into

Φh = exp(h
2
C) ○ exp(h

2
B) ○ exp (hA) ○ exp(h

2
B) ○ exp(h

2
C), (5.36)
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This gives the PolySLC algorithm,

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q),

q ← (qp̊/p + h
2
)
p/p̊

,

q ← q + hp2

p̊qp+p̊/p
r,

q ← (qp̊/p + h
2
)
p/p̊

,

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q).

(5.37)

We have chosen to place exp (hA) in the middle of the symmetric composition (5.36)

so that the gradient ∇f only needs to be evaluated at the iterates {qk}k∈N and can also be

used without further computations in stopping criteria or momentum restarting schemes.

We have also chosen to place exp (hC) at the left-hand and right-hand of the symmetric

composition (5.36) so that in practice, we may combine the first and last updates for

the vector r into a single update (instead of only being able to combine the first and

last updates for the scalar q into a single update), and thus save roughly a third of the

computational time.

Remark 5.1. It was observed in [Duruisseaux et al., 2021] that the symplecticity of

the integrator was essential for the efficient, robust, and stable discretization of these

variational flows describing accelerated optimization. Therefore, we will not consider

non-symplectic methods here. Higher-order explicit symplectic integrators can be derived as

well, leveraging higher-order compositions such as Yoshida splittings [Yoshida, 1990], but it

was observed in [Duruisseaux et al., 2021] that these require a larger number of evaluations

of the objective function and of its gradient at each step (7 for Yoshida’s fourth-order

splitting, and 19 for Yoshida’s sixth-order splitting, for instance). As a consequence, the

resulting algorithms would not be competitive in terms of computational time and number

of gradient evaluations, since the other methods usually converge in a similar number of

iterations but only require one gradient evaluation per iteration.
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Resulting Algorithms

PolyHTVI

qk+1 = qk + h
p

p̊
q

1−p̊/p
k

rk+1 = rk −
p2

p̊
Chq

2p−p̊/p
k ∇f(qk)

qk+1 = qk +
p2

p̊
hq

−p−p̊/p
k rk+1

PolySLC

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q)

q← (qp̊/p + h
2
)
p/p̊

q ← q + hp2

p̊qp+p̊/p
r

q← (qp̊/p + h
2
)
p/p̊

r ← r − Cp
2

2p̊
hq2p−p̊/p∇f(q)

PolyLTVI

qk+1 = qk + h
p

p̊
q

1−p̊/p
k

qk+1 = qk +
hp3

p̊2q
p−1+2p̊/p
k

rk −
Ch2p4

p̊2
q
p−2p̊/p
k ∇f(qk)

rk+1 =
p̊2q

p+p̊/p
k

hp3q
1−p̊/p
k+1

(qk+1 − qk)

PolySV

rk+ 1
2
= rk −

p2

2p̊
Chq

2p−p̊/p
k ∇f(qk)

Solve qk+1 = qk +
hp

2p̊
(q1−p̊/p

k + q
1−p̊/p
k+1 )

qk+1 = qk +
hp2

2p̊
(q−p−p̊/pk + q

−p−p̊/p
k+1 ) rk+ 1

2

rk+1 = rk+ 1
2
− p

2

2p̊
Chq

2p−p̊/p
k+1 ∇f(qk+1)

ExpoHTVI

qk+1 = qk +
η

η̊
h

rk+1 = rk −
η2

η̊
Che2ηqk∇f(qk)

qk+1 = qk +
η2

η̊
he−ηqkrk+1

ExpoLTVI

qk+1 = qk +
η

η̊
h

qk+1 = qk +
hη3

η̊2
e−ηqkrk −

Ch2η4

η̊2
eηqk∇f(qk)

rk+1 =
η̊2

hη3
eηqk(qk+1 − qk)
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ExpoSLC

r ← r − Chη
2

2η̊
e2ηq∇f(q)

q← q + hη
2η̊

q ← q + hη2

η̊eηq
r

q← q + hη
2η̊

r ← r − Chη
2

2η̊
e2ηq∇f(q)

ExpoSV

rk+ 1
2
= rk −

η2

2̊η
Che2ηqk∇f(qk)

qk+1 = qk +
η

η̊
h

qk+1 = qk +
hη2

2η̊
(e−ηqk+1 + e−ηqk) rk+ 1

2

rk+1 = rk+ 1
2
− η

2

2̊η
Che2ηqk+1∇f(qk+1)

ExpoToPolyHTVI

qk+1 = (1 + ηh
p

)qk

rk+1 = rk −
η2

p
Chqke

2ηqk∇f(qk)

qk+1 = qk +
hη2

peηqk
qkrk+1

ExpoToPolySLC

r ← r − Chqη
2

2p
e2ηq∇f(q)

q← qe
ηh
2p

q ← q + hqη
2

peηq
r

q← qe
ηh
2p

r ← r − Chqη
2

2p
e2ηq∇f(q)

ExpoToPolyLTVI

qk+1 = (1 + ηh
p

)qk,

qk+1 = qk +
hq2

kη
3

p2eηqk
rk −

Ch2η4

p2
q2
ke
ηqk∇f(qk),

rk+1 =
p(p + ηh)
hη3q2

k

eηqk(qk+1 − qk).

ExpoToPolySV

rk+ 1
2
= rk −

η2

2p
Chqke

2ηqk∇f(qk),

qk+1 =
2p + ηh
2p − ηhqk,

qk+1 = qk +
hη2

2p
(qke−ηqk + qk+1e

−ηqk+1) rk+ 1
2
,

rk+1 = rk+ 1
2
− η

2

2p
Chqk+1e

2ηqk+1∇f(qk+1),
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PolyToExpoHTVI

qk+1 = qk + h
p

η
e−

η
p
qk

rk+1 = rk −
Chp2

ηe
η
p
qk
q2p−1
k ∇f(qk)

qk+1 = qk + h
p2

ηqp+1
k

e−
η
p
qkrk+1

PolyToExpoSLC

r ← r − hCp
2

2η
q2p−1e−

η
p
q∇f(q)

q← p

η
log (e

η
p
q + h

2
)

q ← q + hp2

ηqp+1
e−

η
p
qr

q← p

η
log (e

η
p
q + h

2
)

r ← r − hCp
2

2η
q2p−1e−

η
p
q∇f(q)

PolyToExpoLTVI

qk+1 = qk + h
p

η
e−

η
p
qk

qk+1 = qk +
hp3

η2qp+1
k e

2η
p
qk
rk −

Ch2p4

η2e
2η
p
qk
qp−2
k ∇f(qk)

rk+1 =
η2qp+1

k

hp3
e
η
p
(qk+1+qk)(qk+1 − qk)

PolyToExpoSV

rk+ 1
2
= rk −

p2

2η
Chq2p−1

k e−
η
p
qk∇f(qk)

Solve qk+1 = qk +
hp

2η
(e−

η
p
qk + e−

η
p
qk+1)

qk+1 = qk +
hp2

2η
(q−p−1

k e−
η
p
qk + q−p−1

k+1 e
−
η
p
qk+1) rk+ 1

2

rk+1 = rk+ 1
2
− p

2

2η
Chq2p−1

k+1 e
−
η
p
qk+1∇f(qk+1)

5.3.2 Problems of Interest

A subset C of Rd is convex if λx + (1 − λ)y ∈ C for any x, y ∈ C and λ ∈ [0,1]. A

differentiable function f ∶ Rd → R is convex if its domain dom(f) is convex and for any

λ ∈ [0,1],

f (λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), ∀x, y ∈ dom(f), (5.38)

or equivalently if

f(y) ≥ f(x) +∇f(x)⊺(y − x), ∀x, y ∈ dom(f). (5.39)
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A differentiable function f ∶ Rd → R is strongly convex if there exists µ > 0 such that

f(x) − µ∥x∥2 is convex, or equivalently if

f(y) ≥ f(x) +∇f(x)⊺(y − x) + µ∥y − x∥2, ∀x, y ∈ dom(f). (5.40)

In our numerical experiments, we will use termination criteria of the form,

∣f(xk) − f(xk−1)∣ < δ and ∥∇f(xk)∥ < δ, (5.41)

for various values of the tolerance δ, and solve the following convex problems:

Problem 5.1. Minimize the quartic polynomial

f(x) = 1 + [(x − 1)⊺Σ(x − 1)]2
, where Σij = 0.9∣i−j∣ and x ∈ Rd. (5.42)

This convex (not strongly convex) function achieves its global minimum at x∗ = (1, . . . , 1)⊺.

Problem 5.2. Minimize the convex (not strongly convex) function

f(x1, x2) = x1 + x2
2 − ln(x1x2), (5.43)

which achieves its global minimum at x∗ = (1,
√

2/2)⊺.

Problem 5.3. Minimize the strongly convex function

f(x1, ..., xd) =
d

∑
k=1

xk logxk. (5.44)

This function, known as the negative entropy function, achieves its global minimum at

x∗ = (e−1, . . . , e−1)⊺.

Problem 5.4. Minimize the ill-conditioned strongly convex function

f(x1, x2, x3) = 1 + 0.01x2
1 + x2

2 + 100x2
3, (5.45)

which achieves its global minimum at x∗ = (0,0,0)⊺.
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Problem 5.5 (Linear Regression or Least Squares). Given a matrix A ∈ Rm×n with

m ≥ n and a vector b ∈ Rm, consider the problem of finding a vector x ∈ Rn such that

∥Ax − b∥2 is minimized. The least squares problem has many applications in data-fitting

and interpolation. It can be formulated as the minimization of

f(x) = 1

2
x⊺A⊺Ax − b⊺Ax, (5.46)

with gradient given by ∇f(x) = A⊺Ax − A⊺b. A vector x ∈ Rn is a solution of the least

squares problem if and only if it satisfies the normal equation A⊺Ax = A⊺b. Furthermore,

the least squares problem has a unique solution, given by x∗ = (A⊺A)−1A⊺b, if and only if

the matrix A has full rank [Trefethen and Bau, 1997].

There are also regularized versions of the least squares problem or linear regression

[Boyd and Vandenberghe, 2004; Bertsekas, 2009], to penalize larger values of the vector x.

A common form of regularization is Tikhonov regularization [Phillips, 1962; Tikhonov and

Arsenin, 1977] (or `2 regularization), where we minimize the convex function

f(x) = ∥Ax − b∥2
2 + λ∥x∥2

2, (5.47)

for some λ > 0, which has a unique minimizer x∗ = (A⊺A + λb)−1A⊺b.

Another regularized version is the `1 penalized linear regression (also known as the

Lasso problem [Tibshirani, 1996]), where we minimize the convex (not strongly convex)

function

f(x) = 1

2
∥Ax − b∥2

2 + λ∥x∥1. (5.48)

Problem 5.6 (Logistic Regression for Binary Classification). Given a set of feature

vectors x1, . . . , xm ∈ Rn and associated labels y1, . . . , ym ∈ {−1,1}, we want to find a vector

w ∈ Rn such that sign(w⊺x) is a good model for y(x). This can be formulated as the

problem of minimizing the convex (not strongly convex) function

f(w) =
m

∑
i=1

log (1 + exp (−yiw⊺xi)). (5.49)
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As for linear regression, there are also regularized versions of logistic regression, such as `1

and `2 regularized logistic regression:

f(w) =
m

∑
i=1

log (1 + exp (−yiw⊺xi)) + λ∥x∥1, (5.50)

f(w) =
m

∑
i=1

log (1 + exp (−yiw⊺xi)) + λ∥x∥2
2. (5.51)

Problem 5.7 (Fermat–Weber Location Problem [Boltyanski et al., 1999; Drezner

and Hamacher, 2002; Beck and Teboulle, 2009]). Given a set of points y1, . . . , ym ∈ Rn and

associated positive weights w1, . . . ,wm ∈ R, we want to find the location x ∈ Rn whose sum

of weighted distances from the points y1, . . . , ym is minimized. In other words, we wish to

minimize the convex function

f(x) =
m

∑
j=1

wj∥x − yj∥. (5.52)

The Fermat–Weber location problem is at the heart of Location Theory and has countless

applications across many fields of science and engineering.

Remark 5.2. A Tikhonov-type regularization can also be achieved by modifying the

second-order differential equation instead of adding a penalty to the objective function (see

[Jendoubi and May, 2010; Attouch and Czarnecki, 2017; Attouch and Chbani, 2018; Alecsa

and László, 2021] for instance). The idea is to add an extra term ε(t)x(t) with ε(t)→ 0

as t→∞ to the second-order differential equation of interest:

ẍ(t) + α(t)ẋ(t) + γ(t)∇f(x(t)) + ε(t)x(t) = 0. (5.53)

This extra term forces the generated trajectory to converge to a solution of minimal norm.

This type of modified differential equation can be generated from a variational framework

via Lagrangians and Hamiltonians of the form

L(x, v, t) = 1

2
α(t)⟨v, v⟩ + ε(t)⟨v, x⟩ − γ(t)f(x), (5.54)

H(x, p, t) = 1

2α(t)⟨p − ε(t)x, p − ε(t)x⟩ + γ(t)f(x), (5.55)

whose Euler–Lagrange equation reads

α(t)ẍ(t) + α̇(t)ẋ(t) + γ(t)∇f(x(t)) + ε̇(t)x(t) = 0. (5.56)

170



5.4 Controlling the Oscillatory Behavior

The Bregman Euler–Lagrange equation (5.7) can be written in the form

ẍ(t) + d(t)ẋ(t) + b(t)∇f(x(t)) = 0. (5.57)

The introduction of momentum in the Bregman dynamical system causes the solution to

this ordinary differential equation to overshoot frequently in its path towards the minimizer

of the objective function f , and as a result the continuous-time solution can be highly

oscillatory. Therefore, this differential equation can be thought of as modeling a nonlinear

oscillator with damping, and the convergence of the function f to its minimum value is

not monotone along Bregman trajectories. This is similar to what was observed for the

limiting continuous differential equation for Nesterov’s accelerated gradient method [Su

et al., 2016; Muehlebach and Jordan, 2019] and for most momentum methods. These

oscillations are problematic since they can significantly slow down optimization algorithms

that are derived from the discretization of these Bregman differential equations. Indeed, to

resolve the fast oscillations of the differential equation, the time-step in the discretization

has to be reduced sufficiently, which can considerably increase the number of iterations

and gradient evaluations needed to achieve convergence. If the time-step is not taken small

enough, the momentum in the algorithms can lead to large overshoots which can result

in divergence. It would therefore be desirable to have a mechanism to neutralize these

oscillations. Fortunately, there are ways to reduce the effect of these oscillations, which we

will discuss in the remainder of this section.

5.4.1 Momentum Restarting

Momentum in the optimization algorithms causes the solution to the Bregman

Euler–Lagrange equation to overshoot frequently on its path towards the minimizer of f .

One strategy to control these overshoots and reduce the effect of the resulting oscillations

is to use restarting or momentum restarting schemes, previously explored in [Powell,

1977; Dai et al., 2004; O’donoghue and Candès, 2015; Giselsson and Boyd, 2015; Su et al.,

2016; Fercoq and Qu, 2016; Donghwan and Fessler, 2018; Fercoq and Qu, 2019; Roulet

and d’Aspremont, 2020; Renegar and Grimmer, 2022].
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We will consider three different momentum restarting schemes:

● Function Scheme: Restart momentum whenever

f(qk) > f(qk−1),

that is, whenever the function evaluation at the new update moves away from its

minimum value, to try to avoid wasting iterations in a bad direction.

● Gradient Scheme: Restart momentum whenever

∇f(qk)(qk − qk−1) > 0

that is, whenever momentum seems to take the new updates in a bad direction,

measured using the gradient at that point.

● Velocity Scheme: Restart momentum whenever

∥qk+1 − qk∥ < ∥qk − qk−1∥

that is, whenever the norm of the (discrete version of the) velocity ∥q̇∥ starts

decreasing, to try to maintain a high velocity along the trajectory.

Note that the quantities needed to implement these restarting schemes are already

calculated in the standard versions of the optimization algorithms, and thus there is a

negligible difference in the computational costs of each iteration in the restarted and

non-restarted schemes. We can also require a minimum number of iterations between

momentum restarts, as in [Su et al., 2016], to avoid having consecutive restarts that

are too close to each other. In practice however, it did not seem to really improve the

computational efficiency of the algorithm and could sometimes negatively impact the

overall performance. For simplicity, we will not impose a minimum number of iterations

between consecutive restarts.
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In our first numerical experiment, we compared the performance of the standard

algorithms to their restarted versions on three different problems for fixed values of all the

parameters except the time-step h. Figure 5.1 shows the resulting error plots after tuning

the value of h optimally.
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Figure 5.1: Error vs. Iterations number as the standard PolyHTVI and ExpoHTVI

algorithms and their restarted versions (Function (F), Gradient (G) and Velocity (V)) are

applied to Problem 5.1 (left), Problem 5.2 (middle), and Problem 5.3 (right).

We can clearly see that the restarted versions of the algorithms are much less

oscillatory, and as a result they can sometimes allow for much larger time-steps leading to

significantly faster algorithms, as is the case for Problems 5.2 and 5.3. Note however that

Problem 5.1 is a special instance where larger time-steps cannot be taken in the algorithms

with a momentum restarting scheme, despite their non-oscillatory nature. It should be

noted nevertheless that although the use of momentum restarting may not always lead to

significant improvements in computational efficiency, it does not penalize computational

efficiency either.
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We have performed additional experiments to obtain a better idea of the benefits of

momentum restarting in terms of computational efficiency, robustness and stability. More

precisely, we solved optimization problems using the different versions of the algorithms on

a 100 × 100 grid with logarithmic spacing in the parameter (C,h)-plane, and recorded the

number of iterations required to achieve certain convergence criteria. Figures 5.2, 5.3, 5.4,

and 5.5 display the results as filled contour plots (where the absence of color indicates either

divergence or failure of the algorithm to converge in less than 106 iterations). Table 5.1

displays the number of iterations required to converge by each version of the algorithms

with its optimal (C,h) pair on the 100 × 100 logarithmically-spaced grid.

Figure 5.2 confirms the earlier observations that restarting can significantly reduce

the number of iterations needed to converge, and we can also see that the restarted versions

of the algorithm are more robust, since the regions of fast convergence are larger than for

the standard algorithm. As a result, it is easier to tune the restarted algorithms to achieve

fast convergence. Note as well from Figure 5.3 that a restarting scheme can significantly

improve the stability of the algorithms. Indeed, we can that as the convergence criteria

are made stricter going from Figure 5.2 to Figure 5.3, the regions of fast convergence have

not shrunk as dramatically for the restarted algorithms as for the standard version. Given

a converging (C,h) pair for a restarted algorithm in Figure 5.2, the restarted algorithm

usually remains convergent for that (C,h) pair with the stricter criteria in Figure 5.2

with a slightly increased number of iterations required. This is not true for the standard

algorithm where the increase in number of iterations is much more significant, and there is

a larger region of initially convergent (C,h) pairs where the standard algorithm diverges

when the stricter convergence criteria is imposed.

As observed earlier in Figure 5.1, we see from Figure 5.4 that momentum restarting

does not lead to significant improvements in computational efficiency for Problem 5.1,

but also does not penalize computational efficiency in that case. From Figure 5.4, we see

that this observation extends to robustness and stability. since all the different versions

of the algorithm share similar convergence regions given the same parameter values and

convergence criteria.
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Figure 5.2: Contour plot of the number of iterations required to achieve convergence with

δ = 10−5 in the (C,h)-plane, for p = p̊ = 4 PolyHTVI applied to Problem 5.2.
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Figure 5.3: Contour plot of the number of iterations required to achieve convergence with

δ = 10−8 in the (C,h)-plane, for p = p̊ = 4 PolyHTVI applied to Problem 5.2.
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Figure 5.4: Contour plot of the number of iterations required to achieve convergence in

the (C,h)-plane, for the p = p̊ = 8 PolyHTVI algorithm applied to Problem 5.1.

All the observations made so far also extend to the other families of Bregman

dynamics and other algorithms, as can be seen in Figure 5.5 for the ExpoSLC algorithm

for instance, where momentum restarting leads to significant gains in computational

efficiency, robustness and stability for Problem 5.2. Table 5.1 provides some additional

data supporting the significant gain in efficiency that can be achieved using momentum

restarting.

Overall, all the numerical experiments conducted in this section unequivocally

support the use of momentum restarting in the algorithms for accelerated optimization,

and it can be seen from Figures 5.2, 5.3, 5.4, and 5.5 and Table 5.1 that the gradient-based

restarting scheme consistently outperforms the other two restarting schemes in terms of

computational efficiency, robustness and stability. Unless stated otherwise, we will now

always use momentum restarting based on the gradient scheme in the remainder of this

chapter, without explicitly stating it every time.
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Figure 5.5: Contour plot of the number of iterations required to achieve convergence with

δ = 10−5 in the (C,h)-plane, for η = η̊ = 1 ExpoSLC applied to Problem 5.2.

Table 5.1: Comparison of the fastest convergence achieved by the standard algorithms

and the restarting schemes on various problems with different tolerances δ (displayed in

terms of number of iterations required to achieve the termination criteria).

Algorithm Problem δ No Restart Function Scheme Gradient Scheme Velocity Scheme
PolyHTVI Problem 5.1 10−12 52 52 52 108
PolyHTVI Problem 5.2 10−5 621 39 23 34
PolyHTVI Problem 5.2 10−8 15994 80 51 57
PolyHTVI Problem 5.3 10−8 4121 60 11 16
PolyHTVI Problem 5.4 10−8 14723 60 12 14
PolyHTVI Problem 5.5 10−5 3917 104 33 38
ExpoSLC Problem 5.1 10−12 75 68 64 155
ExpoSLC Problem 5.2 10−5 3929 50 20 21
ExpoSLC Problem 5.2 10−8 204598 91 27 32
ExpoSLC Problem 5.3 10−8 17081 66 15 18
ExpoSLC Problem 5.4 10−8 58028 72 10 12
ExpoSLC Problem 5.5 10−5 21440 54 27 41
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5.4.2 The Effect of the Parameter C

The parameter C in the polynomial and exponential subfamilies of Bregman

dynamics can sometimes provide a simple way to control the oscillatory behavior of the

second-order differential equation. From the point of view of perturbation theory, the

polynomial and exponential Bregman Euler–Lagrange equations (5.11) and (5.16),

q̈(t) + p + 1

t
q̇(t) +Cp2tp−2∇f(q(t)) = 0, and q̈(t) + ηq̇ +Cη2eηt∇f(q(t)) = 0, (5.58)

can be thought of as perturbations of the simpler differential equations,

ü(t) + p + 1

t
u̇(t) = 0, and v̈(t) + ηv̇ = 0. (5.59)

The solutions to these two unperturbed equations are given by

u(t) = (k1t
−p + k2)1, and v(t) = (k3e

−ηt + k4)1, (5.60)

for some constants k1, k2, k3, k4 depending on the initial conditions. These unperturbed

solutions are non-oscillatory, and converge monotonically to a constant vector at the

respective rates of O(t−p) and O(e−ηt). We can thus think of the terms Cp2tp−2∇f(q(t))
and Cη2eηt∇f(q(t)) as perturbations steering the dynamical system towards the minimizer

of the objective function f , in an oscillatory fashion. The parameter C, which appears

in front of these two perturbation terms, should therefore be chosen, in theory, to be

small enough to control the oscillations but also large enough to guide the dynamical

system towards the minimizer of the objective function. The situation is similar in the

ExpoToPoly and PolyToExpo subfamilies of Bregman dynamics.

This perturbation theoretic point of view and the numerical results which will be

presented in this section suggest that the parameter C can play an important role reducing

the effect of oscillations and improving the performance of optimization algorithms. The

role of C has not been sufficiently explored so far in this dissertation and in the literature

exploiting the variational framework for accelerated optimization (in [Wibisono et al., 2016;

Jordan, 2018; Betancourt et al., 2018; Campos et al., 2021] for instance), and the resulting

dynamical systems were highly-oscillatory and thus required smaller time-steps for their

discretizations. As a consequence, the resulting optimization algorithms might not be as

competitive as they could have been. Note as well that the limiting continuous differential
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equation for Nesterov’s Accelerated Gradient introduced in [Su et al., 2016] can be thought

of as the p = 2 polynomial Bregman dynamics with C = 1/4, which results in the highly

oscillatory behavior observed in the continuous dynamics associated to most objective

functions, and in the numerous discretizations of these dynamics which can be found in

the literature. This observation also extends to the Riemannian manifold generalization of

this variational framework for accelerated optimization [Duruisseaux and Leok, 2022d],

where the constant C might not have been optimally tuned in practice (in Chapter 4 and

in [Tao and Ohsawa, 2020; Lee et al., 2021] for instance).

As a first example, Figures 5.6 and 5.7 display the changes in the polynomial and

exponential Bregman dynamics for Problem 5.1 as the parameter C is decreased. The

oscillations are clearly neutralized in the continuous solutions as C decreases. Although

the convergence happens later in time for lower values of C, this is usually not an issue

since the neutralization of the oscillations allows for larger time-steps when discretizing, as

can be seen in Figure 5.8. This could also be seen for instance in the ‘No Restart’ contour

plots presented in Figures 5.2, 5.3, 5.4, and 5.5, where lower values of C allowed for larger

time-steps h. Unfortunately, this behavior as the value of C is decreased does not seem to

be universal, as can be seen from Figures 5.9 and 5.10 for Problem 5.4.
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Figure 5.6: Error as a function of time t along the p = p̊ = 6 polynomial Bregman dynamics

for Problem 5.1, with different values of the constant C.
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Figure 5.7: Error as a function of time t along the η = η̊ = 0.5 exponential Bregman

dynamics for Problem 5.1, with different values of the constant C.
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Figure 5.8: Discretization of the polynomial Bregman dynamics using PolyHTVI with

different values of C for Problem 5.1 (without momentum restarting).
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Figure 5.9: Error as a function of time t along the p = p̊ = 6 polynomial Bregman dynamics

for Problem 5.4, with different values of the constant C.
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Figure 5.10: Error as a function of time t along the η = η̊ = 0.5 exponential Bregman

dynamics for Problem 5.4, with different values of the constant C.

We will now try to obtain a better understanding of the dependence on C of the

computational efficiency of the optimization algorithms, and of how a good choice of

parameter C depends on the other variables.
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Preliminary experiments showed that the convergence regions are very similar for

the different algorithms within the same adaptive family of Bregman dynamics, so we

will only use the HTVI algorithms here but the results extend to the other families of

algorithms. We will return to the comparison of the different geometric integrators later

in Section 5.6.

Let us first investigate whether the regions of optimal convergence to the minimizer

in the (C,h)-plane are problem-dependent. Figures 5.11 and 5.12 display the convergence

regions obtained when using the HTVI algorithm for the polynomial and exponential

Bregman dynamics on four different objective functions. Unfortunately, these numerical

results show that the regions of optimal convergence are problem-dependent and as a

result we will not be able to find a single value of C which will achieve almost-optimal

performance on all problems.

Figure 5.11: Contour plot of the number of iterations required to achieve convergence with

δ = 10−6 in the (C,h)-plane, for the p = p̊ = 6 PolyHTVI algorithm applied to Problems 5.1,

5.2, 5.3, 5.4.
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Figure 5.12: Contour plot of the number of iterations required to achieve convergence with

δ = 10−6 in the (C,h)-plane, for the η = η̊ = 6 ExpoHTVI algorithm applied to Problems 5.1,

5.2, 5.3, 5.4.

However, from Figures 5.13, 5.14 and 5.15, we can see that for fixed values of

p, p̊, η, η̊, the convergence regions in the (C,h)-plane are left almost unchanged as the

dimension of the problem is increased from d = 3 to d = 100, although the numbers of

iterations required increase slightly with d. This observation can improve significantly the

process of tuning the optimization algorithm for high-dimensional problems by first tuning

the algorithm on a similar low-dimensional problem, which could be particularly helpful

for certain machine learning applications.

Note that all the observations made in this section extend to the ExpoToPoly and

PolyToExpo subfamilies of time-adaptive Bregman dynamics.
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Figure 5.13: Number of iterations required to achieve δ = 10−6 convergence in the (C,h)-
plane, for p = 6, p̊ = 2 PolyHTVI applied to Problem 5.1 with different dimensions d.

Figure 5.14: Number of iterations required to achieve δ = 10−6) convergence in the

(C,h)-plane, for p = 6, p̊ = 2 PolyHTVI applied to Problem 5.3 with different dimensions d.
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Figure 5.15: Contour plot of the number of iterations required to achieve convergence

(δ = 10−6) in the (C,h)-plane, for the η = 2, η̊ = 1 ExpoHTVI algorithm applied to

Problem 5.1 with different dimensions d.

5.4.3 Other Approaches to Control Oscillations

There are other possible approaches to control the oscillations in second-order

nonlinear differential equations. One such method is Hessian-driven damping [Alvarez

et al., 2002; Attouch et al., 2020, 2021, 2022], where the idea is to add a damping term

which involves the Hessian of the objective function, β(t)∇2f(x(t))ẋ(t), to the differential

equation of interest:

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0. (5.61)

The addition of this Hessian-driven damping term to the differential equation

appears to neutralize the undesirable oscillations in the continuous solution to this second-

order differential equation. Furthermore, it was shown using Lyapunov analysis that
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under suitable assumptions, solutions to the modified equation not only achieved a similar

convergence rate to the minimizer as the solutions to the original equation, but also

benefited from additional convergence properties for the norm of the gradient ∇f . First-

order optimization algorithms were also derived by discretizing the modified second-order

differential equation, after rewriting ∇2f(x(t))ẋ(t) as d
dt∇f(x(t)). Unfortunately, we

cannot derive a simple variational formulation for this modified second-order differential

equation, so we cannot easily incorporate Hessian-driven damping into our framework

which relies on geometric numerical integration of Lagrangian or Hamiltonian systems.

Another possible approach to control oscillations consists in simplifying the Bregman

dynamics using local approximations. For instance, one could integrate local linearizations

of Hamilton’s equations, or use a local quadratic model for the objective function, or

start from local quadratic Hamiltonian approximations to the Bregman Hamiltonian. We

will not consider these methods here because they can suffer from additional numerical

stability issues coming from the approximations at play, and it can be very challenging to

design a symplectic integrator which preserves the nice properties of the dynamics across

all the different local approximations.

A different approach consists in designing a symplectic integrator which can travel

faster along the oscillations via larger time-steps. This may be achievable using Spectral

or Galerkin variational integrators [Marsden and West, 2001; Leok and Zhang, 2011; Leok

and Shingel, 2012b; Hall, 2015], which rely on a choice of basis functions that span a

good approximation space for the Bregman dynamics (for instance, simulations of the

polynomial Bregman dynamics suggest that the error usually follows a trajectory which

can be well-approximated using functions of the form t−γ cos (αtβ) or t−γ sin (αtβ), where

γ is the decay rate, α tunes the frequency of oscillations, and β ∈ (0,1) characterizes the

slowing down of the oscillation frequency). Due to the oscillatory nature of the dynamical

system, it might also be advantageous to use Filon-type [Filon, 1930] or Levin-type [Levin,

1982, 1996] quadrature rules in the construction of the integrators, since they are designed

specifically for highly oscillatory integrals (see [Deaño et al., 2018]).
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Yet another possibility involves averaging techniques [Verhulst, 1996; Sanders et al.,

2007; Farr, 2009; Schmitt and Leok, 2017]. The extended Bregman Hamiltonians or

Lagrangians can be split as

H(q̄, r̄) =HA(q̄, r̄) +CHB(q̄), (5.62)

or

L(q̄, q̄′) = LA(q̄, q̄′) +CLB(q̄), (5.63)

where the A-component is dominating and can be solved exactly (or efficiently approximated

with high accuracy), and the B-component generates small perturbations affecting the

overall dynamics. One can then hope to integrate the dominating dynamics very accurately

with larger time-steps and incorporate the influence of the small perturbations by averaging

them out. Unfortunately, although this approach seemed to neutralize the oscillations in

the solution in practice, it did not allow the use of larger time-steps, and the resulting

algorithm was actually less competitive and robust because of the implicit nature of the

update for the momentum r.

5.5 The Use of Time-Adaptivity

in the Momentum Restarted Algorithms

We will first investigate how the optimization algorithms behave as the values of

the parameters p̊ and η̊ are varied. In Chapters 3 and 4 and in [Duruisseaux et al., 2021;

Duruisseaux and Leok, 2022a,c,d, 2023a], numerical experiments with the polynomial

Bregman dynamics suggested that time-adaptivity (i.e. using p̊ ≠ p) could result in

significantly faster optimization algorithms due to the exponentially growing time-steps

that they use (instead of constant time-steps for p̊ = p). These numerical experiments were

however carried with the standard versions of the algorithms and without a careful tuning

of the parameter C.
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New numerical experiments carried in this chapter suggest that the introduction of

momentum restarting schemes in the optimization algorithms enables significantly faster

optimization and seems to remove the advantages of the time-adaptive formulation. Indeed,

the contour plots in (C,h)-space presented in Figures 5.16, 5.17, 5.18, 5.19, and 5.20, 5.21

show that the performance and robustness of the PolyHTVI and ExpoHTVI algorithms

with momentum restarting is almost unaffected by the introduction of time-adaptivity,

regardless of which of Problems 5.1, 5.2, 5.3, 5.4 they are applied to. This is confirmed

by the contour plots in (p̊, h)-space and (η̊, h)-space presented in Figures 5.22 and 5.23

where we can see that for fixed values of p or η, the value of p̊ or η̊ has very little effect on

the performance of the optimization algorithms.
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Figure 5.16: Contour plot of the number of iterations required to achieve convergence with

δ = 10−6 in the (C,h)-plane, for the PolyHTVI algorithm applied to Problem 5.1 with

different values of p and p̊.
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Figure 5.17: Contour plot of the number of iterations required to achieve convergence with

δ = 10−6 in the (C,h)-plane, for PolyHTVI appliedto Problem 5.2.

