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A Cooperative Demand Response Scheme Using
Punishment Mechanism and Application to Industrial

Refrigerated Warehouses

Abstract—This paper proposes a cooperative demand response
scheme for load management in smart grid. The cooperative
demand response scheme is formulated as a constrained opti-
mization problem that generates a Pareto-optimal response strat-
egy profile for consumers. Comparing with the noncooperative
response strategy (i.e., Nash equilibrium) obtained from the one-
shot demand management game, the Pareto-optimal response
strategy reduces the electricity costs to the consumers. We
further develop an incentive-compatible trigger-and-punishment
mechanism to avoid the noncooperative behaviors of the self-
ish consumers. Furthermore, the cooperative demand response
scheme is applied to load management of industrial refrigerated
warehouses. To implement the cooperative demand response
scheme in large-scale system, we divide the refrigerated ware-
houses into different clusters and implement the cooperative
demand response scheme inside each cluster. Numerical results
demonstrate that the cooperative demand response scheme can
reduce the electricity costs, drop the electricity prices, and curtail
the total energy consumption comparing with the noncooperative
demand response scheme.

Keywords—Smart grid, Demand response, Pareto optimality, Co-
operation, Mechanism design, Industrial refrigerated warehouses.

NOMECLATURE

N , N, i Set, number, and index of consumers.
M,M,m Set, number, and index of clusters.
N d Set of noncooperative consumers.
N c Set of cooperative consumers.
Nm Set of consumers in cluster m.
k Index of time slots.
l Strategy profile of consumers.
ld Strategy profile with noncooperative behaviors.
lc Social-optimal strategy profile of consumers.
Si Set of possible strategies of consumer i.
li Actual energy consumption of consumer i (kWh).
l̂i Normal energy consumption of consumer i (kWh).
ldi Energy consumption of noncooperative consumer i

(kWh).
lci Social-optimal energy consumption of consumer i

(kWh).
p(l) Electricity price (cents/kWh).

pd(ld) Electricity price with noncooperative behaviors
(cents/kWh).

Vi Total costs to consumer i (cents).
V q
i Discomfort costs to consumer i (cents).

V p
i Electricity payments to consumer i (cents).

V̄i Average costs to consumer i over multiple time
slots (cents).

Ui Payoff of consumer i (cents).
UNE
i Payoff of consumer i obtained from one-shot

demand management game (cents).
U c
i Payoff of consumer i obtained from cooperative

demand response scheme (cents).
Ūi Average payoff of consumer i over multiple time

slots (cents).
δ Discount factor.
δmin Lower bound of discount factor.
L Forecast demand (kWh).
Lm Forecast demand of cluster m (kWh).
∆L Change of total energy consumption (kWh).
∆L̂ Average change of total energy consumption with

noncooperative behaviors (kWh).
η Detection threshold (kWh).
ηmax, ηmin Maximal and minimal detection thresholds (kWh).
αc Critical probability of noncooperative behaviors.
q̂ Indicator of detection results.
q Indicator of the existence of noncooperative

behaviors.
T Number of time slots with punishment.
Tmin Minimal number of time slots with punishment.
T0 Time slot at which the punishment starts.
Qin

i Actual indoor temperature set point (◦F).
Q̂in

i Desired indoor temperature set point (◦F).
Qin

i Outdoor temperature (◦F).
θi Cost coefficient.
βi, γi Thermal parameters.
λ, p0 Pricing parameter and base price (cents/kWh).
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I. INTRODUCTION

DEMAND response is defined as the changes in electricity
usage by end-use consumers in response to the power

grid needs from electricity markets [1]. In general, there are
two categories of demand response schemes: incentive-based
scheme and price-based scheme [2]. For the direct load control
in the incentive-based demand response scheme, the energy
provider manages the loads of the participating consumers
directly [3]–[5]. For the price-based demand response scheme,
the energy provider adjusts the loads by flexible pricing, such
as critical peak pricing [6], real-time pricing [7], regulation
pricing [8]. To support the demand response, an advanced
metering infrastructure (AMI) is given to collect the energy
consumption and announce the electricity price [9], [10].

Typically, there are two types of consumers for price-based
demand response: price-taking consumers [11]–[13] and price-
anticipating consumers [14]–[20]. The price-taking consumers
assume that their energy consumption cannot affect the elec-
tricity price, whereas the price-anticipating consumers believe
that their energy consumption can change the electricity price.
In fact, price-anticipating consumers usually refer to large
energy consumers such as industrial facilities and commercial
buildings. It was proven that both the industrial facilities
and the commercial buildings have large potential in demand
response [21]–[23].

Recently, game theory has been used for studying the de-
mand response of price-anticipating consumers. For example,
noncooperative games were utilized to study the cost mini-
mization of interactive consumers [14]–[16] and the charging
control of plug-in electric vehicles [17], [18]. Stackelberg
games were employed to model the interactions between the
consumers and the utility companies [19], [20], [24]. However,
neither the Nash equilibrium nor the Stackelberg equilibrium
are Pareto optimal in the two game models. Generally, Pareto
optimality is an important criterion for evaluating economic
systems and public policies. If economic allocation in any
system is not Pareto efficient, there is potential for a Pareto
improvement–an increase in Pareto efficiency. Nevertheless,
few papers are devoted to the Pareto improvement for the
demand response of price-anticipating consumers. In this
study, we develop a cooperative demand response scheme and
obtain a Pareto-optimal response strategy such that all the
consumers have lower electricity costs than that obtained from
the noncooperative strategy (i.e., Nash equilibrium).

