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ARTICLE OPEN

Discovery of high-entropy ceramics via machine learning
Kevin Kaufmann 1, Daniel Maryanovsky1,2,6, William M. Mellor3,6, Chaoyi Zhu 3, Alexander S. Rosengarten1, Tyler J. Harrington3,
Corey Oses 4, Cormac Toher4, Stefano Curtarolo 4,5 and Kenneth S. Vecchio 1,3✉

Although high-entropy materials are attracting considerable interest due to a combination of useful properties and promising
applications, predicting their formation remains a hindrance for rational discovery of new systems. Experimental approaches are
based on physical intuition and/or expensive trial and error strategies. Most computational methods rely on the availability of
sufficient experimental data and computational power. Machine learning (ML) applied to materials science can accelerate
development and reduce costs. In this study, we propose an ML method, leveraging thermodynamic and compositional attributes
of a given material for predicting the synthesizability (i.e., entropy-forming ability) of disordered metal carbides. The relative
importance of the thermodynamic and compositional features for the predictions are then explored. The approach’s suitability is
demonstrated by comparing values calculated with density functional theory to ML predictions. Finally, the model is employed to
predict the entropy-forming ability of 70 new compositions; several predictions are validated by additional density functional
theory calculations and experimental synthesis, corroborating the effectiveness in exploring vast compositional spaces in a high-
throughput manner. Importantly, seven compositions are selected specifically, because they contain all three of the Group VI
elements (Cr, Mo, and W), which do not form room temperature-stable rock-salt monocarbides. Incorporating the Group VI
elements into the rock-salt structure provides further opportunity for tuning the electronic structure and potentially material
performance.

npj Computational Materials            (2020) 6:42 ; https://doi.org/10.1038/s41524-020-0317-6

INTRODUCTION
Traditional alloys have been developed utilizing one principal
element with minor additions of other alloying elements as a
means of achieving a desired combination of properties and/or
microstructures. Recently, research efforts have been directed
toward the study of materials with significant atomic fractions of
multiple elements, thus opening a richer composition space1–3.
This class of materials typically contains four or more elements
that do not necessarily result in a single phase (multi-principle
element alloys) and often greater than five elements to maximize
the configurational entropy and improve the stability of the
single-phase solid solution (high-entropy alloys)4. High-entropy
offers increased solubility of components, drawing new attention
to unexplored center regions of phase diagrams. Novel high-
entropy materials that exist as a single, highly disordered,
crystalline phase have been of particular research interest5–10. As
this field has continued to evolve, a number of fascinating
combinations of material properties have begun to emerge11–16.
Finding these materials is often challenging though, owing to

the sheer size of these unexplored regions away from the corners
of phase diagrams. The search for effective scientific strategies
and models has thus far required time- and cost-intensive
experimental evaluations of many candidate single-phase high-
entropy materials. The disordered configuration presents a
challenge for most computational approaches17 and there is not
always sufficient experimental data for validation of positive and
negative calculated results. Phase diagram calculations, often
combined with other rules and models, have been applied
successfully6,18–20 but the underlying databases lack significant
experimental underpinnings. High-throughput computational

materials design combines thermodynamic and electronic-
structure methods with data-mining capabilities to more quickly
evaluate material compositions for novel properties21–23. These
ab-initio computing efforts have recently yielded a descriptor
known as entropy-forming ability (EFA), which has shown
considerable promise for predicting the ease of synthesizability
and homogeneity of such materials5,12. A high EFA value for a
specific composition signifies a small energy penalty to incorpo-
rate disorder, i.e., this descriptor can be a sorting parameter for
likely single-phase, disordered, high-entropy materials. This
descriptor was previously calculated for 56 high-entropy carbide
(HEC) compositions and the single-phase cutoff was experimen-
tally validated to exist between an EFA value of 45 and 505,12. The
highest EFA materials have been demonstrated, via extended X-
ray absorption fine structure (EXAFS), to exhibit minimal short-
range chemical order12, a concern in the high-entropy materials
community24,25. Although this method is high-throughput in
comparison with other ab-initio efforts, calculation of EFA values
remains a computationally intensive, time-consuming task.
Thoroughly searching this new composition space, conservatively
estimated to comprise hundreds of billions of new alloys1, is
simply not feasible with this approach alone. Herein, we propose
applying data science tools, specifically machine learning (ML), to
guide more expensive computational and experimental search
strategies toward promising candidate materials and therefore
accelerate materials discovery.
Recently, the materials science field has embraced the big data