Figure 5.18: Contour plot of the number of iterations required to achieve convergence with

δ = 10−6 in the (C,h)-plane, for PolyHTVI applied to Problem 5.3.
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Figure 5.19: Contour plot of the number of iterations required to achieve convergence with

δ = 10−8 in the (C,h)-plane, for PolyHTVI applied to Problem 5.4.
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Figure 5.20: Contour plot of the number of iterations required to achieve convergence with

δ = 10−7 in the (C,h)-plane, for ExpoHTVI applied to Problem 5.1.
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Figure 5.21: Contour plot of the number of iterations required to achieve convergence with

δ = 10−5 in the (C,h)-plane, for ExpoHTVI applied to Problem 5.2.
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Figure 5.22: Contour plot of the number of iterations required to achieve convergence with

δ = 10−6 in the (p̊, h)-plane, for PolyHTVI applied to Problems 5.1 (with C = 10−5) and

5.3 (with C = 1). The dotted line represents the non-adaptive algorithm p = p̊.
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Figure 5.23: Contour plot of the number of iterations required to achieve convergence with

δ = 10−6 in the (η̊, h)-plane, for ExpoHTVI applied to Problems 5.1 (with C = 10−5) and

5.3 (with C = 105). The dotted line represents the non-adaptive algorithm η = η̊.

Overall, the use of time-adaptivity allows for a larger family of algorithms from

which one might be able to extract a more efficient algorithm than without time-adaptivity.

However, our numerical experiments suggest that with momentum restarting, the benefits

time-adaptivity may provide are very limited and are not worth the computational effort

of tuning one additional parameter p̊ or η̊. For this reason, we will now discard time-

adaptivity, and focus on the non-adaptive approaches. More precisely, we will not consider

the ExpoToPoly and PolyToExpo Bregman subfamilies anymore, and will only focus on

the p = p̊ polynomial and η = η̊ exponential Bregman subfamilies.

5.6 Comparison of Integrators

Without time-adaptivity, the optimization algorithms derived in Section 5.3.1 can

be simplified into the following optimization algorithms which are now all explicit:
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PolyHTVI

rk+1 = rk −Chpq2p−1
k ∇f(qk)

qk+1 = qk + hpq−p−1
k rk+1

qk+1 = qk + h

PolySLC

r ← r − 1

2
Chpq2p−1∇f(q)

q← q + h
2

q ← q + hpq−p−1r

q← q + h
2

r ← r − 1

2
Chpq2p−1∇f(q)

PolyLTVI

qk+1 = qk + hpq−p−1
k rk −Ch2p2qp−2

k ∇f(qk)

rk+1 =
qp+1
k

hp
(qk+1 − qk)

qk+1 = qk + h

PolySV

rk+ 1
2
= rk −

1

2
Chpq2p−1

k ∇f(qk)

qk+1 = qk + h

qk+1 = qk +
h

2
p (q−p−1

k + q−p−1
k+1 ) rk+ 1

2

rk+1 = rk+ 1
2
− 1

2
Chpq2p−1

k+1 ∇f(qk+1)

ExpoHTVI

rk+1 = rk −Cηhe2ηqk∇f(qk)

qk+1 = qk + ηhe−ηqkrk+1

qk+1 = qk + h

ExpoSLC

r ← r − 1

2
Cηhe2ηq∇f(q)

q← q + h
2

q ← q + ηhe−ηqr

q← q + h
2

r ← r − 1

2
Cηhe2ηq∇f(q)

ExpoLTVI

qk+1 = qk + hηe−ηqkrk −Cη2h2eηqk∇f(qk)

rk+1 =
eηqk

ηh
(qk+1 − qk)

qk+1 = qk + h

ExpoSV

rk+ 1
2
= rk −

1

2
Cηhe2ηqk∇f(qk)

qk+1 = qk + h

qk+1 = qk +
1

2
ηh (e−ηqk+1 + e−ηqk) rk+ 1

2

rk+1 = rk+ 1
2
− 1

2
Cηhe2ηqk+1∇f(qk+1)
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It should be noted that the HTVI and LTVI algorithms are now equivalent, and

will be referred to as LTVI from now on (since the construction of LTVIs extends to

Riemannian manifolds, while that of HTVIs does not). Note that we are still using

momentum restarting based on the gradient scheme in all our numerical experiments.

Regions of convergence in the (C,h) and (p, h) planes for the different algorithms

were computed based on 100×100 grids of points and are presented in Figures 5.24, 5.25,

and 5.26. We can see that the regions of fast convergence both in the (C,h)-plane and

(p, h)-plane for the different algorithms are almost identical, regardless of the termination

criteria. It seems that the three algorithms perform in a very similar way in terms of

computational efficiency, robustness, and stability.

We pushed the numerical experimentation further by solving Problems 5.1, 5.2, 5.3,

and 5.4 on a 3-dimensional grid of 1003 points in (C,p, h)-space. The results are displayed

in Figures 5.27, 5.28, 5.29, 5.30.

The top barplots investigate the overall robustness and efficiency of the algorithms.

They display the percentages of time each algorithm met the convergence criteria under

certain numbers of iterations. For instance, the first bar in the top plot of Figure 5.27

shows that SV converged in < 50 iterations roughly 5% of the time, in < 100 iterations

close to 10% of the time, and so on.

Each bar in the middle barplots compares the performance of two algorithms for a

specific problem, by displaying the percentages of times they outperformed each other.

For instance, the last bar in the middle plot of Figure 5.27 shows that the SV algorithm

outperformed its LTVI counterpart about 21% of the time, while the LTVI algorithm

outperformed the SV algorithm roughly 11% of the time.

The bottom barplots quantify the gain in efficiency of each algorithm versus the

others, by displaying the speedups observed in terms of number of iterations required. For

instance, the last bar in the bottom plot of Figure 5.27 shows that LTVI, when compared

to SV, achieves a speedup > 1.5× roughly 4.5% of the time, > 2× roughly 3.5% of the

time, etc... Note that for each bar, we only considered triplets (C,h, p) for which both

algorithms converged within 10000 iterations.
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Let us first focus on the polynomial Bregman family, based on the numerical results

displayed in Figures 5.27 and 5.28.

The top plots confirm the earlier observation that the 3 algorithms have very similar

regions of fast convergence, and are thus comparable in terms of robustness.

The middle and bottom plots indicate that SLC outperforms SV more often

than vice-versa, although both scenarios occur rather rarely. Although LTVI seems to

outperform SLC/SV roughly as regularly as vice-versa, the speedups LTVI allows when

compared to SLC/SV are not as significant and frequent as the slowdowns it entails.

It should also be noted that as the termination criteria are made stricter, the

differences and significant speedups between the methods become much rarer (although

this is partially due to the fact that smaller tolerances require more iterations and we

stopped iterating after 10000 iterations).

Overall, the three different algorithms perform very similarly, but the numerical

results presented here suggest that SLC might be a slightly better choice within the

polynomial Bregman family.

Let us now focus on the exponential Bregman family, based on the numerical results

displayed in Figures 5.29 and 5.30. As for the polynomial family, the 3 algorithms perform

very similarly in terms of robustness, and the differences in performance between the

algorithms become less significant as the convergence criteria are made stricter. SLC and

SV perform almost identically on all problems, regardless of the convergence criteria. Now,

it seems that LTVI outperforms SLC/SV slightly more often than vice-versa with the

more relaxed tolerances, but with less significant speedups, and as the convergence criteria

is made stricter, SLC/SV algorithms seem to outperform LTVI.

Overall, the three different algorithms perform very similarly, but the numerical

results presented here suggest that SLC/SV might be the slightly better choices for the

exponential Bregman family.
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Figure 5.24: Convergence regions in the (C,h)-plane for the PolyLTVI, PolySLC and

PolySV algorithms applied to Problems 5.1, 5.2, 5.3 with p = 8.

196



200
500

1500
5000

15000

50000

10-10

10-5

200500

1500
5000

15000

50000

200500

1500

5000

15000

50000

101

102

103

104

200
500

1500
5000

15000

50000

100 101010-10

10-5

200

200
500

1500
5000

15000

50000

100 1010

200

200
500

1500
5000

15000

50000

100 1010 101

102

103

104

Figure 5.25: Convergence regions in the (C,h)-plane for the ExpoLTVI, ExpoSLC and

ExpoSV algorithms applied to Problems 5.1, 5.2 with η = 6.

Figure 5.26: Convergence regions in the (p, h)-plane for the PolyLTVI, PolySLC and

PolySV algorithms applied to Problems 5.1, 5.4.
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Figure 5.27: Results for the polynomial Bregman family with δ = 10−5.
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Figure 5.28: Results for the polynomial Bregman family with δ = 10−10.
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Figure 5.29: Results for the exponential Bregman family with δ = 10−5.
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Figure 5.30: Results for the exponential Bregman family with δ = 10−10.
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To conclude this section, all the algorithms seem to perform very well and with

very small discrepancies, but if we had to choose an algorithm to integrate the Bregman

dynamics, it seems that the SLC algorithms with momentum restarting are the slightly

better choices. Algorithms 6, 7 show more detailed pseudocodes for the SLC algorithms:

Algorithm 6: Symmetric Leapfrog Composition of Component Dynamics for

Polynomial Bregman dynamics, with Momentum Restarting (PolySLC-R)

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd. Parameters

C,h, p > 0.

1 q← 1, G← ∇f(q), r ← −1
2Chpq

2p−1G

2 while convergence criteria are not met do

3 ∆q ← hp (q + h
2
)−p−1

r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 q← q + h
8 r ← r −Chpq2p−1G

Algorithm 7: Symmetric Leapfrog Composition of Component Dynamics for

Exponential Bregman dynamics with Momentum Restarting (ExpoSLC-R)

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd. Parameters

C,h, η > 0.

1 q← 1, G← ∇f(q), r ← −1
2Cηhe

2ηqG

2 while convergence criteria are not met do

3 ∆q ← ηhe−η(q+
h
2
)r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 q← q + h
8 r ← r −Cηhe2ηqG
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5.7 Tuning the Algorithms

We will now investigate how the PolySLC-R and ExpoSLC-R algorithms perform

as the parameters C,h, p, η are varied, and try to reduce the number of parameters needing

tuning in practice.

5.7.1 Tuning PolySLC-R

We solved Problems 5.1, 5.2, 5.3, 5.4 and two distinct randomly generated instances

of Problem 5.5 using PolySLC-R on a 3-dimensional grid of 500 × 153 × 500 points in

(C,p, h)-space (logarithmically-spaced in C between 10−12 and 1012, logarithmically-spaced

in h between 10−6 and 103, and linearly-spaced in p between 2 and 40), and recorded the

number of iterations needed to achieve convergence with δ = 10−10. Figure 5.31 displays

the number of (C,h) pairs for which convergence was achieved under 200 and 50 iterations

for each value of p. We can see that the value of p does not seem to significantly affect the

number of (C,h) pairs that exhibit fast convergence, once it is taken to be sufficiently large,

so tuning the parameter p carefully might not be very helpful and necessary. For numerical

stability reasons, which will be discussed in Section 5.8, it is preferable to use lower values of

p, so we will set p = 6 since this is a small value of p which performed very well in Figure 5.31.

We solved the same problems using PolySLC-R with p = 6 on a 2-dimensional grid

of 200 × 10000 logarithmically-spaced points in (C,h)-space (C between 10−15 and 1015,

h between 10−8 and 104). The results, presented in Figure 5.32, confirm the observation

made in Section 5.4.2 that there is no universally optimal value of C. However, C = 0.1

is an intermediate value which seems to work well for most problems, so we will set it

as the default value, but it might need some tuning in practice. A similar experiment

was conducted for 105 logarithmically-spaced values of h using PolySLC-R with p = 6 and

C = 0.1, and Figure 5.33 shows that h = 0.01 could be a good default value.
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Figure 5.31: Number of (C,h) pairs (out of 5002) for which convergence was achieved

under 200 and 50 iterations using PolySLC-R, as the value of p is varied.
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Figure 5.32: Number of values of h (out of 104) for which convergence was achieved under

200 iterations using PolySLC-R with p = 6, as the value of C is varied.
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Figure 5.33: The top two plots display the values of h for which PolySLC-R (p = 6, C = 0.1)

converged in < 200 iterations for each of the 6 problems considered. The bottom two plots

display the number of problems (out of 6) that were solved in < 200 iterations.

5.7.2 Tuning ExpoSLC-R

We solved Problems 5.1, 5.2, 5.3, 5.4 and 2 distinct randomly generated instances

of Problem 5.5 using ExpoSLC-R on a 3-dimensional grid of logarithmically-spaced

500 × 100 × 500 points in (C,η, h)-space (C between 10−12 and 1012, h between 10−6 and

103, η between 10−5 and 102), and recorded the number of iterations needed to achieve

convergence with δ = 10−10. Figure 5.34 displays the number of (C,h) pairs for which

convergence was achieved under 200 and 50 iterations for each value of η. Just like the value

of p in the polynomial Bregman algorithm, the value of η does not seem to significantly

affect the number of (C,h) pairs of fast convergence, as long as it falls between 0.001 and

10. Therefore, tuning the parameter η carefully might not be very helpful and necessary,

so we will fix it to η = 0.01.
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Figure 5.34: Number of (C,h) pairs (out of 5002) for which convergence was achieved

under 200 and 50 iterations using ExpoSLC-R, as the value of η is varied.

We then solved Problems 5.1, 5.2, 5.3, 5.4 and two distinct randomly generated

instances of Problem 5.5 using ExpoSLC-R with η = 0.01 on a 2-dimensional grid of

200 × 10000 logarithmically-spaced points in (C,h)-space (C between 10−15 and 1015, h

between 10−8 and 104). The results, presented in Figure 5.35 confirm the observation made

in Section 5.4.2 that there is no value of C which is universally optimal. However, C = 1

seems to work well for most problems, so we will set it as the default value, but it might

need some tuning in practice.

A similar experiment was conducted for 105 logarithmically-spaced values of h

using PolySLC-R with η = 0.01 and C = 1, and Figure 5.36 shows that h = 4 seems to

perform well on most problems considered here.

206



0

200

400

600

800

1000

1200

1400

10-15 10-10 10-5 100 105 1010 1015
0

200

400

600

800

1000

Figure 5.35: Number of values of h (out of 104) for which convergence was achieved under

200 iterations using ExpoSLC-R with η = 0.01, as the value of C is varied.

Figure 5.36: The top two plots display the values of h for which ExpoSLC-R (η = 0.01,

C = 1) converged in < 200 iterations for each of the 6 problems considered. The bottom

two plots display the number of problems (out of 6) that were solved in < 200 iterations.
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5.8 Temporal Looping Improves Numerical Stability

There is an important caveat to the promising performance observed for the

optimization algorithms constructed in this chapter. The evolution of the variables q,q

and r associated with the exponential Poincaré Hamiltonian,

H̄η(q̄, r̄) = η

2eηq
⟨r, r⟩ +Cηe2ηqf(q) + r, (5.64)

is guided by Hamilton’s equations,

q̇ = ηe−ηqr, ṙ = −Cηe2ηq∇f(q), q̇ = 1. (5.65)

From these equations of motion, we can see that the time variable q grows linearly without

bound, and as a result quantities like eηq grow exponentially without bound. In practice,

this will cause numerical instability due to numerical precision issues, since the unbounded

growth of certain terms cannot be balanced by the decay to 0 of other quantities which is

limited by machine precision. More precisely, looking at the updates of Algorithm 7,

r ← r −Cηhe2ηq∇f(q), q← q + h, q ← q +∆q = q + ηhe−η(q+h2 )r, (5.66)

we have at every iteration that

∆q ← A(∆q)previous +Beηq∇f(q), (5.67)

for some constants A and B. The decay to 0 of ∇f(q) is limited by machine precision,

while eηq grows without bound, and eventually the quantity Beηq∇f(q) becomes large

again and the position variable q moves away from the equilibrium it found near its optimal

value. Something analogous happens for the Bregman polynomial subfamily, except that

the growing exponential term is replaced by an unbounded growing polynomial term.

This numerical instability phenomenon is illustrated in Figure 5.37 which displays

the evolution of the error ∣f(xk)−f(x∗)∣ when the PolySLC-R and ExpoSLC-R algorithms

are applied to Problem 5.2. We can see that both algorithms first achieve convergence to

machine precision (after 134 and 154 iterations, respectively), stay at the minimizer for a

few hundred iterations, and finally are expelled away from the minimizer due to numerical

instability (after 314 and 399 iterations, respectively).
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Figure 5.37: The PolySLC-R and ExpoSLC-R algorithms applied to Problem 5.2.

In all our numerical experiments so far, the algorithms stopped when they reached

a desired convergence criterion, and as a consequence we did not observe this numerical

instability phenomenon as it happens only after convergence is achieved. However, in

practice, optimization algorithms are very often terminated after a specified number of

iterations instead of a specified tolerance being achieved. Therefore, we need a strategy to

avoid this numerical instability phenomenon.

Since the numerical instability results from the limitation imposed by machine

precision on accurately representing the decay to 0 of ∇f(q) while eηq grows without bound

in the exponential subfamily, it is natural to try to avoid this phenomenon by restricting

the growth of the term eηq, that is, by restricting the growth of q (and similarly in the

polynomial case). One possibility is to reset time whenever a certain numerical instability

criterion is met, via q ← βq for some β ∈ (0,1). A larger β is preferable to keep enough

momentum in case convergence to the minimizer was only suboptimal when the numerical

instability criterion was met, or if the algorithm is used in an online fashion or with a

stochastic or mini-batch approach. It is also preferable to avoid values of β very close to 1,

since the algorithm would then always remain close to numerical instability, and could

possibly become unstable if the criterion is not chosen very carefully. In practice, taking β

between 0.6 and 0.95 works well, by ensuring that a reasonable amount of momentum is

kept while avoiding the numerical instability region. Alternatively, one could reset time
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via q ← q − νh for some ν > 1. A smaller ν is preferable to retain momentum, while ν

should not be too close to 1 to avoid numerical instability. In practice, we will reset time

via q ← max(ε, βq) or q ← max(ε,q − νh), where ε is a small positive number, to avoid

very small or negative values of time q. This phenomenon where the time variable q is

stuck in a loop by resetting q← βq or q← q − νh whenever numerical instability is near

will be referred to as Temporal Looping.

Improving the ExpoSLC-R algorithm via temporal looping yields Algorithm 8,

which will be referred to as ExpoSLC-RTL:

Algorithm 8: Symmetric Leapfrog Composition for Exponential Bregman

dynamics, with Momentum Restarting and Temporal Looping (ExpoSLC-RTL)

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd.

Parameters C,h, p > 0, β ∈ (0,1) or ν > 1.

1 ε← 0.001, q← 1, G← ∇f(q), r ← −1
2Cηhe

2ηqG

2 while convergence criteria are not met do

3 ∆q ← ηhe−η(q+
h
2
)r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 if numerical instability criterion is met then q←max(ε, βq) or

q←max(ε,q − νh)
8 q← q + h
9 r ← r −Cηhe2ηqG

In our numerical experiments, we have chosen the following numerical instability

criterion to reset time in ExpoSLC-RTL:

Ch2η2eηq∥G∥ > e−ηh∥∆q∥. (5.68)

This numerical instability criterion roughly ensures that ∣B∣eηq∥∇f(q)∥ < ∣A∣∥(∆q)previous∥
in equation (5.67), so that the new position update is not significantly larger in norm than

the previous position update.
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Improving the PolySLC-R algorithm in a similar way via temporal looping yields

the following algorithm:

Algorithm 9: Symmetric Leapfrog Composition for Polynomial Bregman dy-

namics, with Momentum Restarting and Temporal Looping (PolySLC-RTL)

Input: An objective function f ∶ Rd → R. An initial guess q ∈ Rd.

Parameters C,h, p > 0, β ∈ (0,1) or ν > 1.

1 ε← 0.001, q← 1, G← ∇f(q), r ← −1
2Chpq

2p−1G

2 while convergence criteria are not met do

3 ∆q ← hp (q + h
2
)−p−1

r

4 q ← q +∆q

5 G← ∇f(q)
6 if G⊺∆q > 0 then restart momentum: r ← 0

7 if numerical instability criterion is met then q←max(ε, βq) or

q←max(ε,q − νh)
8 q← q + h
9 r ← r −Chpq2p−1G

In our numerical experiments, we have chosen the numerical instability criterion

Ch2p2(q + h)p+1∥G∥ > q∥∆q∥, (5.69)

which roughly ensures that the new position update is not significantly larger than the

previous one.

Figure 5.38 shows that adding temporal looping in the polynomial and exponential

Bregman optimization algorithms takes care of the numerical instability issue.

It can be seen from Figures 5.39 and 5.40 that adding temporal looping, with

the q ← max(ε, βq) scheme or q ← max(ε,q − νh) scheme, does not negatively affect the

performance of the algorithms, although the algorithms with temporal looping might

sometimes require a larger number of iterations to achieve convergence for a fixed (C,h)-
pair. Indeed the regions of fast convergence might be shifted slightly, but remained at

least as large if not larger when using temporal looping.
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Figure 5.38: The effect of temporal looping, when added to the PolySLC-R and ExpoSLC-R

algorithms, and applied to Problem 5.2.

Overall, we have seen that temporal looping can be very helpful to deal with

post-convergence numerical instability, and that it does not affect negatively the initial

performance of the algorithm. Note that temporal looping could be improved further

by tuning the numerical instability parameters β or ν, or by designing a better suited

criterion to detect upcoming numerical instability.
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Figure 5.39: Contour plot of the number of iterations required to achieve convergence

(δ = 10−8) in the (C,h)-plane, for the ExpoSLC-R and ExpoSLC-RTL algorithms, when

applied with η = 0.01 to Problems 5.1 and 5.2.

Figure 5.40: Contour plot of the number of iterations required to achieve convergence

(δ = 10−8) in the (C,h)-plane, for the PolySLC-R and PolySLC-RTL algorithms, when

applied with p = 10 to Problems 5.3 and 5.4.
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5.9 Testing for Machine Learning Applications

We now test our algorithms on more challenging optimization problems for machine

learning with a variety of model architectures, loss functions to minimize, and applications.

For reference, we will also solve these optimization problems using gradient descent and

the most commonly used optimizer in machine learning, Adam [Kingma and Ba, 2014]:

ADAM

mk+1 = β1mk + (1 − β1)∇f(xk)

vk+1 = β2vk + (1 − β2)∇f(xk)⊙∇f(xk)

m̃ = (1 − βk+1
1 )−1mk+1, ṽ = (1 − βk+1

2 )−1vk+1

xk+1 = xk − h(
√
ṽ + ε)−1m̃

Here, u ⊙ v denotes the elementwise multiplication of the vectors u and v. The

variable ε present in the updates of the Adam algorithm is there to avoid numerical

instability associated with division by 0 (with default value ε = 10−8 in [Kingma and Ba,

2014] and PyTorch). The three parameters of Adam are β1, β2 used for computing running

averages of gradients, and the learning rate h (with default values β1 = 0.9, β2 = 0.999,

h = 0.001 in [Kingma and Ba, 2014], PyTorch and TensorFlow).

The ExpoSLC-RTL and PolySLC-RTL algorithms have been implemented under

the more evocative names eBrAVO and pBrAVO (Bregman Accelerated Variational

Optimizer) in such a way that they can be used within the TensorFlow and PyTorch

frameworks. These algorithms are available at github.com/vduruiss/AccOpt via GNI, and

can be called in a similar way as the Adam algorithm in TensorFlow and PyTorch.

In TensorFlow:

optimizer = tf.keras.optimizers.Adam(learning_rate = 0.001)

optimizer = BrAVO_tf.eBravo(learning_rate = 1)

In PyTorch:

optimizer = torch.optim.Adam(model.parameters (), lr = 0.01)

optimizer = BrAVO_torch.eBravo(model.parameters (), lr = 1)
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We have first tested the performance of our BrAVO algorithms with automatic

differentiation on instances of the Binary Classification Problem 5.6 and the Fermat–Weber

Location Problem 5.7. Figure 5.41 shows the evolution of the loss function (5.49) when

trying to formulate a model separating blue and red regions of 2-dimensional space using

a line based on the displayed 500 randomly generated points. Figure 5.42 shows the

evolution of the loss function (5.52) when trying to solve the Fermat–Weber Location

Problem 5.7 with 5000 randomly generated vectors in R1000 and 5000 randomly generated

corresponding scalar weights.

We can see from Figures 5.41 and 5.42 that our algorithms solve the binary

classification and location problems with an accuracy and efficiency comparable to those of

the Adam and standard gradient descent (SGD) algorithms implemented in TensorFlow.

Figure 5.41: Comparison of algorithms applied to a Binary Classification Problem 5.6.

Figure 5.42: Comparison of algorithms applied to a Location Problem 5.7.
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Next, we have tested our algorithm on the popular multi-label image classification

problem based on the Fashion–MNIST dataset [Xiao et al., 2017]:

‘Fashion–MNIST is a dataset of Zalando’s article images consisting of a training set

of 60,000 examples and a test set of 10,000 examples. Each example is a 28×28 grayscale

image, associated with a label from 10 classes (t-shirt/top, trouser, pullover, dress, coat,

sandal, shirt, sneaker, bag, ankle boot)’.

We use nn.CrossEntropyLoss() as the loss function, and the following neural

network architecture in PyTorch as our classification model:

Layer (type) Output Shape Parameters

========================================================

dense (Dense) [-1, 784] 0

dense_1 (Dense) [-1, 64] 50,240

dense_2 (Dense) [-1, 64] 0

dense_3 (Dense) [-1, 64] 4,160

========================================================

Total Number of Parameters: 55 ,050

Figure 5.43 shows that the BrAVO algorithms achieve comparable accuracy and

efficiency on the Fashion–MNIST classification problem as the Adam and gradient descent

(SGD) algorithms.

Note that the momentum restarting scheme and the temporal looping strategy are

essential to the good behavior of the algorithms. Indeed, we can see from Figure 5.44 that

without them, the algorithms eventually lose convergence due to numerical instability. Note

as well that these strategies can also allow for larger time-steps which usually translates

into faster convergence.
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Figure 5.43: Evolution of the loss function and accuracy (in %) of Adam, standard

gradient descent (SGD) and the BrAVO algorithms, when applied to the Fashion–MNIST

multi-label classification problem.

Figure 5.44: The convergence and loss of convergence for the BrAVO algorithms when

implemented without momentum restarting and temporal looping, when applied to the

Fashion–MNIST multi-label classification problem.

We tested our algorithm on another popular multi-label image classification problem

based on the CIFAR-10 dataset [Krizhevsky, 2009]: ‘The CIFAR-10 dataset consists of

60000 32×32 color images in 10 mutually exclusive classes (airplane, automobile, bird, cat,

deer, dog, frog, horse, ship, truck), with 6000 images per class’.

We use nn.CrossEntropyLoss() as the loss function and a small Convolutional

Neural Network in PyTorch similar to the LeNet-5 architecture from [Lecun et al., 1998]:
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Layer (type) Output Shape Parameters

========================================================

Conv2d -1 [-1, 6, 28, 28] 456

Conv2d -2 [-1, 16, 10, 10] 2,416

Linear -3 [-1, 120] 48,120

Linear -4 [-1, 84] 10,164

Linear -5 [-1, 10] 850

========================================================

Total Number of Parameters: 62 ,006

The results are displayed in Figure 5.45.

Figure 5.45: Evolution over 20 epochs of the loss function and accuracy of various

algorithms when applied to the CIFAR–10 multi-label image classification problem.

Let us now consider the Natural Language Processing problem of constructing a

multi-label text classifier which can provide suggestions for the most appropriate subject

areas for arXiv papers based on their abstracts. The code and architecture used are

based on the Keras tutorial [Paul and Rakshit, 2020]. An arXiv paper can belong to

multiple categories, so the prediction task can be divided into a series of multiple binary

classification problems, and we can use the Binary Cross Entropy loss. We will use the

following neural network architecture:
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model = keras.Sequential ()

model.add(layers.Dense(units = 256, activation = ’relu’))

model.add(layers.Dense(units = 256, activation = ’relu’))

model.add(layers.Dense(units = lookup.vocabulary_size (), activation=’sigmoid ’))

The evolution of the Binary Cross Entropy loss on the training and validation sets

is displayed in Figure 5.46. Although the Adam optimizer achieves the smallest loss on the

training dataset, the resulting optimized model does not outperform the models generated

by the other optimizers on the validation dataset. Its validation loss actually worsens as

the epoch number increases (unlike for the other algorithms) which indicates that the

optimized model might be suffering from overfitting.

Figure 5.46: Evolution of the Binary Cross Entropy loss function on training and validation

datasets for several algorithms, when applied to the Natural Language Processing problem

of multi-label text classification of arXiv papers.

Next, we consider timeseries forecasting for weather prediction, based on the Keras

tutorial [Attri et al., 2020]. We use the Mean Squared Error as the loss function and the

following Long Short-Term Memory (LSTM) model (with 5,153 parameters):

inputs = layers.Input(shape=( inputs.shape[1], inputs.shape [2]))

lstm_out = layers.LSTM (32)( inputs)

outputs = layers.Dense (1)( lstm_out)

model = keras.Model(inputs=inputs , outputs=outputs)
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The evolution of the mean squared error on the training and validation sets is

displayed in Figure 5.47. We can see that the four different algorithms generate similar

losses on the training and validation datasets.

Figure 5.47: Evolution of the Mean Squared Error on training and validation datasets for

several algorithms, when used to optimize a LSTM model for timeseries forecasting for

weather prediction.

Then, we solved the following data fitting problem: given 500 data points from a

noisy version of the function 10x∣ cos 2x∣ + 10 exp (− sinx) on the interval [−2,2], we wish

to obtain a model which fits these data points as well as possible. We used the following

neural network architecture (with 4,355 parameters) and loss function in TensorFlow:

model = keras.Sequential ()

model.add(layers.Dense(units = 1, activation = ’linear ’, input_shape =[1]))

model.add(layers.Dense(units = 64, activation = ’relu’))

model.add(layers.Dense(units = 64, activation = ’relu’))

model.add(layers.Dense(units = 1, activation = ’linear ’))

model.compile(loss=’mse’, optimizer=optimizer)

The results of this numerical experiment are displayed in Figures 5.48 and 5.49.

We can see from Figure 5.48 that all the algorithms achieve very small mean squared error,

and this observation is confirmed by Figure 5.49 which shows that the resulting models,

plotted as blue curves, fit the green data points very well.
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Figure 5.48: Evolution of the mean squared error for various algorithms, when applied to

the problem of fitting a model to a set of 500 data points.

Figure 5.49: Models obtained after 2000 epochs using various algorithms to fit the 500

data points displayed in green.
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Finally, we test our algorithms for dynamics learning and control. We consider the

Hamiltonian-based neural ODE network from [Duong and Atanasov, 2021] (with 231,310

parameters), inspired by [Greydanus et al., 2019; Zhong et al., 2019], for dynamics learning

and control on the rotation group SO(3), applied to a fully-actuated pendulum with

dynamics given by

ϕ̈ = −15 sinϕ + 3u, (5.70)

where ϕ is the angle of the pendulum with respect to its vertically downward position

and u is a scalar control input. The data is collected from an OpenAI Gym environment,

provided by [Zhong et al., 2019].

We can see from Figure 5.50 that Adam and the BrAVO algorithms can achieve

good training and test losses on this system identification problem, while we were unable

to tune SGD to obtain a similar performance.

Figure 5.50: Evolution of the training and test losses for various algorithms, when learning

the 231,310 parameters of a neural ODE network for dynamics learning.

Overall, we have demonstrated that the BrAVO algorithms can be used conveniently

within the PyTorch and TensorFlow frameworks, and that they can perform very well on

more challenging optimization problems arising in machine learning applications, with a

variety of model architectures, loss functions, and applications. We reiterate that this was

the main purpose of this section, and that it is not our intention to make a very careful

computational comparison of the BrAVO algorithms with other optimization algorithms

that are commonly used by the machine learning community.
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A very careful computational comparison of optimization algorithms for machine

learning applications is a much more ambitious goal which is beyond the scope of this

dissertation. Such a comparison would be more meaningful once the current rudimentary

implementation of the BrAVO algorithms within the PyTorch and TensorFlow frameworks

has been highly-optimized, to take advantage of hardware architectures and highly-

optimized PyTorch/TensorFlow operations. Aside from the quality of the implementation,

other practical aspects of the algorithm could be investigated and improved further before

carrying a careful comparison, for instance by looking into ways to boost the performance

of the temporal looping technique or of the momentum restarting scheme.

An important advantage of our optimization methods is that they are derived by

discretizing continuous-time dynamical systems. We might therefore be able to derive

theoretical results about the algorithm by considering the associated continuous-time

dynamical system and the discretization used. Furthermore, by considering the associated

continuous-time dynamical system, we may be able to leverage numerous results from the

theory of differential equations, dynamical systems, and geometric numerical integration.

As a first example, in Section 5.4.2, we exploited perturbation theory for continuous-time

dynamical systems to gain insight into the effect of the parameter C on the performance of

the algorithms, which enabled us to improve tuning. As a second example, numerous ideas

from the continuous-time theory of dynamical systems have been exploited in [Alvarez

et al., 2002; Attouch et al., 2020, 2021, 2022] and in particular the notions of dissipation, of

viscous and Hessian-driven damping, and of inertia, in second-order differential equations.

As a last example, the notion of momentum itself is better understood as a physical

property of a continuous-time dynamical system, and we can also gain a lot of insight into

the mechanism allowing the accelerated convergence towards the minimizer by considering

these dynamical systems. There might be many other ways in which the performance of

our optimization algorithms can be improved by leveraging the associated continuous-time

dynamical system.
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5.10 Remark for Riemannian Optimization

Preliminary experiments suggest that the practical considerations discussed in

this chapter also apply to the framework for accelerated optimization on Riemannian

manifolds presented in Chapter 4. The Riemannian optimization algorithms presented

in Chapter 4 respond in a similar way to changes in their parameters and can therefore

be tuned just like their normed vector space analogues. The computational benefits of

momentum restarting schemes and temporal looping uncovered in Sections 5.4.1 and 5.8

extend to the Riemannian manifold setting, although the search for good momentum

restarting criteria and robust numerical instability criteria becomes more challenging

and most likely manifold-dependent. These research directions could be explored further

and more carefully to improve the computational efficiency and stability of symplectic

accelerated optimization algorithms on Riemannian manifolds.

Conclusion and Future Directions

In this chapter, we have discussed practical considerations which can significantly

boost the computational performance and simplify the tuning of symplectic accelerated

optimization algorithms that are constructed by integrating Lagrangian and Hamiltonian

systems coming from the variational framework for optimization that was introduced

in [Wibisono et al., 2016].