The novelty of this work is twofold. First, we formulate the
cooperative demand response as a social optimization problem
and develop an incentive-compatible trigger-and-punishment
mechanism to avoid the noncooperative behaviors of the con-
sumers. Second, we apply the cooperative demand response
scheme to achieve load management of industrial refrigerated
warehouses. To the best of our knowledge, this is the first work
using punishment mechanism to construct cooperative demand
response scheme for industrial refrigerated warehouses.

The rest of the paper is organized as follows. Some pre-
liminaries are given in Section II. In Section III, the cooper-
ative demand response is formulated as a social optimization
problem, and the social-optimal response strategy is obtained.

In Section IV, an incentive-compatible trigger-and-punishment
mechanism is developed to avoid the noncooperative behaviors
of the selfish consumers. In Section V, the cooperative demand
response scheme is applied to load management of industrial
refrigerated warehouses with heating ventilation air condition-
ing (HVAC) systems, and a heuristic method is developed to
obtain the sub-optimal response strategy by dividing the re-
frigerated warehouses into different clusters. Numerical results
are given in Section VI, and conclusions are summarized in
Section VII.

II. PRELIMINARIES

A. Noncooperative Game and Nash Equilibrium

Definition 1. [25] A noncooperative game is defined as
a triple G = {N , (Si)i∈N , (Ui(l))i∈N }, where N =
{1, 2, · · · , N} is the set of active players participating in the
game,

Si =
{
li
∣∣li ∈ [

lmin
i , lmax

i

]}
(1)

is the set of possible strategies that player i can take, and
Ui(l) is the payoff function.

Definition 2. [25] For a noncooperative game G =
{N , (Si)i∈N , (Ui(l))i∈N }, a vector of strategies l∗ =
(l∗1, l

∗
2, · · · , l∗N ) is a Nash equilibrium if and only if

Ui(l
∗
i , l

∗
−i) ≥ Ui(l

′
i, l

∗
−i) for all i ∈ N and any other l′i ∈ Si,

where l−i = (l1, l2, · · · , li−1, li+1, · · · , lN ) denotes the set
of strategies selected by all the players except for player
i, (li, l−i) = (l1, l2, · · · , li−1, li, li+1, · · · , lN ) denotes the
strategy profile, and Ui(li, l−i) is the resulting payoff for the
player i given the strategies of the other players.

B. Taguchi Loss Function

Definition 3. [26] The Taguchi loss function is a statistical
method that captures the cost to society due to the manufacture
of imperfect products. The loss function is given as

V = τ(y − ŷ)2, (2)

where y is the value of quality characteristic, ŷ is the desired
value of y, V is the loss in dollars, and τ is a constant
coefficient. The quadratic representation of the loss function
is minimum at y = ŷ, increases as y deviates from ŷ. The
Taguchi loss function defines the relationship between the
economic loss and the deviation of the quality characteristic
from the desired value. For a product with desired value ŷ,
ŷ ± ∆0 represents the deviation at which functional failure
of the product occurs. When a product is manufactured with
the quality characteristic at the extremes, ŷ +∆0 or ŷ −∆0,
some countermeasure must be undertaken by the customers.
Assuming the cost of countermeasure is A0 at ŷ+∆0 or ŷ−∆0,
we define the constant τ as

τ =
A0

∆2
0

. (3)

Page 2 of 11

http://www.ewh.ieee.org/soc/ies

Industrial Electronics Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3

Energy provider 

  Consumer 

 Pricing curve

 Consumer 

  Consumer

Energy consumption

+
Energy consumption

Energy consumption

Fig. 1. Demand management system with price-anticipating consumers.

III. PROBLEM FORMULATION

We consider a demand management system composed of
an energy provider and several consumers, as shown in Fig.
1. The energy provider can adjust the loads by periodically
announcing the pricing curve to the consumers. We assume that
the consumers are price-anticipating consumers and know that
the price is affected by their energy consumption. According
to the updated electricity price, the consumers can adjust
their energy consumption to reduce the electricity costs. The
electricity costs are composed of two parts: the discomfort
costs and the payments. Generally, the discomfort costs are
increased with the change from normal energy consumption
and can be denoted as a continuous, increasing, and convex
function1, such as the quadratic function [11], [13], [16],
the logarithmic function [27], [28], and the weighted linear
function [29], [30]. The discomfort cost function is defined
as V q

i (li, l̂i), and the electricity payments of consumer i are
denoted as

V p
i = p(l)li, i ∈ N , (4)

where N = {1, 2, . . . , N} denotes the set of consumers, i de-
notes the index of consumer, l̂i is the normal energy consump-
tion, li is the actual energy consumption, l = {l1, l2, . . . , lN}
is the strategy profile, and p(l) is the announced electricity
price, which is assumed to be an increasing function of the total
energy consumption. Then, the electricity costs to consumer i
can be defined as

Vi = V q
i (li, l̂i) + p(l)li. (5)

The discomfort costs and the electricity payments usually
conflict with each other, and the consumers need to make
a tradeoff between them. From the cost formulation (5),
the energy consumption of one consumer will change the
electricity price and further affect the electricity costs to the
other consumers. Thus, the demand response can be formulated
as the following noncooperative game:

Definition 4. (One-shot demand management game) A de-
mand management game is defined as a triple G =

1The price-anticipating consumers generally refer to industrial or commer-
cial consumers that have continuous aggregate loads.