revolution, as large databases become cost-effective and data
generation rates continue to accelerate26–30. This has resulted in
the development of a number of powerful data science tools to
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assist material scientists31–36. In the realm of materials discovery,
data science tools have aided in the accelerated discovery or
identification of new compositions for bulk metallic glasses37,
shape memory alloys38, Heusler compounds39,40, and photocata-
lysts for CO2 reduction41. Other work has focused on the
development of ML methods to establish structure–property
linkages35,42, or predict the crystal stability of new materials43,44. In
2016, Ward et al.45 proposed a chemically diverse list of attributes,
primarily data-mined from the periodic table, as a general set of
features for broad material property prediction. These data-driven
models can be fit to existing experimental data and continuously
refined as new data are collected46. This inherent flexibility of ML-
based decision-making frameworks provides an advantage given
the dynamic nature of phase formation and stability. Moreover,
when compared with density functional theory (DFT), the state-of-
the-art toolbox for quantum mechanical modeling, ML models can
perform well with reduced computational cost and without the
need for atomic structure information44,47. This provides an
opportunity to search materials space in an unconstrained manner
without concern for the combinatorial explosion of higher-order
compositions (ternaries, quaternaries, quinaries, etc.)48.
Through this work, we aim to accelerate materials innovation by

developing a rapid predictor of the stability of high-entropy
materials and demonstrating the model’s capability to predict
single- or multi-phase results. With regard to speed, our ML model
can evaluate the EFA of a single composition in under a
millisecond, compared with hundreds of hours per composition
with DFT, even using efficient automatic frameworks such as
Automatic-Flow (AFLOW)49. The robustness of the model is
investigated by focusing on locating successful five component
compositions containing all three of the Group VI metals (Cr, Mo,
and W) as 60% of the cation sublattice. The interest in using the
ML model to locate single-phase compositions containing all three
Group VI metals stems from the relationship between the
electronic structure and mechanical/physical properties of transi-
tion metal carbides50,51. Prior studies have revealed that the
transition metal carbides can be more effectively tuned by the
enhanced metallic bonding, owing to valence filling instead of
conventional microstructural engineering principles50,52. For
example, the Group IV and V monocarbides readily form the
rock-salt structure and demonstrate improved mechanical proper-
ties, such as fracture toughness, with changing directionality of
the bonding as more valence electrons become available in Group
V50,53. Computationally, the trend in increasing toughness is
expected to continue to the right on the periodic table; however,
the Group VI metals do not form a room temperature-stable rock-
salt phase54–56. By employing high-entropy effects (i.e., increased
solubility), we proposed that the three Group VI metals can be
incorporated into a room temperature-stable rock-salt structure,
resulting in an increased number of available electrons, and a
novel group of materials with the potential to overturn previous
material engineering limitations.
In this work, several single-phase, rock-salt crystal structure, five-

metal cation carbides—for which three of the precursors have
different structures and stoichiometric ratios of anions to cations
from the resultant face centered cubic high-entropy material—are
evaluated. The available precursors for the Group VI metals are
hexagonal Mo2C, hexagonal WC, orthorhombic W2C, and orthor-
hombic Cr3C2. Rock-salt MoC and WC are only stable at
temperatures above 1940 °C and 2500 °C, respectively. The only
face-centered cubic (FCC) system in the Cr-C phase diagram is
Cr23C6. See Supplementary Figs. 1–3 for the binary phase
diagrams. To date, the authors are unaware of any previously
explored high-entropy carbides containing Cr or the prior
calculation of the EFA value by DFT for any Cr-containing
compounds. The formation of a rock-salt structured monocarbide,
wherein 60% of the cation species (Cr, Mo, and W) do not form

this structure as their stable room temperature phase, is neither
obvious nor readily predictable based on current theories.
These design goals are accomplished by supplementing the set

of chemical descriptors of each composition with information
from the calculated phase diagrams and utilizing an ML frame-
work to rapidly predict the EFA of seventy previously unstudied
high-entropy carbides containing Cr, an element not considered in
the original composition space5. Complete information on the
construction, training, and implementation of the ML model is
included in the Methods section. Based on the validation against
previously reported high-entropy metal carbides, comparison with
DFT calculations for several new compositions, and the ability to
locate and synthesize several otherwise unintuitive materials, we
find that this screening strategy is aptly designed to identify
promising high-entropy systems. The successful outcome demon-
strates the synergy between thermodynamics, chemical descrip-
tors, and ML methods for rapidly evaluating new materials based
on prior experiments and computation.