We have showed in particular that momentum restarting schemes can lead to a

significant gain in computational efficiency and robustness by reducing the undesirable

effect of oscillations, and that a temporal looping strategy helps to avoid instability issues

caused by numerical precision, and does not impair the computational performance of the

algorithms in general. We also observed that time-adaptivity and the choice of symplectic

integrator hardly make a difference once a momentum restarting scheme is incorporated

in the optimization algorithms. This observation, along with other numerical experiments

designed to study the effects of the different parameters, has provided insights that allowed

to inform and ease the tuning process by simplifying the algorithms and by reducing the

number of parameters to tune.
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Overall, we have designed symplectic accelerated optimization algorithms whose

computational efficiency and stability have been improved using temporal looping and

momentum restarting, and which are now more user-friendly. We tested these algorithms

on machine learning optimization problems with numerous different model architectures,

loss functions, and applications, and saw that they can achieve results with accuracy and

computational efficiency that are comparable to those of Adam.

Preliminary experiments with the algorithms from Chapter 4 suggest that the

practical considerations and the benefits of momentum restarting and temporal looping

discussed in this chapter extend to the Riemannian manifold setting. This could be

explored further, and could lead to symplectic accelerated optimization algorithms on

Riemannian manifolds with improved computational efficiency and stability.

The temporal looping technique could also be improved by carefully designing

different numerical instability criteria. Instead of temporal looping strategies, one could

also try to implement different popular techniques in machine learning such as decay-

ing learning rates via a learning rate scheduler, or to progressively increase the batch

size [Smith et al., 2018]. The current implementation of the algorithms within the PyTorch

and TensorFlow frameworks is rather rudimentary, and can certainly be improved to reduce

computational time by taking advantage of hardware architectures and highly-optimized

PyTorch/TensorFlow operations. With the same objective in mind, one could also replace

the gradient scheme for momentum restarting by the function scheme if the latter can be

implemented more efficiently.

Once the algorithms have been improved further, possibly leveraging the theory of

continuous-time dynamical systems, and once the implementation of the algorithms has

been highly-optimized, it would be very interesting to perform a very careful computational

comparison with other popular algorithms on many different types of problems to see

whether the BrAVO algorithms can outperform the state-of-the-art algorithms on certain

classes of machine learning problems.
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â Chapter 5 contains original material from

¬ “Practical Perspectives on Symplectic Accelerated Optimization” by V. Duruis-

seaux and M. Leok. Optimization Methods and Software, Vol.38, Issue 6, pages

1230-1268, 2023

The dissertation author was the primary investigator and author of this paper.
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Part II Conclusion

Most artificial intelligence and machine learning algorithms rely heavily on the

capability of finding optimizers of high-dimensional objective functions. Improvements in

the efficiency and reliability of optimization algorithms can therefore lead directly to huge

savings in computational and energy resources.

A nontraditional approach to optimization is to replace the problem of minimizing

the given objective function by the problem of numerically evolving dynamical systems

governed by appropriately defined differential equations. In this dissertation, we have

constructed structure-preserving discretizations of a carefully designed family of time-

dependent Bregman Lagrangian and Hamiltonian systems whose trajectories converge to

the minimizer of the objective function.

After conducting a detailed computational study to select symplectic discretizations

for the Bregman dynamics, ease tuning, boost computational performance, and improve

stability and robustness, we obtained symplectic accelerated optimization algorithms, the

BrAVO algorithms, which can be used for machine learning applications. An important

advantage of our methods is that they have an associated well-structured continuous-time

dynamical systems, yielding in particular better interpretability. By considering these

continuous-time dynamics, we may be able to leverage the theory of dynamical systems

and differential equations to improve the performance of the optimization algorithms or

derive theoretical guarantees.

This research direction is still in its early stages, and there is still a lot of potential

for improvement, both in the design of the differential equations discretizations and in their

implementation to leverage the full power of modern hardware and parallel computing

architectures.
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Since many optimization problems are better formulated as optimization problems

on Riemannian manifolds, we have generalized all the theory to the Riemannian setting. We

replaced the problem of optimizing a function on Riemannian manifolds by the problem

of simulating the dynamics of a family of time-dependent Bregman Lagrangian and

Hamiltonian systems evolving on Riemannian manifolds. However, the task of integrating

geometric mechanics on Riemannian manifolds is significantly more challenging and still

lacks fully satisfying solutions. In this dissertation, we proposed a few different numerical

approaches to design geometric integrators for the Riemannian Bregman family of dynamics,

but their performance is still limited and manifold dependent, in particular by the capacity

to perform standard Riemannian operations on the Riemannian manifold of interest.

Better characterizations of Riemannian manifolds of interest and better computational

methods for the standard Riemannian operations on those manifolds would certainly foster

improvements in the computational efficiency of Riemannian optimization algorithms. In

addition, many practical aspects which could improve the performance of our algorithms.

For instance, preliminary experiments suggest that the practical considerations discussed

in Chapter 5 which led to significant improvements on normed vector spaces in terms

of computational performance, stability, and robustness, also extend to the Riemannian

manifold setting.

Another important direction for future work would be to derive analytical guarantees

for the convergence rates of the resulting discrete-time algorithms. This will most likely

be a very challenging task, especially in the Riemannian manifold where all the usual

vector space operations and objects have to be replaced by their much more convoluted

Riemannian generalizations. Note however that in the normed vector space setting, some

theoretical results have been derived for discrete-time optimization algorithms based on

discretizations of dynamical systems, and in particular based on simpler special cases

of the Bregman family of dynamics. These could inform and inspire future attempts at

deriving more general theoretical guarantees for discretizations of the Bregman family of

dynamics, or at least for special cases that are of greater interest due to their computational

advantages and superiority.
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Part III

Structure-Preserving

Dynamics Learning
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Introduction

Dynamical systems evolve according to the laws of physics, which can usually be

described using differential equations. By solving these differential equations, it is possible

to predict the future states of the dynamical systems. Identifying accurate and efficient

dynamic models based on observed trajectories is thus critical not only for predicting

future behavior, but also for designing control laws that ensure desirable properties such

as safety, stability, and generalization to different operational conditions. We will consider

the problem of learning dynamics: given a dataset of observed trajectories followed by a

dynamical system, we wish to infer the dynamical law responsible for these trajectories

and use it to predict the evolution of the system from different initial states. We are also

interested in the surrogate modeling problem: the underlying dynamical system is known,

but traditional simulations are either too slow or expensive for some optimization task.

This problem can be addressed by learning a less expensive surrogate for the simulations.

Models obtained from first principles are extensively used in practice, across science

and engineering. Unfortunately, due to incomplete knowledge, these models based on

physical laws tend to over-simplify or incorrectly describe the underlying structure of the

dynamical systems, which usually leads to high prediction errors that cannot be corrected

by optimizing over the few parameters in the models.

Deep learning techniques and architectures can provide very expressive models

for function approximation, and have proven very effective in numerous contexts [Jin

et al., 2020; Burby et al., 2020; Karniadakis et al., 2021]. Unfortunately, standard non-

structure-preserving neural networks struggle to learn the symmetries and conservation

laws underlying dynamical systems, and as a result do not generalize well. Indeed,

they tend to prefer certain representations of the dynamics where the symmetries and

conservation laws of the system are not exactly enforced. As a result, these models do not

230



generalize well as they are often not capable of producing physically plausible results when

applied to new unseen states. Deep learning models capable of learning and generalizing

dynamics effectively are typically over-parameterized, and as a consequence tend to have

high variance and can be very difficult to interpret [Willard et al., 2020]. Also, training

these models usually requires large datasets and a long computational time, which makes

them prohibitively expensive for many applications such as robotics.

A recent research direction has been considering a hybrid approach, which combines

knowledge of physics laws and deep learning architectures [Burby et al., 2020; Jin et al.,

2020; Lei et al., 2020; Qin, 2020; Karniadakis et al., 2021]. The idea is to encode physics

laws and the geometric properties of the underlying systems in the design of the neural

networks or in the learning process. Available physics prior knowledge can be used to

construct physics-constrained neural networks with improved design and efficiency and a

better generalization capacity, which take advantage of the function approximation power

of neural networks to deal with incomplete knowledge.

One of the most important examples of geometric structure underlying dynamical

systems is the symplecticity of the flows of Hamiltonian (and Lagrangian) systems. We

have already seen numerous times in this dissertation that preserving the symplecticity of a

Hamiltonian system when constructing a discrete approximation of its flow map ensures the

preservation of many aspects of the dynamical system such as energy conservation, and leads

to physically well-behaved discrete solutions. It is therefore important to have structure-

preserving neural network architectures which can learn symplectic maps and ensure that

the learnt surrogate map preserves symplecticity. Furthermore, many mechanical and

robotic systems can be modeled as (controlled) Hamiltonian or Lagrangian systems, so the

problem of learning Hamiltonian and Lagrangian dynamics is of considerable importance.

Many physics-informed machine learning approaches have recently been proposed to

learn Hamiltonian and Lagrangian dynamics and symplectic maps [Lutter et al., 2019b;

Greydanus et al., 2019; Bertalan et al., 2019; Zhong et al., 2019; Jin et al., 2020; Burby

et al., 2020; Sæmundsson et al., 2020; Chen et al., 2020; Cranmer et al., 2020; Zhong et al.,

2020, 2021; Havens and Chowdhary, 2021; David and Méhats, 2021; Rath et al., 2021;

Chen et al., 2021; Offen and Ober-Blöbaum, 2022; Santos et al., 2022; Valperga et al.,

2022; Mathiesen et al., 2022].
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In the next two chapters, we will build upon some of these physics-informed machine

learning approaches to learn special classes of Hamiltonian or Lagrangian dynamics while

preserving the symplecticity and additional geometric properties possessed by these special

Hamiltonian or Lagrangian systems.

More precisely, inspired by (Forced) Variational Integrator Networks ((F)VINs)

[Sæmundsson et al., 2020; Havens and Chowdhary, 2021], we will introduce a new structure-

preserving deep learning architecture in Chapter 6, the Lie group Forced Variational

Integrator Network (LieFVIN) [Duruisseaux et al., 2023c], capable of learning surrogate

maps for the flow maps of controlled Lagrangian or Hamiltonian dynamics evolving on Lie

groups, either from position-velocity or position-only data. By design, LieFVINs preserve

both the Lie group structure on which the dynamics evolve and the symplectic structure

underlying the controlled Hamiltonian or Lagrangian systems of interest.

In Chapter 7, we construct a novel structure-preserving neural network architecture,

to approximate nearly-periodic symplectic maps. Nearly-periodic symplectic maps are the

discrete-time analogues of nearly-periodic Hamiltonian systems, where a dynamical system

with parameter ε is said to be nearly-periodic if all its trajectories are periodic with nowhere-

vanishing angular frequency as ε approaches 0. Nearly-periodic symplectic maps possess

approximately conserved discrete-time quantities, called adiabatic invariants, and our novel

neural network architecture, which we call symplectic gyroceptron [Duruisseaux et al.,

2023a], ensures that the resulting surrogate map is nearly-periodic and symplectic, and that

it gives rise to a discrete-time adiabatic invariant and a long-time stability as a consequence.

As mentioned earlier in this introduction, many physics-informed and structure-preserving

machine learning approaches have recently been proposed to learn symplectic maps. In

particular, Hénon Neural Networks (HénonNets) [Burby et al., 2020] can approximate

arbitrary well any symplectic map via compositions of simple yet expressive elementary

symplectic mappings called Hénon-like mappings. In the numerical experiments conducted

in Chapter 7, HénonNets will be our preferred choice of symplectic map approximator to

use as building block in our framework for approximation of nearly-periodic symplectic

maps, although some of the other approaches listed above for approximating symplectic

mappings can be used within our framework as well.
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6 Lie Group Forced Variational

Integrator Networks for Learning

and Control of Robot Systems

6.1 Introduction

Incorporating prior knowledge of physics laws and structural properties of dynamical

systems into the design of deep learning architectures has proven to be a powerful technique

for improving their computational efficiency and generalization capacity. An accurate

model of the dynamics of a control system is important, not only for predicting future

behavior, but also for designing control laws that ensure desirable properties such as

safety, stability, and generalization to different operational conditions. Autonomous mobile

robots, including wheeled, aerial, and underwater vehicles, can be modeled as controlled

Lagrangian or Hamiltonian rigid-body systems evolving on matrix Lie groups.

In this chapter, we introduce and test a novel structure-preserving deep learning

architecture, the Lie group Forced Variational Integrator Network (LieFVIN), to learn

controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity

or position-only data. By design, LieFVINs preserve both the Lie group structure on

which the dynamics evolve and the symplectic structure underlying the systems of interest.

The proposed architecture learns surrogate discrete-time flow maps allowing accurate and

fast prediction without numerical integration, neural-ODE, or adjoint techniques, which

are needed for vector fields. Furthermore, the learnt discrete-time dynamics can be used

with computationally scalable discrete-time (optimal) control strategies.
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As discussed earlier, it is important to have structure-preserving architectures

which can learn symplectic flow maps and ensure that the learnt surrogate maps are

symplectic, and many physics-informed approaches have recently been proposed to learn

Hamiltonian dynamics and symplectic maps. Our physics-informed strategy, inspired by

(Forced) Variational Integrator Networks ((F)VINs) [Sæmundsson et al., 2020; Havens

and Chowdhary, 2021], differs from most of these approaches by learning a discrete-time

symplectic approximation to the flow map of the dynamical system, instead of learning the

vector field for the continuous-time dynamics. This allows fast prediction for simulation,

planning and control without the need to integrate differential equations or use neural

ODEs and adjoint techniques. Additionally, the learnt discrete-time dynamics can be

combined with computationally scalable discrete-time control strategies.

The novelty of our approach with respect to (F)VINs resides in the enforcement

not only of the preservation of symplecticity but also of the Lie group structure when

learning a surrogate map for a controlled Lagrangian system which evolves on a Lie group.

This is achieved by working in Lie group coordinates instead of Euclidean coordinates,

by matching the training data to a parameterized forced Lie group variational integrator

which evolves intrinsically on the Lie group. More specifically, we extend the discrete-time

Euclidean formulation of FVINs with control from [Havens and Chowdhary, 2021] to Lie

groups in a structure-preserving way, which is particularly relevant when considering robot

systems (e.g., wheeled, aerial, and underwater vehicles) since they can often be modeled

as controlled Lagrangian rigid-body systems evolving on Lie groups.

Given a learnt dynamical system, it is often desirable to control its behavior to

achieve stabilization, tracking, or other control objectives. Control designs for continuous-

time Hamiltonian systems rely on the Hamiltonian structure [Lutter et al., 2019a; Zhong

et al., 2019; Duong and Atanasov, 2021, 2022]. Since the Hamiltonian captures the system

energy, control techniques for stabilization inject additional energy into the system via the

control input to ensure that the minimum of the total energy is at a desired equilibrium.

For fully-actuated Hamiltonian systems, it is sufficient to shape the potential energy only

using energy-shaping and damping-injection (ES-DI) [Van Der Schaft and Jeltsema, 2014].

For under-actuated systems, both the kinetic and potential energies are shaped, e.g.,
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via interconnection and damping assignment passivity-based control (IDA-PBC) [Ortega

et al., 2002; Van Der Schaft and Jeltsema, 2014; Acosta et al., 2014; Cieza and Reger,

2019]. The most widely used control approach for discrete-time dynamics is based on

Model Predictive Control (MPC) [Borrelli et al., 2017; Grüne and Pannek, 2017]. MPC

techniques determine an open-loop control sequence that solves a finite-horizon optimal

control problem, apply the first few control inputs, and repeat the process. A key result

in MPC is that an appropriate choice of terminal cost and terminal constraints in the

sequence of finite-horizon problems can guarantee recursive feasibility and asymptotic

optimality with respect to the infinite-horizon cost [Borrelli et al., 2017]. The ability

to learn a structure-preserving discrete-time model of a dynamics system, also allows

employing MPC techniques for optimal control of the learnt system dynamics.

6.2 Problem Statement

We consider the problem of learning controlled Lagrangian dynamics. Given a

position-velocity dataset of trajectories for a Lagrangian system, we wish to infer the

update map that generates these trajectories, while preserving the symplectic structure

underlying the dynamical system and constraining the updates to the Lie group on which

it evolves. More precisely, we consider the following problem.

Problem 6.1. Given a dataset of N position-velocity updates,

{(q(i)0 , q̇
(i)
0 , u

(i)
0 )↦ (q(i)1 , q̇

(i)
1 )}

N

i=1
,

for a controlled Lagrangian dynamical system evolving on a Lie group Q, we wish to find a

symplectic mapping Ψ ∶ TQ ×U → TQ which minimizes

N

∑
i=1

DTQ ((q(i)1 , q̇
(i)
1 ) ,Ψ (q(i)0 , q̇

(i)
0 , u

(i)
0 )), (6.1)

where DTQ is a distance metric on the tangent bundle TQ of Q.

As discussed in Section 2.1, the Legendre transform is diffeomorphic for most

mechanical systems and thus the Lagrangian and Hamiltonian formulations are equivalent.

The approaches presented in this chapter are based on the Lagrangian formulation, but

also apply to the equivalent Hamiltonian systems whenever they are well-defined.
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6.3 LieFVINs: Lie Group Forced

Variational Integrators Networks

To solve Problem 6.1, we will introduce Lie group Forced Variational Integrators

Networks (LieFVINs). Our main idea is to parametrize the updates of a forced Lie group

variational integrator and match them with observed updates. We focus on specific forced

SO(3) and SE(3) variational integrators, but the general strategy that will be presented

extends to any Lie group forced variational integrator.

6.3.1 Rigid-body kinematics on SE(3)

We first present a brief introduction to rigid-body kinematics on SE(3), mostly

extracted from Chapters 2, 6, 7 of [Lee et al., 2017].

A rigid body is an idealization of a real mechanical system, defined as a collection

of material particles such that the relative distance between any two particles in the body

does not change (i.e, the body does not deform). The configuration of a rigid body is a

representation of its position and attitude in 3-dimensional space. The kinematics of a

rigid body describe how its configuration changes under the influence of linear and angular

velocities. Defining the configuration of the rigid body is of the utmost importance for

rigid-body kinematics, and depends on the constraints imposed on the rigid-body motion.

Rotational Rigid-Body Motion

If a rigid body has fixed position but is allowed to rotate arbitrarily in R3, its

configuration can be represented by a rotation matrix. Hence, the manifold of rotation

matrices, SO(3), is the configuration manifold for rigid-body rotational motion. Since the

dimension of SO(3) is three, rigid-body rotations have three degrees of freedom.
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We use two Euclidean frames: an arbitrary reference frame and another frame fixed

to the rigid body which rotates with it (with origin selected at the center of mass of the

rigid body). A rotation matrix R ∈ SO(3) is a linear transformation on R3 between the

body-fixed and reference frames:

● if v ∈ R3 represents a vector in the body frame, then Rv ∈ R3 represents the same

vector in the reference frame,

● if v ∈ R3 represents a vector in the reference frame, then R⊺v ∈ R3 represents the

same vector in the body frame.

We can describe the rotation of the rigid body through the rotation of the body-

fixed frame: the configuration of a rotating rigid body is the linear transformation that

relates the representation of a vector in the body-fixed frame to its representation in the

reference frame.

Suppose that R(t) ∈ SO(3) represents the rotational motion of a rigid body.

Differentiating the orthogonality condition R⊺R = I3, we get

Ṙ⊺R = −R⊺Ṙ (6.2)

which implies that R⊺Ṙ remains skew-symmetric at all time. Therefore, there exists a

skew-symmetric matrix ξ(t) ∈ so(3) such that R⊺Ṙ = ξ, from which we can obtain the

rotational kinematics:

Ṙ = Rξ. (6.3)

Using the isomorphism between the Lie algebra so(3) and R3 given by ξ = S(ω) for ω ∈ R3

and ξ ∈ so(3), we can rewrite the rotational kinematics as

Ṙ = RS(ω), (6.4)

where ω ∈ R3 is referred to as the angular velocity vector of the rigid body expressed in

the body frame. Thus, the rotational kinematics describe the rate of change Ṙ of the

configuration in terms of the angular velocity ω ∈ R3 represented in the body frame.
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General Rigid-Body Motion

General rigid-body motion can be described by a combination of rotations and translations.

As before, we use two inertial frames: a first arbitrary reference frame and another

frame fixed to the rigid body which translates and rotates with the rigid body (with origin

usually selected at the center of mass of the rigid body). The translational configuration of

the rigid body characterizes the motion of the body-fixed frame origin and can be selected

to lie in the configuration manifold R3.

The configuration manifold for a rigid-body that is simultaneously translating and

rotating can be selected as the semidirect product of R3 and SO(3). Therefore, we can

represent the configuration via (R,x) ∈ SE(3) in the sense that R ∈ SO(3) is the orientation

and x ∈ R3 is the position of the body-fixed frame in the reference frame. Consequently, the

Lie group SE(3) can be viewed as the configuration manifold for general rigid-body motion.

As before, the rotational kinematic equations describe the rate of change Ṙ of the

configuration in terms of the angular velocity vector ω ∈ R3 of the rigid body represented

in the body-fixed frame:

Ṙ = RS(ω). (6.5)

Now, the translational velocity vector v ∈ R3 of the rigid body (i.e., of the origin

of the body-fixed frame) is the time derivative of the position vector from the origin of

the reference frame to the origin of the body-fixed frame. In the reference frame, the

translational velocity vector ẋ ∈ R3 of the rigid body is

ẋ = Rv. (6.6)

These are referred to as the translational kinematics of the rigid body. Altogether, we

obtain the kinematics for general rigid-body motion:

Ṙ = RS(ω), ẋ = Rv. (6.7)
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6.3.2 Forced Variational Integrator on SO(3) and SE(3)

On SE(3), q = (x,R) and q̇ = (v,ω) where x is position, R is orientation, v is

velocity, and ω is angular velocity. A Lagrangian on SE(3) is given by

L(x,R, v,ω) = 1

2
v⊺mv + 1

2
ω⊺Jω −U(x,R), (6.8)

where m is mass, J ∈ R3×3 is a symmetric positive-definite inertia matrix, and U is a

potential energy function.

Consider the continuous-time kinematics equation Ṙ = RS(ω), with constant

ω(t) ≡ ωk for a short period of time t ∈ [tk, tk+1) where tk+1 = tk + h. Then,

R(tk+1) = R(tk) exp(hS(ωk)). (6.9)

Thus, with Rk ∶= R(tk), Rk+1 ∶= R(tk+1) and Zk ∶= exp(hS(ωk)), we obtain Rk+1 = RkZk

and for sufficiently small h, we have Zk ≈ I3+hS(ωk). With (xk,Rk) ∈ SE(3), the discrete

SE(3) kinematic equations are given by

Rk+1 = RkZk, and xk+1 = xk +Rkyk, (6.10)

where (yk, Zk) ∈ SE(3), which ensures that the sequence {(xk,Rk)}k remains on SE(3).

Using the approximation S(ωk) ≈ 1
h(Zk − I3), we choose the discrete Lagrangian

Ld(xk,Rk, yk, Zk) = m

2h
y⊺kyk +

1

h
Trace ([I3 −Zk]Jd)

− (1 − α)hU(xk,Rk) − αhU(xk +Rkyk,RkZk),
(6.11)

where α ∈ [0,1] and Jd = 1
2Trace(J)I3 − J .

We will use R and x superscripts for f±dk to denote the R and x components of f±dk ,

and we define Uk and ξk via

Uk = U(xk,Rk) and S(ξk) =
∂Uk
∂Rk

⊺

Rk −R⊺
k

∂Uk
∂Rk

. (6.12)
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In Appendix A.8, we show that the forced discrete Euler–Lagrange equations corre-

sponding to the discrete Lagrangian in (6.11) and discrete control forces f±dk ≡ f±d (xk,Rk, uk)
can be written in Hamiltonian form, using

πk = Jωk, and γk =mvk, (6.13)

as

hS(πk) + hS(fR−dk ) + (1 − α)h2S(ξk) = ZkJd − JdZ⊺
k , (6.14)

Rk+1 = RkZk, (6.15)

πk+1 = Z⊺
kπk + (1 − α)hZ⊺

k ξk + αhξk+1 +Z⊺
k f

R−
dk

+ fR+dk , (6.16)

xk+1 = xk +
h

m
γk − (1 − α)h

2

m

∂Uk
∂xk

− h

m
Rkf

x−
dk
, (6.17)

γk+1 = γk − (1 − α)h∂Uk
∂xk

− αh∂Uk+1

∂xk+1

+Rkf
x−
dk
+Rk+1f

x+
dk
. (6.18)

Given (xk,Rk, γk, πk, uk), we first solve equation (6.14) which is of the form

S(a) = ZJd − JdZ⊺, (6.19)

as outlined in Remark 6.1, and then get Rk+1 = RkZk. We then obtain πk+1, xk+1 and γk+1

from equations (6.16)-(6.18). The discrete equations of motion can be rewritten as an

update from (xk,Rk, vk, ωk, uk) to (xk+1,Rk+1, vk+1, ωk+1) by using πk = Jωk and γk =mvk.

Remark 6.1 (Solving S(a) = ZJd − JdZ⊺). Using the Cayley transform

Z = Cay(z) ≡ (I3 + S(z))(I3 − S(z))−1 = 1

1 + ∥z∥2
2

((1 − ∥z∥2
2)I3 + 2S(z) + 2zz⊺) , (6.20)

the equation S(a) = ZJd − JdZ⊺ can be converted into an equivalent vector equation

φ(z) ≡ a + a × z + z(a⊺z) − 2Jz = 0, z ∈ R3, (6.21)

as shown in Appendix A.9. The solution Z = Cay(z) can be obtained after solving this

vector equation for z by using (typically 2 or 3 steps of) Newton’s method:

z(n+1) = z(n) − [∇φ(z(n))]−1
φ(z(n)), ∇φ(z) = S(a) + (a⊺z)I3 + za⊺ − 2J. (6.22)
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6.3.3 SE(3) Lie Group Forced Variational Integrator Networks

We now describe the construction of Lie group Forced Variational Integrator

Networks (LieFVINs), for the forced variational integrator on SE(3) presented earlier

in Section 6.3.2. The idea is to parametrize the updates of the integrator and match

them with observed updates. Here, we consider the case where position-velocity data is

available, in which case the LieFVIN is based on equations (6.14)-(6.18). The case where

only position data is available will be presented more briefly in Section 6.5.

We parametrize m, f±d and U as neural networks. The inertia J is a symmetric

positive-definite matrix-valued function of (x,R) constructed via a Cholesky decomposition

J = LL⊺ for a lower-triangular matrix L implemented as a neural network. Given J , we

also obtain Jd = 1
2Trace(J)I3 − J . To deal with the implicit nature of equation (6.14),

we propose two algorithms, based either on an explicit iterative solver or by penalizing

deviations away from equation (6.14):

Algorithm 10. Given position-velocity updates {(x0,R0, v0, ω0, u0) ↦ (x1,R1, v1, ω1)},

minimize discrepancies between the observed (x1,R1, v1, ω1) quadruples and the predicted

(x̃1, R̃1, ṽ1, ω̃1) quadruples, obtained as follows: for each (x0,R0, v0, ω0, u0) data tuple,

1. Get fR±d0
and fx±d0

from (x0,R0, u0)

2. Get ξ0 from S(ξ0) = ∂U0

∂R0

⊺
R0 −R⊺

0
∂U0

∂R0

3. Get Z0 = Cay(z) where z is obtained using a few steps of Newton’s method to solve

the vector equation (6.21) equivalent to the equation

hS(Jω0) + hS(fR−d0
) + (1 − α)h2S(ξ0) = ZJd − JdZ⊺

4. Compute R̃1 = R0Z0

5. Get ξ1 from S(ξ1) = ∂U1

∂R̃1

⊺
R̃1 − R̃⊺

1
∂U1

∂R̃1

6. Get ω̃1 from Jω̃1 = Z⊺
0Jω0 + (1 − α)hZ⊺

0 ξ0 + αhξ1 +Z⊺
0 f

R−
d0

+ fR+d0

7. Compute x̃1 = x0 + hv0 − (1 − α)h2 ∂U0

∂x0
− h
mR0f

x−
d0

8. Compute ṽ1 = v0 + 1
m

[−(1 − α)h2 ∂U0

∂x0
− αh2 ∂U1

∂x1
+R0f

x−
d0
+R1f

x+
d0

]
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Algorithm 11. Given position-velocity updates {(x0,R0, v0, ω0, u0) ↦ (x1,R1, v1, ω1)},

minimize

● Discrepancies between the observed (x1, v1, ω1) and the predicted (x̃1, ṽ1, ω̃1) triples

● Deviations away from the equation

hS(Jω0) + hS(fR−d0
) + (1 − α)h2S(ξ0) = JdZ0 −Z⊺

0Jd

where, for each (x0,R0, v0, ω0, u0,R1) data tuple,

1. fR±d0
and fx±d0

are obtained from (x0,R0, u0)

2. ξ0 and ξ1 are obtained from S(ξk) = ∂Uk
∂Rk

⊺
Rk −R⊺

k
∂Uk
∂Rk

3. Z0 = R⊺
0R1

4. ω̃1 = J−1 [Z⊺
0Jω0 + (1 − α)hZ⊺

0 ξ0 + αhξ1 +Z⊺
0 f

R−
d0

+ fR+d0
]

5. x̃1 = x0 + hv0 − (1 − α)h2 ∂U0

∂x0
− h
mR0f

x−
d0

6. ṽ1 = v0 + 1
m

[−(1 − α)h2 ∂U0

∂x0
− αh2 ∂U1

∂x1
+R0f

x−
d0
+R1f

x+
d0

]

To train the dynamics model with Algorithm 10, we minimize the loss function

L10(θ) =
N

∑
i=1

∥x(i)
1 − x̃(i)

1 ∥
2
+ ∥log (R̃(i)

1 R
(i)⊺
1 )

∨

∥
2

+ ∥v(i)1 − ṽ(i)1 ∥
2
+ ∥ω(i)

1 − ω̃(i)
1 ∥

2
, (6.23)

while we use the following loss function for Algorithm 11

L11(θ) =
N

∑
i=1

∥x(i)
1 − x̃(i)

1 ∥
2
+ ∥v(i)1 − ṽ(i)1 ∥

2
+ ∥ω(i)

1 − ω̃(i)
1 ∥

2

+ ∥hS (Jω(i)
0 ) + hS ((fR−d0

)(i)) + (1 − α)h2S (ξ(i)0 ) − JdZ(i)
0 +Z(i)⊺

0 Jd∥
2
.

(6.24)

The network parameters θ are updated using Adam [Kingma and Ba, 2014], where the

gradients ∂L/∂θ are calculated by back-propagation.

This general strategy extends to any other Lie group integrator. In particular,

LieFVINs on SO(3) can be obtained from the algorithms above as the special case where

x is constant, in which case we can disregard all the variables and operations in blue.

242



Lie group variational integrator networks without forces (LieVINs) can be obtained

by setting fR±d0
= fx±d0

= 0. Note that the strategy behind Algorithm 10 enforces the structure

of the system in a stronger way than in Algorithm 11. However, for certain Lie groups

and variational integrators, it might not be practical to use Newton’s method to solve for

the implicit updates, in which case Algorithm 11 is preferred.

6.3.4 Control Strategy

Given the discrete-time flow map Ψ learnt by a LieFVIN, we can formulate a

Model Predictive Control (MPC) problem to design a discrete-time control policy for the

dynamical system:

At each step t` = `h,

1. Obtain an estimate (q̃`, ˙̃q`) of the current state.

2. Solve a N -step finite horizon optimal control problem starting at (q̃`, ˙̃q`), formulated

as a constrained optimization problem: Minimize the discrete cost function

Jd(U`) =
N−1

∑
k=0

Cd(q`+k, q`+k+1, q̇`+k, u`+k) +Φd(q`+N−1, q`+N , q̇`+N , u`+N−1), (6.25)

over admissible discrete controls U` = {u`, u`+1, ..., u`+N−1}, subject to path constraints

Pd(q`+k, q`+k+1, q̇`+k, u`+k) ≥ 0 for k = 1, ...,N − 1, (6.26)

and to the termination condition

Td(q`+N−1, q`+N , q̇`+N , u`+N−1) = 0, (6.27)

and where the evolution of the controlled system is prescribed by the surrogate

symplectic map Ψ learnt by the LieFVIN.

3. Apply the resulting optimal control u∗` to the system in state (q̃`, ˙̃q`) until the next

step t`+1 = (` + 1)h.

The Lie group constraints do not need to be added as path constraints since they

are automatically satisfied to (almost) machine precision, by the design of the LieFVINs.
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6.4 Evaluation

We now demonstrate our approach to learn and control a planar pendulum and

a crazyflie quadrotor. For the control tasks considered in this chapter, we will use the

PyTorch MPC framework1 [Tassa et al., 2014; Amos et al., 2018], and the code to reproduce

these numerical experiments is open-sourced at

https://thaipduong.github.io/LieFVIN/

6.4.1 Pendulum

We consider a planar pendulum with dynamics

ϕ̈ = −15 sinϕ + 3u, (6.28)

where ϕ is the angle of the pendulum with respect to its vertically downward position and

u is a scalar control input. The ground-truth mass of the pendulum, the potential energy,

and the input coefficient are given by

m = 1/3, U(ϕ) = 5(1 − cosϕ), g(ϕ) = 1. (6.29)

The forces were specified as

fR+d = 0 and fR−d = g(q)u. (6.30)

We used neural networks to represent the inertial matrix J(q) = L(q)L(q)⊺ + ε, the

potential energy U(q) and the input gains g(q) as follows:

● L(q): 9 - 10 Tanh - 10 Tanh - 10 Linear - 6

● U(q): 9 - 10 Tanh - 10 Tanh - 10 Linear - 1

● g(q): 9 - 10 Tanh - 10 Tanh - 10 Linear - 3

where the first number is the input dimension while the last number is the output dimension,

and the hidden layers are listed in-between with their dimensions and activation functions.