{N , (Si)i∈N , (Ui)i∈N }, where N = {1, 2, · · · , N} is the
set of active consumers participating in the game, Si is
the set of possible strategies that consumer i can take, and
Ui = −Vi = −V q

i (li, l̂i)− p(l)li is the payoff function.

The stable solution of the one-shot demand management
game is the Nash equilibrium, which can be obtained from
∂Ui/∂li = 0, i ∈ N , i.e.,

−∂V q
i (li, l̂i)/∂li − ∂p(l)/∂li · li − p(l) = 0, i ∈ N . (6)

Generally, the Nash equilibrium is not a Pareto-optimal
solution, and thus it is possible to improve the payoffs of all the
consumers simultaneously2. Next, we develop a cooperative
demand response scheme to improve the Pareto efficiency
of Nash equilibrium and formulate the cooperative demand
response as the following social optimization problem:

(P1) maximize
∑
i∈N

Ui

subject to Ui ≥ UNE
i , i ∈ N ,

where UNE
i denotes the payoff of consumer i obtained from

the one-shot demand management game. Let lc = {lc1, . . . , lcN}
denote the social-optimal energy consumption obtained from
(P1) and U c

i denote the corresponding payoff of consumer i.
It is easy to see that lc is a Pareto-optimal solution and U c

i is
not smaller than UNE

i for all i ∈ N . Since (P1) is in general
a nonconvex optimization problem, the optimal solution lc is
hard to obtain. In section V, we will develop a heuristic method
to obtain a sub-optimal solution that meets the constraints in
(P1).

In the cooperative demand response scheme, some of the
consumers are possible to improve their payoffs by taking
the noncooperative strategies when the other consumers keep
cooperative. We assume that some of the consumers (i ∈ N d)
take the noncooperative strategies while the other consumers
(j ∈ N c) keep cooperative, where N d is the set of nonco-
operative consumers and N c is the set of cooperative con-
sumers. Then, the energy consumption of the noncooperative
consumers can be obtained from

−∂V q
i (li, l̂i)/∂li−∂p

d(ld)/∂li · li−pd(ld) = 0, i ∈ N d, (7)

where pd(ld) is the price when some of the consumers take the
noncooperative strategies and ld = {ld1 , . . . , ldNd , l

c
1, . . . , l

c
Nc},

where ldi (i ∈ N d) denotes the energy consumption of the
noncooperative consumers and lcj (j ∈ N c) denotes the energy
consumption of the cooperative consumers. The corresponding
payoffs of the noncooperative consumers are denoted as

Ud
i = −V q

i (l
d
i , l̂i)− pd(ld)ldi , i ∈ N d, (8)

and the payoffs of the cooperative consumers are denoted as

Ud
j = −V q

j (l
c
j , l̂j)− pd(ld)lcj , j ∈ N c. (9)

For example, the noncooperative consumer can increase its
payoff (8) by taking the noncooperative strategy when all of

2Improving the payoff is equivalent to reducing the electricity costs.
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the other consumers keep cooperative, i.e., each consumer has
the motivation to take the noncooperative strategy. Therefore,
the social-optimal energy consumption is not a stable solution
in one-shot demand response.

IV. TRIGGER-AND-PUNISHMENT MECHANISM

To make the social-optimal energy consumption stable, we
consider giving punishments to the consumers if they adopt
the noncooperative strategies. In that case, the consumers will
care more about the long-term electricity costs. The average
electricity costs to consumer i over multiple time slots are
defined as

V̄i =

∞∑
k=1

δk−1Vi(k), (10)

where k is the index of the time slot and δ ∈ (0, 1) is the
discount factor, which represents how the consumers discount
their future costs. In that case, the consumers not only value
the current electricity costs but also the future electricity costs.
Therefore, each consumer needs to keep a good reputation to
avoid the increased costs in the future. Similarly, we define
the average payoff function of consumer i as Ūi = −V̄i =
−
∑∞

k=1 δ
k−1Vi(k).

Next, we will develop a trigger-and-punishment mechanism
to avoid the noncooperative behaviors. All of the consumers
are assumed to adopt the cooperative strategies in the first time
slot. In the subsequent time slots (i.e., k ≥ 2), the cooperation
will be maintained if all of the consumers adopt the cooperative
strategies in the previous time slot. If the energy provider
observes noncooperative behaviors in the previous time slot, it
will keep the consumers noncooperative during the subsequent
T time slots and restart the cooperation at the (T + 1)th time
slot. There are two questions to be answered in designing the
trigger-and-punishment mechanism: How the energy provider
detects the noncooperative behaviors and what is the punish-
ment strength that can stop the noncooperative behaviors? In
the subsequent sections, we will answer these two questions
and omit the time slot index k without causing confusions.

A. Noncooperative behaviors detection
The noncooperative behaviors of the consumers will change

the electricity price and the total energy consumption. In this
section, we utilize the change of the total energy consumption3

as the indicator for the noncooperative behaviors that exist
in the demand management system. The change of the total
energy consumption is defined as

∆L =
∑
i∈N

li −
∑
i∈N

lci . (11)

In practice, the total energy consumption is measured by the
energy provider based on the AMI. It is shown that communi-
cation loss causes errors to the total energy consumption and
thus variations to the change of the total energy consumption

3In practice, the change in the total energy consumption is affected by the
scale of the demand management system (e.g., the number of consumers). In
the simulations, we will discuss it in detail.

