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MRI-BASED MEASURES OF METABOLIC HEALTH IN THE ASSESSMENT 

OF PATIENTS WITH CHRONIC INFLAMMATORY STATES 

SIDDHARTHASIVA ANBU RAJAN 

ABSTRACT 

Disease conditions like obstructive sleep apnea (OSA) and human immunodeficiency 

virus (HIV) infections are characterized by chronic low-grade inflammation, leading to 

poor metabolic health. This work is focused on comparing MR-based fat measures to 

indicators of worse metabolic health, namely OSA severity and hydroxyproline, a 

biomarker of subcutaneous fat (SAT) fibrosis. The study also explored the utility of novel 

MRI methods of diffusion-weighted imaging of fat and T1 mapping to detect fibrosis in 

the SAT. There were 33 participants with OSA and 58 participants with or without HIV 

infection who had hydroxyproline measured via SAT biopsy, 13 of whom had the novel 

MRI measures of fibrosis. The liver, visceral, and SAT volumes were segmented using 

artificial intelligence-based methods, and the pancreas was manually drawn on proton 

density fat fraction (PDFF) images. Apparent diffusion coefficient (ADC) and T1 were 

measured in regions of interest drawn in the SAT. Liver fat fraction, liver fat content, and 

pancreatic fat fraction were higher with increased severities of sleep apnea, p£0.01. 

Furthermore, liver fat fraction, pancreatic fat fraction, and visceral fat volume were higher 

in subjects with high hydroxyproline levels on biopsy, p£0.03. The ADC of SAT at b-values 

of 3×10-3 s/mm2 were negatively correlated with hydroxyproline levels. It can be 

concluded that more severe OSA and higher hydroxyproline were associated with worse 

metabolic health. The role of diffusion-weighted imaging of fat with high b-values to 

detect SAT fibrosis is also encouraging and opens up avenues for future research.  
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CHAPTER 1 – INTRODUCTION: 

Non-communicable diseases (NCDs) are a leading cause of morbidity and mortality 

across the world. Initially a set of diseases and conditions prevalent in developed nations, 

global industrialization and rapid economic development in the past decade have helped 

NCDs evolve into a global pandemic. This change has increased with the prevalence of 

modifiable risk factors such as physical inactivity and unhealthy diets. According to the 

World Health Organization (WHO), NCDs are responsible for 41 million deaths 

worldwide.[1] Metabolic syndrome, defined by a constellation of conditions associated 

with dysregulation of glucose and lipid metabolism, acts as a common feature of non-

communicable diseases like Type II diabetes mellitus and cardiovascular diseases. The 

key features of metabolic syndrome include central obesity, dyslipidemia, hyperglycemia, 

and hypertension.[2] 

Chronic inflammatory conditions are also closely associated with the development and 

progression of metabolic syndrome and insulin resistance. Studies have shown that pro-

inflammatory cytokines play a role in the propagation of insulin resistance and poor 

metabolic outcomes.[3][4] Obstructive sleep apnea and chronic HIV infection are two such 

conditions that, through different mechanisms, are linked to poor metabolic health 

outcomes. Obstructive sleep apnea (OSA) is a sleep-associated breathing disorder with 

intermittent episodes of decreased depth of breathing (hypopnea) and cessations of 

breathing (apnea). According to a 2023 meta-analysis, OSA has a global prevalence of 

54%.[5] The intermittent hypoxic stress that is caused by the episodes of hypopneas and 

apneas is postulated to cause a chronic inflammatory state that can drive abnormal 

metabolism and storage of fat in the body.[6] HIV infection is also associated with 
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disordered storage of fat.[7] Patients with chronic HIV infection states are known to 

present with regional increases and losses of fat. The immune activation seen in HIV 

infection can contribute to inflammation, which can derange fat storage. Another aspect 

of this story is the concept of subcutaneous adipose tissue fibrosis. Changes in the 

metabolism (which may or may not be associated with obesity) of adipose tissue trigger 

inflammation, which in turn triggers a maladaptive repair response in the tissue and 

abnormal fibrotic extracellular matrix expansion.[8] This obesity and fibrosis, in 

combination, contribute to insulin resistance and ectopic fat accumulation in the visceral 

compartments of the abdomen. 