1Code: https://locuslab.github.io/mpc.pytorch/
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The training data of the form {(cosϕ, sinϕ, ϕ̇)} was collected from an OpenAI

Gym environment, provided by [Zhong et al., 2019]. The control inputs were sampled in

[−3,3] and applied to the planar pendulum for 10 time intervals of 0.02s to generate a

total of 512 state-control trajectories. The SO(3) LieFVIN, as described in Algorithm 10

with α = 0.5, was trained with a fixed learning rate of 10−3 for 10000 iterations.

Figures 6.1(a),(b),(c) show that the LieFVIN successfully learned the correct inertia

matrix J , control gain g(q), and potential energy function U (up to a constant offset).

Without control input, i.e., fR±d = 0, we use the model learnt from short-term trajectories

of 10 steps of 0.02s to generate long-term predictions (2000 steps, i.e. 40s). Figure 6.1(d)

shows that the total energy of the learnt system fluctuates but stays close to the ground-

truth value. The fluctuation comes from the discretization errors in equations (6.14)-(6.18)

and model errors for the learnt quantities J , U , and g(q). Note from Figure 6.1(e) that

the SO(3) constraint errors remain very small, around 10−14. The phase portraits of the

system and the learnt dynamics are close to the ground-truth ones, illustrating the ability

to generate long-term predictions using the model learnt from short-term data.

For comparison, we also learned the dynamics using a black-box model which is a

Multilayer Perceptron MLP(q, q̇, u) with architecture [22 - 1000 Tanh - 1000 Tanh - 1000

Linear - 18]. As can be seen from Figures 6.1(d)(e)(g), that black-box model struggles to

infer the SO(3) constraints from data and is not able to conserve the total energy.

The dynamics model learnt using the LieFVIN is combined with Model Predictive

Control (MPC) as described in Section 6.3.4 to drive the planar pendulum from downward

position ϕ = 0 to a stabilized upright position ϕ∗ = π, ϕ̇∗ = 0, with input constraint ∣u∣ ≤ 20.

The running cost Cd and terminal cost Φd in the MPC problem are chosen to be

Cd(R`+k, ω`+k, u`+k) = Trace(I3 −R∗⊺R`+k) + 0.1∥ω`+k∥2 + 10−4∥u`+k∥2, (6.31)

Φd(R`+k, ω`+k, u`+k) = Trace(I3 −R∗⊺R`+k) + 0.1∥ω`+k∥2 + 10−4∥u`+k∥2. (6.32)

Figure 6.1(h) plots the angle ϕ, angular velocity ϕ̇, and control input u, showing that the

planar pendulum is successfully stabilized in the upright position using the learnt discrete

dynamics model.
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Figure 6.1: LieFVIN learns the correct mass (a), potential energy (b), input (c), and

respects energy conservation (d), SO(3) constraints (e), and phase portraits (f). The loss

is shown in (g). We use MPC to drive the pendulum to the upright position in (h).
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6.4.2 Crazyflie Quadrotor

We now demonstrate that our SE(3) dynamics learning and control approach can

achieve trajectory tracking for an under-actuated system.

We consider a Crazyflie quadrotor simulated in the physics-based simulator PyBullet

[Panerati et al., 2020]. The control input u = [f, τ] includes the thrust f ∈ R≥0 and torque

vector τ ∈ R3 generated by the 4 rotors. The generalized coordinates q include position x

and orientation R, and the velocity q̇ includes linear velocity v and angular velocity ω.

The forces are specified as

fx±d = 0.5gx(q)u and fR±d = 0.5gR(q)u. (6.33)

We used neural networks to represent the mass m = r2 of the quadrotor, the inertial

matrix J(q) = LL⊺+ ε, the potential energy U(q) and the input gains g(q) = [gx(q) gR(q)]
as follows:

● r: 1D PyTorch parameter

● L: 3 × 3 upper-triangular parameter matrix

● U(q): 9 - 10 Tanh - 10 Tanh- 10 Tanh - 10 Linear - 1

● g(q): 9 - 10 Tanh - 10 Tanh- 10 Tanh - 10 Linear - 24

where the first number is the input dimension, the last number is the output dimension,

and the hidden layers are listed in-between with their dimensions and activation functions.

To obtain the training data, the crazyflie quadrotor was controlled from a random

starting point to 36 different desired poses using a PID controller, yielding 36 4-second

trajectories. The trajectories were used to generate a dataset of N = 2700 position-velocity

updates {(q0, q̇0, u0)↦ (q1, q̇1)} with time-step 0.02s. The SE(3) LieFVIN, as described in

Algorithm 11 with α = 0.5, was trained with a decaying learning rate initialized at 5× 10−3

for 20000 iterations.
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Figures 6.2(a)(b)(c)(d)(e) show that the SE(3) LieFVIN model learned the correct

mass m, inertia matrix J , control gains gx(q) and gR(x), and potential energy U(q) (up

to a constant offset).

Without control input, i.e., fR±d = 0, we use the dynamics LieFVIN model learnt

from short-term trajectories of 5 steps of 0.02s to generate long-term predictions (2000

steps, for a total of 40s). Figure 6.2(f) shows that the total energy of the learnt system

has bounded fluctuations while SO(3) constraint errors are around 10−14, verifying the

near-energy conservation and manifold constraints guaranteed by our approach.

The learnt dynamics model is then combined with MPC as described in Section 6.3.4

to track a predefined diamond-shaped trajectory. The running cost Cd and terminal cost Φd

in the MPC problem are chosen to be

Cd(x`+k,R`+k, v`+k, ω`+k, u`+k) = 1.2∥x`+k∥2 + 10−5 Trace(I3 −R`+k)

+ 1.2∥v`+k∥2 + 10−4∥ω`+k∥2 + 10−6∥u`+k∥2,
(6.34)

and

Φd(x`+k,R`+k, v`+k, ω`+k, u`+k) = 1.2∥x`+k∥2 + 10−5 Trace(I3 −R`+k)

+ 1.2∥v`+k∥2 + 10−4∥ω`+k∥2 + 10−6∥u`+k∥2.
(6.35)

The control input constraints on the thrust f and torque vector τ are given by

0 ≤ f ≤ 0.595, ∣τ ∣ ≤ 10−3 [5.9 5.9 7.4]⊺. (6.36)

Figure 6.3 displays the robot trajectory and plots the tracking errors over time,

showing that the quadrotor successfully completes the task.
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Figure 6.2: LieFVIN learns the correct mass m (a), inertia matrix J (b), input coefficients

gx(q) (c) and gR(q) (d), potential energy U(q) (e). The learnt model respects energy

conservation (f), SO(3) constraints (g). The evolution of the loss function is shown in (h).
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trajectory (lower right plot) show that the task is completed successfully.
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6.5 Learning and controlling Lagrangian systems

from position data

6.5.1 Problem Statement

We now consider the problem of learning controlled Lagrangian dynamics only from

position data: given a position-only dataset of trajectories for a controlled Lagrangian

system, we wish to infer the update map that generates these trajectories, while preserving

the symplectic structure underlying the dynamical system and constraining the updates to

remain on the Lie group on which it evolves. More precisely, we wish to solve the following

problem:

Problem 6.2. Given a dataset of N position-only updates

{(q(i)0 , q
(i)
1 , u

(i)
0 , u

(i)
1 )↦ q

(i)
2 }

N

i=1

for a controlled Lagrangian system evolving on the Lie group Q, we wish to find a symplectic

mapping Ψ ∶ Q ×Q ×U ×U → Q which minimizes

N

∑
i=1

DQ (q(i)2 ,Ψ (q(i)0 , q
(i)
1 , u

(i)
0 , u

(i)
1 )), (6.37)

where DQ is a distance metric on Q.

6.5.2 Forced Variational Integrator in Lagrangian Form

As before, we choose the discrete Lagrangian

Ld(xk,Rk, yk, Zk) = m

2h
y⊺kyk +

1

h
Trace ([I3 −Zk]Jd)

− (1 − α)hU(xk,Rk) − αhU(xk +Rkyk,RkZk),
(6.38)

where α ∈ [0,1] and Jd = 1
2Trace(J)I3 − J . We also define Uk and ξk via

Uk = U(xk,Rk) and S(ξk) =
∂Uk
∂Rk

⊺

Rk −R⊺
k

∂Uk
∂Rk

. (6.39)
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It is demonstrated in Appendix A.8 that the forced discrete Euler–Lagrange

equations associated to the discrete Lagrangian (6.38) and the discrete control forces

f±dk ≡ f±d (xk,Rk, uk) are given by

h2S(ξk) + hS(fR−dk ) + hS(fR+dk−1
) + (JdZk−1 −Z⊺

k−1Jd) = ZkJd − JdZ⊺
k , (6.40)

xk+1 = 2xk − xk−1 −
h2

m

∂Uk
∂xk

+ h

m
Rk(fx−dk − fx+dk−1

), (6.41)

Rk+1 = RkZk. (6.42)

Since (JdZk−1 −Z⊺
k−1Jd) ∈ so(3), equation (6.40) can be rewritten as

S(a) = ZkJd − JdZ⊺
k (6.43)

with

a = h2ξk + hfR−dk + hfR+dk−1
+ S−1(JdZk−1 −Z⊺

k−1Jd). (6.44)

Given (xk−1, xk,Rk−1,Rk, uk−1, uk), we first solve S(a) = ZJd − JdZ⊺ for Z = Zk
as outlined in Remark 6.1, and then get Rk+1 = RkZk. We then update xk+1 using

equation (6.41).

6.5.3 Lie Group Forced Variational Integrator Networks

We now describe the construction of Lie group Forced Variational Integrator

Networks for the forced variational integrator on SE(3) presented in Section 6.5.2, in

the case where only position data is available. The LieFVIN is based on the discrete

forced Euler–Lagrange equations (6.40)-(6.42). As before, the main idea is to parametrize

the updates of the forced variational integrator and match them with the observed updates.

We parametrize m, f±d and U as neural networks, and the matrix J is a symmetric

positive-definite matrix-valued function of (x,R) constructed via a Cholesky decomposition

J = LL⊺ for a lower-triangular matrix L implemented as a neural network. We can also

get Jd = 1
2Trace(J)I3 − J . To deal with the implicit nature of equation (6.40), we propose

two algorithms, based either on an explicit iterative solver or by penalizing deviations

away from equation (6.40):
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Algorithm 12. Given (x0, x1,R0,R1, u0, u1) ↦ (x2,R2) data, minimize discrepancies

between the observed (x2,R2) pairs and the predicted (x̃2, R̃2) pairs obtained as follows:

For each (x0, x1,R0,R1, u0, u1) data tuple,

1. Get fR±d0
, fR±d1

, fx±d0
,fx±d1

from (x0, x1,R0,R1, u0, u1)

2. Get S(ξ1) = ∂U1

∂R1

⊺
R1 −R⊺

1
∂U1

∂R1

3. Get R̃2 = R1Cay(z) where z is obtained using a few steps of Newton’s method to

solve the vector equation (6.21) equivalent to the equation

h2S(ξ1) + hS(fR−d1
+ fR+d0

) + (JdZ0 −Z⊺
0Jd) = ZJd − JdZ

4. Compute x̃2 = 2x1 − x0 − h2

m
∂U1

∂x1
+ h
mR1(fx−d1

+ fxd0
)

Algorithm 13. Given (x0, x1,R0,R1, u0, u1)↦ (x2,R2) data, minimize

● Discrepancies between observed x2 and the predicted x̃2 values obtained via

x̃2 = 2x1 − x0 −
h2

m

∂U1

∂x1

+ h

m
R1(fx−d1

+ fxd0
)

● Deviations away from the equation

Jd(R⊺
0R1 +R⊺

2R1) − (R⊺
1R0 +R⊺

1R2)Jd + h2 (∂U1

∂R1

⊺

R1 −R⊺
1

∂U1

∂R1

) + hS(fR−d1
+ fR+d0

) = 0

This general strategy extends to any other Lie group integrator. In particular,

LieFVINs on SO(3) can be obtained from the algorithms above as the special case where

x is constant, in which case we can disregard all the variables and operations in blue.

Lie group variational integrator networks without forces (LieVINs) can be obtained by

setting fR±d0
= fx±d0

= 0. Note that the strategy behind Algorithm 12 enforces the structure

of the system in a stronger way than in Algorithm 13. However, for certain Lie groups

and variational integrators, it might not be practical to use Newton’s method to solve for

the implicit updates, in which case Algorithm 13 is preferred.
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When combined with Model Predictive Control as described in Section 6.3.4, the

initial conditions (q`−1, q`) for the optimal control problems can be obtained either from

the position estimates (q̃`−1, q̃`) or from (position,velocity) estimates (q̃`, ˙̃q`) with finite

difference approximations. As before, the Lie group constraints for the system do not need

to be added as path constraints since they are automatically satisfied to (almost) machine

precision, by the design of the Lie group forced variational integrator networks.

6.6 Conclusion

In this chapter, we introduced a new structure-preserving deep learning strategy to

learn discrete-time flow maps for controlled Lagrangian or Hamiltonian dynamics on a Lie

group, from position-velocity or position-only data. The resulting maps evolve intrinsically

on the Lie group and preserve the symplecticity underlying the systems of interest, which

allows to generate physically well-behaved long-term predictions based on short-term

trajectories data. Learning discrete-time flow maps instead of vector fields yields better

prediction without requiring the use of a numerical integrator, neural ODE, or adjoint

techniques. The proposed approach can also be combined with discrete-time optimal

control strategies, for instance to achieve stabilization and tracking for robot systems on

SE(3). Possible future directions include extensions to multi-link robots and multi-agent

systems (for instance, on (SE(3))n).
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¬ “Lie Group Forced Variational Integrator Networks for Learning and Control
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PMLR 211:731-744, 2023

The dissertation author and Thai Duong were the primary investigators and authors

of this paper.
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7 Approximation of Nearly-Periodic

Symplectic Maps via Structure-

Preserving Neural Networks

In this chapter, we will consider the problem of learning dynamics for highly-

oscillatory Hamiltonian systems. Examples include the Klein–Gordon equation in the

weakly-relativistic regime, charged particles moving through a strong magnetic field, and

the rotating inviscid Euler equations in quasi-geostrophic scaling [Cotter and Reich, 2004].

More generally, any Hamiltonian system may be embedded as a normally-stable elliptic

slow manifold in a nearly-periodic Hamiltonian system [Burby and Hirvijoki, 2021]. Highly-

oscillatory Hamiltonian systems exhibit two basic structural properties whose interactions

play a crucial role in their long-term dynamics. First is preservation of the symplectic

form, as for all Hamiltonian systems. Second is timescale separation, corresponding to the

relatively short timescale of oscillations compared with slower secular drifts. Coexistence

of these two structural properties implies the existence of an adiabatic invariant [Kruskal,

1962; Burby and Squire, 2020; Burby and Hirvijoki, 2021; Burby et al., 2023]. Adiabatic

invariants differ from true constants of motion, in particular energy invariants, which do not

change at all over arbitrary time intervals. Instead adiabatic invariants are conserved with

limited precision over very large time intervals. There are no learning frameworks available

today that exactly preserve the two structural properties whose interplay gives rise to

adiabatic invariants. This work addresses this challenge by exploiting a recently-developed

theory of nearly-periodic symplectic maps [Burby et al., 2023], which can be thought of as

discrete-time analogues of highly-oscillatory Hamiltonian systems [Kruskal, 1962].
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7.1 Introduction

A continuous-time dynamical system with parameter ε is nearly-periodic if all its

trajectories are periodic with nowhere-vanishing angular frequency as ε approaches 0.

Nearly-periodic maps, first introduced in [Burby et al., 2023], are natural discrete-time

analogues of nearly-periodic systems. More precisely, they are defined as parameter-

dependent diffeomorphisms that limit to rotations along a circle action. They have

important applications to numerical integration of nearly-periodic systems, and may also

be used as tools for structure-preserving simulation of non-canonical Hamiltonian systems

on exact symplectic manifolds [Burby et al., 2023], which have numerous applications across

the physical sciences. Noncanonical Hamiltonian systems play an especially important

role in modeling weakly-dissipative plasma systems [Morrison, 1980; Morrison and Greene,

1980; Morrison and Kotschenreuther, 1989; Morrison, 1998; Burby et al., 2015; Morrison

and Vanneste, 2016; Burby, 2022].

It is shown in details in [Kruskal, 1962] that every nearly-periodic system admits

an approximate U(1) symmetry, determined to leading order by the unperturbed periodic

dynamics. It is well-known that a Hamiltonian system which admits a continuous family

of symmetries also admits a corresponding conserved quantity. It is thus not surprising

that a nearly-periodic Hamiltonian system, which admits an approximate symmetry, must

also have an approximate conservation law [Burby et al., 2023], and the approximately

conserved quantity is referred to as an adiabatic invariant. Similarly to the continuous-time

case, nearly-periodic maps with a Hamiltonian structure (that is symplecticity) admit

formal U(1) symmetries to all orders when the limiting rotation is non-resonant, and as a

result also possess a discrete-time adiabatic invariant [Burby et al., 2023]. The adiabatic

invariants that our networks target only arise in purely Hamiltonian systems. Just like

dissipation breaks the link between symmetries and conservation laws in Hamiltonian

systems, dissipation also breaks the link between approximate symmetries and approximate

conservation laws in Hamiltonian systems. We are not considering systems with symmetries

that are broken by dissipation or some other mechanism, but rather considering systems

which possess approximate symmetries. This should be contrasted with other frameworks

[Hernandez et al., 2021; Huang et al., 2022; Hernández et al., 2023] which develop machine

learning techniques for systems that explicitly include dissipation.
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It is important to preserve the geometric structure of a dynamical system when

trying to learn a surrogate for its dynamics. In particular, it is necessary to have structure-

preserving architectures which can learn symplectic flow maps and ensure that the learnt

surrogate maps are symplectic, and many physics-informed approaches have been proposed

to learn Hamiltonian dynamics and symplectic maps. In particular, Hénon Networks

(HénonNets) [Burby et al., 2020] can approximate arbitrary well any symplectic map via

compositions of simple yet expressive elementary symplectic maps, and will be presented

in Section 7.2 since they form a basis for the architecture introduced in this chapter.

Here, we construct a novel structure-preserving neural network, the symplectic

gyroceptron, to approximate nearly-periodic symplectic maps, while ensuring that the

resulting surrogate map is nearly-periodic and symplectic, and that it gives rise to a

discrete-time adiabatic invariant and a long-time stability. This new framework provides a

promising architecture for surrogate modeling of non-dissipative dynamical systems that

automatically steps over short timescales without introducing spurious instabilities.

Note that deep learning architectures designed for multi-scale dynamics and long-

time dependencies exist [Rusch and Mishra, 2021], and that algorithms specifically designed

to efficiently step over high-frequency oscillations [Chen et al., 2011; Chen and Chacón,

2015; Miller et al., 2019] have been introduced as well. However, the problem of developing

surrogates for dynamical systems that avoid resolving short oscillations remains open. Such

surrogates would accelerate optimization algorithms that require querying the dynamics of

an oscillatory system during the optimization. The architecture presented here represents

a first important step toward a general solution of this problem. Some of its advantages are

that it aims to learn a fast surrogate that can resolve long-time dynamics using very short

time data, and that it is guaranteed to enjoy symplectic universal approximation within

the class of nearly periodic maps. As developed here, our method applies to dynamical

systems that exhibit a single fast mode of oscillation. In particular, when initial conditions

for the surrogate are selected on the zero level set of the learned adiabatic invariant,

the network automatically integrates along the slow manifold [Lorenz, 1986; Lorenz and

Krishnamurthy, 1987; Lorenz, 1992; MacKay, 2004; Burby and Klotz, 2020]. While our

architecture generalizes in a straightforward manner to handle multiple non-resonant

modes, it cannot be applied to dynamical systems that exhibit resonant surfaces.
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Note that many of the approaches listed earlier for physics-based or structure-

preserving learning of Hamiltonian dynamics focus on learning the vector field associated

to the continuous-time Hamiltonian system, while others learn a discrete-time symplectic

approximation to the flow map of the Hamiltonian system. In many contexts, we do not

need to infer the continuous-time dynamics, and only need a surrogate model which can

rapidly generate accurate predictions which remain physically consistent for a long time.

Learning a discrete-time approximation to the evolution or flow map, instead of learning

the continuous-time vector field, allows for fast prediction and simulation without the need

to integrate differential equations or use neural ODEs and adjoint techniques (which can

be very expensive and can introduce additional errors due to discretization). Here, we

will learn nearly-periodic symplectic approximations to the flow maps of nearly-periodic

Hamiltonian systems, with the intention of obtaining algorithms which can generate

accurate and physically-consistent simulations much faster than traditional integrators.

Outline. We first discuss how symplectic maps can be approximated using HénonNets

in Section 7.2, before defining and reviewing the important properties of nearly-periodic

systems and nearly-periodic maps in Section 7.3, with a specific focus on the Hamiltonian

and symplectic case. In Section 7.4, we introduce novel neural network architectures,

the gyroceptrons and symplectic gyroceptrons, to approximate nearly-periodic maps in

the symplectic and non-symplectic cases. We show that symplectic gyroceptrons admit

adiabatic invariants regardless of the values of their weights in Section 7.5. Finally, in

Section 7.6, we demonstrate how the proposed architecture can be used to learn surrogate

maps for the nearly-periodic symplectic flow maps associated to two different systems: a

nearly-periodic Hamiltonian system composed of two nonlinearly coupled oscillators (in

Section 7.6.1), and the nearly-periodic Hamiltonian system describing the evolution of

a charged particle interacting with its self-generated electromagnetic field (in Section 7.6.2).

In this chapter, M denotes a smooth manifold equipped with a smooth auxiliary

Riemannian metric g, and E will always denote a vector space for the parameter ε. We

say that a map fε ∶M1 →M2, ε ∈ E, between smooth manifolds M1 and M2, is a smooth

ε-dependent mapping when the mapping M1 ×R→M2 ∶ (m,ε)↦ fε(m) is smooth.
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7.2 Approximation of Symplectic Maps

via Hénon Neural Networks

We have already seen numerous times throughout this dissertation that preserving

the symplecticity of a Hamiltonian system when constructing a discrete approximation

of its flow map is highly desirable since it ensures the preservation of many aspects of

the dynamical system such as energy conservation, and leads to physically well-behaved

discrete solutions. It is thus important to have structure-preserving network architectures

which can learn symplectic maps.

The space of all symplectic maps is infinite dimensional [Weinstein, 1971], so the

problem of approximating an arbitrary symplectic map using compositions of simpler

symplectic mappings is inherently interesting. In [Turaev, 2002], Turaev showed that every

symplectic mapping may be approximated arbitrarily well by compositions of Hénon-like

maps, which are special elementary symplectic mappings.

Definition 7.1. Let V ∶ Rn → R be a smooth function and let η ∈ Rn be a constant. We

define the Hénon-like map H[V, η] ∶ Rn ×Rn → Rn ×Rn with potential V and shift η via

H[V, η]
⎛
⎝
x

y

⎞
⎠

=
⎛
⎝

y + η
−x +∇V (y)

⎞
⎠
. (7.1)

Theorem 7.1 ([Turaev, 2002]). Let Φ ∶ U → Rn ×Rn be a Cr+1 symplectic mapping. For

each compact set C ⊂ U and δ > 0 there is a smooth function V ∶ Rn → R, a constant η,

and a positive integer N such that H[V, η]4N approximates Φ within δ in the Cr topology.

Remark 7.1. The significance of the number 4 in Turaev’s Theorem follows from the fact

that the fourth iterate of the Hénon-like map with trivial potential V = 0 is the identity

map: H[0, η]4 = IdRn×Rn.

Turaev’s result suggests the specific neural network architecture introduced in

[Burby et al., 2020] to approximate symplectic mappings using Hénon-like maps. We

review the construction of HénonNets [Burby et al., 2020], starting with Hénon layers.
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Definition 7.2. Let η ∈ Rn be a constant vector, and let V be a scalar feed-forward neural

network on Rn, that is., a smooth mapping V ∶W ×Rn → R, where W is a space of neural

network weights. The Hénon layer with potential V , shift η, and weight W is the iterated

Hénon-like map

L[V [W ], η] =H[V [W ], η]4, (7.2)

where we use the notation V [W ] to denote the mapping

V [W ](y) = V (W,y), for any y ∈ Rn, W ∈W. (7.3)

There are various network architectures for the potential V [W ] that are capable of

approximating any smooth function V ∶ Rn → R with any desired level of accuracy. For

example, a fully-connected neural network with a single hidden layer of sufficient width

can approximate any smooth function. Therefore a corollary of Theorem 7.1 is that any

symplectic map may be approximated arbitrarily well by the composition of sufficiently

many Hénon layers with various potentials and shifts. This leads to the notion of a Hénon

Neural Network.

Definition 7.3. Let N be a positive integer and

● V = {Vk}k∈{1,...,N} be a family of scalar feed-forward neural networks on Rn

● W = {Wk}k∈{1,...,N} be a family of network weights for V

● η = {ηk}k∈{1,...,N} be a family of constants in Rn

The Hénon neural network (HénonNet) with layer potentials V , layer weights W ,

and layer shifts η is the mapping

H[V [W ],η] = L[VN[WN], ηN] ○ . . . ○ L[V2[W2], η2] ○ L[V1[W1], η1]

= H[VN[WN], ηN]4 ○ . . . ○ H[V2[W2], η2]4 ○ H[V1[W1], η1]4.
(7.4)

A composition of symplectic mappings is also symplectic, so every HénonNet is

a symplectic mapping, regardless of the architectures for the networks Vk and of the

weights Wk. Furthermore, Turaev’s Theorem 7.1 implies that the family of HénonNets is

sufficiently expressive to approximate any symplectic mapping:
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Lemma 7.1. Let Φ ∶ U → Rn ×Rn be a Cr+1 symplectic mapping. For each compact set

C ⊂ U and δ > 0 there is a HénonNet H that approximates Φ within δ in the Cr topology.

Remark 7.2. Note that Hénon-like maps are easily invertible,

H[V, η]
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝

y + η
−x +∇V (y)

⎞
⎠

⇒ H−1[V, η]
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝
∇V (x − η) − y

x − η
⎞
⎠
, (7.5)

so we can also easily invert Hénon networks by composing inverses of Hénon-like maps.

We also introduce here modified versions of Hénon-like maps and HénonNets to

approximate symplectic maps possessing a near-identity property:

Definition 7.4. Let V ∶ Rn → R be a smooth function and let η ∈ Rn be a constant. We

define the near-identity Hénon-like map Hε[V, η] ∶ Rn ×Rn → Rn ×Rn with potential

V and shift η via

Hε[V, η]
⎛
⎝
x

y

⎞
⎠

=
⎛
⎝

y + η
−x + ε∇V (y)

⎞
⎠
. (7.6)

Near-identity Hénon-like maps satisfy the near-identity property H0[V, η]4 = IdRn×Rn.

Definition 7.5. Let N be a positive integer and

● V = {Vk}k∈{1,...,N} be a family of scalar feed-forward neural networks on Rn

● W = {Wk}k∈{1,...,N} be a family of network weights for V

● η = {ηk}k∈{1,...,N} be a family of constants in Rn

The near-identity Hénon network with layer potentials V , layer weights W , and

layer shifts η is the mapping defined via

Hε[V [W ],η] = Hε[VN[WN], ηN]4 ○ . . . ○Hε[V2[W2], η2]4 ○Hε[V1[W1], η1]4, (7.7)

and it satisfies the near-identity property H0[V [W ],η] = IdRn×Rn.
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7.3 Nearly-Periodic Systems and Maps

7.3.1 Nearly-Periodic Systems

Intuitively, a continuous-time dynamical system with vector parameter ε is nearly-

periodic if all of its trajectories are periodic with nowhere-vanishing angular frequency in

the limit ε→ 0. Such a system characteristically displays limiting short-timescale dynamics

that ergodically cover circles in phase space. More precisely, a nearly-periodic systems can

be defined as follows:

Definition 7.6 ([Burby et al., 2023]). A nearly-periodic system on a manifold M is

a smooth ε-dependent vector field Xε on M such that X0 = ω0R0, where

● R0 is the infinitesimal generator for a circle action Φθ ∶M →M , θ ∈ U(1).

● ω0 ∶M → R is strictly positive and its Lie derivative satisfies LR0ω0 = 0.

The vector field R0 is called the limiting roto-rate, and the frequency ω0 is called the

limiting angular frequency.

Examples from physics include charged particle dynamics in a strong magnetic

field, the weakly-relativistic Dirac equation, and any mechanical system subject to a high-

frequency, time-periodic force. In the broader context of multi-scale dynamical systems,

nearly-periodic systems play a special role because they display perhaps the simplest

possible non-dissipative short-timescale dynamics. They therefore provide a useful proving

ground for analytical and numerical methods aimed at more complex multi-scale models.

Remark 7.3. In a seminal paper [Kruskal, 1962] on basic properties of continuous-time

nearly-periodic systems, Kruskal assumed that R0 is nowhere vanishing, in addition to

requiring that ω0 is sign-definite. This assumption is usually not essential and it is enough

to require that ω0 vanishes nowhere. This is an important restriction to lift since many

interesting circle actions have fixed points.

It was shown in [Kruskal, 1962] that every nearly-periodic system admits an

approximate U(1)-symmetry, known as the roto-rate, that is determined to leading order

by the unperturbed periodic dynamics:
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Definition 7.7. A roto-rate for a nearly-periodic system Xε on a manifold M is a formal

power series Rε = R0 + εR1 + ε2R2 + . . . with vector field coefficients such that R0 is equal

to the limiting roto-rate and the following equalities hold in the sense of formal series:

exp(2πLRε) = 1 and [Xε,Rε] = 0. (7.8)

Proposition 7.1 ([Kruskal, 1962]). A nearly-periodic system admits a unique roto-rate Rε.

A subtle bootstrapping argument allows to upgrade leading-order U(1)-invariance

to all-orders U(1)-invariance for integral invariants:

Proposition 7.2 ([Burby et al., 2023]). Let αε be a smooth ε-dependent differential

form on a manifold M . Suppose that αε is an absolute integral invariant for a smooth

nearly-periodic system Xε on M . If LR0α0 = 0 then

LRεαε = 0, (7.9)

where Rε is the roto-rate for Xε.

7.3.2 Nearly-Periodic Maps

Nearly-periodic maps are the natural discrete-time analogues of nearly-periodic

systems, which were first introduced and studied in [Burby et al., 2023]. The following

provides a precise definition.

Definition 7.8. A nearly-periodic map on a manifold M with parameter vector space

E is a smooth mapping F ∶ M × E → M such that Fε ∶ M → M ∶ m ↦ F (m,ε) has the

following properties:

● Fε is a diffeomorphism for each ε ∈ E.

● There exists a U(1)-action Φθ ∶M →M and a constant θ0 ∈ U(1) such that F0 = Φθ0.

We say F is resonant if θ0 is a rational multiple of 2π, otherwise F is non-resonant.

The infinitesimal generator of Φθ, R0, is the limiting roto-rate.
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Example 7.1. Let Xε be a nearly-periodic system on a manifold M with limiting roto-rate

R0 and limiting angular frequency ω0. Assume that ω0 is constant. For each ε ∈ R let Fε
t

denote the time-t flow for Xε. Then, the mapping

F (m,ε) =Fε
t0(m) (7.10)

is nearly-periodic for each t0.

To see why, first note that the flow of the limiting vector field X0 = ω0R0 is given

by F0
t (m) = Φω0 t(m), where Φθ denotes the U(1)-action generated by the limiting roto-rate

R0. It follows that

F (m,0) = Φω0 t0(m) = Φθ0(m), (7.11)

where θ0 = ω0 t0 mod 2π. This example is more general than it first appears since any

nearly-periodic system can be rescaled to have a constant limiting angular frequency. Indeed

if the nearly-periodic system Xε has non-constant limiting angular frequency ω0 then

X ′
ε = Xε/ω0 is a nearly-periodic system with limiting angular frequency 1. The integral

curves of X ′
ε are merely time reparameterizations of integrals curves of Xε.

Let X be a vector field on a manifold M with time-t flow map Ft. Recall that

U(1)-action Φθ is a U(1)-symmetry for X if

Ft ○ Φθ = Φθ ○ Ft, (7.12)

for each t ∈ R and θ ∈ U(1). Differentiating this condition with respect to θ at the identity

implies, and is implied by, F∗
t R = R, where R denotes the infinitesimal generator for the

U(1)-action. Since we would like to think of nearly-periodic maps as playing the part of a

nearly-periodic system’s flow map, the latter characterization of symmetry allows us to

naturally extend Kruskal’s notion of roto-rate to our discrete-time setting.

Definition 7.9. A roto-rate for a nearly-periodic map F ∶M ×E →M is a formal power

series

Rε = R0 +R1ε +R2ε
2 + . . . (7.13)

whose coefficients are vector fields on M such that R0 is the limiting roto-rate and the

following equalities hold in the sense of formal power series:

F ∗
ε Rε = Rε and exp(2πLRε) = 1. (7.14)
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A first fundamental result fornearly-periodic maps establishes the existence and

uniqueness of the roto-rate in the non-resonant case. Similarly to the corresponding

result [Kruskal, 1962] in continuous time, this discrete time result holds to all orders in

perturbation theory.

Theorem 7.2 ([Burby et al., 2023]). Each non-resonant nearly-periodic map admits a

unique roto-rate.

Thus, non-resonant nearly-periodic maps formally reduce to mappings on the space

of U(1)-orbits, corresponding to the elimination of a single dimension in phase space.

7.3.3 Nearly-Periodic Systems and Maps with

a Hamiltonian Structure

Definition 7.10. A ε-dependent presymplectic manifold is a manifold M equipped

with a smooth ε-dependent 2-form Ωε such that dΩε = 0 for each ε ∈ E. We say (M,Ωε) is

exact when there is a smooth ε-dependent 1-form ϑε such that Ωε = −dϑε.

Definition 7.11. A nearly-periodic Hamiltonian system on an exact presymplectic

manifold (M,Ωε) is a nearly-periodic system Xε on M such that

ιXεΩε = dHε, (7.15)

for some smooth ε-dependent function Hε ∶M → R.

We already know from Proposition 7.1 that every nearly-periodic system admits a

unique roto-rate Rε. In the Hamiltonian setting, it can be shown that both the dynamics

and the Hamiltonian structure are U(1)-invariant to all orders in ε.