 

No noncooperative behavior  Noncooperative behaviors

η

False alarm

False 

detection

2(0 )N ,σ

False alarm

2( )N L,∆ σ

−η

Fig. 2. Distribution of the change of total energy consumption (i.e., ∆L)
with and without noncooperative behaviors.

[31], [32]. The change of the total energy consumption is
assumed to follow a normal distribution N(µ, σ2), where
σ is the standard variance, µ = 0 if there does not exist
any noncooperative behavior, and µ = ∆L̄ if there exist
noncooperative behaviors.

To detect the noncooperative behaviors of the consumers,
we define the detection rule as

q̂ =

{
1, if |∆L| ≥ η,

0, if |∆L| < η,
(12)

where η is the detection threshold and q̂ is the detection
result. Specifically, q̂ = 1 denotes that the energy provider
detects the noncooperative behaviors and q̂ = 0 denotes
that the energy provider does not detect any noncooperative
behavior. As shown in Fig. 2, the detection rule (12) causes
false alarm and false detection. The false alarm occurs when
the noncooperative behaviors are detected in the demand
management system that does not have any noncooperative
behavior, and the false detection occurs when the noncoop-
erative behaviors are not detected in the demand management
system that has noncooperative behaviors. Both the false alarm
and false detection have large influences on the accuracy of
the noncooperative behaviors detection and thus the social
optimality of the cooperative demand response scheme. Next,
we will give the optimal detection threshold to minimize the
loss of social optimality.

Proposition 1. Assuming that the probability of performing
noncooperative behavior of one consumer is α at time slot T0,
the average loss of social optimality due to the false alarm and
false detection is minimal if

η =

{
ηmax, α > αc,

ηmin, α ≤ αc,
(13)

where ηmax and ηmin are the maximal and minimal detection
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thresholds, and αc is denoted as

αc = 1− (
∆U cn

∆U cn +∆U cd )
1
N , (14)

with ∆U cn =
∑T0+T

k=T0+1(
∑

i∈N U c
i (k) −

∑
i∈N UNE

i (k)) and
∆U cd =

∑
i∈N U c

i (T0 + 1)−
∑

i∈N Ud
i (T0 + 1).

Proof: Given that the probability of performing non-
cooperative behavior of one consumer is α, the probability
of the noncooperative behaviors that occur in the demand
management system can be denoted as 1−(1−α)N . We set the
indicator q = 1 when there exist noncooperative behaviors and
q = 0 when there does not exist any noncooperative behavior.
Then, the false alarm probability can be defined as

Pr[q̂ = 1|q = 0]

= Pr[|∆L| ≥ η,∆L ∼ N(0, σ2)] = Φ(η), (15)

and the false detection probability can be defined as

Pr[q̂ = 0|q = 1]

= Pr[|∆L| < η,∆L ∼ N(∆L̄, σ2)] = Ψ(η), (16)

where Φ(η) is a decreasing function of η and Ψ(η) is an
increasing function of η.

Under the detection rule (12), the loss of social optimality
due to the false alarm (i.e., q̂ = 1, q = 0) or the false detection
(i.e., q̂ = 0, q = 1) is denoted as

∆Ue = q̂(1− q)

T0+T∑
k=T0+1

(
∑
i∈N

U c
i (k)−

∑
i∈N

UNE
i (k))

+(1− q̂)q(
∑
i∈N

U c
i (T0 + 1)−

∑
i∈N

Ud
i (T0 + 1)). (17)

In (17), the first part is the loss of social optimality due to false
alarm and is defined as the sum of the loss of social optimality
in each time slot with punishment, because the punishment
strategy is to make all the consumers adopt the noncooperative
strategies (i.e., Nash equilibrium) in the subsequent T time
slots. The second part is the loss of social optimality in the next
time slot due to the false detection of noncooperative behaviors
in the current time slot. Given the false alarm probability
and the false detection probability, the average loss of social
optimality is denoted as

∆Ūe = E[∆Ue]

= β(1− (1− α)N )

T0+T∑
k=T0+1

(
∑
i∈N

U c
i (k)−

∑
i∈N

UNE
i (k))

+(1−β)(1−α)N(
∑
i∈N

U c
i (T0+1)−

∑
i∈N

Ud
i (T0+1)).(18)

In (18), β = E[q̂] represents the probability, estimated by the
energy provider, that there exist noncooperative behaviors in

the demand management system and it can be calculated by

β = Pr[q̂ = 1|q = 0]Pr[q = 0]+Pr[q̂ = 1|q = 1]Pr[q = 1]

= (1− α)NPr[q̂ = 1|q = 0]

+(1− (1− α)N )(1− Pr[q̂ = 0|q = 1])

= (1− α)NΦ(η) + (1− (1− α)N )(1−Ψ(η))

= f(η). (19)

Since Φ(η) is decreasing and Ψ(η) is increasing with η,
we concludes that β is decreasing with η. Assuming ηmin ≤
η ≤ ηmax, we have βmin = f(ηmax) and βmax = f(ηmin). To
minimize the average loss of social optimality (18), we obtain
the optimal detection threshold:

η =

{
ηmax, (1− (1− α)N )∆U cn > (1− α)N∆U cd,

ηmin, (1− (1− α)N )∆U cn ≤ (1− α)N∆U cd.
(20)

The critical condition (20) indicates that there exists a critical
probability of the noncooperative behaviors (i.e., αc) such that
η = ηmax if α > αc and η = ηmin if α ≤ αc. The critical
probability αc is obtained from (1− (1− α)N )∆U cn = (1−
α)N∆U cd.

