
UC Riverside
UC Riverside Previously Published Works

Title
Distributed Multi-agent Video Fast-forwarding

Permalink
https://escholarship.org/uc/item/34n9j3nj

Authors
Lan, Shuyue
Wang, Zhilu
Roy-Chowdhury, Amit K
et al.

Publication Date
2020-10-12

DOI
10.1145/3394171.3413767
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/34n9j3nj
https://escholarship.org/uc/item/34n9j3nj#author
https://escholarship.org
http://www.cdlib.org/


Distributed Multi-agent Video Fast-forwarding
Shuyue Lan

Northwestern University
shuyuelan2018@u.northwestern.edu

Zhilu Wang
Northwestern University

zhiluwang2018@u.northwestern.edu

Amit K. Roy-Chowdhury
University of California, Riverside

amitrc@ece.ucr.edu

Ermin Wei
Northwestern University

ermin.wei@northwestern.edu

Qi Zhu
Northwestern University
qzhu@northwestern.edu

ABSTRACT
In many intelligent systems, a network of agents collaboratively
perceives the environment for better and more efficient situation
awareness. As these agents often have limited resources, it could
be greatly beneficial to identify the content overlapping among
camera views from different agents and leverage it for reducing the
processing, transmission and storage of redundant/unimportant
video frames. This paper presents a consensus-based distributed
multi-agent video fast-forwarding framework, named DMVF, that
fast-forwards multi-view video streams collaboratively and adap-
tively. In our framework, each camera view is addressed by a rein-
forcement learning based fast-forwarding agent, which periodically
chooses from multiple strategies to selectively process video frames
and transmits the selected frames at adjustable paces. During ev-
ery adaptation period, each agent communicates with a number of
neighboring agents, evaluates the importance of the selected frames
from itself and those from its neighbors, refines such evaluation
together with other agents via a system-wide consensus algorithm,
and uses such evaluation to decide their strategy for the next period.
Compared with approaches in the literature on a real-world surveil-
lance video dataset VideoWeb, our method significantly improves
the coverage of important frames and also reduces the number of
frames processed in the system.

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Computer
systems organization→ Embedded and cyber-physical systems.

KEYWORDS
Video fast-forwarding, multi-agent, distributed optimization

1 INTRODUCTION
In many intelligent multi-agent systems, a network of agents with
cameras can jointly perform tasks such as search and rescue, surveil-
lance, and environment monitoring. These cameras may be fixed
surveillance cameras, or built-in cameras on robots/drones. They
generate a large amount of videos from different viewpoints, and
sometimes transmit these videos to a cloud server for further anal-
ysis, decision making, and storage. For many applications, the pro-
cessing and transmission of the video frames from the agents to the
server needs to be performed in an online manner at real time or
near real time. However, the agents often have limited computation,
communication, storage, and energy resources [1, 27, 49], which
make it challenging or even intractable to process and transmit
all the video data at real time. Thus, methods that can select an

Figure 1: Illustration of distributed multi-agent video fast-
forwarding setup. Multiple cameras at different locations
observe the same environment fromdifferent points of view.
Each view has a fast-forwarding agent that periodically
adapts its strategy for selectively processing input video
frames. At every adaptation period, agents communicate
with each other to collaboratively decide each agent’s fast-
forwarding strategy for the next period.

informative subset of the video frames for processing, transmission
and storage are greatly needed to reduce the resource requirements.

In the literature, video summarization techniques, which gen-
erate a compact summary of the original video, have been widely
studied [6, 14, 35, 56–58]. Multi-view video summarization that han-
dles video streams frommultiple cameras has also been addressed in
several works [5, 10, 34, 36, 38]. However, thesemethods need to pro-
cess an entire video (i.e., every frame in the video) and often take a
long time for generating a summary, which are not suitable for real-
time and online applications. Somemethods [3, 15, 20, 41, 42, 44, 48]
have been developed for video fast-forwarding by adjusting the
playback speed of a video, but they still require processing of the en-
tire video and will not reduce the amount of data to be transmitted
when used in a multi-agent scenario.