RESULTS
Model performance
The search for new high-entropy ceramics begins with fitting a
random forest57, a type of ML model, on 56 previously reported
EFA values5. This data set includes nine synthesized compositions,
six single phase, and three multi-phase. The previous study only
utilizes eight carbide forming metal elements (Hf, Nb, Ta, Ti, Mo, V,
W, and Zr). As will be demonstrated, even this sparse data set with
relatively few compositions with high entropic contributions is
very useful in guiding subsequent experiments toward the best
candidates and away from the multi-phase materials.
As our goal is to select the best model hyperparameters for

predicting new compositions outside our training set, we evaluate
the ML model’s performance using fivefold cross-validation and a
grid search across selected hyperparameters (see the Methods
section for further details). The final model hyperparameters
selected for both models, with and without CALPHAD data, are ten
predictor trees and mean absolute error (MAE) for scoring. The
best hyperparameters were used to fit models to the labeled data.
Supplementary Fig. 4 shows an example predictor tree from the
model with CALPHAD data and demonstrates the complex
relationships between the predictor variables. Figure 1 compares
the performance of the ML model fit with only chemical attributes
(Fig. 1a) and the model fit with chemical attributes and
information from CALPHAD (Fig. 1b). The DFT-calculated and
ML-predicted values for each model are listed in Supplementary
Table 1. Although the MAEs for all models are equivalent (3.8 (eV/
atom)−1), the coefficient of determination (R2) suggests the
observed outcomes are better replicated by the ML model with
access to the CALPHAD data. However, both models have a
systematic error in which the compositions with known EFA < 50
are overestimated and, more noticeably, compositions with an
EFA above 80 are underestimated. The small number of samples
above 80 (6 total) coupled with bootstrapping (~66% of the data is
used per tree) results in a low probability for them to be included
in the construction of each decision tree. Further, the average EFA
of the materials in each tree (∼58 depending on the tree) is in line
with the average for the data set. With only 1 sample above 100 in
the data set, and these samples having a low probability of being
used in tree construction, the averaging process in random forest
pulls down the predicted values for the highest EFA materials. It
will be demonstrated that the improved R2 performance of the
model toward fitting the starting data set will provide improved
extrapolation on the Cr-containing systems in the search for high-
entropy ceramics containing all three Group VI precursors.
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Feature importance
The permutation importance of the chemical attribute and
CALPHAD features is studied to provide interpretability to the
ML model. Details for each chemical attribute can be found in the
Supplementary Information. The rationale for selecting permuta-
tion importance is the following: randomly permuting the value of
predictor variable Xi and computing the EFA together with the
unpermuted predictor variables, will result in significantly reduced
prediction accuracy if the original variable Xi was significantly
associated with the output value. Permutation importance also
has the advantage, compared with univariate screening methods,
in that it assesses the impact of each predictor variable
individually and with the other unpermuted predictor variables58.
Table 1 shows the top ten features and their importance rank for
fitting each random forest model to the EFA values calculated
from DFT. As evidenced in the model performance and feature
importance, the eight additional CALPHAD features provide
valuable information about the EFA of a given composition,
particularly the liquidus temperature (ranked second). However,
CALPHAD diagrams alone would also be insufficient for determin-
ing the ability to fabricate a single-phase material. Supplementary
Fig. 5 demonstrates this by comparing ThermoCalc SSOL6
database computed diagrams of compositions known to form
single or multi-phase carbides. For each of these compositions,
CALPHAD alone would predict rock-salt to be the primary
structure to evolve from the liquid, which would be stable down
to nearly 1500 K before forming a secondary metal carbide. In
reality, only MoNbTaVWC5 (Supplementary Fig. 5a) readily forms a
single phase experimentally, whereas the other three composi-
tions (Supplementary Fig. 5b–d) have been demonstrated
previously to be multi-phase materials5. However, including some
CALPHAD data as features improves the ML model via this
thermodynamic-based preview of what is likely to occur and
improves its extrapolation capabilities beyond that of the
chemical attributes alone.
Important features from the chemical attributes are the average

ionic character between each of the atomic species, the maximum
and fraction-weighted covalent radius, and a few features
representing the valence electrons or unfilled orbitals. These
chemical attributes quantify the expected bonding nature and
local environment each atom will experience if single phase (i.e.,
homogeneously disordered). Along the same lines, these metrics
also assist the ML model to determine what atomic environments

are unfavorable, resulting in multi-phase materials. Further
analysis of the relationship between the EFA of a composition
and the top ranked predictors reveals there is noticeable
correlation (Fig. 2). A plot of average ionic character vs. EFA
reveals that increasing the average ionic character between the
pairs of atoms is more likely to result in a multi-phase material (Fig.
2a). This property has been previously suggested to play a role in
determining single or multi-phase outcomes, but has not yet been
extensively studied and its contribution not well understood10,59.