It is shown in (14) that αc is decreased with the number
of consumers. In practical demand management system, the
number of consumers is very large such that αc is extremely
small. Therefore, η = ηmax is always the optimal threshold.

B. Punishment Strength

Suppose all of the consumers adopt the cooperative strate-
gies, the average payoff of one consumer is denoted as

Ū c
i =

∞∑
k=1

δk−1U c
i (k), (21)

and the average payoff of the consumer when adopting the
noncooperative strategy at time slot T0 is denoted as

Ūd
i = (

T0−1∑
k=1

δk−1U c
i (k) + δT0−1Ud

i (T0)

+

T0+T∑
k=T0+1

δk−1UNE
i (k)+

∞∑
k=T0+T+1

δk−1U c
i (k)).(22)

To make the social-optimal energy consumption stable
and achieve the incentive compatibility of the trigger-and-
punishment mechanism, there should be Ū c

i > Ūd
i for all

i ∈ N , i.e.,

T0+T∑
k=T0

δk−1U c
i (k) > δT0−1Ud

i (k)+

T0+T∑
k=T0+1

δk−1UNE
i (k), (23)

from which, we can obtain the lower bound of the discount
factor δmin and the minimal duration of punishment Tmin.
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V. APPLICATION TO LOAD MANAGEMENT OF
INDUSTRIAL REFRIGERATED WAREHOUSES

In this section, we consider the application to load man-
agement of industrial refrigerated warehouses with HVAC
systems. Changing the cold storage temperature set points of
the refrigerated warehouses will cause the reduction of product
quality and further increase economic costs to the industrial
consumers. Taguchi loss function is a method that captures
economic costs due to the manufacture of imperfect products
[26]. According to the Definition 3, the economic costs can be
defined as

V q
i (Q

in
i (k)) = θi(Q

in
i (k)− Q̂in

i (k))
2, i ∈ N , (24)

where θi is the cost coefficient, Qin
i (k) and Q̂in

i (k) denote the
actual temperature set point and the desired temperature set
point in time slot k, respectively. The indoor temperature of
refrigerated warehouse i evolves according to the following
linear dynamics [13]:

Qin
i (k) = Qin

i (k−1)+βi(Q
out
i (k)−Qin

i (k−1))+γili(k), (25)

where βi and γi specify the thermal characteristics of the
operating environment and the HVAC system, Qout

i (k) denotes
the outdoor temperature, βi(Q

out
i (k)−Qin

i (k− 1)) models the
heat transfer, γili(k) (γi < 0) models the energy-heat transfor-
mation of the HVAC system. Assuming that the refrigerated
warehouse i requires l̂i(k) kWh energy to maintain the desired
indoor temperature, we have

Q̂in
i (k) = Qin

i (k−1)+βi(Q
out
i (k)−Qin

i (k−1))+γi l̂i(k), (26)

where l̂i(k) is different for the refrigerated warehouses with
different desired temperature set points. For example, the rec-
ommended storage and transit temperatures for food products
are from 32◦F to 64◦F for vegetables and fruits, from 32◦F to
39◦F for milk and meat, and from -22◦F to 0◦F for seafood
and ice cream [33]. Substituting (25) and (26) into (24) and
omitting the time slot index k, we transform the cost function
to

V q
i = θiγ

2
i (li − l̂i)

2, i ∈ N . (27)

According to the law of demand [34], the electricity price
is defined as

p(l) = λ(
∑
i∈N

li − L) + p0, (28)

where λ is a pricing parameter to implement elastic pricing,
p0 is the base price, and L is the forecast demand. Then, the
costs to refrigerated warehouse i can be denoted as

V r
i = θiγ

2
i (li − l̂i)

2 + (λ(
∑
i∈N

li − L) + p0)li, (29)

with which, (P1) is a nonconvex optimization problem, and the
global optimal solution is hard to obtain. Next, we propose a
heuristic method to search for the sub-optimal solution of (P1)
and divide the refrigerated warehouses into M clusters. The
number of refrigerated warehouses in cluster m (m ∈ M =
{1, 2, . . . ,M}) is Nm, and the set of refrigerated warehouses
in cluster m is denoted as Nm = {1, 2, . . . , Nm}. The details

of the cluster-based cooperative demand response scheme are
given as follows.