A recent work [24] performs fast-forwarding for a single agent
in an online manner, and processes a fraction of the video frames
by automatically skipping unimportant frames via reinforcement
learning. However, the method considers only a single agent and
cannot be easily extended to the multi-agent domain. Moreover,
as we observe that there are often significant overlaps among the
videos captured by the different agents, we start by asking the
following question: Is it possible to develop a method for multiple
agents to collaboratively perform fast-forwarding that is efficient,
causal, online and results in an informative summary for the scene?
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In this paper, we introduce the Distributed Multi-agent Video
Fast-Forwarding framework (DMVF), a consensus-based frame-
work that collaboratively fast-forwards videos at different views
for efficient processing, transmission and storage of video data
(see Fig. 1). In our target scenario, cameras at multiple locations
observe the same environment from different views that may be
overlapping. Each camera embeds a reinforcement learning based
fast-forwarding agent with multiple strategies to choose from, i.e.,
it can skip the frames of its video input at different paces (e.g.,
slow, normal or fast). Agents are connected by a predetermined
undirected communication network, where each agent can com-
municate with a set of neighboring agents. We also assume the
communication graph is connected.

During operation, each agent adapts its fast-forwarding strategy
periodically based on how important its selected frames are when
compared with other agents’ frames. At every adaptation period,
each agent evaluates the importance of the selected frames from
itself and those from its neighbors by comparing their similarities.
Intuitively, if an agent’s frames can better represent/cover the views
of other agents, they are regarded as more important. The agents
then refine their evaluation by running a system-wide consensus
algorithm [52] and reach an agreement on the importance score
for every agent’s selected frames. Based on the score ranking and
the system requirement, each agent selects a fast-forward strategy
for its next adaptation period. Intuitively, agents with lower scores
on their selected frames could be given a faster pace for the next
period to reduce their processing and transmission load, while the
ones with higher scores should be given the same (or slower) pace.

It is worth noting that in our approach, each agent only processes
a very small portion of the frames, which greatly helps reduce
the computation load on resource-limited embedded platforms.
Agents also do not transmit their entire video streams but only
a fraction of them. From the system perspective, both intra-view
redundancy at each agent and the inter-view redundancy across
different agents are reduced. Furthermore, the online and causal
nature of our proposed DMVF framework enables the users to begin
fast-forwarding at any point when executing certain multi-agent
perception tasks. Our approach is particularly useful for resource-
constrained and time-critical systems such as multi-robot systems.

To summarize, the following are the main contributions.
• We formulate the multi-agent video fast-forwarding problem as
a multi-agent reinforcement learning problem. Each agent can
fast-forward its video input without processing the entire video.
• We design a distributed and consensus-based framework that en-
ables adaptive fast-forwarding strategies/paces for all agents and
optimizes the computation and communication load globally.
• We demonstrate the effectiveness of DMVF on a challenging
multi-view dataset, VideoWeb [4], achieving real-time speed on
a practical embedded platform. Compared with other methods in
the literature, our approach achieves significantly better cover-
age of the important frames/events and reduces the computation
and storage load, as well as the communication to the cloud.

2 RELATEDWORKS
2.1 Video Fast-forwarding
Video fast-forwarding is applied when users are not interested
in parts of the video. Some commercial video players offer man-
ual control on the playback speed, e.g., Apple QuickTime Player
with 2, 5 and 10 multi-speed fast-forward. Researchers adapt the
playback speed based on the motion activity patterns present in a
video [3, 39, 40] and the similarity of each candidate clip to the query
clip [41]. Other works focus on developing fast-forwarding policies
usingmutual information between frames [17, 18] and shortest path
distance over the semantic graph built from frames [44, 48]. An-
other family of work (hyperlapse) [15, 20, 42] fast-forwards videos
with the objective of speed-up and smoothing. More recently, Lan
et al. [24] propose an online deep reinforcement learning agent for
skipping frames and fast-forwarding. Different from these meth-
ods, our work focuses on multi-agent video fast-forwarding that
collaboratively and distributively fast-forwards videos in each view
based on the information from its own perception and neighbors’.

2.2 Video Summarization
The objective of video summarization is to generate a compact
subset of videos that can describe the main content of the original
video. Many offline methods, which require the entire video being
available before processing, are developed with unsupervised learn-
ing [7, 8, 12, 13, 28] or supervised learning based on video-summary
labels [11, 14, 35, 43, 55–57]. There also work on summarization for
crawled web images/videos [22, 23, 37, 50] and photo albums [47].
Learning video summarization from unpaired data is studied in [45].
The other branch of work is online video summarization, which
summarizes videos by automatically scanning in an online fashion.
Various methods are proposed with submodular optimization [6],
Gaussian mixture model [33], and online dictionary learning [58].