Table 1. Identification of the important features for predicting EFA
values.

Predictor rank Model

Stoichiometric attributes CALPHAD

1 avg(ionic character) avg(ionic character)

2 min(electrons) Liquidus temperature*

3 avg. dev(s-valence
electrons)

range(electronegativity)

4 max(atomic weight) avg. dev(d-valence
electrons)

5 max(covalent radius) max(atomic weight)

6 fwm(covalent radius) fwm(f-valence electrons)

7 range(Mendeleev
number)

max(covalent radius)

8 avg. dev(melting temp) max(unfilled valence
electrons)

9 fwm(unfilled s-valence) fwm(covalent radius)

10 fwm(f-electrons) range(unfilled valence
electrons)

The top ten features for the ML model with only the chemical attributes are
on the left. The top ten features for the ML model including CALPHAD
features are on the right. Both models rely on similar features regarding
electronegativity, ionic character, and electron orbitals for making the best
predictions. The avg(x) and avg. dev(x) denote the composition-weighted
average and average deviation, respectively, calculated over the vector of
elemental values for each compound. The min(x), max(x), fwm(x), and
range(x) correspond to the minimum, maximum, fraction-weighted mean,
and range of an attribute for each compound. Features marked with an *
are computed from CALPHAD.

Fig. 1 Evaluation of the ML models fit to available data. a The ML-predicted EFA using a random forest fit with 108 chemical attributes
evaluated against the labels of the data set from DFT. b The ML predicted EFA values for a random forest fit with 108 chemical attributes plus 8
features from CALPHAD evaluated against the known EFA from DFT. The line y= x is plotted to show the deviation from perfect predictions.
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A parameter not previously studied in the high-entropy literature,
the liquidus temperature derived from CALPHAD also provides
insight into the magnitude of the expected EFA for a given
composition (Fig. 2b). Intuitively, the compositions with the
highest EFA values lie furthest away from the trendlines,
highlighting the need for multi-variable approaches, like those
offered in ML, to locate the best compositions.

Experimental and computational validation
New experimental compositions were chosen utilizing all nine of
the Group IV, V, and VI refractory metals (Cr, Hf, Nb, Mo, Ta, Ti, V,
W, and Zr) in equiatomic amounts plus carbon occupying the
anion lattice. The ML model fitted to the 56 compositions with
DFT-derived EFA values is used to rapidly screen the Cr-containing
compositions for high and low expected EFA values. The ML
calculated EFA values for the full set of 70 new five-metal
compositions are provided in Table 2. Seven candidates are
selected from this list for analysis by DFT and experimental
synthesis: (i) three candidates with predicted EFA values over 100
(eV/atom)−1 and each containing all of the Group VI metals
(CrMoNbVWC5, CrMoTaVWC5, and CrMoNbTaWC5), (ii) three
candidates with a predicted EFA ≤ 55 (eV/atom)−1 (CrHfMoTiWC5,
CrMoTiWZrC5, and CrHfTaWZrC5), and (iii) one composition with
an intermediate EFA (CrMoTiVWC5) also containing the three
Group VI metals. Computing the EFA from DFT and fabricating the

selected compositions with a low predicted EFA serves two
purposes: (i) to demonstrate the model performs well at finding
both the best and worst candidates and (ii) to establish that not
every system containing all three Group VI metals will form a
single phase.
Several of the compositions in Table 2 have ML predicted EFA

values that suggest they will readily form a single-phase high-
entropy carbide, despite containing the three Group VI refractory
metal elements. If successfully synthesized into a single phase,
these novel materials would contain three carbides that do not
exist as room temperature-stable rock-salt monocarbides (refer to
the binary phase diagrams in Supplementary Figs. 1–3). Several
fundamentally interesting compositions are those where one of
the rock-salt stable precursors (i.e., NbC, TaC, or VC) is substituted
from MoNbTaVWC5 (EFADFT of 125 (eV/atom)−1)5 with an
orthorhombic (Cr3C2 or W2C) or hexagonal (Mo2C or WC) precursor
that do not form stable rock-salt structures.
As the first step in validating the ML model’s extrapolation into