The refrigerated warehouses are first divided into M clusters
according to their normal energy consumption l̂i. Specifically,
assuming that the highest and lowest energy consumption are
lmax and lmin, respectively, the refrigerated warehouses are
grouped into one cluster if their normal energy consumption
lie within [lmin + (m − 1)(lmax − lmin)/M, lmin + m(lmax −
lmin)/M ],m ∈ {1, 2, . . . ,M}. The forecast demand is allo-
cated to each cluster according to the ratio of the total normal
energy consumption in one cluster to the total normal energy
consumption in the demand management system, i.e.,

Lm =

∑
i∈Nm

l̂i∑
i∈N l̂i

L, m ∈M, (30)

where Lm is the forecast demand of cluster m. Similarly,
the cooperative demand response scheme in cluster m can be
formulated as

(P2) maximize
∑
i∈Nm

Um
i

subject to Um
i ≥ UNE

i , i ∈ Nm,

where Um
i is the payoff function of refrigerated warehouse i

in cluster m,

Um
i = −V m

i = −θiγ2
i (li− l̂i)2−(λ(

∑
i∈Nm

li−Lm)+ p0)li. (31)

To solve (P2), we first consider the following unconstrained
optimization problem:

(P3) maximize
∑
i∈Nm

Um
i .

Next, we give the condition to guarantee a unique global
optimal solution in (P3).

Proposition 2. Given the payoff function Um
i defined by (31),

the optimization problem (P3) has a unique global optimal
solution if

λ ≤ θiγ
2
i

Nm − 2
, i ∈ Nm. (32)

Proof: Given Um
i defined by (31), the Hessian matrix of

(P3) is denoted as

H=


−2θ1γ2

1 − 2λ −2λ . . . −2λ
−2λ −2θ2γ2

2 − 2λ . . . −2λ
...

...
. . .

...
−2λ −2λ . . . −2θNmγ2

Nm
−2λ

 .

(33)
From (32), it is sufficient to show that H is strictly diago-

nally dominant, i.e.,

|Hi,i| ≥
∑

j ̸=i,j∈Nm

|Hi,j |, |Hi,i| ≥
∑

j ̸=i,j∈Nm

|Hj,i|, ∀i ∈ Nm.

(34)
Following Gershgorin’s theorem [35], all the eigenvalues are

negative, and H is a negative definite matrix. Therefore, the
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Algorithm 1 Clustering algorithm
Input: Refrigerated warehouses set: N = {1, 2, . . . , N}; Pa-

rameters: γi, θi, λ; Normal energy consumption: l̂i; Forecast
demand: L; Number of clusters: M = 1.

Output: Number of clusters: M ; Clusters set: M =
{1, 2, . . . ,M}; Refrigerated warehouses set in cluster m:
Nm.
g = 0;
for all i ∈ N do

Calculate the energy consumption lc according to (35);
if Ui ≤ UNE

i then
g = 1;

end if
end for
while g = 1 do
M ←M + 1;
for m ∈M do

for i ∈ Nm do
if l̂i ∈ [lmin+(m−1)(lmax−lmin)/M, lmin+m(lmax−
lmin)/M ] then

Add refrigerated warehouse i to cluster m;
end if

end for
Allocate the forecast demand L to cluster m according
to (30);
Calculate the energy consumption lc for the refrigerated
warehouses in cluster m according to (35);

end for
g = 0;
for i ∈ N do

if Um
i ≤ UNE

i then
g = 1;

end if
end for

end while

optimization problem (P3) is convex and has a unique global
optimal solution.

Supposing the condition (32) is satisfied, we can obtain the
optimal solution of (P3), i.e.,

lc = H−1C , (35)

where C is defined by

C =


p0 − λLm − 2θ1γ

2
1 l̂1

p0 − λLm − 2θ2γ
2
2 l̂2

...
p0 − λLm − 2θNmγ2

Nm
l̂Nm

 . (36)

Next, we will check the feasibility of the constraints of
(P2). If any constraint of (P2) is not satisfied, the energy
provider will increase the number of clusters from M to
M+1 and reallocate the energy consumption to the refrigerated
warehouses according to (35) until all the constraints of (P2)
are satisfied. The clustering algorithm is shown in Algorithm 1.
The number of clusters obtained by Algorithm 1 is a minimal

Wholesale

market
Energy

provider

Refrigrated warehouse

Cluster

head

Power line

Cluster 1: 

Cooperative demand response

Refrigrated warehouse

Refrigrated warehouse

Information flow

Refrigrated warehouse

Cluster

head

Cluster M: 

Cooperative demand response

Refrigrated warehouse

Refrigrated warehouse

Fig. 3. Cluster-based demand response scheme with industrial refrigerated
warehouses.

value to guarantee that the constraints of (P2) are satisfied. In
practice, the number of clusters can be larger than this minimal
value. The impact of the number of clusters on the performance
of the cooperative demand response scheme will be studied in
the simulations.

In each cluster, we introduce a cluster head that is re-
sponsible for setting the electricity price inside the cluster
and allocating the energy consumption to the refrigerated
warehouses using the cooperative demand response scheme,
as shown in Fig. 3. When the cluster head observes the
change of the total energy consumption from the normal value,
it will investigate the reasons for the change, such as the
noncooperative behaviors or the detection errors. If the change
is caused by the noncooperative behaviors of the refrigerated
warehouses, the cluster head will announce the start of the
punishment to all the refrigerated warehouses in the next time
slot and restart the cooperation after at least Tmin time slots.
In practice, to obtain the social-optimal energy consumption,
the energy provider needs to periodically measure the energy
consumption and collect the cost coefficients (e.g., θi) from
the refrigerated warehouses. However, the information update
is not frequent because of large communication overhead.
The infrequent communications will further make the energy
provider hard to distinguish the noncooperative behaviors from
the errors in the total energy consumption. In the simulations, it
is shown that the clustering method can benefit the detection of
the noncooperative behaviors and reduce the motivations of the
refrigerated warehouses to adopt the noncooperative strategies.