Proposition 7.3 ([Kruskal, 1962; Burby et al., 2023]). The roto-rate Rε for a nearly-

periodic Hamiltonian system Xε on an exact presymplectic manifold (M,Ωε) with Hamil-

tonian Hε satisfies

LRεHε = 0, and LRεΩε = 0, (7.16)

in the sense of formal power series.
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According to Noether’s celebrated theorem, a Hamiltonian system that admits a

continuous family of symmetries also admits a corresponding conserved quantity [Abraham

and Marsden, 1978; Arnol′d, 1989; Marsden and Ratiu, 1999]. Therefore one might expect

that a Hamiltonian system with an approximate symmetry must also have an approximate

conservation law. This is indeed the case for nearly-periodic Hamiltonian systems:

Proposition 7.4 ([Burby et al., 2023]). Let Xε be a nearly-periodic Hamiltonian system

on the exact presymplectic manifold (M,Ωε). Let Rε be the associated roto-rate. There is

a formal power series θε = θ0 + ε θ1 + . . . with coefficients in Ω1(M) such that

Ωε = −dθε, and LRεθε = 0. (7.17)

Moreover, the formal power series

µε = ιRεθε (7.18)

is a constant of motion for Xε to all orders in perturbation theory. In other words,

LXεµε = 0, (7.19)

in the sense of formal power series. The formal constant of motion µε is the adiabatic

invariant associated with the nearly-periodic Hamiltonian system.

General expressions for the adiabatic invariant µε may be found in [Burby and

Squire, 2020]. Additionally, it was shown in [Burby and Hirvijoki, 2021], that the (formal)

set of fixed points for the roto-rate is an elliptic almost invariant slow manifold whose

normal stability is mediated by the adiabatic invariant associated with the nearly-periodic

Hamiltonian system.

A similar theory can be established in the discrete case for nearly-periodic maps

with a Hamiltonian structure.

Definition 7.12. A presymplectic nearly-periodic map on a ε-dependent presym-

plectic manifold (M,Ωε) is a nearly-periodic map F such that F ∗
ε Ωε = Ωε for each ε ∈ E.

Theorem 7.3 ([Burby et al., 2023]). If F is a non-resonant presymplectic nearly-periodic

map on a ε-dependent presymplectic manifold (M,Ωε) with roto-rate Rε then LRεΩε = 0.
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Definition 7.13. A Hamiltonian nearly-periodic map on a ε-dependent presymplec-

tic manifold (M,Ωε) is a nearly-periodic map F such that there is a smooth (t, ε)-dependent

vector field Yt,ε with t ∈ R such that the following properties hold true:

● ιYt,εΩε = dHt,ε, for some smooth (t, ε)-dependent function Ht,ε.

● For each ε ∈ E, Fε is the t = 1 flow of Yt,ε.

Lemma 7.2. Hamiltonian nearly-periodic maps are presymplectic nearly-periodic maps.

Using presymplecticity of the roto-rate, Noether’s theorem can be used to establish

existence of adiabatic invariants for many interesting presymplectic nearly-periodic maps.

Theorem 7.4 ([Burby et al., 2023]). Let F be a non-resonant presymplectic nearly-periodic

map on the exact ε-dependent presymplectic manifold (M,Ωε) with roto-rate Rε. Assume

that F is Hamiltonian or that the manifold M is connected and the limiting roto rate R0

has at least one zero. Then there exists a smooth ε-dependent 1-form θε such that

LRεθε = 0, and − dθε = Ωε, (7.20)

in the sense of formal power series. Moreover the quantity

µε = ιRεθε (7.21)

satisfies

F ∗
ε µε = µε (7.22)

in the sense of formal power series, that is, µε is an adiabatic invariant for F .

When an adiabatic invariant exists, the phase-space dimension is formally reduced

by two. On the slow manifold µε = 0, the reduction in dimensionality may be even more

dramatic. For example, the slow manifold for the symplectic Lorentz system introduced in

[Burby and Hirvijoki, 2021] has half the dimension of the full system.
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7.4 Novel Structure-Preserving

Neural Network Architectures

7.4.1 Approximating Nearly-Periodic Maps via Gyroceptrons

We first consider the problem of approximating an arbitrary nearly-periodic map

P ∶ M × E → M on a manifold M . From Definition 7.8, there must be a corresponding

circle action Φθ ∶M →M and θ0 ∈ U(1) such that P0 = Φθ0 . Consider the map Iε ∶M →M

given by

Iε = Pε ○ Φ−1
θ0

∀ε ∈ E. (7.23)

This defines a near-identity map on M satisfying I0 = IdM .

By composing both sides of equation (7.23) on the right by Φθ0 , we obtain a

representation for any nearly-periodic map P as the composition of a near-identity map

and a circle action,

Pε = Iε ○ Φθ0 ∀ε ∈ E. (7.24)

As a consequence, if we can approximate any near-identity map and any circle

action, then by the above representation we can approximate any nearly-periodic map.

Different circle actions can act on manifolds in topologically different ways, so it

would be very challenging, if not impossible, to construct a single strategy which allows to

approximate any circle action to arbitrary accuracy. Here, we will consider the simpler case

where we assume that we know a priori the topological type of action for the nearly-periodic

system, and work within conjugation classes. Conjugation of a circle action Φθ ∶M →M

with a diffeomorphism ψ results in the map

ψ ○ Φθ ○ ψ−1, (7.25)

and two circle actions belong to the same conjugation class if one can be written as the

conjugation with a diffeomorphism of the other one. Note that although compositions of

nearly-periodic maps are not necessarily nearly-periodic, the map obtained by conjugation

of a nearly-periodic map with a diffeomorphism is nearly-periodic:
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Lemma 7.3. Let P ∶ M × E → M be a nearly-periodic map on a manifold M , and let

ψ ∶ M → M be a diffeomorphism on M . Then the map P̃ ∶ M × E → M defined for any

ε ∈ E via

P̃ε ≡ ψ ○ Pε ○ ψ−1 (7.26)

is a nearly-periodic map.

Proof. ψ and Pε are diffeomorphisms for any ε ∈ E so P̃ε is also a diffeomorphism for any

ε ∈ E. Now, from Definition 7.8, there is a circle action Φθ ∶M →M and θ0 ∈ U(1) such

that P0 = Φθ0 . Define Φ̃θ ∶M →M via Φ̃θ ≡ ψ ○ Φθ ○ ψ−1 for any θ ∈ U(1). Then, for

any θ, θ1, θ2 ∈ U(1),

● Φ̃θ+2π = ψ ○ Φθ+2π ○ ψ−1 = ψ ○ Φθ ○ ψ−1 = Φ̃θ

● Φ̃0 = ψ ○ Φ0 ○ ψ−1 = ψ ○ IdM ○ ψ−1 = IdM

● Φ̃θ1 ○ Φ̃θ2 = ψ ○Φθ1 ○ψ−1 ○ψ ○Φθ2 ○ψ−1 = ψ ○Φθ1 ○Φθ2 ○ψ−1 = ψ ○Φθ1+θ2 ○ψ−1 = Φ̃θ1+θ2

Therefore, Φ̃θ is a circle action, and θ0 ∈ U(1) is such that

Φ̃θ0 = ψ ○ Φθ0 ○ ψ−1 = ψ ○ P0 ○ ψ−1 = P̃0.

As a consequence, P̃ is a nearly-periodic map.

We also have the following useful factorization result for nearly-periodic maps with

limiting rotation within a given conjugacy class:

Lemma 7.4. Let Φθ ∶ M → M be a circle action on a manifold M . Every nearly-

periodic map Pε ∶M →M whose limiting rotation Φ′
θ0
= P0 is conjugate to Φθ0 admits the

decomposition

Pε = Iε ○ ψ ○ Φθ0 ○ ψ−1, (7.27)

where ψ ∶M →M is a diffeomorphism and Iε ∶M →M is a near-identity diffeomorphism.

We will thus assume that we know in advance the topological type of the circle

action Φθ for the dynamics of interest, and then propose to learn the nearly-periodic map

Pε by learning each component map in the composition

Pε = Iε ○ ψ ○ Φθ ○ ψ−1. (7.28)
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This formula may be interpreted intuitively as follows. The map ψ learns the mode

structure of an oscillatory system’s short timescale dynamics. The circle action Φθ provides

an aliased phase advance for the learnt mode. Finally, Iε captures the averaged dynamics

that occurs on timescales much larger than the limiting oscillation period.

Iε and ψ can be learnt using any standard neural network architecture, as long as

the near-identity property is enforced in the representation for Iε. It is however important

to invert ψ exactly, and this strongly motivates using explicitly invertible neural network

architectures for ψ. It has been shown that those coupling-based invertible neural networks

are universal diffeomorphism approximators [Teshima et al., 2020]. The parameter θ in

the circle action Φθ can also be considered as a trainable parameter. We will refer to

the resulting neural network architecture as a gyroceptron, named after a combination of

gyrations of phase with perceptron.

Definition 7.14. A gyroceptron is a feed-forward neural network

Pε[W ] = Iε[WI] ○ ψ[Wψ] ○ Φθ ○ ψ[Wψ]−1 (7.29)

with weights W = (WI ,Wψ) and rotation parameter θ ∈ U(1), where

● Iε[WI] ∶M →M is a diffeomorphism for each (ε,WI), which satisfies I0[WI] = IdM

for all WI

● ψ[Wψ] ∶M →M is a diffeomorphism for each Wψ

● Φθ ∶M →M is a circle action on M

Gyroceptrons enjoy the following universal approximation property.

Theorem 7.5. Fix a circle action Φθ ∶M →M and a compact set C ⊂M . Let Pε ∶M →M

be a nearly-periodic map whose limiting rotation is conjugate to Φθ. Let ψ[Wψ] ∶M →M

be a feed-forward network architecture that provides a universal approximation within

the class of diffeomorphisms, and let Iε[WI] be a feed-forward network architecture that

provides a universal approximation within the class of ε-dependent diffeomorphisms with

I0[W ] = IdM . For each δ > 0, there exist weights W ∗
ψ and W ∗

I such that the gyroceptron

Pε[W ∗] = Iε[W ∗
I ] ○ ψ[W ∗

ψ] ○ Φθ ○ ψ[W ∗
ψ]−1 (7.30)

approximates Pε within δ on C.
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7.4.2 Approximating Nearly-Periodic Symplectic Maps

via Symplectic Gyroceptrons

We now focus on approximating an arbitrary nearly-periodic symplectic map

P ∶M × E →M on a manifold M . We will restrict our attention to symplectic manifolds

with ε-independent symplectic forms (the ε-dependent case is more subtle and will not be

pursued here).

From Definition 7.8, there is a corresponding symplectic circle action Φθ ∶M →M

and θ0 ∈ U(1) such that P0 = Φθ0 . As before, we can consider the map Iε ∶M →M given

by

Iε = Pε ○ Φ−1
θ0
, ∀ε ∈ E. (7.31)

Now, the inverse of a symplectic map is symplectic and any composition of symplectic

maps is also symplectic. Thus, the mao Φ−1
θ0
= P −1

0 is symplectic, and as a result, Iε is a

symplectic map on M for any ε ∈ E and it satisfies the near-identity property I0 = IdM .

By composing both sides of equation (7.31) on the right by Φθ0 , we obtain a

representation for any nearly-periodic symplectic map P as the composition of a near-

identity symplectic map and a symplectic circle action:

Pε = Iε ○ Φθ0 , ∀ε ∈ E. (7.32)

We will work within symplectic conjugacy classes of circle actions, where two circle

actions Φθ,Φ′
θ are said to be symplecticly conjugate if there exists a symplectomorphism

ψ (i.e. a symplectic diffeomorphism) such that

Φ′
θ = ψ ○ Φθ ○ ψ−1 (7.33)

We obtain the following useful factorization result for nearly-periodic symplectic

maps with limiting rotation within a given symplectic conjugacy class:
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Lemma 7.5. Let Φθ ∶ M → M be a symplectic circle action on a symplectic manifold

(M,ω). Every nearly-periodic symplectic map Pε ∶M →M whose limiting rotation Φ′
θ0
= P0

is symplecticly conjugate to Φθ0 admits the decomposition

Pε = Iε ○ ψ ○ Φθ0 ○ ψ−1, (7.34)

where ψ ∶ M → M is a symplectic diffeomorphism and Iε ∶ M → M is a near-identity

symplectic diffeomorphism.

As a consequence, if we can approximate any near-identity symplectic map and

any symplectic circle action, then by the above representation we can approximate any

nearly-periodic symplectic map.

As before, we will assume that we know a priori the topological type of the circle

action Φθ for the nearly-periodic symplectic system of interest, and work within symplectic

conjugation classes.

Since compositions of symplectic maps are symplectic, it follows from Lemma 7.3

that the map

ψ ○ P ○ ψ−1, (7.35)

obtained by conjugation of a nearly-periodic symplectic map P with a a symplectic

diffeomorphism ψ is also a nearly-periodic symplectic map. We will then learn the

nearly-periodic symplectic map by learning each component map in the composition

Pε = Iε ○ ψ ○ Φθ ○ ψ−1, (7.36)

where Iε is a near-identity symplectic map and ψ is symplectic.

The symplectic map ψ can be learnt using any neural network architecture which

strongly enforces symplecticity. It is preferable however to choose an architecture which

can easily be inverted, so that the computations involving ψ−1 can be conducted efficiently.

The near-identity symplectic map Iε can be learnt using any neural network architecture

strongly enforcing symplecticity with the additional property that it limits to the identity

as ε goes to 0. The parameter θ in the circle action Φθ can also be considered as a trainable

parameter. We will refer to any such resulting composition of neural network architectures

as a symplectic gyroceptron.
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Definition 7.15. A symplectic gyroceptron is a feed-forward neural network

Pε[W ] = Iε[WI] ○ ψ[Wψ] ○ Φθ ○ ψ[Wψ]−1 (7.37)

with weights W = (WI ,Wψ) and rotation parameter θ ∈ U(1), where

● Iε[WI] ∶M →M is a symplectic diffeomorphism for each (ε,WI), which satisfies the

near-identity property I0[WI] = IdM for all WI

● ψ[Wψ] ∶M →M is a symplectic diffeomorphism for each Wψ

● Φθ ∶M →M is a symplectic circle action on M

Symplectic gyroceptrons enjoy a universal approximation property comparable to

the non-symplectic case.

Theorem 7.6. Fix a symplectic circle action Φθ ∶ M → M on the symplectic manifold

(M,ω) and a compact set C ⊂M . Let

● Pε ∶ M → M be a nearly-periodic symplectic map whose limiting circle action is

symplecticly conjugate to Φθ,

● ψ[Wψ] ∶ M → M be a feed-forward network architecture that provides a universal

approximation within the class of symplectic diffeomorphisms,

● Iε[WI] be a feed-forward network architecture that provides a universal approximation

within the class of ε-dependent symplectic diffeomorphisms, with the near-identity

property I0[W ] = IdM .

Then, for every δ > 0, there exist weights W ∗
ψ and W ∗

I for the feed-forward neural networks

ψ and Iε such that the symplectic gyroceptron

Pε[W ∗] = Iε[W ∗
I ] ○ ψ[W ∗

ψ] ○ Φθ ○ ψ[W ∗
ψ]−1 (7.38)

approximates the nearly-periodic symplectic Pε within δ on C.
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In this chapter, we will use HénonNets [Burby et al., 2020] as the main building

blocks of our symplectic gyroceptrons. The symplectic map ψ will be learnt using a standard

HénonNet (see Definition 7.3), its inverse ψ−1 can be obtained easily by composing inverses

of Hénon-like maps (see Remark 7.2), and the near-identity symplectic map Iε will be learnt

using a near-identity HénonNet (see Definition 7.5). The neural network architectures

considered in this chapter are summarized in Figure 7.1.

We would like to emphasize that symplectic building blocks other than HénonNets

could have been used as the basis for our symplectic gyroceptrons. For instance, a possible

option would have been to use SympNets [Jin et al., 2020] since they also strongly ensure

symplecticity and enjoy a universal approximation property for symplectic maps. However,

numerical experiments conducted in the original HénonNet paper [Burby et al., 2020]

suggested that HénonNets have a higher per layer expressive power than SympNets, and

as a result SympNets are typically much deeper than HénonNets, and slower for prediction.

This is consistent with the observations we will make later in Section 7.6.1 where we will

see that a SympNet took 127 seconds to generate trajectories that were generated by a

HénonNet of similar size in 3 seconds. Together with the fact that SympNets are not as

easily invertible as HénonNets, the computational advantage of HénonNets makes them

more desirable as building blocks than SympNets.

HénonNet

q

p

Hénon Map

q[1]

p[1]

q[2]

p[2]

q[3]

p[3]
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Hénon Map Hénon Map Hénon Map Hénon Map

Hénon Map

FNN

V (p)
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Symplectic Gyroceptron
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ψ
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Φθ

θ

Figure 7.1: Network diagrams. Left: HénonNet. Right: Symplectic Gyroceptron.
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7.5 Numerical Confirmation of the

Existence of Adiabatic Invariants

In this section, we will confirm numerically that for any random set of weights and

bias, the dynamical system generated by the symplectic gyroceptron

Iε ○ ψ ○ Φθ ○ ψ−1, (7.39)

introduced in Section 7.4.2, admits an adiabatic invariant.

In our numerical experiments, we will take the circle action associated to the

clockwise rotation matrix

Rθ =
⎛
⎝

cos θ sin θ

− sin θ cos θ

⎞
⎠
. (7.40)

The quantity

I0(q, p) =
1

2
q2 + 1

2
p2 (7.41)

is an invariant of the dynamics associated to the circle action (7.40), and as a result

µ = I0 ○ ψ−1 (7.42)

is an invariant of the dynamics associated to the composition ψ ○ Φθ ○ ψ−1, and an

adiabatic invariant of the dynamics associated to the symplectic gyroceptron (7.39).

Figure 7.2 displays the evolution of the adiabatic invariant (7.42) over a sequence

of 10000 iterations of the nearly-periodic symplectic map generated by the symplectic

gyroceptron (7.39), for different values of ε. Here, ψ is a HénonNet and Iε a near-identity

HénonNet, both with 3 Hénon layers, each of which has 8 neurons in its single-hidden-layer

fully-connected neural networks layer potential. We can clearly see from Figure 7.2 that

the conservation of the adiabatic invariant gets significantly better as ε gets closer to 0,

going from chaotic oscillations of large amplitude when ε = 0.1 to very regular oscillations

of minute amplitude when ε = 10−8.
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We investigated further by obtaining the number of iterations needed for the

adiabatic invariant µ to deviate significantly from its original value µ0 as the value of the

parameter ε is varied. More precisely, given a value of ε, we search for the smallest integer

N(ε) such that

∣µN(ε) − µ0∣ > ρ max
k=0,...,K(ε)

∣µk − µ0∣, where K(ε) = ⌊10 + ε−1/4⌋. (7.43)

In other words, we record the first iteration where the value of the adiabatic invariant

µ deviates from its original value µ0 by more than some constant factor ρ > 1 of the

maximum deviations experienced in the first few K(ε) iterations. The results are plotted

in Figure 7.3 for ρ = 1.1.

Figure 7.2: Conservation of the adiabatic invariant (7.42) over 10000 iterations of the map

generated by the symplectic gyroceptron (7.39) as ε is increased.
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Figure 7.3: N(ε) as a function of ε for ρ = 1.1 and a random set of weights.

We can clearly see from Figure 7.3 that N(ε), the number of iterations needed for

the adiabatic invariant µ to deviate from its original value µ0 by more than ρ = 1.1 times

the maximum deviations experienced in the first few iterations, increases sharply as ε gets

closer to 0. This is consistent with theoretical expectations. Note that using higher values

of ρ and smaller values of ε would probably generate more interesting and meaningful

results. Unfortunately, this is not computationally realizable since N(ε) becomes very

large when ρ is increased beyond 1.2. Even for larger values of ε, computing a single point

would take several days.

7.6 Numerical Examples of Learning Surrogate Maps

7.6.1 Nonlinearly Coupled Oscillators

In this section, we use the symplectic gyroceptron architecture introduced in

Section 7.4.2 to learn a surrogate map for the nearly-periodic symplectic flow map associated

to a nearly-periodic Hamiltonian system composed of two nonlinearly coupled oscillators,

where one of them oscillates significantly faster than the other:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q̇1 = p1 ṗ1 = −q1 − ε∂q1U(q1, q2)

q̇2 = εp2 ṗ2 = −εq2 − ε∂q2U(q1, q2)
(7.44)
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These equations of motion are the Hamilton’s equations associated to the Hamiltonian

Hε(q1, q2, p1, p2) =
1

2
(q2

1 + p2
1) +

1

2
ε(q2

2 + p2
2) + εU(q1, q2). (7.45)

The limiting ε = 0 dynamics are decoupled, where the first oscillator, initialized at

(q1(0), p1(0)) = (q,p), follows the periodic trajectory

q1(t) = q cos t + p sin t, p1(t) = p cos t − q sin t, (7.46)

characterized by periodic clockwise circular rotation in phase space, while the second

oscillator remains immobile. This is therefore a nearly-periodic Hamiltonian system on R4

with associated ε = 0 circle action given by the clockwise rotation Rθ:

Rθ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (7.47)

We will use the nonlinear coupling potential

U(q1, q2) = q1q2 sin (2q1 + 2q2) (7.48)

in our numerical experiments since the resulting nearly-periodic Hamiltonian system

displays complicated dynamics as ε is increased from 0. We have plotted in Figure 7.4 a

few trajectories of this dynamical system corresponding to different values of ε.

To learn a surrogate map for the nearly-periodic symplectic flow map associated to

this nearly-periodic Hamiltonian system, we use the symplectic gyroceptron

Iε ○ ψ ○ Φθ ○ ψ−1, (7.49)

introduced in Section 7.4.2. In our numerical experiments, ε = 0.01, θ is a trainable

parameter, and

● ψ is a HénonNet with 10 Hénon layers each of which has 8 neurons in its single-

hidden-layer fully-connected neural network layer potential

● Iε is a near-identity HénonNet with 8 Hénon layers each of which has 6 neurons in

its single-hidden-layer fully-connected neural network layer potential
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Figure 7.4: Sample trajectories of the first oscillator in (q1, p1) phase space (on the left)

and of the second oscillator in (q2, p2) phase space (on the right) for the nearly-periodic

Hamiltonian system (7.44) as ε is increased.
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The resulting symplectic gyroceptron of 549 trainable parameters was trained for

a few thousands epochs on a dataset of 60,000 updates (q1, q2, p1, p2) ↦ (q̃1, q̃2, p̃1, p̃2) of

the time-0.05 flow map associated to the nearly-periodic Hamiltonian system (7.44). The

training data was generated using the classical Runge–Kutta 4 integrator with very small

time-steps, and the Mean Squared Error was used as the loss function in the training.

Figure 7.6 shows the dynamics predicted by the symplectic gyroceptron for seven

different initial conditions with the same initial values of (q1, p1) against the reference

trajectories generated by the classical Runge–Kutta 4 integrator with very small time-

steps. We only display the trajectories of the second oscillator since the motion of the first

oscillator follows a simple nearly-circular curve.

We can see from Figure 7.6 that the dynamics learnt by the symplectic gyroceptron

match almost perfectly the reference trajectories and from Figure 7.5 that these trajectories

follow the level sets of the averaged Hamiltonian

H̄ = 1

2π ∫
2π

0
Φ∗
θH dθ. (7.50)

Figure 7.5: Level sets of the averaged Hamiltonian (7.53).
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Figure 7.6: Symplectic gyroceptron predictions against the reference trajectories in (q2, p2)
phase space for the second oscillator in the nearly-periodic Hamiltonian system (7.44) with

ε = 0.01 and a time-step of 0.05.
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Up to an unimportant constant, the averaged Hamiltonian is given by

H̄(q2, p2) =
1

2
(q2

2 + p2
2) +

1

2π ∫
2π

0
U(q1(t), q2)dt (7.51)

= 1

2
(q2

2 + p2
2) +

q2

2π ∫
2π

0
(q cos t + p sin t) sin (2 [q cos t + p sin t] + 2q2)dt (7.52)

= 1

2
(q2

2 + p2
2) + q2 cos (2q2)

√
q2 + p2 J1 (2

√
q2 + p2) (7.53)

where J1(x) is the first order Bessel function of the first kind. Using Kruskal’s theory of

nearly-periodic systems, it is straightforward to show that this averaged Hamiltonian is

the leading-order approximation of the Hamiltonian for the formal U(1)-reduction of the

two-oscillator system.

We also learned a surrogate map for the nearly-periodic symplectic time-5 flow map

associated to the nearly-periodic Hamiltonian system (7.44), using a symplectic gyroceptron

where ε = 0.01, θ is a trainable parameter, and ψ and Iε both have 10 Hénon layers each of

which has 8 neurons in its single-hidden-layer fully-connected neural network layer potential.

This symplectic gyroceptron of 681 trainable parameters was trained for a few thousands

epochs on a dataset of 60,000 updates (q1, q2, p1, p2)↦ (q̃1, q̃2, p̃1, p̃2). For comparison, we

also trained a HénonNet and a SympNet of similar sizes and ran simulations from the

same seven different initial conditions. The HénonNet used has 16 layers each of which

has 10 neurons in its single-hidden-layer fully-connected neural network layer potential,

for a total of 672 trainable parameters. The SympNet used has 652 trainable parameters

in a network structure of the form L
(k+1)
n ○ (Nup/low ○ L

(k)
n ) ○ . . . ○ (Nup/low ○ L

(1)
n ),

where each L
(k)
n is the composition of n trainable linear symplectic layers, and Nup/low is a

non-trainable symplectic activation map.

Figure 7.7 shows the dynamics predicted by the symplectic gyroceptron, the

HénonNet, and the SympNet, for seven different initial conditions with the same initial

values of (q1, p1) against the reference trajectories generated by the Runge–Kutta 4

integrator (RK4) with small time-steps. As before, we only display the trajectories of the

second oscillator. We can see that the dynamics predicted by the symplectic gyroceptron

match the reference trajectories very well, although the predicted oscillations around the

level sets of the averaged Hamiltonian are unsurprisingly larger than when learning the

time-0.05 flow map.
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Figure 7.7: Predictions from a Symplectic Gyroceptron, a SympNet, and a HenonNet,

against the reference trajectories for the second oscillator in the nearly-periodic Hamiltonian

system (7.44) with ε = 0.01 and the larger time-step of 5.
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The crucial advantage that the symplectic gyroceptron architecture offer over the

other architectures considered, which only enforce the symplectic constraint, is provable

existence of an adiabatic invariant. After training, the other architectures may empirically

display preservation of an adiabatic invariant, but this cannot be proved rigorously from

first principles. In contrast, the symplectic gyroceptron enjoys provable existence of an

adiabatic invariant before, during, and after training.

Note that the symplectic gyroceptron generated the seven trajectories in 5 seconds,

which is several orders of magnitude faster than RK4 with small time-steps which took

6,055 seconds. The HénonNet allowed to simulate the dynamics slightly faster, in 3 seconds,

while the SympNet was much slower with a running time of 127 seconds, consistently

with the observations made in the original HénonNet paper [Burby et al., 2020] which

motivated choosing HénonNets over SympNets in the symplectic gyroceptrons.

7.6.2 Charged Particle Interacting with its Self-Generated

Electromagnetic Field

Problem Formulation

Next we test the ability of symplectic gyroceptrons to function as surrogates for

higher-dimension nearly-periodic systems, and for systems where the limiting circle action

is not precisely known.

To formulate the ground-truth dynamical system, first fix a positive integer K and

a sequence of single-variable functions Vk ∶ R→ R, k = 1, . . . ,K. We consider the canonical

Hamiltonian system on R2 × (R2)K with coordinates (q, p,Q1, P1, . . . ,QK , PK), defined by

the Hamiltonian

Hε = 1

2
ε(p −

K

∑
k=1

sin(kq)Qk)
2

+ 1

2

K

∑
k=1

k ([Pk − Vk(Qk)]2 +Q2
k) . (7.54)
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The equations of motion are

q̇ = ∂pHε = ε (p −
K

∑
`=1

sin(`q)Q`) , (7.55)

Q̇k = ∂PkHε = k (Pk − Vk(Qk)), (7.56)

ṗ − ∂qHε = ε (p −
K

∑
`=1

sin(`q)Q`)
K

∑
m=1

m cos(mq)Qm, (7.57)

Ṗk = −∂QkHε = −kQk + k (Pk − Vk(Qk))V ′
k(Qk) + ε (p −

K

∑
`=1

sin(`q)Q`) sin(kq), (7.58)

These equations of motion may be regarded as a simplified model of a charged particle

(q, p) interacting with its self-generated electromagnetic field (Q1, P1, . . . ,QK , PK). We

will describe the application of symplectic gyroceptrons to the development of a dynamical

surrogate for this system when ε≪ 1.

First, we verify that this Hamiltonian system is nearly-periodic, since this is the

type of dynamical systems that symplectic gyroceptrons are designed to handle. So

consider the limiting dynamics when ε = 0. The equations of motion reduce to

q̇ = 0, Q̇k = ∂PkHε = k (Pk − Vk(Qk)), (7.59)

ṗ = 0, Ṗk = −∂QkHε = −kQk + k (Pk − Vk(Qk))V ′
k(Qk). (7.60)

While these equations of motion may appear impenetrable at first glance, the symplectic

transformation of variables given by

Λ−1
0 ∶ (q, p,Q1, P1, . . . ,QK , PK)↦ (q, p,Q1,Π1, . . . ,QK ,ΠK) (7.61)

where Πk = Pk − Vk(Qk) simplifies them dramatically into

q̇ = 0, ṗ = 0, Q̇k = kΠk, Π̇k = −kQk, (7.62)

which correspond to a family of harmonic oscillators parametrized by their angular

frequencies k. The solution map in these nice variables is therefore

Φ0
t (q, p,Q1,Π1, . . . ,QK ,ΠK) = (q, p,Q1(t),Π1(t), . . . ,QK(t),ΠK(t)), (7.63)

where

Qk(t) = cos(k t)Qk + sin(k t)Πk, Πk(t) = − sin(k t)Qk + cos(k t)Πk. (7.64)
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Note that Φ0
t is periodic with minimal period 2π. The solution map in terms of the original

variables (Qk, Pk) is therefore Φt = Λ0 ○ Φ0
θ ○ Λ−1

0 . Since Φt is periodic in t with minimal

period 2π the ground-truth equations are Hamiltonian nearly-periodic. The leading-order

adiabatic invariant is

µ0 = 1

2

K

∑
k=1

k (Π2
k +Q2

k) = 1

2

K

∑
k=1

k ([Pk − Vk(Qk)]2 +Q2
k). (7.65)

Symplectic gyroceptrons are therefore well-suited to surrogate modeling for this system.

Numerical Experiments

Here, we learn the nearly-periodic Hamiltonian system (7.54) in the 6-dimensional

case (i.e., K = 2) with

V1(Q1) =
1

2
sin(2Q1) and V2(Q2) =

1

2
exp (−5Q2

2). (7.66)

In our symplectic gyroceptron Iε ○ ψ ○ Φθ ○ ψ−1, the circle action Φθ is taken to be the

rotation in equation (7.64) with θ treated as a trainable parameter, and the HénonNets

ψ and Iε both have 12 Hénon layers each of which has 8 neurons in its single-hidden-

layer fully-connected neural network layer potential. The resulting architecture of 1,033

trainable parameters was trained for a few thousands epochs on a dataset of 50,000 updates

(q, p,Q1, P1,Q2, P2)↦ (q̃, p̃, Q̃1, P̃2, Q̃1, P̃2).
To verify visually that we have learnt the dynamics successfully, we select initial

conditions on the zero level set of the adiabatic invariant µ0. There, dynamics should

remain on that slow manifold which is lower-dimensional and thus more easily portrayed.

For the Hamiltonian system (7.54), the slow manifold is the zero level set of µ0 = 0,

which we can see from equation (7.65), is the set of points (q, p,Q1, P1,Q2, P2) such that

Q1 = Q2 = 0 and P1 = V1(Q1) = V1(0), P2 = V2(Q2) = V2(0). On that slow manifold, the

dynamics reduce to

q̇ = εp, ṗ = 0 Q̇1 = 0, Q̇2 = 0, Ṗ1 = εp sin(q), Ṗ2 = εp sin(2q), (7.67)

where in particular the (q, p) dynamics are now independent of (Q1,Q2, P1, P2) and can

easily be solved for explicitly, given some initial conditions (q(0), p(0)) = (q,p):

q(t) = q + εpt, p(t) = p. (7.68)
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Figures 7.8 a)b) show that the trained symplectic gyroceptron generates predictions for the

evolution of q and p which remain very close to the true trajectories on the slow manifold

when the initial conditions are selected on the zero level set of µ0.

We also generate dynamics outside the zero level set of µ0 and verify that the

quantity I0 ○ ψ−1 matches the learnt adiabatic invariant µlearnt0 along the trajectories

generated by the symplectic gyroceptron Iε ○ ψ ○ Φθ ○ ψ−1, where

µlearnt0 (q, p,Q1, P1,Q2, P2) = 1

2

K=2

∑
k=1

k ([Pk − Vk(Qk)]2 +Q2
k), (7.69)

and

I0(q, p,Q1,Π1,Q2,Π2) = 1

2

K=2

∑
k=1

k (Π2
k +Q2

k). (7.70)

More precisely, we check whether

I0 ○ ψ−1 = µlearnt0 (7.71)

with both quantities being approximately constant along trajectories generated by the

symplectic gyroceptron, where

I0 ○ ψ−1(q, p,Q1, P1,Q2, P2) = 1

2

K=2

∑
k=1

k (Π̃2
k + Q̃2

k), (7.72)

with

(q̃, p̃, Q̃1, Π̃k, Q̃2, Π̃2) = ψ−1(q, p,Q1, P1,Q2, P2). (7.73)

From Figure 7.8 c), we see that along trajectories which are not started on the zero

level set of µ0, the value of I0 ○ ψ−1 remains very close to the approximately constant

quantity µlearnt0 , although I0 ○ ψ−1 displays small oscillations. Since the quantity I0 ○ ψ−1

is an adiabatic invariant for the neural network these oscillations will remain bounded in

amplitude for very large time intervals. The amplitude can in principle be reduced by

finding a more optimal set of weights for the neural network, but it can never be reduced

to zero since the true adiabatic invariant is not exactly conserved (oscillations in µ0 are

not visible at the scales displayed in the plot).
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Figure 7.8: a) b) Symplectic gyroceptron predictions (in colors) against the true trajectories

(dashed lines) with four different choices of initial conditions on the zero level set of the

adiabatic invariant µ0 for the nearly-periodic Hamiltonian system (7.54) with ε = 0.01.

c) Evolution of I0 ○ ψ−1 (in colors) and µlearnt0 (dashed lines) along trajectories generated

by the symplectic gyroceptron with three different choices of initial conditions for the

nearly-periodic Hamiltonian system (7.54) with ε = 0.01.