the Cr-containing chemical space, the EFA of the seven selected
compositions were subsequently computed by DFT. The ab-initio
EFA values are located in Table 2 and plots comparing the ML
model with chemical attributes (Fig. 3a) and the ML model
including CALPHAD data (Fig. 3b) illustrate the improved
regression performance of the model after inclusion of the
CALPHAD features. The red circles in Fig. 3 are the predicted EFA
values for the seven Cr-containing compositions compared with
their DFT-calculated value. Although the ML models were not refit
with the new DFT-computed EFA values, the R2 and MAE of each
ML model can be re-evaluated after including the extrapolated
data. In comparison with the chemical attributes alone, the R2

value remains the same and the MAE increases only slightly.
As a secondary method of validating the ML model, the seven

selected materials were fabricated following conventional fabrica-
tion processes described in detail in the Methods section.
Successful fabrication of the rock-salt structure after full densifica-
tion was verified via X-ray diffraction (XRD) (Fig. 4). Results of XRD
analysis for each sample following spark plasma sintering (SPS)
demonstrate that compositions CrMoNbVWC5, CrMoNbTaWC5,
CrMoTaVWC5, and CrMoTiVWC5 (the top four) only exhibit a single
set of FCC peaks of the desired rock-salt high-entropy phase.
Conversely, XRD of CrHfTaWZrC5 CrMoTiWZrC5, and CrHfMoTiWC5
(bottom three) reveal the presence of multiple structures. In the
event there are multiple FCC structures present, the majority FCC
phase is indexed. In CrMoTiWZrC5 and CrHfMoTiWC5, the
secondary phase is also FCC. The CrHfTaWZrC5 system contains
a secondary hexagonal phase. The XRD pattern for CrHfMoTiWC5
and CrHfTaWZrC5 also contain a small amount (<5%) of HfO2 that
remains due to processing. This is determined not to significantly
alter the composition of the carbide phase.
Microstructure analysis and energy dispersive X-ray spectro-

scopy were then utilized to determine the homogeneity of the
sintered pellets as shown in Fig. 5. Coupling the results of both
techniques verified that the as-processed samples were either
single-phase and chemically homogenous or underwent chemical
segregation. For example, in the CrMoNbVWC5 microstructure,
only grain contrast is present, and no notable indication of
clustering or segregation is visible in the elemental maps. On the
contrary, the CrHfTaWZrC5 sample has observable chemical
contrast in the microstructure, and the chemical maps demon-
strate that the secondary phase present in XRD is rich in Cr and W.
The CrMoTiWZrC5 and CrHfTaWZrC5 samples displayed were
sintered at 1600 °C to prevent the loss of Cr. When sintered at
1800 °C, EDS revealed the Cr content in these samples was as low
as 2 at% and the chrome carbide was found to have reacted with
the graphite tooling. The medium entropy composition, CrMo-
TiVWC5, resulted in a single FCC rock-salt structure after initial
sintering, but required annealing as described in the Methods
section to reach chemical homogeneity. Subsequently, electron

Fig. 2 Correlation between EFA and top two features. a Increasing
the average ionic character of each atom pair in the composition is
correlated with a decrease in the entropy-forming ability. b A
positive correlation exists between the increasing liquidus tempera-
ture and higher EFA values. Trendlines shown in blue dashes. Note
that ten compositions completely overlap when comparing EFA with
liquidus temperature.
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backscatter diffraction (EBSD) was utilized to study the resulting
microstructure of the samples. The single-phase, homogenous
samples are observed to contain large, nearly equiaxed grains
with some deviation owing to the remaining pores. This furthers
the assertion these compositions are single phase, as they allow
for the kinetics of grain growth. In stark contrast, the multi-phase
materials have a significantly reduced grain size, owing to the
competing phases preventing further grain growth during
sintering.