1.1 – Significance: 

Clinical measures of metabolic syndrome, such as body mass index (BMI) and waist 

circumference, do not account for the variability in fat depots in the subcutaneous adipose 

tissue (SAT) and visceral adipose tissue (VAT).[2] Visceral adipose tissue is generally 

known to be more metabolically active than its subcutaneous counterpart. They are more 

insulin resistant and have a higher potential to generate free fatty acids that can deposit 

in visceral organs like the liver and pancreas.[9] Obesity and metabolic syndrome are also 

associated with higher levels of fat deposition in the liver and pancreas.[10] [11] In fact, there 

is increasing adoption of the term metabolic dysfunction associated steatotic liver disease 

(MASLD) to describe this fat accumulation in the liver that is not associated with alcohol 

use.[12] Steatosis in the liver can be diagnosed using liver biopsies, but this suffers the 

disadvantages of being invasive, subjective, prone to under-sampling, and graded into 

broad categories. Taking all these into consideration, there exists an unmet need to come 

up with an image-based approach to diagnose and quantify the effect of metabolic 
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syndrome in patients with chronic inflammatory conditions, particularly to determine the 

impact of interventions.  

MRI proton density fat fraction (PDFF) imaging is a non-invasive method to quantify the 

fat concentration of a tissue of interest. It uses chemical-shift-based separation of signal 

from fat and water to quantify the fraction of fat in the tissue. According to the 

conventional technique described by WT Dixon[13], magnitude images acquired at 

different echo times (TEs), owing to the different resonant frequencies of fat and water, 

would result in fat and water being in-phase or out-of-phase to each other. In-phase 

images would be a combination of signals from water and fat, whereas an out-of-phase 

image comprises signals from water minus fat. These two images can be added or 

subtracted to get water-only and fat-only images.[14] The disadvantage of this method is 

that since only magnitude images are used, tissue that is almost pure fat would have 

similar signal on in-phase and out-of-phase images. Hence, water-only images would 

have falsely elevated signal, and fat-only images would have falsely diminished signal 

intensity. Current conventional methods like the IDEAL method (iterative decomposition 

of water and fat with echo asymmetry and least square estimation) use multiple echoes 

and mathematical modeling with maximum likelihood estimation to get more accurate 

fat fraction estimates.[14] While various studies have established MRI PDFF as a 

standardized method to estimate liver fat content[15] [16], pancreatic fat estimation and 

adipose tissue fat estimation are also gaining traction.[17] [18]  

There is also potential for exploring the utility of novel MRI techniques like fat fraction 

mapping, diffusion-weighted imaging (DWI) of fat with high b-values, and T1-mapping 

in detecting and possibly quantifying fibrosis of fat. Exploratory analysis with a limited 
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sample size can help gain insight into optimizing and improving the image acquisition 

and reconstruction pipeline to quantify fibrosis better.  

1.2 – Approach: 

This project was an observational prospective cohort study of 2 groups of participants 

with different sets of independent variables. The first group of independent variables were 

the measures of severity of OSA. They were compared against a set of MRI metrics that 

could help understand and quantify fat distribution in the abdomen. The second set of 

variables in the second cohort is hydroxyproline levels from abdominal fat biopsy. This is 

a measure of fibrosis in the fat. This is compared against the same MRI metrics. 

Further analysis across both cohorts also involves comparing the MRI metrics against 

biochemical tests like glucose, insulin, lipid profiles, and insulin resistance scores. This 

manuscript is divided into sections based on the different cohorts and objectives being 

investigated. Chapter 2 deals with the overall goals and hypotheses of the project. Chapter 

3 will outline the general study design and MRI techniques used. Chapter 4 will relate the 

study group, processing pipeline, and analysis and present the results of the OSA cohort. 