Conclusion

In this chapter, we have successfully constructed novel structure-preserving neural

network architectures, gyroceptrons and symplectic gyroceptrons, to learn nearly-periodic

maps and nearly-periodic symplectic maps, respectively. By construction, these proposed

architectures define nearly-periodic maps, and symplectic gyroceptrons also preserve

symplecticity. Furthermore, it was confirmed experimentally that in the symplectic case,

the maps generated by the proposed symplectic gyroceptrons admit discrete-time adiabatic

invariants, regardless of the value of their parameters and weights.
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We also demonstrated that the proposed architectures can be effectively used in

practice, by learning very precisely surrogate maps for the nearly-periodic symplectic

flow maps associated to two different nearly-periodic Hamiltonian systems. Note that the

hyperparameters in our architectures have not been optimized to maximize the quality

of our training outcomes, and future applications of this architecture may benefit from

further hyperparameter tuning.

Symplectic gyroceptrons provide a promising strategy for surrogate modeling of

non-dissipative dynamical systems that automatically steps over short timescales without

introducing spurious instabilities, and could have potential future applications for the

Klein–Gordon equation in the weakly-relativistic regime, for charged particles moving

through a strong magnetic field, and also for the rotating inviscid Euler equations in

quasi-geostrophic scaling [Cotter and Reich, 2004]. Symplectic gyroceptrons could also be

used for structure-preserving simulation of non-canonical Hamiltonian systems on exact

symplectic manifolds [Burby et al., 2023], which have numerous applications across the

physical sciences, for instance in modeling weakly-dissipative plasma systems [Morrison,

1980; Morrison and Greene, 1980; Morrison and Kotschenreuther, 1989; Morrison, 1998;

Burby et al., 2015; Morrison and Vanneste, 2016; Burby, 2022].

Symplectic gyroceptrons aims to solve surrogate modeling problems, where the

dynamical system of interest is known but slow or expensive to simulate. In principle,

symplectic gyroceptrons could also be used to discover dynamical models from observational

data without detailed knowledge of the underlying dynamical system. However, in order

to apply symplectic gyroceptrons effectively in this context data-mining methods must

be developed for learning the topological conjugacy class of the limiting circle action.

Given a topological classification of circle actions on the relevant state space (e.g. see

[Raymond, 1968] for the case of a 3-dimensional state space), a straightforward approach

would be to test an ensemble of topologically-distinct circle actions for best results. A more

nuanced approach would use the observed dynamics to estimate values for the classifying

topological invariants of a circle action. This topological learning problem warrants further

investigation.
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Reports, Vol.13, No.8351, 2023

The dissertation author was the primary investigator and author of this paper.
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Part III Conclusion

Identifying accurate and efficient dynamic surrogate models based on observed

trajectories is critical for fast prediction and design of control laws that ensure desirable

properties such as safety, stability, and generalization to different operational conditions.

To circumvent some of the limitations experienced by first principles modeling and naive

deep learning architectures, structure-preserving machine learning encodes physics laws

and geometric properties of the dynamical systems in deep learning techniques to design

algorithms with improved efficiency and generalization capacity. Preserving the underlying

geometric properties of a dynamical system (such as symplecticity for Hamiltonian systems)

when simulating its dynamics has numerous benefits, which have been extensively studied,

so it is reasonable to seek structure-preserving architectures for dynamics learning.

Here, we considered two specific classes of dynamical systems. We introduced

LieFVINs to learn surrogates for the flow maps of controlled Lagrangian or Hamiltonian

dynamics evolving on Lie groups, while strongly preserving both the Lie group structure on

which the dynamics evolve and the symplectic structure underlying the controlled systems

of interest. We also introduced symplectic gyroceptrons to approximate nearly-periodic

symplectic maps while preserving symplecticity and near-periodicity.

A possible future direction is to extend and scale up these approaches to tackle more

complicated dynamical systems which arise in practice. Symplectic gyroceptrons could

be used in numerous contexts, including relativistic systems, electromagnetic systems,

fluid flows, and weakly-dissipative plasma systems. LieFVINs could be designed for more

complicated robot systems such as multi-link robots and multi-agent systems.

Another possible research direction is to carefully design novel structure-preserving

architectures for many more different classes of dynamical systems. These could be

reversible systems, dynamics possessing invariants of motion (such as energy, volume,

momenta, and flux), periodic and highly oscillatory systems, dynamics constrained to

evolve on manifolds and Lie groups, and combinations of these structures. This could

also involve identifying new geometric structures whose preservation leads to significant

benefits for certain specific applications of interest.
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A Proofs

A.1 HTVI Error Analysis Theorem 2.6

The proof of Theorem 2.6 is similar to the one presented in the Appendix of

[Schmitt et al., 2018] for Lagrangian Taylor variational integrators. We first start with the

right Hamiltonian Taylor variational integrator case.

Let q(t) and p(t) denote the solutions of Hamilton’s boundary value problem

q̇(t) = g(q(t), p(t), t), ṗ(t) = f(q(t), p(t), t), q(0) = q0, p(h) = p1,

and let q1 = q(h) and p0 = p(0).

Lemma A.1. Given a r-order Taylor method Ψ
(r)
h approximating the exact time-h flow

map corresponding to Hamilton’s equations, let p̃0 solve the problem p1 = πT ∗Q○Ψ
(r)
h (q0, p̃0).

Then,

p̃0 = p0 +O(hr+1).

Proof. Solving the equation p1 = πT ∗Q ○Ψ
(r)
h (q0, p̃0) for p̃0 yields

p̃0 = p1 −
r

∑
k=1

hk

k!
f (k−1)(q0, p̃0,0).

The exact solution p(t) belongs to Cr+1([0, h]) so Taylor’s Theorem gives

p0 = p1 −
r

∑
k=1

hk

k!
f (k−1)(q0, p0,0) +Rr(h).
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Now, since p(t) belongs to Cr+1([0, h]), f (k−1) is Lipschitz continuous in its arguments for

k = 1, ..., r − 1. Let M be the largest of the corresponding (r − 1) Lipschitz constants with

respect to the second argument over the compact interval [0,C]. Then, using the triangle

inequality,

∥p̃0 − p0∥ = ∥Rr(h) −
r

∑
k=1

hk

k!
[f (k−1)(q0, p̃0,0) − f (k−1)(q0, p0,0)]∥

≤ M
r

∑
k=1

hk

k!
∥p̃0 − p0∥ + ∥Rr(h)∥.

Thus,

(1 −M
r

∑
k=1

hk

k!
)∥p̃0 − p0∥ ≤ ∥Rr(h)∥ = O(hr+1),

and by continuity, ∃C̃ ∈ (0,C) such that ∀h ∈ (0, C̃), the term (1 −M ∑rk=1
hk

k! ) is bounded

away from zero, which concludes the proof.

We now show that starting the r-order Taylor method with initial conditions (q0, p̃0)
rather than (q0, p0) will not affect the order of accuracy of the method.

Lemma A.2. The r-order Taylor method Ψ
(r)
h with initial conditions (q0, p̃0) and where

p̃0 solves p1 = πT ∗Q ○ Ψ
(r)
h (q0, p̃0) is accurate to at least O(hr+1) for the Hamiltonian

boundary-value problem.

Proof. Let (q̃(t), p̃(t)) denote the exact solution to Hamiltonian’s equations with initial

values (q0, p̃0), and let (qd(t), pd(t)) denote the values generated by the r-order Taylor

method with initial conditions (q0, p̃0). The Hamiltonian initial-value problem is well-posed,

so denoting the Lipschitz constant with respect to the second argument by M , we get

∥(q(t), p(t)) − (qd(t), pd(t))∥ ≤ ∥(q(t), p(t)) − (q̃(t), p̃(t))∥ + ∥(q̃(t), p̃(t)) − (qd(t), pd(t))∥

≤M∥p0 − p̃0∥ +O(hr+1) ≤ O(hr+1),

where we have used the triangle inequality, and the fact that the local truncation error of

a r-order Taylor method is O(hr+1) to bound ∥(q̃(t), p̃(t)) − (qd(t), pd(t))∥.
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We are now ready to prove Theorem 2.6 for right HTVIs.

Theorem A.1. Consider a Hamiltonian H such that H and ∂H
∂p are Lipschitz continuous

in both variables. Given a r-order accurate Taylor method Ψ
(r)
h and a s-order accurate

quadrature formula with weights and nodes (bi, ci), define the associated Taylor discrete

right Hamiltonian

H+
d (q0, p1;h) = p⊺1 q̃1 − h

m

∑
i=1

bi [p⊺ci q̇ci −H(qci , pci)],

where p̃0 solves p1 = πT ∗Q ○Ψ
(r)
h (q0, p̃0) where

q̃1 = πQ ○ Ψ
(r+1)
h (q0, p̃0) and (qci , pci) = Ψ

(r)
cih

(q0, p̃0),

and where we use the continuous Legendre Transform to obtain q̇ci.

Then, the discrete right Hamiltonian H+
d approximates H+,E

d with order of accuracy

at least min (r + 1, s). By Theorem 2.2 in [Schmitt and Leok, 2017], the associated discrete

right Hamiltonian map has the same order of accuracy.

Proof. From Lemma A.2 we have that q(cih) = qci +O(hr+1) and p(cih) = pci +O(hr+1),
and since ∂H

∂p is Lipschitz in both variables

q̇(cih) − q̇ci = ∂H

∂p
(q(cih), p(cih)) −

∂H

∂p
(qci , pci) = O(hr+1).

Since the quadrature formula is of order s accurate, equation (2.50) for H+,E
d (q0, p1;h)

gives

H+,E
d (q0, p1;h) = p⊺1q1 − h

m

∑
i=1

bi [p(cih)⊺q̇(cih) −H (qci +O(hr+1), pci +O(hr+1))] +O(hs+1).

Now, since q̃1 = πQ ○ Ψ
(r+1)
h (q0, p̃0), it follows from Lemma A.2 that q̃1 = q1 +O(hr+2).

Therefore, combining this with the fact that H is Lipschitz continuous in both variables

yields

H+,E
d (q0, p1;h) = p⊺1 q̃1 − h

m

∑
i=1

bi [p⊺ci q̇ci −H (qci , pci)] +O(hr+2) +O(hs+1)

= H+
d (q0, p1;h) +O(hmin (r+1,s)+1).

Therefore, H+
d approximates H+,E

d with order of accuracy at least min (r + 1, s).
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Theorem 2.6 can be proven in a similar way for left HTVIs. Let q(t) and p(t)
denote the solutions of the Hamilton’s boundary-value problem

q̇(t) = g(q(t), p(t), t), ṗ(t) = f(q(t), p(t), t), q(h) = q1, p(0) = p0,

and let q0 = q(0) and p1 = p(h). Lemma A.1 is replaced by

Lemma A.3. Given a (r + 1)-order Taylor method Ψ
(r+1)
h approximating the exact time-h

flow map corresponding to Hamilton’s equations, let q̃0 solve the problem

q1 = πQ ○ Ψ
(r+1)
h (q̃0, p0).

Then,

q̃0 = q0 +O(hr+2).

Proof. We proceed in the same way as in the proof of Lemma A.1. We first solve the

equation q1 = πQ ○Ψ
(r+1)
h (q̃0, p0) for q̃0, and then Taylor expand the exact solution q(t)

which belongs to Cr+2([0, h]). Now, q(t) is Lipschitz continuous in its arguments for

k = 1, ..., r, so we can let M be the largest of the corresponding r Lipschitz constants

with respect to the first argument over the compact interval [0,C]. Then, as before, the

triangle inequality can be used to get that (1 −M ∑r+1
k=1

hk

k! ) ∥q̃0 − q0∥ = O(hr+2), and by

continuity, the term inside the parenthesis is bounded away from zero.

In analogy to Lemma A.2, we now show that starting the r-order Taylor method

with initial conditions (q̃0, p0) rather than (q0, p0) will not affect the order of accuracy of

the method.

Lemma A.4. The r-order Taylor method Ψ
(r)
h with initial conditions (q̃0, p0) and where

q̃0 solves q1 = πQ ○ Ψ
(r)
h (q̃0, p0) is accurate to at least O(hr+1) for the Hamiltonian

boundary-value problem.

Proof. Let (q̃(t), p̃(t)) denote the exact solution to Hamiltonian’s equations with initial

values (q̃0, p0), and let (qd(t), pd(t)) denote the values generated by the r-order Taylor

method with initial conditions (q̃0, p0). The Hamiltonian initial-value problem is well-

posed, so denoting the Lipschitz constant with respect to the first argument by M , we can
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estimate

∥(q(t), p(t)) − (qd(t), pd(t))∥ ≤ ∥(q(t), p(t)) − (q̃(t), p̃(t))∥ + ∥(q̃(t), p̃(t)) − (qd(t), pd(t))∥

≤M∥q0 − q̃0∥ +O(hr+1) ≤ O(hr+1),
where we have used the triangle inequality, and the fact that the local truncation error of

a r-order Taylor method is O(hr+1) to bound ∥(q̃(t), p̃(t)) − (qd(t), pd(t))∥.

We are now ready to prove Theorem 2.6 for left HTVIs.

Theorem A.2. Consider a Hamiltonian H such that H and ∂H
∂p are Lipschitz continuous

in both variables. Given a r-order accurate Taylor method Ψ
(r)
h and a s-order accurate

quadrature formula with weights and nodes (bi, ci), define the associated Taylor discrete

left Hamiltonian

H−
d (q1, p0;h) = −p⊺0 q̃0 − h

m

∑
i=1

bi [p⊺ci q̇ci −H(qci , pci)],

where q̃0 solve the problem q1 = πQ ○Ψ
(r+1)
h (q̃0, p0) where (qci , pci) = Ψ

(r)
cih

(q0, p̃0), and where

we use the continuous Legendre Transform to obtain q̇ci.

Then, H−
d approximates H−,E

d with order of accuracy at least min (r + 1, s). By a

result analogous to Theorem 2.2 in [Schmitt and Leok, 2017], the associated discrete left

Hamiltonian map has the same order of accuracy.

Proof. From Lemma A.4 we have that q(cih) = qci +O(hr+1), and p(cih) = pci +O(hr+1),
and since ∂H

∂p is Lipschitz in both variables

q̇(cih) − q̇ci = ∂H

∂p
(q(cih), p(cih)) −

∂H

∂p
(qci , pci) = O(hr+1).

Since the quadrature formula is of order s accurate, equation (2.53) for H−,E
d (q1, p0;h)

gives

H−,E
d (q1, p0;h) = −p⊺0q0−h

m

∑
i=1

bi [p(cih)⊺q̇(cih) −H (qci +O(hr+1), pci +O(hr+1))]+O(hs+1).

Now, since q1 = πQ ○ Ψ
(r+1)
h (q̃0, p0), it follows from Lemma A.3 that q̃0 = q0 +O(hr+2).

Then, combining this with the fact that H is Lipschitz continuous in both variables yields

H−,E
d (q1, p0;h) =H−

d (q1, p0;h) +O(hmin (r+1,s)+1).
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A.2 Constrained Variational Mechanics

A.2.1 Theorem 2.7: Constrained Euler–Lagrange equations

Theorem A.3. Consider the constrained action functional S ∶ C2([0, T ],Q × Λ) → R
given by

S(q(⋅), λ(⋅)) = ∫
T

0
[L(q(t), q̇(t)) − ⟨λ(t),C(q(t))⟩]dt. (A.1)

The condition that S(q(⋅), λ(⋅)) is stationary with respect to the boundary conditions

δq(0) = 0 and δq(T ) = 0 is equivalent to (q(⋅), λ(⋅)) satisfying the constrained Euler–

Lagrange equations
∂L

∂q
− d

dt

∂L

∂q̇
= ⟨λ,∇C(q)⟩, C(q) = 0. (A.2)

Proof. Computing the variation of S yields

δS = ∫
T

0
[∂L
∂q

(q(t), q̇(t))δq(t) + ∂L
∂q̇

(q(t), q̇(t))δq̇(t)]dt

− ∫
T

0
[⟨λ(t),∇C(q(t))δq(t)⟩ + ⟨δλ(t),C(q(t))⟩]dt.

Using integration by parts and the boundary conditions δq(0) = 0 and δq(T ) = 0, we get

δS = ∫
T

0
[∂L
∂q

(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t)) − ⟨λ(t),∇C(q(t))⟩] δq(t)dt

− ∫
T

0
⟨δλ(t),C(q(t))⟩dt.

Now, if δS = 0, then the fundamental theorem of the calculus of variations [Arnol′d, 1989]

yields the constrained Euler–Lagrange equations (A.2).

Conversely, if (q, λ) satisfies the constrained Euler–Lagrange equations (A.2), then the

integrand vanishes and δS = 0.
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A.2.2 Theorem 2.10: Type II Constrained H Equations

Theorem A.4. Consider the constrained action functional S ∶ C2([0, T ], T ∗Q ×Λ)→ R
given by

S(q(⋅), p(⋅), λ(⋅)) = p(T )q(T ) − ∫
T

0
[p(t)q̇(t) −H(q(t), p(t)) − ⟨λ(t),C(q(t))⟩]dt. (A.3)

The condition that S(q(⋅), p(⋅), λ(⋅)) is stationary with respect to the boundary conditions

δq(0) = 0 and δp(T ) = 0 is equivalent to (q(⋅), p(⋅), λ(⋅)) satisfying Hamilton’s canonical

constrained equations

q̇ = ∂H
∂p

(q, p), ṗ = −∂H
∂q

(q, p) − ⟨λ,∇C(q)⟩, C(q) = 0. (A.4)

Proof. Computing the variation of S yields

δS = q(T )δp(T ) + p(T )δq(T ) + ∫
T

0
[⟨λ(t),∇C(q(t))δq(t)⟩ + ⟨δλ(t),C(q(t))⟩]dt

− ∫
T

0
[q̇(t)δp(t) + p(t)δq̇(t) − ∂H

∂q
(q(t), p(t))δq(t) − ∂H

∂p
(q(t), p(t))δp(t)]dt.

Using integration by parts and the boundary conditions δq(0) = 0 and δp(T ) = 0, we get

δS = q(T )δp(T ) + p(T )δq(T ) − p(T )δq(T ) + p(0)δq(0) + ∫
T

0
⟨δλ(t),C(q(t))⟩dt

+ ∫
T

0
[ṗ(t) + ∂H

∂q
(q(t), p(t)) + ⟨λ(t),∇C(q(t))⟩] δq(t)dt

+ ∫
T

0
[∂H
∂p

(q(t), p(t)) − q̇(t)] δp(t)dt

= ∫
T

0
[ṗ(t) + ∂H

∂q
(q(t), p(t)) + ⟨λ(t),∇C(q(t))⟩] δq(t)dt

+ ∫
T

0
[∂H
∂p

(q(t), p(t)) − q̇(t)] δp(t)dt

+ ∫
T

0
⟨δλ(t),C(q(t))⟩dt.

Now, if δS = 0, then the fundamental theorem of the calculus of variations [Arnol′d, 1989]

yields Hamilton’s constrained equations (A.4).

Conversely, if (q, p, λ) satisfies Hamilton’s constrained equations (A.4), then the integrand

vanishes and δS = 0.
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A.2.3 Theorem 2.11: Type III Constrained H Equations

Theorem A.5. Consider the constrained action functional S ∶ C2([0, T ], T ∗Q ×Λ)→ R
given by

S(q(⋅), p(⋅), λ(⋅)) = −p(0)q(0) − ∫
T

0
[p(t)q̇(t) −H(q(t), p(t)) − ⟨λ(t),C(q(t))⟩]dt. (A.5)

The condition that S(q(⋅), p(⋅), λ(⋅)) is stationary with respect to the boundary conditions

δq(T ) = 0 and δp(0) = 0 is equivalent to (q(⋅), p(⋅), λ(⋅)) satisfying Hamilton’s canonical

constrained equations

q̇ = ∂H
∂p

(q, p), ṗ = −∂H
∂q

(q, p) − ⟨λ,∇C(q)⟩, C(q) = 0. (A.6)

Proof. The proof is almost identical to that of Theorem 2.10. We compute the variation

of S as before and get

δS = −q(0)δp(0) − p(0)δq(0) + ∫
T

0
[⟨λ(t),∇C(q(t))δq(t)⟩ + ⟨δλ(t),C(q(t))⟩]dt

− ∫
T

0
[q̇(t)δp(t) + p(t)δq̇(t) − ∂H

∂q
(q(t), p(t))δq(t) − ∂H

∂p
(q(t), p(t))δp(t)]dt.

Integration by parts and the boundary conditions δq(T ) = 0 and δp(0) = 0 yield

δS = ∫
T

0
[ṗ(t) + ∂H

∂q
(q(t), p(t)) + ⟨λ(t),∇C(q(t))⟩] δq(t)dt

+ ∫
T

0
[∂H
∂p

(q(t), p(t)) − q̇(t)] δp(t)dt

+ ∫
T

0
⟨δλ(t),C(q(t))⟩dt.

Then, if δS = 0, then the fundamental theorem of the calculus of variations [Arnol′d, 1989]

yields Hamilton’s constrained equations (A.6).

Conversely, if (q, p, λ) satisfies Hamilton’s constrained equations (A.6), then the integrand

vanishes and δS = 0.
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A.2.4 Theorem 2.8: Type I Generating Function

Theorem A.6. The exact time-T flow map of Hamilton’s equations (q0, p0)↦ (qT , pT ) is

implicitly given by the following relations:

D1S(q0, qT ) = −
∂L

∂q̇
(q0, q̇(0)), D2S(q0, qT ) =

∂L

∂q̇
(qT , q̇(T )). (A.7)

Thus, S(q0, qT ) is a Type I generating function that generates the exact flow of the con-

strained Euler–Lagrange equations (2.70).

Proof. Using integration by parts and simplifying gives

∂S

∂q0

(q0, qT ) = ∫
T

0
[∂q(t)
∂q0

∂L

∂q
(q(t), q̇(t)) + ∂q̇(t)

∂q0

∂L

∂q̇
(q(t), q̇(t))]dt

− ∫
T

0
[⟨λ(t), ∂q(t)

∂q0

∇C(q(t))⟩ + ⟨∂λ(t)
∂q0

,C(q(t))⟩]dt

= ∫
T

0

∂q(t)
∂q0

(∂L
∂q

(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t)) − ⟨λ(t),∇C(q(t))⟩)dt

− ∫
T

0
⟨∂λ(t)
∂q0

,C(q(t))⟩dt − ∂L
∂q̇

(q(0), q̇(0)),

∂S

∂qT
(q0, qT ) = ∫

T

0
[∂q(t)
∂qT

∂L

∂q
(q(t), q̇(t)) + ∂q̇(t)

∂qT

∂L

∂q̇
(q(t), q̇(t))]dt

− ∫
T

0
[⟨λ(t), ∂q(t)

∂qT
∇C(q(t))⟩ + ⟨∂λ(t)

∂qT
,C(q(t))⟩]dt

= ∫
T

0

∂q(t)
∂qT

(∂L
∂q

(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t)) − ⟨λ(t),∇C(q(t))⟩)dt

− ∫
T

0
⟨∂λ(t)
∂qT

,C(q(t))⟩dt + ∂L
∂q̇

(q(T ), q̇(T )).

By Theorem 2.7, the extremum of the action functional S is achieved when (q, λ)
satisfies the constrained Euler–Lagrange equations (2.70), so we get the desired equations

D1S(q0, qT ) = −∂L∂q̇ (q0, q̇(0)) and D2S(q0, qT ) = ∂L
∂q̇ (qT , q̇(T )).
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A.2.5 Theorem 2.12: Type II Generating Function

Theorem A.7. The exact time-T flow map of Hamilton’s equations (q0, p0)↦ (qT , pT ) is

implicitly given by the following relations:

qT =D2S(q0, pT ), p0 =D1S(q0, pT ). (A.8)

In particular, S(q0, pT ) is a Type II generating function that generates the exact flow of

Hamilton’s constrained equations (2.81).

Proof. Using integration by parts and simplifying gives

∂S

∂q0

(q0, pT ) =
∂qT
∂q0

pT + ∫
T

0
[⟨λ(t), ∂q(t)

∂q0

∇C(q(t))⟩ + ⟨∂λ(t)
∂q0

,C(q(t))⟩]dt

− ∫
T

0
[∂p(t)
∂q0

q̇(t) + ∂q̇(t)
∂q0

p(t) − ∂q(t)
∂q0

∂H

∂q
(q(t), p(t)) − ∂p(t)

∂q0

∂H

∂p
(q(t), p(t))]dt

= p0 + ∫
T

0

∂q(t)
∂q0

(ṗ(t) + ∂H
∂q

(q(t), p(t)) + ⟨λ(t),∇C(q(t))⟩)dt

− ∫
T

0

∂p(t)
∂q0

(q̇(t) − ∂H
∂p

(q(t), p(t)))dt + ∫
T

0
⟨∂λ(t)
∂q0

,C(q(t))⟩dt,

∂S

∂pT
(q0, pT ) = qT +

∂qT
∂pT

pT + ∫
T

0
[⟨λ(t), ∂q(t)

∂pT
∇C(q(t))⟩ + ⟨∂λ(t)

∂pT
,C(q(t))⟩]dt

− ∫
T

0
[∂p(t)
∂pT

q̇(t) + ∂q̇(t)
∂pT

p(t) − ∂q(t)
∂pT

∂H

∂q
(q(t), p(t)) − ∂p(t)

∂pT

∂H

∂p
(q(t), p(t))]dt

= qT + ∫
T

0

∂q(t)
∂pT

(ṗ(t) + ∂H
∂q

(q(t), p(t)) + ⟨λ(t),∇C(q(t))⟩)dt

− ∫
T

0

∂p(t)
∂pT

(q̇(t) − ∂H
∂p

(q(t), p(t)))dt + ∫
T

0
⟨∂λ(t)
∂pT

,C(q(t))⟩dt.

By Theorem 2.10, the extremum of the action functional S is achieved when the

curve (q, p, λ) satisfies Hamilton’s constrained equations (2.81), so the integrands vanish,

and thus p0 = ∂S
∂q0

(q0, pT ) =D1S(q0, pT ) and qT = ∂S
∂pT

(q0, pT ) =D2S(q0, pT ).
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A.2.6 Theorem 2.13: Type III Generating Function

Theorem A.8. The exact time-T flow map of Hamilton’s equations (q0, p0)↦ (qT , pT ) is

implicitly given by the following relations:

q0 = −D2S(qT , p0), pT = −D1S(qT , p0). (A.9)

In particular, S(qT , p0) is a Type III generating function that generates the exact flow of

Hamilton’s constrained equations (2.83).

Proof. Integrating by parts and simplifying yields

∂S

∂qT
(qT , p0) = −

∂q0

∂qT
p0 + ∫

T

0
[⟨λ(t), ∂q(t)

∂qT
∇C(q(t))⟩ + ⟨∂λ(t)

∂qT
,C(q(t))⟩]dt

− ∫
T

0
[∂p(t)
∂qT

q̇(t) + ∂q̇(t)
∂qT

p(t) − ∂q(t)
∂qT

∂H

∂q
(q(t), p(t)) − ∂p(t)

∂qT

∂H

∂p
(q(t), p(t))]dt

= −pT + ∫
T

0

∂q(t)
∂qT

(ṗ(t) + ∂H
∂q

(q(t), p(t)) + ⟨λ(t),∇C(q(t))⟩)dt

− ∫
T

0

∂p(t)
∂qT

(q̇(t) − ∂H
∂p

(q(t), p(t)))dt + ∫
T

0
⟨∂λ(t)
∂qT

,C(q(t))⟩dt,

∂S

∂p0

(qT , p0) = −q0 −
∂q0

∂p0

p0 + ∫
T

0
[⟨λ(t), ∂q(t)

∂p0

∇C(q(t))⟩ + ⟨∂λ(t)
∂p0

,C(q(t))⟩]dt

− ∫
T

0
[∂p(t)
∂p0

q̇(t) + ∂q̇(t)
∂p0

p(t) − ∂q(t)
∂p0

∂H

∂q
(q(t), p(t)) − ∂p(t)

∂p0

∂H

∂p
(q(t), p(t))]dt

= −q0 + ∫
T

0

∂q(t)
∂p0

(ṗ(t) + ∂H
∂q

(q(t), p(t)) + ⟨λ(t),∇C(q(t))⟩)dt

− ∫
T

0

∂p(t)
∂p0

(q̇(t) − ∂H
∂p

(q(t), p(t)))dt + ∫
T

0
⟨∂λ(t)
∂p0

,C(q(t))⟩dt.

By Theorem 2.11, the extremum of the action S is achieved when the curve

(q, p, λ) satisfies Hamilton’s constrained equations (2.83), so the integrands vanish, and

thus pT = − ∂S
∂qT

(qT , p0) = −D1S(qT , p0) and q0 = − ∂S
∂p0

(qT , p0) = −D2S(qT , p0).
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A.2.7 Theorem 2.9: Discrete Constrained EL Equations

Theorem A.9. The Type I discrete Hamilton’s variational principles

δS±
d ({(qk, λk)}Nk=0) = 0 (A.10)

are equivalent to the discrete constrained Euler–Lagrange equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = ⟨λk,∇C(qk)⟩, C(qk) = 0, (A.11)

where Ld(qk, qk+1) is defined via equation (2.75).

Proof. Using the fact that δq0 = 0 and δqN = 0, we have

δS−
d = δ (

N−1

∑
k=0

[Ld(qk, qk+1) − ⟨λk,C(qk)⟩])

=
N−1

∑
k=0

[D1Ld(qk, qk+1)δqk +D2Ld(qk, qk+1)δqk+1]

−
N−1

∑
k=0

(⟨λk,∇C(qk)δqk⟩ + ⟨δλk,C(qk)⟩)

=
N−1

∑
k=1

[D1Ld(qk, qk+1) +D2Ld(qk−1, qk) − ⟨λk,∇C(qk)⟩] δqk −
N−1

∑
k=0

⟨δλk,C(qk)⟩,

δS+
d = δ (

N−1

∑
k=0

[Ld(qk, qk+1) − ⟨λk+1,C(qk+1)⟩])

=
N−1

∑
k=0

[D1Ld(qk, qk+1)δqk +D2Ld(qk, qk+1)δqk+1]

−
N−1

∑
k=0

(⟨λk+1,∇C(qk+1)δqk+1⟩ + ⟨δλk+1,C(qk+1)⟩)

=
N−1

∑
k=1

[D1Ld(qk, qk+1) +D2Ld(qk−1, qk) − ⟨λk,∇C(qk)⟩] δqk −
N−1

∑
k=0

⟨δλk+1,C(qk+1)⟩.

If the discrete constrained Euler–Lagrange equations (A.11) are satisfied, then each term

vanishes and δS±
d = 0.

Conversely, if δS±
d = 0, then a discrete fundamental theorem of the calculus of variations

yields the discrete constrained Euler–Lagrange equations (A.11).
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A.2.8 Theorem 2.14: Discrete Constrained Right H Equations

Theorem A.10. The Type II discrete Hamilton’s phase space variational principle

δS+
d ({(qk, pk, λk)}Nk=0) = 0 (A.12)

is equivalent to the discrete constrained right Hamilton’s equations

qk+1 =D2H
+
d (qk, pk+1), pk =D1H

+
d (qk, pk+1) + ⟨λk,∇C(qk)⟩, C(qk) = 0, (A.13)

where H+
d (qk, pk+1) is defined via equation (2.91).

Proof. Using the fact that δq0 = 0 and δpN = 0 since (q0, pN) is fixed, we obtain the

following expression for the variations of S+
d :

δS+
d = δ (pNqN −

N−1

∑
k=0

[pk+1qk+1 −H+
d (qk, pk+1) − ⟨λk,C(qk)⟩])

= δ (−
N−2

∑
k=0

pk+1qk+1 +
N−1

∑
k=0

[H+
d (qk, pk+1) + ⟨λk,C(qk)⟩])

= −
N−2

∑
k=0

(qk+1δpk+1 + pk+1δqk+1) +
N−1

∑
k=0

(D1H
+
d (qk, pk+1)δqk +D2H

+
d (qk, pk+1)δpk+1)

+
N−1

∑
k=0

(⟨λk,∇C(qk)δqk⟩ + ⟨δλk,C(qk)⟩)

= −
N−1

∑
k=1

(qkδpk + pkδqk) +
N−1

∑
k=1

D1H
+
d (qk, pk+1)δqk +

N−2

∑
k=0

D2H
+
d (qk, pk+1)δpk+1

+
N−1

∑
k=0

(⟨λk,∇C(qk)δqk⟩ + ⟨δλk,C(qk)⟩)

= −
N−1

∑
k=1

(qkδpk + pkδqk) +
N−1

∑
k=1

D1H
+
d (qk, pk+1)δqk +

N−1

∑
k=1

D2H
+
d (qk−1, pk)δpk

+
N−1

∑
k=0

(⟨λk,∇C(qk)δqk⟩ + ⟨δλk,C(qk)⟩)

=
N−1

∑
k=1

[−qk +D2H
+
d (qk−1, pk)] δpk +

N−1

∑
k=0

⟨δλk,C(qk)⟩

+
N−1

∑
k=1

[−pk +D1H
+
d (qk, pk+1) + ⟨λk,∇C(qk)⟩] δqk.

If the discrete constrained right Hamilton’s equations (A.13) are satisfied, then each term

vanishes so δS+
d = 0. Conversely, δS+

d = 0 yields the discrete constrained right Hamilton’s

equations (A.13), by a discrete fundamental theorem of the calculus of variations
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A.2.9 Theorem 2.15: Discrete Constrained Left H Equations

Theorem A.11. The Type III discrete Hamilton’s phase space variational principle

δS−
d ({(qk, pk, λk)}Nk=0) = 0 (A.14)

is equivalent to the discrete constrained left Hamilton’s equations

qk = −D2H
−
d (qk+1, pk), pk+1 = −D1H

−
d (qk+1, pk) − ⟨λk+1,∇C(qk+1)⟩, C(qk) = 0, (A.15)

where H−
d (qk+1, pk) is defined via equation (2.92).