DISCUSSION
A powerful data-driven approach to estimating the synthesiz-
ability of high-entropy materials, based on data from previous DFT
calculations and experimental results, is detailed and demon-
strated on 70 new chromium containing compositions. The ML

framework is found to be improved by the inclusion of data from
CALPHAD and robust toward extrapolating outside the starting
chemical space. The ML model enhancement achieved by
combining general features and thermodynamic data from
CALPHAD is explored via assessing the impact of each predictor
variable individually as well as with the other predictor variables
(permutation importance) and evaluating compositions outside
the original chemical space. The predictive capability of this
method is validated by ab-initio calculations and experimental
fabrication of several previously unreported compositions, includ-
ing four single-phase rock-salt materials that would not be
obvious candidates given the stable precursors and binary phase
diagrams of the Group VI transition metals. These novel materials,
of which 60% of the cation lattice contains Group VI metals,
represent a step forward in electronic structure engineering of
transition metal carbides: prior modeling of the bonding nature

Table 2. Results for the ML predicted EFA for 70 new compositions.

Composition EFAAttributes EFACALPHAD EFADFT Exp. Composition EFAAttributes EFACALPHAD EFADFT Exp.

CrNbTaVWC5 94 105 CrHfTiVZrC5 76 70

CrMoNbTaVC5 107 105 CrMoTaVZrC5 70 70

CrMoNbVWC5 100 104 116 S CrMoTiVZrC5 65 67

CrMoNbTaWC5 97 104 105 S CrHfMoTiVC5 72 66

CrMoTaVWC5 97 103 106 S CrMoNbTiZrC5 68 66

CrMoNbTaTiC5 98 93 CrTaTiVWC5 69 66

CrMoTaTiVC5 98 93 CrHfMoNbZrC5 63 62

CrMoNbTiVC5 95 92 CrHfNbTaWC5 63 62

CrHfNbTaVC5 97 91 CrHfMoVZrC5 69 62

CrMoTiVWC5 82 88 76 S CrHfMoTaZrC5 61 60

CrMoTaTiWC5 82 88 CrMoVWZrC5 65 59

CrHfNbTaTiC5 93 88 CrMoNbWZrC5 64 59

CrNbTaTiVC5 95 88 CrNbTaWZrC5 59 58

CrHfTaTiVC5 91 87 CrHfMoVWC5 65 57

CrHfMoNbVC5 75 84 CrHfMoTaWC5 61 56

CrNbTaVZrC5 93 83 CrHfTaVWC5 54 56

CrTaTiVZrC5 91 83 CrHfTaTiWC5 56 55

CrMoNbTiWC5 74 81 CrHfMoNbWC5 52 54

CrMoNbVZrC5 80 81 CrMoTaWZrC5 54 54

CrNbTaTiZrC5 91 79 CrHfNbTiWC5 58 52

CrHfMoNbTaC5 76 79 CrHfMoTiZrC5 65 51

CrHfNbTiVC5 91 78 CrHfTaWZrC5 55 51 36 M

CrMoNbTaZrC5 70 78 CrHfNbVWC5 58 51

CrHfTaVZrC5 77 78 CrTaTiWZrC5 54 50

CrHfNbTaZrC5 70 77 CrNbVWZrC5 51 50

CrNbTiVZrC5 94 76 CrMoTiWZrC5 51 49 52 M

CrNbTiVWC5 72 74 CrTaVWZrC5 52 48

CrHfTaTiZrC5 82 74 CrTiVWZrC5 50 48

CrHfMoTaVC5 73 73 CrNbTiWZrC5 51 48

CrHfNbTiZrC5 76 72 CrHfVWZrC5 52 47

CrHfMoNbTiC5 69 72 CrHfNbWZrC5 52 46

CrHfNbVZrC5 88 71 CrHfTiWZrC5 51 46

CrHfMoTaTiC5 73 71 CrHfTiVWC5 46 46

CrMoTaTiZrC5 72 70 CrHfMoWZrC5 53 45

CrNbTaTiWC5 67 70 CrHfMoTiWC5 53 45 42 M

Results for both ML models are provided for each composition. For the selected compositions, a DFT-computed EFA value is listed in the next column. In the
experimental result, “S” and “M” stand for single- and multi-phase, respectively. Units: EFA in (eV/atom)−1.
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with increased valence electrons54–56 suggests that future material
property studies are likely to yield useful combinations for
practical engineering applications. Furthermore, the experimen-
tally studied compositions result in single or multi-phase materials
in agreement with their predicted EFA values. The remaining
predicted materials include diverse chemistries and present ample
opportunity for materials discovery. Moreover, the methodology
designed opens the door to locating other high-entropy materials,
not just ceramics, in a similar manner.