What is more related to our work is video summarization from
multi-view videos. In [10], the authors introduce the problem of
multi-view video summarization and solve it with randomwalk over
spatio-temporal graphs. Joint embedding and sparse optimization
are proposed in [36, 38]. More recently, Elfeki et. al [5] adapt DPP
(Determinantal Point Processes) to multi-view for offlinemulti-view
video summarization. All these methods require the availability of
all frames from each view. In [34], the authors propose a two-stage
system, i.e., online single-view summarization and distributed view
selection for the multi-view case. Different from these previous
methods, our approach does not process all the frames, which
significantly reduces computation and communication load, and
it collaboratively fast-forwards the videos of multiple agents to
further improve the efficiency and coverage.

2.3 Distributed Consensus
A fundamental problem in distributed multi-agent systems is the
minimization of a sum of local objective functions while maintain-
ing agreement over the decision variable, often referred to as con-
sensus optimization. Seminal work in [52] proposes a distributed
consensus protocol for achieving agreement in a multi-agent set-
ting by iteratively taking weighted average with local neighbors.
The work in [31] presents a distributed gradient descent (DGD)
method, where each agent iteratively updates its local estimate of

2
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Figure 2: Our DMVF framework. At every adaptation period t , each agent i first fast-forwards its video input with current
strategy sti and selects a set of frames fi (see footnote 1). It then receives neighbor agents’ selected frames (e.g., fj and fk ) and
computes an initial importance score for itself and its neighbors. Afterwards, agent i refines and finalizes the importance
score with other agents via a system-wide consensus algorithm (maximal consensus is shown in the figure). Based on this
importance score vector ®x , agent i chooses its strategy for the next period st+1i (so does every other agent).

the decision variable by executing a local gradient descent step
and a consensus step. Follow-up works [16, 19, 26, 29, 30, 32] ex-
tend this method to other settings, include stochastic network,
constrained problems, and noisy environment. More recently, EX-
TRA [46], which takes a careful combination of gradient and con-
sensus steps, is proposed to improve convergence speed and is
shown to achieve linear convergence with constant stepsize. In
computer vision, consensus based methods are used applications
such as human post estimation [25], background subtraction [54],
bundle adjustment [9] and multi-target tracking [21], etc. To the
best of our knowledge, this is the first distributed consensus based
work to address multi-agent video fast-forwarding.

3 METHODOLOGY
3.1 Problem and Solution Overview
Our objective is to collaboratively fast-forward multi-view videos
from different agents by adapting the skipping strategy of each
agent in an efficient, online and distributed manner. Fig. 2 shows
the workflow design of our framework (taking one agent i for
illustration). Given the incoming multi-view video streams V =
{v1, · · · ,vN } captured at different agents, our goal is to generate a
final summary F = { f1, · · · , fN } for the scene while reducing the
computation, communication, and storage load.

In our framework, the fast-forwarding agent of each view is
modeled as a reinforcement learning agent with multiple avail-
able strategies S = {sm ,m = 1, · · · ,M}. During operation, at every

adaptation period t (with the period length as T ), each agent i
fast-forwards its own video stream with a current strategy sti ∈ S
and selects a subset of frames fi

1. Note that the frames being
skipped are not processed nor transmitted. The details of this step
are introduced in Section 3.2. Agent i then communicates with
its neighbors and receives their selected frames, e.g., fj and fk as
shown in the figure. Based on such information, agent i computes
an initial importance score for itself and its neighbors (Section 3.3).
Afterward, agent i refines its initial score together with other agents
in the system via a system-wide consensus algorithm, including
first an update of its own score and then multiple iterations to reach
system-wide consensus (Section 3.4). Note that during the consen-
sus process, only scores are transmitted among events (not selected
frames). After running the consensus algorithm, each agent will
have the same copy of the final importance scores for their selected
frames in the current period, defined as ®x = [x1,x2, ...,xN ]. Agent
i then chooses its fast-forwarding strategy for the next period st+1i
based on the rank of its importance score xi (Section 3.5). More
details are presented below and the notations are in Table 1.

3.2 Multi-strategy Fast-forwarding
On each camera that captures a view of the scene, we have a multi-
strategy fast-forwarding agent that can adaptively fast-forward the
incoming videos with different paces. In this work, we leverage a

1Strictly speaking, fi should have a superscript t to represent current period (i.e., f ti ).
We omit it for better readability wherever it does not cause confusion. The same goes
for many other symbols in this section, such as x 0

ii , xi , ®x .
3



M number of available fast-forwarding strategies
N number of camera views / agents
V the set of N views {vi }, i ∈ [1,N ]
S the set of available strategies {sm },m ∈ [1,M]
sti strategy being used in agent i at adaptation step t
st+1i strategy for agent i in the next adaptation step t + 1
F summary of the scene: { f1, · · · , fN }
®x importance score vector after consensus
T period of strategy update
Table 1: Notation used in our proposed framework.