Proof. Using the fact that δqN = 0 and δp0 = 0 since (qN , p0) is fixed, we obtain the

following expression for the variations of S−
d :

δS−
d = δ (−p0q0 −

N−1

∑
k=0

[−pkqk −H−
d (qk+1, pk) − ⟨λk+1,C(qk+1)⟩])

= δ (
N−1

∑
k=1

pkqk +
N−1

∑
k=0

[H−
d (qk+1, pk) + ⟨λk+1,C(qk+1)⟩])

=
N−1

∑
k=1

(qkδpk + pkδqk) +
N−1

∑
k=0

(D1H
−
d (qk+1, pk)δqk+1 +D2H

−
d (qk+1, pk)δpk)

+
N−1

∑
k=0

(⟨λk+1,∇C(qk+1)δqk+1⟩ + ⟨δλk+1,C(qk+1)⟩)

=
N

∑
k=0

(qkδpk + pkδqk) +
N−2

∑
k=0

D1H
−
d (qk+1, pk)δqk+1 +

N−1

∑
k=1

D2H
−
d (qk+1, pk)δpk

+
N−1

∑
k=0

(⟨λk+1,∇C(qk+1)δqk+1⟩ + ⟨δλk+1,C(qk+1)⟩)

=
N−1

∑
k=1

(qkδpk + pkδqk) +
N−1

∑
k=1

D1H
−
d (qk, pk−1)δqk +

N−1

∑
k=1

D2H
−
d (qk+1, pk)δpk

+
N

∑
k=1

⟨λk,∇C(qk)δqk⟩ +
N−1

∑
k=0

⟨δλk+1,C(qk+1)⟩

=
N−1

∑
k=1

[qk +D2H
−
d (qk+1, pk)] δpk +

N−1

∑
k=0

⟨δλk+1,C(qk+1)⟩

+
N−1

∑
k=1

[pk +D1H
−
d (qk, pk−1) + ⟨λk,∇C(qk)⟩] δqk.

If the discrete constrained left Hamilton’s equations (A.15) are satisfied, then each term

vanishes and δS−
d = 0. Conversely, if δS−

d = 0, then a discrete fundamental theorem of the

calculus of variations yields the discrete constrained left Hamilton’s equations (A.15).
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A.3 Lagrangian Variational Integrators

with Variable Time-Steps

A.3.1 Theorem 2.21: Discrete Extended

Euler–Lagrange Equations (I)

Theorem A.12. The Type I discrete Hamilton’s variational principle,

δS̄d ({(qk,qk, λk)}Nk=0) = 0,

where

S̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk,qk, qk+1,qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

,

is equivalent to the discrete extended Euler–Lagrange equations,

qk+1 = qk + (τk+1 − τk)g(qk),

qk+1 − qk
τk+1 − τk

D1Ld(qk,qk, qk+1,qk+1) +
qk − qk−1

τk − τk−1

D3Ld(qk−1,qk−1, qk,qk) = 0,

[D2Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]

+ [D4Ldk−1
− λk−1

1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

where Ldk denotes Ld(qk,qk, qk+1,qk+1).

Proof. We use the notation Ldk = Ld(qk,qk, qk+1,qk+1), and we will use the fact that

δq0 = δqN = δq0 = δqN = 0 throughout the proof. We have

δS̄d = δ (
N−1

∑
k=0

[Ld(qk,qk, qk+1,qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

)
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so

δS̄d =
N−1

∑
k=1

[D2Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

δqk

−
N−1

∑
k=1

1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] δqk

+
N−2

∑
k=0

[D4Ldk − λk
1

τk+1 − τk
] qk+1 − qk
τk+1 − τk

δqk+1

+
N−2

∑
k=0

1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] δqk+1

+
N−1

∑
k=1

qk+1 − qk
τk+1 − τk

D1Ldkδqk +
N−2

∑
k=0

qk+1 − qk
τk+1 − τk

D3Ldkδqk+1

+
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

(g(qk) −
qk+1 − qk
τk+1 − τk

) δλk.

Thus,

δS̄d =
N−1

∑
k=1

[D2Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

δqk

−
N−1

∑
k=1

1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] δqk

+
N−1

∑
k=1

[D4Ldk−1
− λk−1

1

τk − τk−1

] qk − qk−1

τk − τk−1

δqk

+
N−1

∑
k=1

1

τk − τk−1

[Ldk−1
− λk−1

qk − qk−1

τk − τk−1

+ λk−1g(qk−1)] δqk

+
N−1

∑
k=1

[qk+1 − qk
τk+1 − τk

D1Ldk +
qk − qk−1

τk − τk−1

D3Ldk−1
] δqk

+
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

(g(qk) −
qk+1 − qk
τk+1 − τk

) δλk.

As a consequence, if

qk+1 = qk + (τk+1 − τk)g(qk),
qk+1 − qk
τk+1 − τk

D1Ld(qk,qk, qk+1,qk+1) +
qk − qk−1

τk − τk−1

D3Ld(qk−1,qk−1, qk,qk) = 0,

[D2Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]

+ [D4Ldk−1
− λk−1

1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

then δS̄d ({(qk,qk, λk)}Nk=0) = 0. Conversely, if δS̄d ({(qk,qk, λk)}Nk=0) = 0, then a discrete

fundamental theorem of the calculus of variations yields the above equations.
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A.3.2 Theorem 2.23: Discrete Extended

Euler–Lagrange Equations (II)

Theorem A.13. The Type I discrete Hamilton’s variational principle,

δS̄d ({(qk,qk, λk)}Nk=0) = 0,

where

S̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=0

{qk+1 − qk
τk+1 − τk

[Ld(qk,qk, qk+1,qk+1) − λk] + λkg(qk)},

is equivalent to the discrete extended Euler–Lagrange equations,

qk+1 = qk + (τk+1 − τk)g(qk),

qk+1 − qk
τk+1 − τk

D1Ld(qk,qk, qk+1,qk+1) +
qk − qk−1

τk − τk−1

D3Ld(qk−1,qk−1, qk,qk) = 0,

qk+1 − qk
τk+1 − τk

D2Ldk −
1

τk+1 − τk
Ldk +

qk − qk−1

τk − τk−1
D4Ldk−1

+ 1

τk − τk−1
Ldk−1

= λk−1

τk − τk−1
− λk
τk+1 − τk

− λk∇g(qk),

where Ldk denotes Ld(qk,qk, qk+1,qk+1).

Proof. We use the notation Ldk = Ld(qk,qk, qk+1,qk+1), and we will use the fact that

δq0 = δqN = δq0 = δqN = 0 throughout the proof. We have

δS̄d = δ (
N−1

∑
k=0

{qk+1 − qk
τk+1 − τk

[Ld(qk,qk, qk+1,qk+1) − λk] + λkg(qk)})

=
N−1

∑
k=1

[qk+1 − qk
τk+1 − τk

D2Ldk −
1

τk+1 − τk
Ldk +

λk
τk+1 − τk

+ λk∇g(qk)] δqk

+
N−2

∑
k=0

[qk+1 − qk
τk+1 − τk

D4Ldk +
1

τk+1 − τk
Ldk −

λk
τk+1 − τk

] δqk+1

+
N−1

∑
k=1

qk+1 − qk
τk+1 − τk

D1Ldkδqk +
N−2

∑
k=0

qk+1 − qk
τk+1 − τk

D3Ldkδqk+1

+
N−1

∑
k=0

(g(qk) −
qk+1 − qk
τk+1 − τk

) δλk.
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Thus,

δS̄d =
N−1

∑
k=1

[qk+1 − qk
τk+1 − τk

D2Ldk −
1

τk+1 − τk
Ldk +

qk − qk−1

τk − τk−1

D4Ldk−1
+ 1

τk − τk−1

Ldk−1
] δqk

+
N−1

∑
k=1

[ λk
τk+1 − τk

+ λk∇g(qk) −
λk−1

τk − τk−1

] δqk

+
N−1

∑
k=1

[qk+1 − qk
τk+1 − τk

D1Ldk +
qk − qk−1

τk − τk−1

D3Ldk−1
] δqk

+
N−1

∑
k=0

(g(qk) −
qk+1 − qk
τk+1 − τk

) δλk.

As a consequence, if

qk+1 = qk + (τk+1 − τk)g(qk),
qk+1 − qk
τk+1 − τk

D1Ld(qk,qk, qk+1,qk+1) +
qk − qk−1

τk − τk−1

D3Ld(qk−1,qk−1, qk,qk) = 0,

qk+1 − qk
τk+1 − τk

D2Ldk −
1

τk+1 − τk
Ldk +

qk − qk−1

τk − τk−1
D4Ldk−1

+ 1

τk − τk−1
Ldk−1

= λk−1

τk − τk−1
− λk
τk+1 − τk

− λk∇g(qk),

then

δS̄d ({(qk,qk, λk)}Nk=0) = 0.

Conversely, if

δS̄d ({(qk,qk, λk)}Nk=0) = 0,

then a discrete fundamental theorem of the calculus of variations yields the above discrete

extended Euler–Lagrange equations.
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A.3.3 Theorem 4.8: Discrete Extended Euler–Lagrange

Equations in the Lie Group Setting

Theorem A.14. The Type I discrete Hamilton’s variational principle,

δS̄d ({(qk,qk, λk)}Nk=0) = 0,

where,

S̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=0

[Ld(qk, zk,qk,qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

,

is equivalent to the discrete extended Euler–Lagrange equations,

qk+1 = qk + (τk+1 − τk)g(qk),

Ad∗z−1
k

(T∗
eLzkD2Ldk) = T∗

eLqkD1Ldk +
τk+1 − τk
qk+1 − qk

qk − qk−1

τk − τk−1

T∗
eLzk−1

D2Ldk−1
,

and

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]

+ [D4Ldk − λk−1
1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

where Ldk denotes Ld(qk, zk,qk,qk+1).

Proof. We will use the notation Ldk = Ld(qk, zk,qk,qk+1) and we will use the boundary

conditions

δq0 = δqN = δq0 = δqN = η0 = ηN = 0

throughout the proof. We have

δS̄d ({(qk,qk, λk)}Nk=0) = δ (
N−1

∑
k=0

[Ld(qk, zk,qk,qk+1) − λk
qk+1 − qk
τk+1 − τk

+ λkg(qk)]
qk+1 − qk
τk+1 − τk

) ,
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so

δS̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=1

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

δqk

−
N−1

∑
k=1

1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] δqk

+
N−2

∑
k=0

[D4Ldk − λk
1

τk+1 − τk
] qk+1 − qk
τk+1 − τk

δqk+1

+
N−2

∑
k=0

1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] δqk+1

+
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

(g(qk) −
qk+1 − qk
τk+1 − τk

) δλk

+
N−1

∑
k=1

qk+1 − qk
τk+1 − τk

D1Ldkδqk

+
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

D2Ldkδzk.

We can write δgk as δgk = gkηk for some ηk ∈ g. Then, taking the variation of the discrete

kinematics equation qk+1 = qkzk gives the equation δqk+1 = δqkzk + qkδzk and zk = q−1
k qk+1.

Therefore,

δzk = q−1
k δqk+1 − q−1

k δqkzk = q−1
k qk+1ηk+1 − q−1

k qkηkzk = zkηk+1 − ηkzk,

so

δS̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=1

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

δqk

−
N−1

∑
k=1

1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] δqk

+
N−1

∑
k=1

[(D4Ldk−1
− λk−1

1

τk − τk−1

) qk − qk−1

τk − τk−1

] δqk

+
N−1

∑
k=1

[ 1

τk − τk−1

(Ldk−1
− λk−1

qk − qk−1

τk − τk−1

+ λk−1g(qk−1))] δqk

+
N−1

∑
k=1

qk+1 − qk
τk+1 − τk

(T∗
eLqkD1Ldk ● ηk)

+
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

(T∗
eLzkD2Ldk ● [ηk+1 − z−1

k ηkzk])

+
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

(g(qk) −
qk+1 − qk
τk+1 − τk

) δλk.
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Then,

δS̄d ({(qk,qk, λk)}Nk=0) =
N−1

∑
k=1

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

δqk

−
N−1

∑
k=1

1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)] δqk

+
N−1

∑
k=1

[(D4Ldk−1
− λk−1

1

τk − τk−1

) qk − qk−1

τk − τk−1

] δqk

+
N−1

∑
k=1

[ 1

τk − τk−1

(Ldk−1
− λk−1

qk − qk−1

τk − τk−1

+ λk−1g(qk−1))] δqk

+
N−1

∑
k=1

qk+1 − qk
τk+1 − τk

(T∗
eLqkD1Ldk ● ηk)

+
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

(g(qk) −
qk+1 − qk
τk+1 − τk

) δλk

+
N−1

∑
k=0

qk − qk−1

τk − τk−1

(T∗
eLzk−1

D2Ldk−1
● ηk)

−
N−1

∑
k=0

qk+1 − qk
τk+1 − τk

(T∗
eLzkD2Ldk ●Adz−1

k
ηk).

As a consequence, if

qk+1 = qk + (τk+1 − τk)g(qk),

Ad∗z−1
k

(T∗
eLzkD2Ldk) = T∗

eLqkD1Ldk +
τk+1 − τk
qk+1 − qk

qk − qk−1

τk − τk−1

T∗
eLzk−1

D2Ldk−1
,

[D3Ldk + λk
1

τk+1 − τk
+ λk∇g(qk)]

qk+1 − qk
τk+1 − τk

− 1

τk+1 − τk
[Ldk − λk

qk+1 − qk
τk+1 − τk

+ λkg(qk)]

+ [D4Ldk − λk−1
1

τk − τk−1
] qk − qk−1

τk − τk−1
+ 1

τk − τk−1
[Ldk−1

− λk−1
qk − qk−1

τk − τk−1
+ λk−1g(qk−1)] = 0,

then δS̄d ({(qk,qk, λk)}Nk=0) = 0.

Conversely, if δS̄d ({(qk,qk, λk)}Nk=0) = 0, then a discrete fundamental theorem of the

calculus of variations yields the above equations.
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A.4 Derivations of the Euler–Lagrange Equations

on Riemannian Manifolds

A.4.1 Theorem 4.1: Convex and Weakly Quasi-Convex Cases

Theorem A.15. The Euler–Lagrange equation corresponding to the Lagrangian

Lα,β,γ(X,V, t) =
1

2
eλ

−1ζγt−αt⟨V,V ⟩ − eαt+βt+λ−1ζγtf(X),

is given by

∇ẊẊ + (λ−1ζeαt − α̇t) Ẋ + e2αt+βtgradf(X) = 0,

Proof. Consider a path on the manifold Q described in coordinates by

(x(t), ẋ(t)) = (q1(t), . . . , qn(t), v1(t), . . . , vn(t)) .

Then, with ⟨⋅, ⋅⟩ = ∑ni,j=1 gijdx
idxj, the Bregman Lagrangian Lα,β,γ can be written as

Lα,β,γ (x(t), ẋ(t), t) =
1

2
eλ

−1ζγt−αt
n

∑
i,j=1

gij(x(t))vi(t)vj(t) − eαt+βt+λ
−1ζγtf(x(t)).

For k = 1, . . . n,

d

dt
(∂Lα,β,γ

∂vk
(x(t), ẋ(t), t)) = eλ−1ζγt−αt

n

∑
i=1

gik(x(t))
dvi

dt
(t)

+ eλ−1ζγt−αt
n

∑
i,j=1

∂gkj
∂qi

(x(t))vi(t)vj(t)

+ (λ−1ζγ̇t − α̇t)eλ
−1ζγt−αt

n

∑
i=1

gik(x(t))vi(t),

∂Lα,β,γ

∂qk
(x(t), ẋ(t), t) = 1

2
eλ

−1ζγt−αt
n

∑
i,j=1

∂gij
∂qk

(x(t))vi(t)vj(t) − eαt+βt+λ−1ζγt
∂f

∂qk
(x(t)).

Multiplying both terms by eαt−λ
−1ζγt , the Euler–Lagrange equations (2.2) for the Bregman

Lagrangian Lα,β,γ are given, for k = 1, . . . , n, by

0 =
n

∑
i=1

gik(x(t))
dvi

dt
(t) +

n

∑
i,j=1

∂gkj
∂qi

(x(t))vi(t)vj(t) + (λ−1ζγ̇t − α̇t)
n

∑
i=1

gik(x(t))vi(t)

− 1

2

n

∑
i,j=1

∂gij
∂qk

(x(t))vi(t)vj(t) + e2αt+βt
∂f

∂qk
(x(t)).

315



Rearranging terms, and multiplying by the matrix (gij) which is the inverse of (gij), we

get, for k = 1, . . . n, the equation

(dv
k

dt
(t) +

n

∑
i,j=1

Γkij(x(t))vi(t)vj(t)) + (λ−1ζγ̇t − α̇t) vk(t) + e2αt+βt (gradf(x(t)))k = 0,

where Γkij are the Christoffel symbols given by

Γkij =
1

2

n

∑
l=1

gkl [∂gjl
∂xi

+ ∂gli
∂xj

− ∂gij
∂xl

].

This gives the desired Euler–Lagrange equation once we use the ideal scaling equation

γ̇t = eαt , and simplify.

A.4.2 Theorem 4.4: Strongly Convex Case

Theorem A.16. The Euler–Lagrange equation corresponding to the Lagrangian LSC is

given by

∇ẊẊ + ηẊ + gradf(X) = 0.

Proof. Consider a path on the manifold Q described in coordinates by

(x(t), ẋ(t)) = (q1(t), . . . , qn(t), v1(t), . . . , vn(t)) .

Then, with ⟨⋅, ⋅⟩ = ∑ni,j=1 gijdx
idxj, the Lagrangian LSC can be written as

LSC (x(t), ẋ(t), t) = e
ηt

2

n

∑
i,j=1

gij(x(t))vi(t)vj(t) − eηtf(x(t)).

For k = 1, . . . n,

d

dt
(∂L

SC

∂vk
(x(t), ẋ(t), t)) = eηt

n

∑
i=1

gik(x(t))
dvi

dt
(t) + eηt

n

∑
i,j=1

∂gkj
∂qi

(x(t))vi(t)vj(t)

+ ηeηt
n

∑
i=1

gik(x(t))vi(t),

∂LSC

∂qk
(x(t), ẋ(t), t) = eηt

n

∑
i,j=1

∂gij
∂qk

(x(t))vi(t)vj(t) − eηt ∂f
∂qk

(x(t)).
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If we multiply both terms by e−ηt, the Euler–Lagrange equations (2.2) for the Lagrangian

LSC are given, for k = 1, . . . , n, by

0 =
n

∑
i=1

gik(x(t))
dvi

dt
(t) +

n

∑
i,j=1

∂gkj
∂qi

(x(t))vi(t)vj(t) + η
n

∑
i=1

gik(x(t))vi(t)

− 1

2

n

∑
i,j=1

∂gij
∂qk

(x(t))vi(t)vj(t) + ∂f

∂qk
(x(t)).

Rearranging terms, and multiplying by the matrix (gij) which is the inverse of (gij), we

get, for k = 1, . . . n, the equation

(dv
k

dt
(t) +

n

∑
i,j=1

Γkij(x(t))vi(t)vj(t)) + ηvk(t) + (gradf(x(t)))k = 0,

where Γkij are the Christoffel symbols given by

Γkij =
1

2

n

∑
l=1

gkl [∂gjl
∂xi

+ ∂gli
∂xj

− ∂gij
∂xl

],

which gives the desired Euler–Lagrange equation.

A.5 Convergence Rates along the Riemannian

Euler–Lagrange Equations (Theorem 4.2)

The proofs of the convergence rates of solutions to the Bregman Euler–Lagrange

equations are inspired by those of Theorems 5 and 6 from [Alimisis et al., 2020b], and

make use of Lemmas 2 and 12 therein:

Lemma A.5. Given a Riemannian manifold Q with sectional curvature bounded above by

Kmax and below by Kmin, with ζ given by equation (4.9), and such that

diam(Q) <
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π√
Kmax

if Kmax > 0

∞ if Kmax ≤ 0
,

we have that

⟨∇ẊLogX(p),−Ẋ⟩ ≤ ζ∥Ẋ∥2.
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Lemma A.6. Given a point q and a smooth curve X(t) on a Riemannian manifold Q,

we have that

d

dt
∥LogX(t)(q)∥2 = 2⟨LogX(t)(q),∇ẊLogX(t)(q)⟩ = 2⟨LogX(t)(q),−Ẋ(t)⟩.

Theorem A.17. Suppose f ∶ Q → R is λ-weakly quasi-convex function, and Assumption 1

is satisfied. Then, any solution X(t) of the Bregman Euler–Lagrange equation

∇ẊẊ + (λ−1ζeαt − α̇t) Ẋ + e2αt+βtgradf(X) = 0,

with X(0) = x0 and Ẋ(0) = 0, converges to a minimizer x∗ of f with rate

f(X(t)) − f(x∗) ≤
2λ2eβ0 (f(x0) − f(x∗)) + ζ∥Logx0

(x∗)∥2

2λ2eβt
.

Proof. Let

E(t) = λ2eβt (f(X) − f(x∗)) + 1

2
(ζ − 1)∥LogX(x∗)∥2 + 1

2
∥λe−αtẊ − LogX(x∗)∥2

.

Then, from Lemma A.6,

d

dt
∥LogX(x∗)∥2 = 2⟨LogX(x∗),∇ẊLogX(x∗)⟩ = 2⟨LogX(x∗),−Ẋ⟩,

so

Ė(t) = λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩ + (ζ − 1)⟨LogX(x∗),−Ẋ⟩

+ ⟨λe−αtẊ − LogX(x∗),−α̇tλe−αẊ + λe−αt∇ẊẊ −∇ẊLogX(x∗)⟩

= λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩ + (ζ − 1)⟨LogX(x∗),−Ẋ⟩

+ ⟨λe−αtẊ − LogX(x∗), λe−αt (−α̇tẊ +∇ẊẊ) −∇ẊLogX(x∗)⟩.

Now, from the Bregman Euler–Lagrange equation, we have that

−α̇tẊ +∇ẊẊ = −λ−1ζeαtẊ − e2αt+βtgradf(X).

As a result,

Ė(t) = λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩ + (ζ − 1)⟨LogX(x∗),−Ẋ⟩

+ ⟨λe−αtẊ − LogX(x∗),−ζẊ − λeαt+βtgradf(X) −∇ẊLogX(x∗)⟩.
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This can be rewritten as

Ė(t) = λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩

+ (ζ − 1)⟨LogX(x∗),−Ẋ⟩ − λζe−αt⟨Ẋ, Ẋ⟩

+ λeαt+βt⟨LogX(x∗),gradf(X)⟩ + ⟨LogX(x∗),∇ẊLogX(x∗)⟩

− λ2eβt⟨Ẋ,gradf(X)⟩ − λe−αt⟨Ẋ,∇ẊLogX(x∗)⟩ + ζ⟨LogX(x∗), Ẋ⟩.

Canceling the ⟨gradf(X), Ẋ⟩ and ⟨LogX(x∗),−Ẋ⟩ terms out using Lemma A.6, we get

Ė(t) = λ2β̇te
βt (f(X) − f(x∗)) + λeαt+βt⟨LogX(x∗),gradf(X)⟩

− λζe−αt⟨Ẋ, Ẋ⟩ − λe−αt⟨Ẋ,∇ẊLogX(x∗)⟩

= λeβt [β̇tλ (f(X) − f(x∗)) + eαt⟨LogX(x∗),gradf(X)⟩]

− λe−αt [ζ⟨Ẋ, Ẋ⟩ + ⟨Ẋ,∇ẊLogX(x∗)⟩] .

Now, since f is geodesically λ-weakly quasi-convex, we have that

λ (f(X) − f(x∗)) + ⟨LogX(x∗),gradf(X)⟩ ≤ 0,

so the ideal scaling equation β̇t ≤ eαt implies that

λeβt [β̇tλ (f(X) − f(x∗)) + eαt⟨LogX(x∗),gradf(X)⟩] ≤ 0.

Moreover, Lemma A.5 yields [ζ⟨Ẋ, Ẋ⟩ + ⟨Ẋ,∇ẊLogX(x∗)⟩] ≥ 0, so

−λe−αt [ζ⟨Ẋ, Ẋ⟩ + ⟨Ẋ,∇ẊLogX(x∗)⟩] ≤ 0.

Therefore, Ė(t) ≤ 0, and so

λ2eβt (f(X) − f(x∗)) ≤ λ2eβt (f(X) − f(x∗)) + 1

2
(ζ − 1)∥LogX(x∗)∥2

+ 1

2
∥λe−αtẊ − LogX(x∗)∥2

= E(t) ≤ E(0) = λ2eβ0 (f(x0) − f(x∗)) +
1

2
ζ∥Logx0

(x∗)∥2,

which gives the desired rate of convergence

f(X(t)) − f(x∗) ≤
2λ2eβ0 (f(x0) − f(x∗)) + ζ∥Logx0

(x∗)∥2

2λ2eβt
.
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A.6 Existence of Solutions to the Riemannian

Euler–Lagrange Equations

A.6.1 Theorem 4.3: Convex and Weakly Quasi-Convex Cases

Theorem A.18. Suppose Assumption 1 is satisfied, and let C,p > 0 and v > 1 be given

constants. Then the differential equation

∇ẊẊ + v
t
Ẋ +Ctp−2gradf(X) = 0,

has a global solution X ∶ [0,∞) → Q under the initial conditions X(0) = x0 ∈ Q and

Ẋ(0) = 0.

Proof. The proof is similar to that of Lemma 3 in [Alimisis et al., 2020b], which extended

Theorem 1 in [Su et al., 2016] to the Riemannian setting. We first define a family of

smoothed equations for which we then show existence of a solution for all time. After

choosing an equicontinuous and uniformly bounded subfamily of smoothed solutions, we

use the Arzela–Ascoli Theorem on the complete Riemannian manifold Q to obtain a

subsequence converging uniformly, and argue that the limit of this subsequence solves

the original problem. When p = 2, we recover the simpler case considered in Lemma 3

of [Alimisis et al., 2020b], so we assume p ≠ 2 in this proof. Consider the following families

of smoothed equations for δ > 0:

∇ẊẊ + v

max (δ, t)Ẋ +C(max (δ, t))p−2gradf(X) = 0 if p < 2,

∇ẊẊ + v

max (δ, t)Ẋ +Ctp−2gradf(X) = 0 if p > 2.

Exp and Log are defined globally on Q by Assumption 1, so we can choose geodesically

normal coordinates φ = ψ−1 around x0 defined globally on Q and put c = φ ○X.

Using the smoothness of f and letting u = ċ gives a system of first-order ODEs

defining a local representation for a vector field in TQ, and Section IV.3 of [Lang, 1999]

guarantees that the smoothed ODE has a unique solution Xδ locally around 0. Actually, Xδ

exists on [0,∞). Indeed, by contradiction, let [0, T ) be the maximal interval of existence

of Xδ, for some finite T > 0.
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Using
d

dt
f(Xδ(t)) = ⟨gradf(Xδ), Ẋδ⟩

gives

if δ > t, p < 2 ∶ d

dt
f(Xδ) = −δ

2−p

C
⟨∇Ẋδ

Ẋδ, Ẋδ⟩ −
vδ1−p

C
⟨Ẋδ, Ẋδ⟩

= −δ
2−p

2C

d

dt
∥Ẋδ∥2 − vδ

1−p

C
∥Ẋδ∥2

if δ > t, p > 2 ∶ d

dt
f(Xδ) = −t

2−p

C
⟨∇Ẋδ

Ẋδ, Ẋδ⟩ −
vt2−p

Cδ
⟨Ẋδ, Ẋδ⟩

= −t
2−p

2C

d

dt
∥Ẋδ∥2 − vt

2−p

Cδ
∥Ẋδ∥2,

if δ < t ∶ d

dt
f(Xδ) = −t

2−p

C
⟨∇Ẋδ

Ẋδ, Ẋδ⟩ −
vt1−p

C
⟨Ẋδ, Ẋδ⟩

= − 1

2C

d

dt
(t2−p∥Ẋδ∥2) − 2v(2 − p) − 1

2C(2 − p) t1−p∥Ẋδ∥2.

Now, define

θ = 2v(2 − p) − 1

2C(2 − p) .

Integrating and using the Cauchy-Schwarz inequality for the p < 2 case gives

∫
T

0

√
(max (δ, t))1−p∥Ẋδ∥dt = ∫

δ

0

√
δ1−p∥Ẋδ∥dt + ∫

T

δ

√
t1−p∥Ẋδ∥dt

≤
√

Cδ

v
(f(x0) − inf

u
f(u)) + δ

2−p

2v
(∥Ẋδ(0)∥2 − inf

t∈[0,T )
∥Ẋδ(t)∥2)

+
√

T − δ
θ

(f(Xδ(δ)) − inf
u
f(u)) + T − δ

2Cθ
(δ2−p∥Ẋδ(δ)∥2 − inf

t∈[0,T )
t2−p∥Ẋδ(t)∥2)

< ∞,

since f is bounded below by Assumption 1. If δ ≥ T , then
√
δ1−pẊδ is integrable on [0, T ).

If δ < T , then the integrals on [0, T ) and [0, δ) are finite, so the integral on [δ, T ) must also

be finite, and thus
√
t1−pẊδ is integrable on [δ, T ). Now, ∥ ∫

T

a Ẋδdt∥ ≤ ∫
T

a ∥Ẋδ∥dt <∞ for

a = 0, δ implies that limt→T Xδ(t) exists. Since Q is complete by Assumption 1, the limit

is in Q, contradicting the maximality of [0, T ). The p > 2 case is similar: the integrand is
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replaced by
√
t2−p(max (δ, t))−1∥Ẋδ∥, and the integral on [δ, T ) remains unchanged while

the integral on [0, δ) can be bounded by the same expression using t < δ. Thus, in both

cases, we can find a solution Xδ ∶ [0,∞) → Q to the smooth initial-value ODE, and its

corresponding solution Xδ ∶ [0,∞)→ Rn in local coordinates.

Now define

Mδ(t) = sup
u∈(0,t]

∥Ẋδ(u)∥
u

.

When 0 < t ≤ δ, the smoothed ODE can be written as

∇Ẋδ
(Ẋδe

v
δ ) = −Cδp−2gradf(Xδ)e

v
δ if p < 2,

∇Ẋδ
(Ẋδe

v
δ ) = −Ctp−2gradf(Xδ)e

v
δ if p > 2.

Thus, we can use Lemma 4 in [Alimisis et al., 2020b] to get for p > 2 that

Γx0

Xδ(t)
Ẋδ(t) = −e−

v
δ
t∫

t

0
(Γx0

Xδ(u)
gradf(Xδ(u)) − Γx0

Xδ(u)
Γ(Xδ)Xδ(u)x0 gradf(x0))Cup−2e

v
δ
udu

− e− vδ t∫
t

0
Cup−2Γx0

Xδ(u)
Γ(Xδ)Xδ(u)x0 gradf(x0)e

v
δ
udu.

From the Lipschitz assumption on f , we have that

∥gradf(Xδ(u)) − Γ
Xδ(u)
x0 gradf(x0)∥ ≤ L∫

u

0
∥Ẋδ(s)∥ds = L∫

u

0
s
∥Ẋδ(s)∥

s
ds ≤ 1

2
LMδ(u)u2.

Thus, since parallel transport preserves inner products,

∥Ẋδ(t)∥
t

≤ (1

2
CLMδ(δ)δp +Cδp∥gradf(x0)∥)

e−
v
δ
t

t ∫
t

0
e
v
δ
udu

≤ (1

2
CLMδ(δ)δp +Cδp∥gradf(x0)∥)

δ

vt
(1 − e− vδ t)

≤ 1

2
CLMδ(δ)δp +Cδp∥gradf(x0)∥.

Taking the supremum over 0 < t ≤ δ and rearranging gives for δ < δM = ( 2
CL

)
1
p that

Mδ(δ) ≤ 2Cδp∥gradf(x0)∥
2 −CLδp .

The case p < 2 is done exactly in the same way except that we do not need to bound up−2

by δp−2 in the integrals since the tp−2 term in the differential equation is already replaced

by δp−2.
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Note that when δ < δM and δ < t < tM = (2(v+p+1)
CL )

1
p
, the smoothed ODE can be rewritten

as
d

dt
(tvẊδ(t)) = −Ctv+p−2gradf(Xδ).

Therefore, we can use Lemma 4 in [Alimisis et al., 2020b] once again to obtain

Γ
Xδ(δ)

Xδ(t)
tvẊδ(t) − δvẊδ(δ)

= ∫
t

0
(Γ

Xδ(δ)

Xδ(u)
gradf(Xδ(u)) − Γ

Xδ(δ)

Xδ(u)
Γ(Xδ)Xδ(u)x0 gradf(x0))Cuv+p−2du

− ∫
t

0
Cuv+p−2Γ

Xδ(δ)

Xδ(u)
Γ(Xδ)Xδ(u)x0 gradf(x0)du.

Using the fact that parallel transport preserves inner products, and dividing by tv+1 gives

∥Ẋδ(t)∥
t

≤ δ
v+1

tv+1

∥Ẋδ(δ)∥
δ

+ CL

2tv+1 ∫
t

δ
Mδ(u)uv+pdu +

C

tv+1
∥gradf(x0)∥∫

t

δ
uv+p−2du

≤ δ
v+1

tv+1

2Cδp∥gradf(x0)∥
2 −CLδp + CL

2(v + p + 1)Mδ(t)tp +
C(tv+p−1 − δv+p−1)
(v + p − 1)tv+1

∥gradf(x0)∥,

and since this upper bound is an increasing function of t, we have for any t′ ∈ (δ, t) that

∥Ẋδ(t′)∥
t′

≤ 2Cδp∥gradf(x0)∥
2 −CLδp + CL

2(v + p + 1)Mδ(t)tp +
Ctp−2

v + p − 1
∥gradf(x0)∥.