METHODS
Machine-learning architecture
Random forests are a combination of decision trees that individually make
predictions on each input and the overall prediction determined by a
majority voting process57,60. Random forest was selected for its utility and
performance on diverse problems when compared with other supervised
learning models60. The random forest regressor is implemented with Scikit-

learn61. Model hyperparameters are selected via an exhaustive fivefold
cross-validated grid search using the following parameters: number of tree
predictors in range 10–110 in steps of 10, mean-squared error and MAE as
criterion, and the number of features to consider when looking for the best
split from one to the total number of features available. Each fold is scored
using the MAE between the labels from DFT and the predicted values. To
obtain a deterministic behavior during model fitting, the random state is
seeded. The best performing hyperparameters are selected to fit a model
using the entire training set, with bootstrapping, to maximize the amount
of information available for making future predictions.

From chemistry to features
Each composition is converted to a set of features with the goal of creating
a quantitative representation that relates to the essential chemistry,
physics, and thermodynamics of each material in a data set. The attributes
utilized in this work should not be considered an exhaustive list, but
instead a step toward creating a synergistic set of attributes that capture
the knowledge of chemistry and experimentally robust thermodynamics.
The 108 compositional attributes, defined in the Supplementary Informa-
tion, are a subset of the general ML framework demonstrated previously to
perform well on diverse material problems45. The elemental data used to
compute the compositional features is sourced from Magpie45,62. These
chemical attributes are augmented with select data about the number of
phases and phase fractions calculated in 100 K steps, as well as the liquidus
and solidus temperature from ThermoCalc Software SSOL6 database
version 6.163. The ~800 CALPHAD features are reduced to 8 predictor
variables (1% of those available) using the Select From Model method in
Scikit-learn61 to avoid the “curse-of-dimensionality” and find the most
relevant subset64–66. Select From Model was chosen in this study for its
rapid reduction of features in one step in comparison to other multi-step
methods such as recursive feature elimination. The max number of
features was set to 8 for this study, to target 1% of the available data. We
do not intend for this feature list to be exhaustive or concrete. The selected
features are defined in the Supplementary Information. The data for the
predictor variables for the training data and new compositions are
contained in the GitHub repository.

Interpreting the random forest algorithm
The random forest model is analyzed to provide clarity to how the ML
model evaluated these materials. The variable importance is extracted for
the fit model using the “rfpimp” package in Python (available at https://
github.com/parrt/random-forest-importances, last access: 15 August 2019).
The predictor variable importance is ranked on the permutation
importance, which directly measures importance by observing the effect
on model accuracy by randomly permuting the values of each predictor

Fig. 3 Machine-learning model compared with ab-initio results for high-entropy carbides. a The ML predicted EFA using a random forest
fit with 108 chemical attributes evaluated against the labels of the data set from DFT. b The ML predicted EFA values for a random forest fit
with 108 chemical attributes plus 8 features from CALPHAD evaluated against the known EFA from DFT. The line y= x is plotted to show the
deviation from perfect predictions. Red circles are used to mark the newly calculated Cr-containing compositions.

Fig. 4 The X-ray diffraction patterns for the same 7 five-metal
carbides. The first four compositions (from the top) exhibit only the
desired FCC structure peaks, whereas the remaining compositions
have additional peaks indicating the presence of extra phases. The
primary FCC phase is indexed with black circles. Compositions are
listed from largest to smallest ML predicted EFA. S: single-phase
formed; M: multi-phase formed.
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variable67. That is to say, the permutation importance is measuring the
impact on output EFA of swapping the value of a selected feature from
one composition with the value from a different composition. This method
has recently been introduced as an improvement to the mean decrease in
impurity metric58.