Conv 
layers

4096

400
200

100
25

Q value of each action

Number of frames to skip

Figure 3: The model structure of normal-pace strategy. It
takes a frame in a video stream as an input for the deep neu-
ral network and outputs the number of frames to skip.

state-of-the-art fast-forwarding algorithm, FFNet [24], and derive
three different strategies/paces for fast-forwarding: normal-pace,
slow-pace, and fast-pace. Note that our approach can be easily
extended to consider other numbers of strategies/paces.

Normal-pace Strategy:The normal-pace strategy utilizes the same
structure as FFNet [24] (Fig. 3). The fast-forwarding problem is mod-
eled as a Markov decision process (MDP) and solved with a deep
Q-learning (DQL) model. It learns a policy for skipping unimpor-
tant frames entirely and presenting the important ones for further
processing. The state is defined as the feature of the current frame.
The action set includes the possible numbers of frames to skip. An
immediate reward at time step k is defined as

rk (normal) = −SPk + HRk , (1)

where SPk is the “skip” penalty and HRk is the “hit” reward for
current action ak . The skip penalty gives high scores for skipping
unimportant frames and low scores for skipping important ones.
The hit reward encourages the agent jumping to an important frame
or a position near an important frame. With the definition of states,
actions and rewards, a skipping policy is learned for selecting the
action that maximizes the expected accumulated reward. As our
normal-pace strategy, we use an action space of size 25, i.e., skipping
from 1 to 25 frames.

Slow-pace Strategy: The slow-pace strategy aims at skipping
fewer frames and thus retaining more frames in the selected buffer,
possibly including more numbers of important frames. To meet this
goal, we modify the immediate reward in FFNet at time step k as

rk (slow) = (−SPk + HRk ) × (1 −
siдmoid(ak )

2
). (2)

Intuitively, if the agent skips with a larger step, it will receive
smaller immediate reward. We also change the action space to 15
to prevent the agent from skipping too much.

Fast-pace Strategy: The goal of the fast-pace strategy is to skip
more unimportant frames for more efficient processing and trans-
mission. We modify the immediate reward at time step k as

rk (f ast) = (−SPk + HRk ) × (1 +
siдmoid(ak )

2
). (3)

This reward definition ensures that the agent will get larger imme-
diate reward if it skips with a larger step. The action space is set to
35 to allow the agents to skip larger steps.

In our framework, each agent updates its fast-forwarding strat-
egy periodically based on the evaluation of the relative importance
of its selected frames in the current period (when compared with
other agents). Lower importance may lead to a faster strategy for
the next period for reducing data processing and transmission,
while higher importance may lead to a slower strategy for reducing
the likelihood of missing important frames.

3.3 Local-neighbor Importance Score
In this step, for every agent i , we compute an initial importance
score for itself and its neighbors by comparing the similarities
between their selected frames. First, we evaluate the similarity
between two frames x and y by computing the exponential of the
scaled negative L2-norm of the feature representations of the two
frames, as defined in the following equation.

sim(x ,y) = e−α | |x−y | |2 , (4)

where α is used to scale the L2-norm to restrict the similarity value
to a satisfactory range. In the experiment, we set α = 0.05.

The similarity of agent j to i is then defined as

sim_aдent(vi ,vj ) =
1
|vj |

|vj |∑
s=1

max
1≤a≤ |vi |

sim(ps (vj ),pa (vi )), (5)

where |vj | denotes the number of selected frames from agent j
and ps (vj ) denotes a selected frame s from agent j. The similarity
for frame ps (vj ) to agent i is the maximum among the similarities
between ps (vj ) and frames of agent vi . Then the agent-to-agent
similarity of agent j to agent i is the average frame similarity.

We define the communication connections among agents as an
undirected graph G = (V ,E). With this definition, we compute the
importance score of agent j estimated by agent i as

x0i j =

{
1

|Vi |−1
∑
vk ∈Vi ,k,j sim_aдent(vj ,vk ) if i = j or (i, j) ∈ E

0 o.w.
(6)

where Vi = {vk |(i,k) ∈ E}
⋃ {vi }, is the set of the neighbors of

agent i and itself. |Vi | represents the number of agents in Vi . This
initial important score will then be refined via a consensus process.