Taking the supremum over all t′ ∈ (0, t) gives for δ < δM and δ < t < tM ,

Mδ(t) ≤ 1

1 − CL
2(v+p+1)t

p
( 2Cδp

2 −CLδp +
Ctp−2

v + p − 1
) ∥gradf(x0)∥.

Now consider the family of functions

F = {Xδ ∶ [0, T ]→ R ∣ δ = 2−nδ̃, n = 0,1, . . .},

where

T = (v + p + 1

CL
)

1
p

, and δ̃ = ( 1

CL
)

1
p

.

By definition of Mδ, we have for t ∈ [0, T ] and δ ∈ (0, δ̃) that

∥Ẋδ∥ ≤ TMδ(T ) ≤ 2CT (δ̃ + CT p−2

v + p − 1
) ,

and

d(Xδ(t),Xδ(0)) ≤ ∫
t

0
∥Ẋδ(u)∥du ≤ t∥Ẋδ∥ ≤ T ∥Ẋδ∥.
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Therefore, F is equicontinuous and uniformly bounded, and the Riemannian manifold Q

is complete by Assumption 1. Therefore, by the Arzela–Ascoli Theorem on Riemannian

manifolds (Theorem 17 in [Kelley, 1975]), F contains a subsequence that converges

uniformly on [0, T ] to some function X∗. The same argument as in part 5 of the proof of

Lemma 3 of [Alimisis et al., 2020b] shows that X∗ is a solution to the original initial-value

ODE on [0, T ] which can then be extended to get a global solution on [0,∞).

A.6.2 Theorem 4.5: Strongly Convex Case

Theorem A.19. Suppose that Assumption 1 is satisfied, and that η > 0 is a given constant.

Then, the differential equation

∇ẊẊ + ηẊ + gradf(X) = 0,

has a global solution X ∶ [0,∞) → Q under the initial conditions X(0) = x0 ∈ Q and

Ẋ(0) = 0.

Proof. Exp and Log are defined globally on Q by Assumption 1, so we can choose

geodesically normal coordinates φ = ψ−1 around x0 defined globally on Q and put c = φ○X.

As in [Alimisis et al., 2020b], using the smoothness of f and letting u = ċ gives a system of

first-order ODEs which defines a local representation for a vector field in TQ, and results

from Section IV.3 of [Lang, 1999] guarantee that the initial-value differential equation has

a unique solution locally around 0. It remains to show that this solution actually exists on

[0,∞). Towards contradiction, suppose [0, T ) is the maximal interval of existence of the

solution X, for some finite T > 0. Then,

d

dt
f(X(t)) = ⟨gradf(X), Ẋ⟩ = −⟨∇ẊẊ, Ẋ⟩ −C⟨Ẋ, Ẋ⟩ = −1

2

d

dt
∥Ẋ∥2 −C∥Ẋ∥2.

Rearranging, integrating both sides and using the Cauchy-Schwarz inequality gives

∫
T

0
∥Ẋ∥dt =

√
T (f(x0) − inf

u
f(u)) + T

2
(∥Ẋ(0)∥2 − inf

t∈[0,T )
∥Ẋ(t)∥2) < ∞,

since f is bounded from below by Assumption 1. Therefore, limt→T X(t) exists, and since

the Riemannian manifold Q is complete, the limit is in Q, contradicting the maximality of

the interval [0, T ). This completes the proof.
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A.7 Time-Invariance Theorem 4.6 on

Riemannian Manifolds

Theorem A.20. Suppose that Assumption 1 is satisfied and that the curve X(t) sat-

isfies the Euler–Lagrange equation (4.12) corresponding to the Riemannian Bregman

Lagrangian Lα,β,γ. Then the reparametrized curve X(τ(t)) satisfies the Euler–Lagrange

equation (4.12) corresponding to the modified Riemannian Bregman Lagrangian Lα̃,β̃,γ̃

where α̃t = ατ(t) + log τ̇(t), β̃t = βτ(t), and γ̃t = γτ(t). Furthermore, the parameters α,β, γ

satisfy the ideal scaling conditions (3.7) if and only if α̃, β̃, γ̃ do.

Proof. Let Y (t) =X(τ(t)). Then

Ẏ (t) = τ̇(t)Ẋ(τ(t)), and ∇Ẏ (t)Ẏ (t) = τ̈(t)Ẋ(τ(t)) + τ̇ 2(t)∇Ẋ(τ(t))Ẋ(τ(t)).

Inverting these relations gives

Ẋ(τ(t)) = 1

τ̇(t) Ẏ (t), and ∇Ẋ(τ(t))Ẋ(τ(t)) = 1

τ̇ 2(t)∇Ẏ (t)Ẏ (t) − τ̈(t)
τ̇ 3(t) Ẏ (t).

The Bregman Euler–Lagrange equation (4.12) at time τ(t) is given by

∇Ẋ(τ(t))Ẋ(τ(t)) + (λ−1ζeατ(t) − α̇τ(t)) Ẋ(τ(t)) + e2ατ(t)+βτ(t)gradf(X(τ(t))) = 0.

Substituting the expressions for X(τ(t)), Ẋ(τ(t)) and ∇Ẋ(τ(t))Ẋ(τ(t)) in terms of Y (t)
and its derivatives, and multiplying by τ̇ 2(t), we get

∇Ẏ (t)Ẏ (t) − τ̈(t)
τ̇(t) Ẏ (t) + (λ−1ζeατ(t) − α̇τ(t)) τ̇(t)Ẏ (t) + τ̇ 2(t)e2ατ(t)+βτ(t)gradf(Y (t)) = 0.

Substituting the expressions for α,β, γ in terms of α̃, β̃, γ̃ yields

∇Ẏ (t)Ẏ (t) − τ̈(t)
τ̇(t) Ẏ (t) + (λ−1ζ

1

τ̇(t)e
α̃t − 1

τ̇(t) [ ˙̃α(t) + τ̈(t)
τ̇(t)]) τ̇(t)Ẏ (t) + e2α̃t+β̃tgradf(Y (t)) = 0.

This gives the Bregman Euler–Lagrange equation (4.12) corresponding to Lα̃,β̃,γ̃,

∇Ẏ (t)Ẏ (t) + (λ−1ζeα̃t − 1

τ̇(t)
˙̃α(t)) Ẏ (t) + e2α̃t+β̃tgradf(Y (t)) = 0.

The fact that α,β, γ satisfy the ideal scaling conditions (3.7) if and only if α̃, β̃, γ̃ do is

established in the proof of Theorem 1.2 of [Wibisono et al., 2016].
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A.8 Derivation: SE(3) Forced Variational Integrator

We derive here the forced discrete Euler–Lagrange equations in Lagrangian form

(equations (6.40)-(6.42)) and in Hamiltonian form (equations (6.14)-(6.18)) associated to

the discrete Lagrangian Ld and discrete control forces f±d on SE(3) presented in Section 6.3.2.

On SE(3), with gk = (xk,Rk) ∈ SE(3) and zk = (yk, Zk) ∈ SE(3), the discrete

kinematics equations gk+1 = gk ⋆ zk are given by

Rk+1 = RkZk and xk+1 = xk +Rkyk, (A.16)

so that the sequence {(xk,Rk)}k remains on SE(3).

Using the continuous kinematics equation Ṙ = RS(ω), the matrix S(ωk) can be

approximated via

S(ωk) = R⊺
kṘk ≈ R⊺

k

Rk+1 −Rk

h
= 1

h
(Zk − I3). (A.17)

Recall that the discrete Lagrangian is then chosen to be

Ld(xk,Rk, yk, Zk) =
m

2h
y⊺kyk +

1

h
Trace ([I3 −Zk]Jd)

− (1 − α)hU(xk,Rk) − αhU(xk +Rkyk,RkZk).
(A.18)

We will derive the forced discrete equations of motion directly from the discrete Lagrange–

d’Alembert variational principle.

The variations of the discrete position variables xk and Rk are chosen to respect the

geometry of the configuration space SE(3). The variation of xk is given by xεk ≈ xk + εδxk
where δxk ∈ R3 vanishes at the endpoints k = 0 and k = N . The variation of Rk is given by

δRk = Rkηk where ηk ∈ so(3) is a variation that vanishes at the endpoints k = 0 and k = N .

Then, from Zk = R⊺
kRk+1, we get

δZk = R⊺
kδRk+1 + δR⊺

kRk+1 = R⊺
kRk+1ηk+1 − ηkRk +Rkηk+1 = Zkηk+1 − ηkZk. (A.19)
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Using the notation Ldk = Ld(gk, zk), Uk = U(xk,Rk), and f±dk = f±d (gk, gk+1, uk) , the

discrete Lagrange–d’Alembert principle

δ
N−1

∑
k=1

Ld(gk, zk) +
N−1

∑
k=1

[f−d (gk, gk+1, uk) ⋅ δgk + f+d (gk, gk+1, uk) ⋅ δgk+1] = 0, (A.20)

yields

0 = δ∑
k

Ldk +∑
k

[f−dk ⋅ δgk + f+dk ⋅ δgk+1]

= 1

h
∑
k

Trace ((ηkZk −Zkηk+1)Jd) +
m

h
∑
k

y⊺kδyk

− (1 − α)h∑
k

∂Uk
∂xk

⊺

δxk − αh∑
k

∂Uk+1

∂xk+1

⊺

δxk+1

+ (1 − α)h∑
k

Trace(ηkR⊺
k

∂Uk
∂Rk

) + αh∑
k

Trace(ηk+1R
⊺
k+1

∂Uk+1

∂Rk+1

)

+ 1

2
∑
k

Trace (ηkS(fR−dk )) + 1

2
∑
k

Trace (ηk+1S(fR+dk ))

+∑
k

Rkf
x−
dk
⋅ δxk +∑

k

Rk+1f
x+
dk
⋅ δxk+1.

Therefore,

0 = 1

h
∑
k

Trace ((ηkZk −Zkηk+1)Jd) +
m

h
∑
k

(xk+1 − xk)⊺R⊺
kRk(δxk+1 − δxk)

− (1 − α)h∑
k

∂Uk
∂xk

⊺

δxk − αh∑
k

∂Uk+1

∂xk+1

⊺

δxk+1

+ (1 − α)h∑
k

Trace(ηkR⊺
k

∂Uk
∂Rk

) + αh∑
k

Trace(ηk+1R
⊺
k+1

∂Uk+1

∂Rk+1

)

− 1

2
∑
k

Trace (ηkS(fR−dk )) − 1

2
∑
k

Trace (ηk+1S(fR+dk ))

+∑
k

Rkf
x−
dk
⋅ δxk +∑

k

Rk+1f
x+
dk
⋅ δxk+1

Then, since the variations δxk and ηk vanish at the endpoints k = 0 and k = N , we can

shift the summation indices appropriately, and gather similar terms to obtain

0 =∑
k

Trace(ηk [
1

h
(ZkJd − JdZk−1) + (1 − α)hR⊺

k

∂Uk
∂Rk

+ αhR⊺
k

∂Uk
∂Rk

− 1

2
S (fR−dk + fR+dk−1

)])

+∑
k

δx⊺k (
m

h
(xk+1 − 2xk + xk−1) − (1 − α)h∂Uk

∂xk
− αh∂Uk

∂xk
+Rk(fx−dk + fx+dk−1

)).
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This simplifies to

0 = ∑
k

Trace(ηk [
1

h
(ZkJd − JdZk−1) + hR⊺

k

∂Uk
∂Rk

− 1

2
S (fR−dk + fR+dk−1

)])

+∑
k

δx⊺k (
m

h
(xk+1 − 2xk + xk−1) − h

∂Uk
∂xk

+Rk(fx−dk + fx+dk−1
)).

This equation must hold for any possible variations δxk ∈ R3 and ηk ∈ so(3) that vanish

at the endpoints, so each term in the summations must be zero. Thus, the following

equations must hold for each k:

m

h
(xk+1 − 2xk + xk−1) − h

∂Uk
∂xk

+Rk(fx−dk + fx+dk−1
) = 0, (A.21)

Trace(ηk [
1

h
(ZkJd − JdZk−1) + hR⊺

k

∂Uk
∂Rk

− 1

2
S (fR−dk + fR+dk−1

)]) = 0. (A.22)

Since ηk ∈ so(3), the quantity

1

h
(ZkJd − JdZ⊺

k−1) + hR⊺
k

∂Uk
∂Rk

+ 1

2
S (fR−dk + fR+dk−1

)

must be symmetric, so since S (fR−dk + fR+dk−1
) ∈ so(3), we get the equations

xk+1 = 2xk − xk−1 +
h2

m

∂Uk
∂xk

+ h

m
Rk (fx−dk + fx+dk−1

) , (A.23)

1

h
[ZkJd − JdZk−1 − JdZ⊺

k +Z⊺
k−1Jd] − h [∂Uk

∂Rk

⊺

Rk −R⊺
k

∂Uk
∂Rk

] − S (fR−dk + fR+dk−1
) = 0. (A.24)

Thus, defining the quantity ξk via

S(ξk) =
∂Uk
∂Rk

⊺

Rk −R⊺
k

∂Uk
∂Rk

, (A.25)

we obtain the forced discrete Euler–Lagrange equations

xk+1 = 2xk − xk−1 +
h2

m

∂Uk
∂xk

+ h

m
Rk (fx−dk + fx+dk−1

) , (A.26)

h2S(ξk) + hS (fR−dk + fR+dk−1
) + JdZk−1 −Z⊺

k−1Jd = ZkJd − JdZ⊺
k , (A.27)

and

Rk+1 = RkZk. (A.28)
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Using the discrete Legendre transforms

S(πk) =
1

h
(ZkJd − JdZ⊺

k ) − (1 − α)hS(ξk) − S(fR−dk ), (A.29)

γk =
m

h
(xk+1 − xk) + (1 − α)h∂Uk

∂xk
−Rkf

x−
dk
, (A.30)

we can rewrite equations (A.26) and (A.27) as

S(πk+1) =
1

h
(JdZk −Z⊺

kJd) + αhS(ξk+1) + S(fR+dk ), (A.31)

γk+1 =
m

h
(xk+1 − xk) − αh

∂Uk+1

∂xk+1

+Rk+1f
x+
dk
. (A.32)

Overall, we obtain the following implicit discrete equations of motion:

S(πk) =
1

h
(ZkJd − JdZ⊺

k ) − (1 − α)hS(ξk) − S(fR−dk ), (A.33)

γk =
m

h
(xk+1 − xk) + (1 − α)h∂Uk

∂xk
−Rkf

x−
dk
, (A.34)

Rk+1 = RkZk, (A.35)

S(πk+1) =
1

h
(JdZk −Z⊺

kJd) + αhS(ξk+1) + S(fR+dk ), (A.36)

γk+1 =
m

h
(xk+1 − xk) − αh

∂Uk+1

∂xk+1

+Rk+1f
x+
dk
. (A.37)

Equations (A.33) and (A.34) can be rewritten as

hS(πk) + hS(fR−dk ) + (1 − α)h2S(ξk) = ZkJd − JdZ⊺
k , (A.38)

xk+1 = xk +
h

m
γk − (1 − α)h

2

m

∂Uk
∂xk

− h

m
Rkf

x−
dk
. (A.39)

Equation (A.36) can be rewritten using equation (A.33) as

S(πk+1) = Z⊺
kS(πk)Zk + (1 − α)hZ⊺

kS(ξk)Zk + αhS(ξk+1) +Z⊺
kS(fR−dk )Zk + S(fR+dk ). (A.40)

Since Z⊺S(ζ)Z = S(Z⊺ζ) for any Z ∈ SO(3) and ζ ∈ so(3), we get

S(πk+1) = S(Z⊺
kπk) + (1 − α)hS(Z⊺

k ξk) + αhS(ξk+1) + S(Z⊺
k f

R−
dk

) + S(fR+dk ). (A.41)
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Therefore,

πk+1 = Z⊺
kπk + (1 − α)hZ⊺

k ξk + αhξk+1 +Z⊺
k f

R−
dk

+ fR+dk . (A.42)

Finally, equation (A.37) can be rewritten using equation (A.34) as

γk+1 = γk − (1 − α)h∂Uk
∂xk

− αh∂Uk+1

∂xk+1

+Rkf
x−
dk
+Rk+1f

x+
dk
. (A.43)

Overall, this gives the forced variational integrator (6.14)-(6.18):

hS(πk) + hS(fR−dk ) + (1 − α)h2S(ξk) = ZkJd − JdZ⊺
k ,

Rk+1 = RkZk,

πk+1 = Z⊺
kπk + (1 − α)hZ⊺

k ξk + αhξk+1 +Z⊺
k f

R−
dk

+ fR+dk ,

xk+1 = xk +
h

m
γk − (1 − α)h

2

m

∂Uk
∂xk

− h

m
Rkf

x−
dk
,

γk+1 = γk − (1 − α)h∂Uk
∂xk

− αh∂Uk+1

∂xk+1

+Rkf
x−
dk
+Rk+1f

x+
dk
.

Alternatively, we can start from the forced discrete Euler–Lagrange equations for a

discrete Lagrangian Ld(gk, zk) on a Lie group G,

gk+1 = gk ⋆ zk, (A.44)

T∗
eLzk−1

D2Ldk−1
−Ad∗z−1

k
(T∗

eLzkD2Ldk) +T∗
eLgkD1Ldk + f−dk + f+dk−1

= 0, (A.45)

where Ldk = Ld(gk, zk) and f±dk = f±d (gk, gk+1, uk).

On SE(3), with gk = (xk,Rk) ∈ SE(3) and zk = (yk, Zk) ∈ SE(3), the discrete

kinematics equations gk+1 = gk ⋆ zk are given by

Rk+1 = RkZk and xk+1 = xk +Rkyk, (A.46)

so that {(xk,Rk)}k remains on SE(3). Using the kinematics equation Ṙ = RS(ω), the

matrix S(ωk) can be approximated via

S(ωk) = R⊺
kṘk ≈ R⊺

k

Rk+1 −Rk

h
= 1

h
(Zk − I3). (A.47)
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With the discrete Lagrangian

Ld(xk,Rk, yk, Zk) =
m

2h
y⊺kyk +

1

h
tr ([I3 −Zk]Jd)

− (1 − α)hU(xk,Rk) − αhU(xk +Rkyk,RkZk),
(A.48)

it can be shown by proceeding as in [Lee, 2008] that the Lie group forced discrete Euler–

Lagrange equations become

1

h
(JdZk−1 −Z⊺

k−1Jd) −
1

h
(ZkJd − JdZ⊺

k ) + hS(ξk) + S(fR−dk ) + S(fR+dk−1
) = 0, (A.49)

m

h
R⊺
k(xk − xk−1) −

m

h
R⊺
k(xk+1 − xk) − hR⊺

k

∂Uk
∂xk

+ fx−dk + fx+dk−1
= 0, (A.50)

Rk+1 = RkZk, (A.51)

where fx±dk and fR±dk denote the x and R components of the discrete forces f±dk .

This can be simplified into the forced discrete Euler–Lagrange equations

h2S(ξk) + hS(fR−dk ) + hS(fR+dk−1
) + (JdZk−1 −Z⊺

k−1Jd) = ZkJd − JdZ⊺
k , (A.52)

xk+1 = 2xk − xk−1 −
h2

m

∂Uk
∂xk

+ h

m
Rk(fx−dk − fx+dk−1

), (A.53)

Rk+1 = RkZk. (A.54)

Using the discrete Legendre transforms

S(πk) =
1

h
(ZkJd − JdZ⊺

k ) − (1 − α)hS(ξk) − S(fR−dk ), (A.55)

νk =
m

h
R⊺
k(xk+1 − xk) + (1 − α)hR⊺

k

∂Uk
∂xk

− fx−dk , (A.56)

with γ = Rν, we can recover as before the forced variational integrator (6.14)-(6.18):

hS(πk) + (1 − α)h2S(ξk) = ZkJd − JdZ⊺
k − hS(fR−dk ), (A.57)

Rk+1 = RkZk, (A.58)

πk+1 = Z⊺
kπk + (1 − α)hZ⊺

k ξk + αhξk+1 +Z⊺
k f

R−
dk

+ fR+dk , (A.59)

xk+1 = xk +
h

m
γk − (1 − α)h

2

m

∂Uk
∂xk

− h

m
Rkf

x−
dk
, (A.60)

γk+1 = γk − (1 − α)h∂Uk
∂xk

− αh∂Uk+1

∂xk+1

+Rkf
x−
dk
+Rk+1f

x+
dk
. (A.61)
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A.9 Transforming the equation S(a) = ZJd − JdZ⊺

Plugging the Cayley transform

Z = Cay(z) ≡ (I3 + S(z))(I3 − S(z))−1, (A.62)

into the equation

S(a) = ZJd − JdZ⊺, (A.63)

and using the fact that (I3 ± S(z))⊺ = (I3 ∓ S(z)) gives

S(a) = (I3 + S(z))(I3 − S(z))−1Jd − Jd(I3 + S(z))−1(I3 − S(z)). (A.64)

Now, (I3 ± S(z)) and (I3 ∓ S(z))−1 commute, so we can rewrite the previous equation as

S(a) = (I3 − S(z))−1(I3 + S(z))Jd − Jd(I3 − S(z))(I3 + S(z))−1. (A.65)

Multiplying both sides of equation (A.65) on the left by (I3 − S(z)) and on the right by

(I3 + S(z)) gives

(I3 − S(z))S(a)(I3 + S(z)) = (I3 + S(z))Jd(I3 + S(z)) − (I3 − S(z))Jd(I3 − S(z)), (A.66)

which can be simplified into

S(a) − S(z)S(a) + S(a)S(z) − S(z)S(a)S(z) = 2S(z)Jd + 2JdS(z). (A.67)

Using S(z)Jd + JdS(z) = S(Jz) and the general formulas

− S(y)S(x) + S(x)S(y) = S(S(x)y), S(x)S(y)S(x) = −(y⊺x)S(x), (A.68)

we can simplify equation (A.67) into

S(a) + S(S(a)z) + (a⊺z)S(z) = 2S(Jz). (A.69)

This can be rewritten in the desired vector form

a + a × z + (a⊺z)z − 2Jz = 0. (A.70)
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Accelerated Optimization” by V. Duruisseaux, J. Schmitt, and M. Leok. SIAM

Journal on Scientific Computing, Vol.43, No.4, A2949-A2980, 2021

 “A Variational Formulation of Accelerated Optimization on Riemannian Mani-

folds” by V. Duruisseaux and M. Leok. SIAM Journal on Mathematics of Data

Science, Vol.4, No.2, pages 649-674, 2022

® “Accelerated Optimization on Riemannian Manifolds via Discrete Constrained

Variational Integrators” by V. Duruisseaux and M. Leok. Journal of Nonlinear

Science, Vol.32, No.42, 2022

¯ “Time-adaptive Lagrangian Variational Integrators for Accelerated Optimiza-

tion on Manifolds” by V. Duruisseaux and M. Leok. Journal of Geometric

Mechanics, Vol.15, Issue 1, pages 224-255, 2023.

° “Lie Group Forced Variational Integrator Networks for Learning and Control

of Robot Systems” by V. Duruisseaux, T. Duong, M. Leok, and N. Atanasov.

Proceedings of the 5th Learning for Dynamics and Control Conference (L4DC),

PMLR 211:731-744, 2023

The dissertation author was the primary investigator and author of these papers.

333



B Symbols and Abbreviations

We list here symbols and abbreviations used in this dissertation, together with the

section in which they are first introduced:

∅ Empty set
R Real line
u⊺ Transpose of u
Trace(⋅) Trace operator for matrices
∇f Gradient of f
IdQ Identity map on Q

In (n × n) Identity matrix
1 Vector of ones
ODE/PDE Ordinary/Partial Differential Equation
TmM Tangent space to manifold M at point m Section 1.1.1
T ∗
mM Cotangent space to manifold M at point m Section 1.1.1
TM Tangent bundle of manifold M Section 1.1.1
T ∗M Cotangent bundle of manifold M Section 1.1.1
X(M) Set of all vector fields on manifold M Section 1.1.1
Tmf Tangent map (or differential) of f Section 1.1.1
Alt Alternating operator Section 1.1.1
α⊗ β Tensor product of the differential forms α and β Section 1.1.1
α ∧ β Wedge product of the differential forms α and β Section 1.1.1
dα Exterior derivative of the differential form α Section 1.1.1
ιXα Interior product with vector field X of the form α Section 1.1.1
ψ∗f Pull-back of the function f by the map ψ Section 1.1.1
ψ∗X Pull-back of the vector field X by the map ψ Section 1.1.1
ψ∗α Pull-back of the form α by the map ψ Section 1.1.1
ψ∗f Push-forward of the function f by the map ψ Section 1.1.1
ψ∗X Push-forward of the vector field X by the map ψ Section 1.1.1
ψ∗α Push-forward of the form α by the map ψ Section 1.1.1
LXα Lie derivative of form α along the vector field X Section 1.1.1
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g(⋅, ⋅) = ⟨⋅, ⋅⟩ Riemannian metric Section 1.1.2
g♭(⋅)(⋅) Musical isomorphism Section 1.1.2
g♯(⋅)(⋅) Inverse musical isomorphism Section 1.1.2
g∗(⋅, ⋅) = ⟪⋅, ⋅⟫ Riemannian fiber metric Section 1.1.2
gradf Riemannian gradient of f Section 1.1.2
Γ(γ) Parallel transport along the geodesic γ Section 1.1.2
Expq Riemannian Exponential map at point q Section 1.1.2
Logq Riemannian Logarithm map at point q Section 1.1.2
∇XY Covariant derivative of Y along X Section 1.1.2
[X,Y ] Lie bracket of X and Y Section 1.1.2
Sn−1 Unit sphere Section 1.1.4
St(m,n) Stiefel manifold Section 1.1.4
Lg Left translation map on Lie groups Section 1.2.1
Rg Left translation map on Lie groups Section 1.2.1
Ig Inner automorphism on Lie groups Section 1.2.1
g Lie algebra Section 1.2.1
Adg Adjoint operator Section 1.2.1
Ad∗g Coadjoint operator Section 1.2.1
adξ ad operator Section 1.2.1
ad∗η co-ad operator Section 1.2.1
GL(n,R) Real General Linear Group Section 1.2.2
O(n) Orthogonal Group Section 1.2.2
SO(n) Special Orthogonal Group Section 1.2.2
so(n) Lie algebra of SO(n) Section 1.2.2
(⋅)∧ or S(⋅) Hat map on R3 Section 1.2.2
(⋅)∨ Vee map on so(3) Section 1.2.2
SE(n) Special Euclidean Group Section 1.2.2
se(n) Lie algebra of SE(n) Section 1.2.2
U(1) Circle Group Section 1.2.2
δ(⋅) Infinitessimal variation Section 2.1
S Action functional Section 2.1
F, F̄,F± Legendre transform Section 2.1
J Symplectic matrix Section 2.1

BEA Backward error analysis Section 2.3
Sd,S±

d Discrete action functional Section 2.4
Ld Discrete Lagrangian Section 2.4
LEd Exact discrete Lagrangian Section 2.4

F̃Ld Discrete Hamiltonian map Section 2.4
H±
d Discrete Hamiltonian Section 2.4

H±,E
d Exact discrete Hamiltonian Section 2.4

F̃H±
d

Discrete Hamilton’s map Section 2.4

LTVI Lagrangian Taylor Variational Integrator Section 2.4.2
HTVI Hamiltonian Taylor Variational Integrator Section 2.4.2
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πQ Projection map on Q Section 2.4.2
πT ∗Q Projection map on T ∗Q Section 2.4.2
f±dk Discrete control forces Section 6.3.2

C Holonomic constraint function Section 2.6.1
Λ Space of Lagrange multipliers Section 2.6.1
S Generating function Section 2.6.1
g(q, p), g(q, t, p) Monitor function Section 2.7
q̄ Extended position variable Section 2.7.1
q Additional position variable Section 2.7.1
HTVI4 A 4th-Order HTVI Section 2.7.1
SV Störmer–Verlet integrator Section 2.7.1
NAG Nesterov’s Accelerated Gradient method Section 3.1
Lα,β,γ General Bregman Lagrangian Section 3.2
Hα,β,γ General Bregman Hamiltonian Section 3.2
Lp Polynomial p-Bregman Lagrangian Section 3.2
Hp Polynomial p-Bregman Hamiltonian Section 3.2
H̄p Direct approach Section 3.3.2

Poincaré transformed p-Hamiltonian
H̄p→p̊ Adaptive approach Section 3.3.3

Poincaré transformed p→ p̊-Hamiltonian
Direct Splitting Numerical method based on splitting Section 3.3.4
Adaptive Splitting Numerical method based on splitting Section 3.3.4
CloningStrang Cloning method with Strang Splitting Section 3.3.4
CloningY4 Cloning method with Yoshida 4 Splitting Section 3.3.4
CloningY6 Cloning method with Yoshida 6 Splitting Section 3.3.4
ode23, ode45 MATLAB Solvers Section 3.3.4
ADAM Popular optimization method Section 3.3.4
AdaGrad Popular optimization method Section 3.3.4
RMSProp Popular optimization method Section 3.3.4
TRUST Trust region steepest descent method Section 3.3.4
RK Runge–Kutta method Section 3.3.4
∥ ⋅ ∥F Frobenius norm Section 4.1.2
Lα,β,γ General Riemannian Bregman Lagrangian Section 4.2.1
Hα,β,γ General Riemannian Bregman Hamiltonian Section 4.2.1
Lp Riemannian p-Bregman Lagrangian Section 4.2.1
Hp Riemannian p-Bregman Hamiltonian Section 4.2.1
SC Strongly convex Section 4.2.2
LSC Riemannian strongly-convex Section 4.2.2

Bregman Lagrangian
HSC Riemannian strongly-convex Section 4.2.2

Bregman Hamiltonian
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SIRNAG Semi-Implicit Riemannian NAG Section 4.3
RGD Riemannian Gradient Descent Section 4.3
H̄p Direct approach Riemannian Section 4.4

Poincaré transformed p-Hamiltonian
H̄p→p̊ Adaptive approach Riemannian Section 4.4

Poincaré transformed p→ p̊-Hamiltonian
EL V1 Euler–Lagrange discretization Version 1 Section 4.5.2
EL V2 Euler–Lagrange discretization Version 2 Section 4.5.2
HTVI AD Adaptive HTVI Section 4.5.2
Adaptive LLGVI Adaptive Lagrangian Section 4.6

Lie Group Variational Integrator
Implicit LGVI Implicit Lie Group Variational Integrator Section 4.6
Lη Exponential η-Bregman Lagrangian Section 5.2.3
Hη Exponential η-Bregman Hamiltonian Section 5.2.3
H̄p→p̊ Polynomial-p to Polynomial-p̊ Hamiltonian Section 5.2.5
H̄η→η̊ Exponential-η to Exponential-̊η Hamiltonian Section 5.2.5
H̄η
→p Exponential-η to Polynomial-p Hamiltonian Section 5.2.5

H̄→ηp Polynomial-p to Exponential-η Hamiltonian Section 5.2.5
SLC Symmetric Leapfrog Composition Section 5.3.1
PolyHTVI HTVI for Polynomial Bregman Dynamics Section 5.3.1
PolyLTVI LTVI for Polynomial Bregman Dynamics Section 5.3.1
PolySLC SLC for Polynomial Bregman Dynamics Section 5.3.1
PolySV SV for Polynomial Bregman Dynamics Section 5.3.1
ExpoHTVI HTVI for Exponential Bregman Dynamics Section 5.3.1
ExpoLTVI LTVI for Exponential Bregman Dynamics Section 5.3.1
ExpoSLC SLC for Exponential Bregman Dynamics Section 5.3.1
ExpoSV SV for Exponential Bregman Dynamics Section 5.3.1
ExpoToPolyHTVI HTVI for Expo-to-Poly Dynamics Section 5.3.1
ExpoToPolyLTVI LTVI for Expo-to-Poly Bregman Dynamics Section 5.3.1
ExpoToPolySLC SLC for Expo-to-Poly Dynamics Section 5.3.1
ExpoToPolySV SV for Expo-to-Poly Dynamics Section 5.3.1
PolyToExpoHTVI HTVI for Poly-to-Expo Dynamics Section 5.3.1
PolyToExpoLTVI LTVI for Poly-to-Expo Dynamics Section 5.3.1
PolyToExpoSLC SLC for Poly-to-Expo Dynamics Section 5.3.1
PolyToExpoSV SV for Poly-to-Expo Dynamics Section 5.3.1
PolySLC-R PolySLC with Momentum Restarting Section 5.6
ExpoSLC-R ExpoSLC with Momentum Restarting Section 5.6
PolySLC-RTL PolySLC with Momentum Restarting Section 5.8

and Temporal Looping
ExpoSLC-RTL ExpoSLC with Momentum Restarting Section 5.8

and Temporal Looping
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pBrAVO Polynomial Bregman Accelerated Section 5.9
Variational Optimizer

eBrAVO Exponential Bregman Accelerated Section 5.9
Variational Optimizer

SGD Standard Gradient Descent Section 5.9
LSTM Long Short-Term Memory Section 5.9
MSE Mean Squared Error Section 5.9
(F)VINs (Forced) Variational Integrator Networks Section 6.1
MPC Model Predictive Control Section 6.1
LieFVIN Lie group Forced Variational Integrator Networks Section 6.3
LieVIN Lie group Variational Integrator Networks Section 6.3.3
H[V, η] Hénon-like map Section 7.2
Hε[V, η] Near-identity Hénon-like map Section 7.2
L[V, η] Hénon layer Section 7.2
H[V [W ],η] Hénon Network Section 7.2
Hε[V [W ],η] Near-identity Hénon Network Section 7.2

.
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C Data Availability Statement

Simple implementations of some accelerated optimization algorithms in MATLAB,

Julia and Python, and more sophisticated Python code implementations which allow the

optimizers to be called conveniently within the TensorFlow and PyTorch frameworks can

be found at

https://github.com/vduruiss/AccOpt via GNI

The Python codes used for the numerical experiments presented in Chapter 6 for

the Lie Group Forced Variational Integrator Networks can be found at

https://github.com/thaipduong/LieFVIN

A simplified implementation of the Python codes used to generate some of the

numerical results presented in Chapter 7 is published [Duruisseaux et al., 2023b] and

available at

https://github.com/vduruiss/SymplecticGyroceptron
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