Sample preparation
All samples were prepared using the same methods and tools utilized in
the previous EFA and HEC studies5,12. Initial powders of each of the five
binary precursor carbides (NbC, HfC, TiC, ZrC, VC, TaC, Mo2C, W2C, WC, and
Cr3C2) are obtained in >99% purity and −325 mesh (<44 μm) particle size
(Alfa Aesar). The sample is weighed out in 12 g batches and mixed to
achieve the desired five-metal carbide compositions. To ensure adequate
mixing, each sample is high energy ball milled under argon in a shaker pot
mill for a total of 2 h in individual 30 min intervals intersected by 15min
rest times to avoid heating and consequent oxide formation. All milling is
done in tungsten carbide-lined stainless-steel milling jars with tungsten
carbide grinding media. Bulk sample pellets are synthesized via solid-state
processing routes. The field-assisted sintering technique, also called SPS, is
employed to simultaneously densify and react the compositions into
single-phase materials. Sintering of each composition is performed at
1800 °C with a heating rate of 100 °C/min, 60 MPa uniaxial pressure applied
at temperature, with a 10min dwell at temperature. Subsequent samples
of CrMoTiWZrC5 and CrHfTaWZrC5 were necessarily sintered at 1600 °C
instead to prevent the loss of Cr. The composition with a medium EFA
value, CrMoTiVWC5, is annealed at 1800 °C for 3 h followed by 2000 °C for
3 h to attain chemical homogeneity. All samples are heated in a vacuum
environment of <20mtorr with additional holds throughout for adequate
off-gassing of the powder materials. Sintering is done in 20mm graphite
die and plunger sets surrounded by carbon-based heat shielding. In
addition, graphite foil surrounds the samples on all sides to prevent
reaction with the die. The compositions listed are nominal since actual

synthesized compositions can very due to carbon vacancies in the anion
sublattice.

Sample analysis
Microstructural and elemental analysis is performed using a Thermo
Fischer (formerly FEI) Apreo field emission scanning electron microscope
equipped with an Oxford X-MaxN EDS detector and an Oxford Symmetry
EBSD detector. A combination of secondary and back-scattered electron
detectors are utilized for imaging. EDS scans are conducted at length
scales of 500× and 1000× to verify multi-length scale homogeneity in the
resulting microstructure. EDS quantification confirmed the resulting ratio
of metal ions are nearly equiatomic. Crystal structure analysis is
implemented using a Rigaku Miniflex X-ray Diffractometer with a 1D
detector using a step size of 0.02° and 5° per minute scan rate, using Cu Kα
radiation (wavelength λ= 1.54059 Å) for all measurements. The lattice
parameter is calculated utilizing a combinatorial method from both MDI
Jade and Match! Phase identification software. This is subsequently utilized
to model and create a theoretical diffraction profile to be utilized in EBSD.

Calculation of the entropy-forming ability
The EFA is calculated using the AFLOW-POCC module17 implemented in
the AFLOW Framework for Materials Discovery68. For each disordered
composition, a set of representative ordered supercells is resolved. First,
AFLOW-POCC determines the smallest supercell size accommodating the
stoichiometry exactly (for the five-metal rock-salt carbides, the value is 5).
The unique superlattices of this size are then constructed based on the
Hermite Normal Form matrices. The lattices are decorated to generate all
viable configurations. To identify unique configurations and their
degeneracies rapidly, the Universal Force Field method is employed. The
energies of the unique configurations are then calculated using DFT
having input parameters/settings in accordance with the AFLOW

Fig. 5 Microstructural analysis of the synthesized materials. The first column is an electron micrograph for each of the synthesized
compositions. Columns 2–6 are selected EDS chemistry maps are present for each of the five-metal cations present in each system. Column 7
is an EBSD map of the grain structure, revealing the effect on grain size in multi-phase compared with single-phase compositions.
Compositions are listed from largest to smallest ML predicted EFA. Scale bar 100 µm.
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Standard29. K-point meshes are generated using the Monkhorst–Pack
scheme (Gamma-centered for all materials belonging to the hP and hR
Bravais lattice) having at least 6000 k-points per reciprocal atom. Project-
Augmented Wavefunction potentials are constructed according to the
Perdew–Berke–Ernzerhof exchange-correlation functional as implemented
in the Vienna Ab initio Simulation Package (VASP). The plane-wave basis
has a kinetic energy cutoff 1.4 times larger than that recommended for
each species. Spin polarization is considered. The electronic and ionic
convergence criteria are 10−3 and 10−2 eV, respectively. The EFA is defined
as the inverse of the spread of these energies5.

DATA AVAILABILITY
All data analyzed during the current study are available at GitHub address https://
github.com/krkaufma/ML-EFA or from the corresponding author upon reasonable
request.

CODE AVAILABILITY
All code and models generated, developed, and/or utilized are available at GitHub
address https://github.com/krkaufma/ML-EFA with the trained weights and sample
code to demonstrate how to use the model for material discovery. We intend to
continually refine the model by training on larger datasets, and expanding the
composition range, as they become available.
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