3.4 System-wide Importance Score Consensus
To refine the initial importance score and reach an agreement across
all agents on the relative importance of their frames, we mainly
use a maximal consensus algorithm in our framework. We have
also explored multiple variants of our framework with different
consensus methods.

MaximalConsensusAlgorithm inDMVF:There are three steps
in this algorithm. First, each agent communicates with its neighbors

4



Algorithm 1 Algorithm for Computing Importance Score
Input: Selected frames from agents at current period: f1, f2, ..., fN
Output: List of important scores ®xi for each agent/view vi ∈ V
1: for each agent vi ∈ V do
2: Send selected frames fi to neighbors.
3: Vi = {vi ’s neighboring agents and itself}.
4: for all vj ∈ Vi do
5: fj ← Receive_Selected_Frames_From(vj ).
6: for all vj ∈ Vi do
7: x0i j =

1
|Vi |−1

∑
vk ∈Vi ,k,j sim_aдent(vj ,vk ).

8: Send x0i j to vj .
9: for all vj ∈ Vi do
10: x0ji ← Receive_Initial_Score_From(vj ).

11: xi =

∑
j∈Vi

1
nj

x 0
ji∑

j∈Vi
1
nj

.

12: ®xi = [0, 0, . . . , 0], ®xi [i] = xi .
13: for t = 1 : дraphDiameter do
14: Send ®xi to neighbors.
15: for all vj ∈ Vi do
16: ®x j ← Receive_Score_Vector_From(vj ).
17: for k = 1 : N do
18: ®xi [k] = max(®xi [k], ®x j [k])
19: return ®xi

and sends its initial importance scores for each of them. At the end
of this step, agent i will have the initial scores of itself from its own
computation and from the evaluation by its neighbors (i.e. {x0ji },
j ∈ Vi ). Then, in the second step, agent i updates its score as

xi =

∑
j ∈Vi

1
nj x

0
ji∑

j ∈Vi
1
nj

, (7)

which means the importance score of agent i is updated as the
weighted average of the initial importance scores evaluated by
itself and its neighbors. Then an importance score vector ®xi for all
agents is constructed by agent i , with only the i-th element set to
xi and all others set to zero. In the third step, all agents will run
a maximal consensus algorithm over the importance score vector.
This algorithm only requires the number of consensus steps to be
the diameter of the graphG to reach an agreement (the convergence
is guaranteed). In the end, every agentwill have the same copy of the
importance score vector for all agents, i.e., ®xi = ®x = [x1,x2, ...,xN ].
Details of the importance score consensus is shown in Algorithm 1.

Other Consensus Methods: Aside from the main DMVF with
maximal consensus algorithm, we also developed multiple variants
of our framework with different consensus methods, including
DMVF-DGD, DMVF-EXTRA, DMVF-AVE, and DMVF-ONE.
• DMVF-DGD. In this design, we leverage the distributed gra-
dient descent (DGD) [31] method for reaching consensus on
the importance score of every agent. Each consensus step can
be represented by multiplication by an N × N row stochastic
consensus matrix P , with Pi j , 0 if and only if (i, j) in E. In the

experiment, the consensus matrix P is defined as

Pi j =
1

dmax + 1
i , j, (i, j) ∈ E,

Pi j = 0 i , j, (i, j) < E,

Pii =
dmax + 1 − di
dmax + 1

i = j,

(8)

where di = ni is the degree of agent i (i.e., number of neighbors
of agent i), dmax = maxi {di } is the maximum degree in the
system. The objective of this distributed optimization is∑

i
fi (®x) =

∑
i

©« 1
ni

∑
(i, j)∈E

(x j − x0i j )
2ª®¬ (9)

where ®x is the importance scores for all agents and x j is the j-th
element corresponding to the importance score of agent j . x0i j is
agent j’s score evaluated by agent i (computed by Equation (6)).
ni is the total number of neighbors of agent i . The DGD iteration
step is as follows:

®xt+1i =
∑
j
Pi j ®xtj − γ

t∇fi (®xti ) (10)

where Pi j is the (i, j) element of the consensus matrix P and the
stepsize γ t is gradually reduced based on γ t ∼ 1

t .
• DMVF-EXTRA: In this variant, we utilize the decentralized ex-
act first-order algorithm (EXTRA) [46] as the consensus method
in the framework. EXTRA has the same consensus matrix and
objective as DGD in Equation (8) and Equation (9), respectively.
The EXTRA iteration step is as follows:

®xt+2i =
∑
j
Mi j ®xt+1j −

∑
j

Mi j

2
®xtj − α[∇fi (®x

t+1
i ) − ∇fi (®x

t
i )] (11)

whereM = I+P andMi j is the (i, j) element ofM . α is a constant
for the iteration stepsize.
• DMVF-AVE: First, each agent sends its initial importance score
evaluations of its neighbors to them. Then, every agent i updates
its score by taking the average of the initial score evaluations of
itself from its own computation and from its neighbors:

xi =

∑
j ∈Vi x

0
ji

ni + 1
. (12)

Then, similar to the consensus algorithm inDMVF, all agents will
run a maximal consensus algorithm on the importance scores.
• DMVF-ONE: In this design, each agent takes x0ii as its updated
score, i.e.,xi = x0ii . Then, all agents will run amaximal consensus
algorithm on the importance score.

3.5 Strategy Selection
Based on the final importance scores in ®x , the agents with higher
scores could be assigned with a slower strategy for the next period,
while the agents with lower scores could be faster. In our framework,
given the system requirement, the portion of different strategies are
pre-defined, which means there should be a fixed number of agents
under each strategy after every update. In our experiment, there are
three strategies for 6 agents. The system requirement is denoted as
X/Y/Z , X +Y + Z = 6, which means the system requires X agents
to use the fast strategy, Y agents to use the normal strategy and Z

5



agents to use the slow strategy. The strategy for each agent will
then be assigned based on the ranking of its importance score in ®x .

4 EXPERIMENTAL RESULTS
In this section, we present the experimental results of our DMVF
framework and its comparison with several methods in the litera-
ture. We also demonstrate the trade-off between coverage and effi-
ciency in DMVF, evaluate how various degrees of communication
network connectivity affect performance of DMVF, present analysis
on different consensus methods, and report timing efficiency. The
source code can be found at https://github.com/shuyueL/DMVF.

4.1 Experimental Setup
Dataset: We evaluate the performance of our framework on a
publicly available multi-view video dataset VideoWeb [4]. It consists
of realistic scenarios in a multi-camera network environment that
involves multiple persons performing dozens of different repetitive
and non-repetitive activities. We use the Day 4 subset of the dataset,
as it involves multiple vehicles and persons. It has 6 scenes and each
scene has 6 views of videos. All videos are captured at 640 × 480
resolution and approximately 30 frames/second. We transfer the
given labels of important actions to binary indicators of important
frames. A global ground truth that combines all important intervals
across views is generated for evaluating the performance.

We also looked into other multi-view datasets, such as the well-
known Office, Campus, Lobby, Road, Badminton datasets from [10],
and BL-7F from [34]. The first class of datasets are all of small sizes,
with only 3-4 videos (1 video per view) available for each scene. The
same problem occurs in BL-7F dataset as it does not have enough
overlapping videos for training of the fast-forwarding agent.
Evaluation Metrics: Similar to [24], we consider a coverage met-
ric at frame level, which evaluates how well the results from the
fast-forwarding methods cover the important frames labeled in
the ground truth. The coverage is computed as the percentage of
covered frames by all agents in the global ground truth. If an im-
portant frame is covered by any of the agents, it will be considered
as true positive. We also evaluate the efficiency of various methods
by considering their processing rate, i.e., the average percentage of
frames processed at the agents. The processing rate measures the
computation load of the agents. In this work, the communication
load can also be indicated by the processing rate, since the number
of transmitted frames is proportional to the number of processed
frames (with the addition of processed frames from the neighbors).
Implementation Details: The multi-strategy fast-forward agents
are implemented using the TensorFlow library and modeled as 4-
layer neural networks. ϵ-greedy strategy is used to better explore
the state space during the training process. The strategy update
period T is set to 100 frames of the raw video inputs. The three
strategies used in our framework are defined in Section 3.2. The
operating points of agents with the slow, normal and fast strategies
are shown in Table 2.

In our main set of experiments (except for the study in Sec-
tion 4.4), we evaluate the proposed framework on the aforemen-
tioned dataset with a communication graph of agents based on their
view similarity, as shown in Fig. 4. We deploy the proposed DMVF
on an actual embedded platform. Five agents are implemented on 2

Strategy Slow Normal Fast
Processing rate(%) 8.69 6.02 3.73

Coverage(%) 73.45 61.91 55.89
Table 2: Operating points of 3 fast-forwarding strategies.