VI. NUMERICAL RESULTS

In this section, the performance of the cooperative demand
response scheme is evaluated by the Monte Carlo method. We
assume that the normal energy consumption of the refrigerated
warehouses are uniformly distributed in [100kWh, 150kWh],
the cost coefficients γiθ

2
i are uniformly distributed in [2, 4] or

[3, 5], the base price p0 is 5 cents/kWh, the forecast demand
is estimated by L = µ

∑
i∈N l̂i, and the pricing parameter λ

is calculated by λ = 2/N or λ = 1/N . In the simulations, we
consider the case that only one refrigerated warehouse has the
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TABLE I. COMPARISONS BETWEEN COOPERATIVE AND
NONCOOPERATIVE DEMAND RESPONSE SCHEMES.

Electricity price Total costs Average costs Total energy consumption
(cents/kWh) ($) ($) (kWh)

Cooperation 18.95 5.16 × 103 51.64 0.90 × 104

Noncooperation 64.90 7.74 × 103 77.39 1.13 × 104

20 40 60 80 100 120 140 160 180 200

10%

15%

20%

25%

30%

35%

Number of refrigerated warehouses

T
C

R

 

 

λ=2/N, γ
i
θ

i
2∈  [3, 5]

λ=2/N, γ
i
θ

i
2∈  [2, 4]

λ=1/N, γ
i
θ

i
2∈  [2, 4]

Fig. 4. Total cost reduction of the refrigerated warehouses obtained from the
cooperative demand response scheme v.s. Number of refrigerated warehouses.

noncooperative behavior in the demand management system.
Before giving the numerical results, we define the performance
indexes as follows.

To evaluate the total cost reduction of the refrigerated
warehouses obtained from the cooperative demand response
scheme, we define the total cost reduction (TCR) as

TCR =

∑
i∈N (U c

i − UNE
i )∑

i∈N UNE
i

× 100%. (37)

To evaluate the cost reduction of the refrigerated warehouse
when adopting the noncooperative strategy, we define the cost
reduction due to the noncooperative behavior (CRN) as

CRN =
Ud
i − U c

i

U c
i

× 100%, i ∈ N d. (38)

To evaluate the increase of total energy consumption when
a refrigerated warehouse adopts the noncooperative strategy,
we define the total energy consumption increase due to the
noncooperative behavior (EIN) as

EIN =

∑
i∈Nd(ldi − lci )∑

i∈N lci
× 100%. (39)

A. Cooperative Demand Response with and without Nonco-
operative Behavior

Assuming that the number of refrigerated warehouses is 100,
we compare the cooperative and noncooperative demand re-
sponse schemes in Table I. It is shown that cooperation reduces

TABLE II. COOPERATIVE DEMAND RESPONSE SCHEME WITH AND
WITHOUT NONCOOPERATIVE BEHAVIORS (WNB AND WTNB).

Electricity price Average costs Total energy consumption
(cents/kWh) ($) (kWh)

WNB 19.58 52.21 0.91 × 104

WTNB 18.95 51.64 0.90 × 104
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60%

Number of refrigerated warehouses
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i
2∈  [3, 5]

λ=2/N, γ
i
θ

i
2∈  [2, 4]

λ=1/N, γ
i
θ

i
2∈  [2, 4]

Fig. 5. Cost reduction of the refrigerated warehouse that has the noncoop-
erative behavior v.s. Number of refrigerated warehouses.

20 40 60 80 100 120 140 160 180 200
0
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i
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i
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i
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Fig. 6. Increase of the total energy consumption when a refrigerated ware-
house has the noncooperative behavior v.s. Number of refrigerated warehouses.

the electricity price, the total costs4, the average costs, and the
total energy consumption effectively. Furthermore, we study
the impact of the number of refrigerated warehouses on the
performance of the cooperative demand response scheme. As
shown in Fig. 4, the total cost reduction obtained from cooper-
ation increases with the number of refrigerated warehouses and

4The total costs are composed of the discomfort costs and the payments,
and the payments are equal to the product of the electricity price and the total
energy consumption.

Page 8 of 11

http://www.ewh.ieee.org/soc/ies

Industrial Electronics Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

9

1 2 3 4 5 6 7 8 9 10
5230

5240

5250

5260

5270

5280

5290

5300

5310

5320

Number of clusters

T
ot

al
 c

os
ts

 to
 a

ll 
th

e 
re

fr
ig

er
at

ed
 w

ar
eh

ou
se

s 
($

)

Fig. 7. Total costs to all the refrigerated warehouses in the cooperative
demand response scheme v.s. Number of clusters.

starts to saturate when the number of refrigerated warehouses
is larger than 60. Assuming that one refrigerated warehouse
has the noncooperative behavior and the other refrigerated
warehouses keep cooperative, the electricity price, the average
costs, and the total energy consumption are all increased,
as shown in Table II. The cost reduction of the refrigerated
warehouse that has the noncooperative behavior increases with
the number of refrigerated warehouses, as shown in Fig. 5, and
the increase of the total energy consumption decreases with the
number of refrigerated warehouses, as shown in Fig. 6. Both
of them saturates when the number of refrigerated warehouses
becomes large. From Figs. 4–6, we can also see that a larger
pricing parameter (i.e., λ) gives higher TCR, CRN, and EIN,
while a larger cost weight (i.e., γiθ2i ) gives lower TCR, CRN,
and EIN. Furthermore, it is also shown that the noncooperative
refrigerated warehouse has relatively large cost reduction and
thus strong motivation to adopt the noncooperative strategy,
and the increase of the total energy consumption in the demand
management system is relatively small when the number of
refrigerated warehouses is large. Thus, it is hard to distinguish
the noncooperative behavior from the errors in the total energy
consumption. To solve this problem, we divide the refrigerated
warehouses into different clusters.