Camera 1

Camera 2

Camera 3

Camera 5

Camera 4

Camera 6

1

23
4

5

6

Figure 4: The communication graph of agents. The left part
of the figure shows the physical locations of the cameras and
the environment. The right-bottom graph is the communi-
cation graph of the agents for the main set of experiments
(built according to the similarity of views).

workstations and 3 laptops, and the other one is run on an Nvidia
Jetson TX2. The communication between agents is implemented
with WiFi network using TCP protocol.

Comparison Methods: We compare our approach with several
methods for video fast-forwarding and video summarization, which
include both online and offline methods. (1) FFNet [24]. FFNet is
an online single-agent fast-forwarding approach that utilizes Q-
learning. Applying FFNet to multi-agent scenarios assumes that all
agents perform video fast-forwarding independently without any
communication between them. (2) Random. The random method
skips the incoming frames randomly. (3) Uniform. The uniform
method skips the incoming frames periodically. (4) OK (Online
Kmeans) [2]. Online Kmeans is a classical clustering based method
working in an online update fashion. The frames that are the closest
to the centroid in each cluster are selected as the summary. (5) SC
(Spectral Clustering) [53]. Spectral Clustering is a different clus-
tering based method to group all the frames in a video to several
clusters. The summary is composed by the frames that are closest
to each centroid. (6) SMRS (Sparse Modeling Representative Selec-
tion) [8]. This is an offline method that requires all videos available
before the processing and outputs the summary of each video. It
takes the entire video as the dictionary and finds the representative
frames based on the zero patterns of the sparse coding vector.

Experimental Settings: We use the penultimate layer (pool 5) of
the GoogLeNet model [51] (1024-dimensions) to represent each
video frame. For each method, we tune its parameters for best
performance, and control them to keep the fast-forwarded videos
to the same percentage of raw frames for a fair comparison. During
evaluation, we extend the frames selected by each method before
and after by a small window, whose size is the same for all methods.
For FFNet, we keep all the settings as described in their paper and
train it on the VideoWeb dataset. For OK and SC, we set the number
of clusters to 20. We randomly use 80% of the videos for training
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Methods Random Uniform OK SC SMRS FFNet DMVF
Coverage(%) 50.78 25.80 50.21 44.74 42.36 61.91 65.87

Processing rate(%) 4.20 3.70 100 100 100 6.02 5.06
Table 3: Comparison on coverage and processing rate between DMVF and other approaches. Compared with FFNet, DMVF
achieves better coverage (6.40% improvement) while reducing the processing rate by 15.95%. For othermethods, DMVF achieves
either much better coverage or much lower processing rate or both.

Figure 5: Representative frames generated by DMVF from
the VideoWeb dataset.

and the remaining 20% for testing. 5 rounds of experiments are run
and the reported result is the average performance.

4.2 Comparison with Other Approaches
Table 3 shows the coverage metric and the processing rate of DMVF
on the VideoWeb dataset and its comparison with other approaches.
In this experiment, the system requirement is 3/2/1, i.e., 3 fast
strategies, 2 normal strategies and 1 slow strategy for the agents
(further study on different system requirements is shown later).
From the table, we can clearly see the improvement from DMVF:
• Compared with the state-of-the art method for fast-forwarding,
FFNet, our approach DMVF achieves better coverage (6.40%
improvement) while reduces the processing rate by 15.95%.
• For those methods that require processing the entire video (pro-
cessing rate of 100%), i.e., OK, SC and SMRS, our framework
DMVF achieves higher coverage (more than 25% increase) and
much lower processing rate.
• Compared with Random and Uniform methods, DMVF offers
significant improvement in coverage with modest increase of
processing rate.
Fig. 5 shows a qualitative example for fast-forwarding videos

with DMVF. As we can see, it selects more important frames from
multiple views, and creates a compact subset of frames.

4.3 Coverage-Efficiency Trade-off
Table 3 shows that DMVF can significantly outperform other ap-
proaches in the literature. Furthermore, as shown in this section,
DMVF enables flexible coverage-efficiency trade-off with differ-
ent system requirements. Note that when deploying a video fast-
forwarding strategy, the goal of achieving high efficiency (i.e., low
processing rate) contradicts the goal of maintaining high coverage,
and the ability to trade off between the two is desirable.
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FFNet

DMVF

Figure 6: Trade-off between coverage and processing rate in
DMVF, under different system requirements.

Fig. 6 shows that different trade-offs between coverage and ef-
ficiency can be easily achieved in DMVF by changing the X/Y/Z
parameters in system requirement. The points on the red curve
of DMVF are achieved by the following X/Y/Z: 2/2/2, 2/3/1, 3/2/1,
4/1/1, and 5/0/1. All points outperform the FFNet result. Note that
changing these parameters is much more flexible and systematic
than deploying FFNet on each agent and manually adjusting their
skipping speeds, showing DMVF’s capability for reconfiguration
and adaptation to accommodate varying system operation needs.

4.4 Impact of Connectivity
For a distributedmulti-agent application, such as DMVF, connection
pattern among agents and its resulting communication load is an
important factor. In real applications, the connections among differ-
ent agents may vary because of the connection capacity of agents,
physical distance between agents, and the network bandwidth, etc.
Here, we evaluate the performance and communication load of the
DMVF framework under wireless communication with different
connection patterns. We use Erdos-Renyi method to generate ran-
dom graphs as the connection patterns among agents, as shown in
Fig. 7. Each random graph is generated with a parameter P , i.e., a
fixed probability of each edge being present or absent, independent
of the other edges. Higher probability yields higher connectivity of
the multi-agent systems. We generate over 40 graphs with different
values of P and evaluate their performance with respect to different
number of edges in the graph (results are averaged for each number
of edges). In the experiment, the total raw input data is 12.36 GB.
We observe the following from the results.
• From Fig. 7 (a), we can observe the robustness of DMVF un-
der varying degrees of connectivity. DMVF maintains a higher
coverage and lower processing rate when compared to FFNet,
regardless of the number of edges in the connection graph.
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Figure 7: Coverage, processing rate and communication load
under varying degree of connectivity in DMVF.

• From Fig. 7 (b), DMVF leads to only a small amount of communi-
cation overhead, from 0.17 GB to 0.46 GB under full connectivity
(1.37% to 3.72% of raw data).

4.5 Analysis on Consensus Algorithms
Here, we evaluate DMVF with the various consensus algorithms
introduced in Section 3.4 (communication graph is as in Fig. 4). Fig. 8
shows the comparison between FFNet and DMVF variants with
respect to average coverage and processing rate. We also evaluate
the number of iterations each method needed to reach consensus,
and list them together with the data from Fig. 8 in Table 4. From
Fig. 8 and Table 4, we have the following observations:
• Compared to FFNet, any variant of DMVF outperforms both in
coverage and in processing rate.
• Compared to the gradient descent based variants, i.e., DMVF-
DGD andDMVF-EXTRA, the proposed DMVF needsmuch fewer
iterations to reach consensus.
• Among the three maximal consensus based variants, i.e. DMVF,
DMVF-AVE, and DMVF-ONE, DMVF has the highest average
coverage while having the same magnitude of iteration count.

4.6 Timing Efficiency
We evaluate the timing efficiency of DMVF on the aforementioned
distributed embedded platform. Our framework achieves an aver-
age frame rate of 313 FPS and a worst-case rate of 280 FPS. Such
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Figure 8: Comparison between DMVF with different consen-
sus algorithms and FFNet.

Methods Ave. Coverage Ave. Proc. Rate Iterations
FFNet 61.91% 6.02% #

DMVF-AVE 65.56% 5.04% 5
DMVF-ONE 64.42% 5.26% 4

DMVF-EXTRA 65.69% 5.03% 93.0
DMVF-DGD 64.82% 5.03% 234.48

DMVF 66.06% 5.11% 5
Table 4: Comparison of coverage, processing rate and itera-
tions of DMVF with different consensus methods.

high frame rate may not be achieved on less-capable embedded plat-
forms, but the low processing rate from DMVF should still reduce
computation cost and achieve near real-time speed. For example,
even when we intentionally slow down the computation by only us-
ing the ARM cores on TX2 (i.e., not using the GPU), DMVF achieves
94 FPS, which is sufficient for most real-time monitoring cases.

5 CONCLUSION
In this paper, we propose a distributed multi-agent video fast-
forwarding framework, aka DMVF, that optimizes the coverage
and processing rate by enabling agents associated with different
cameras to communicate with their neighbors and adaptively up-
date their reinforcement learning based fast-forwarding strategies.
Our experiment shows the effectiveness of DMVF when compared
with other fast-forwarding methods in the literature.
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