B. Cluster-Based Cooperative Demand Response

Assuming that the number of refrigerated warehouses is
100, we study the impact of the number of clusters on the
performance of the cooperative demand response scheme. The
total costs to all the refrigerated warehouses with clustering
are given in Fig. 7. It is shown that the total costs increase
with the number of clusters, which indicates that the clustering
reduces the social optimality (i.e., the negative total costs)
of the cooperative demand response scheme. As shown in
Table III, the total cost reduction obtained from cooperation
also decreases with the number of the clusters. Assuming
that a refrigerated warehouse has the noncooperative behavior

TABLE III. PERFORMANCE OF COOPERATIVE DEMAND RESPONSE
SCHEME WITH DIFFERENT NUMBERS OF CLUSTERS.

Number of clusters TCR CRN EIN
1 33.51% 53.42% 0.17%

2 33.25% 53.26% 0.34%

3 32.97% 52.76% 0.51%

4 32.69% 52.23% 0.67%

5 32.41% 51.32% 0.82%

6 32.13% 50.76% 0.98%

7 31.85% 49.80% 1.13%

8 31.57% 49.07% 1.28%

9 31.29% 48.40% 1.43%

10 31.07% 47.53% 1.57%
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0
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Fig. 8. Critical probability of the noncooperative behavior (αc) v.s. Number
of refrigerated warehouses.

and the other refrigerated warehouses keep cooperative, the
cost reduction of the noncooperative refrigerated warehouse
decreases with the number of clusters, and the increase of
the total energy consumption increases with the number of
clusters. It is shown that clustering can be helpful for detecting
the noncooperative behavior and reducing the motivation of the
refrigerated warehouses to adopt noncooperative strategies.

C. Noncooperative Behavior Detection and Punishment
As shown in Fig. 8, the critical probability decreases with

the number of refrigerated warehouses. Specifically, even when
the number of refrigerated warehouses is 10, the critical
probability is smaller than 0.06%, which indicates that ηmax is
always the optimal detection threshold5, because the number of
refrigerated warehouses in the demand management system is
larger than 10 and thus α > αc is satisfied almost everywhere.
Furthermore, it is also shown in Fig. 8 that a larger λ gives
a lower critical probability and a larger γiθ

2
i gives a higher

critical probability. Assuming that one refrigerated warehouse

5The optimal threshold ηmax indicates that the false alarm can cause
more loss of social optimality than the false detection. Thus, the punishment
mechanism should not be triggered more often.

Page 9 of 11

http://www.ewh.ieee.org/soc/ies

Industrial Electronics Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
0

10

20

30

40

50

60

70

δ

T
m

in

 

 

λ=2/N, γ
i
θ

i
2∈  [3, 5]

λ=2/N, γ
i
θ

i
2∈  [2, 4]

λ=1/N, γ
i
θ

i
2∈  [2, 4]

δmin
δmin

δmin

Fig. 9. Minimal duration of punishment v.s. Discount factor.

TABLE IV. MINIMAL DURATION OF PUNISHMENT AND LOWER BOUND
OF DISCOUNT FACTOR.

λ = 2/N, γiθ
2
i ∈ [3, 5] λ = 1/N, γiθ

2
i ∈ [2, 4] λ = 2/N, γiθ

2
i ∈ [2, 4]

Tmin 6 7 32

δmin 0.84 0.86 0.97

has the noncooperative behavior, we study the minimal du-
ration of punishment (i.e., Tmin) and the lower bound of the
discount factor (i.e., δmin) under different parameter settings.
As shown in Fig. 9, the minimal duration of punishment
decreases with the discount factor because the future costs
play a more significant role in the average costs and thus less
duration of punishment is needed to stop the noncooperative
behavior. It is shown in Table IV that a larger λ gives a higher
Tmin and δmin, and a larger γiθ2i gives a lower Tmin and δmin.

VII. CONCLUSION

In this study, we formulate cooperative demand response
as a constrained social optimization problem. It is shown
that the cooperative demand response scheme reduces the
electricity price, the total costs, the average costs, and the
total energy consumption comparing with the noncoopera-
tive demand response scheme. We develop the trigger-and-
punishment mechanism to keep cooperation and avoid the
noncooperative behaviors of the price-anticipating consumers.
We establish the condition on the duration of punishment to
guarantee the incentive compatibility. The cooperative demand
response scheme is further applied to load management of
industrial refrigerated warehouses with HVAC systems, and
the refrigerated warehouses are divided into different clusters
that are managed by cluster heads. The cooperative demand
response scheme is executed within each cluster. It is shown
that the clustering method can help with the detection of
noncooperative behaviors and reduce the motivation of the
consumers to adopt noncooperative strategies.
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