Chapter 5 will do the same for the IDEO cohort. Chapter 6 will be about the exploratory 

investigations of the study. Chapter 7 will conclude the manuscript with a discussion 

summarizing the entire project. 
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CHAPTER 2 – OBJECTIVES: 

The objectives of this study were the following: 

1. To determine if ectopic fat measures are higher across different severity categories 

in obstructive sleep apnea (OSA). 

2. To determine if subjects with higher levels of hydroxyproline on abdominal fat 

biopsy correlate with lower levels of subcutaneous adipose tissue (SAT) and higher 

levels of ectopic fat measures compared to subjects with low hydroxyproline. 

3. To determine if these fat measures correlated with poor metabolic health in the 

IDEO and OSA cohorts. 

4. To determine if novel MRI techniques such as diffusion-weighted imaging (DWI) 

of fat and T1 mapping can identify fibrosis in fat and if the measures correlate with 

the severity of fibrosis measured by hydroxyproline levels on subcutaneous biopsy. 

Based on existing literature about metabolic dysfunction and the use of imaging 

biomarkers to quantify fat and fibrosis, we hypothesized the following: 

1. Patients with severe OSA (AHI>30) will have higher levels of fat in the liver, 

pancreas, and visceral compartment when compared to patients with milder forms 

of the disease. 

2. Fat fraction of subcutaneous tissue will be lower, and ectopic fat volumes will be 

higher in patients with high hydroxyproline on subcutaneous biopsy. 

3. Measures of ectopic fat will correlate with poor metabolic health in both cohorts. 

4. Fibrosis of fat can be measured with DWI and T1 mapping. 
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CHAPTER 3 – METHODS: 

3.1 – Study Design: 

The study had a prospective observational study design (Figure 3.1). The participants 

from both cohorts were continuously recruited, and metabolic analysis and MR imaging 

were done. A specific set of metrics from MR imaging was selected. These variables 

include VAT and SAT volume and fat fraction at L3-L4 intervertebral level, liver fat 

fraction, liver fat content (product of liver fat fraction and segmented liver volume), and 

pancreatic fat fraction. These metrics are compared with hydroxyproline levels as a 

continuous variable and as categories for the IDEO cohort. For the OSA cohort, the MRI 

metrics were compared against the apnea-hypopnea index (AHI) as a continuous score 

and as categories (mild, moderate, and severe). Statistical analysis was then done between 

these variables for both groups. The fourth objective of the study was investigated using 

a small sample of subjects from the IDEO cohort. The SAT fat fraction, ADC values, and 

T1 values were compared on this subset of participants and compared against 

hydroxyproline levels. 
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Fig. 3.1: Schematic diagram of the study design. Subjects are derived from two 
different cohorts and compared with the same MRI metrics against their respective 
independent variables. A subset of participants from the IDEO cohorts are analyzed 
with exploratory MRI techniques to test their ability to detect and quantify fibrosis. 

 

3.2 – MRI Techniques 

MRI scans of all the participants were done with a General Electrical (GE Healthcare, 

Chicago, IL, USA)) Signa Premier 3T scanner. Fat fraction imaging of the abdomen was 

done using the IDEAL-IQ method. The IDEAL method (iterative decomposition of fat and 

water with echo asymmetry and least square estimation) is a multi-echo proton density 

fat fraction measurement method. Automatic processing on the scanner outputs images 

for fat, water, in-phase, out-of-phase, R2* (= 1/T2*, where T2* is an MR relaxation time), 
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and a proton density fat fraction map (PDFF). The scan parameters used for fat fraction 

imaging are described below. 

The IDEAL-IQ sequence was run with a 10 mm and 5 mm slice thickness. The 5 mm thick 

slices were used for manually segmenting the pancreas. The 3D 10mm sequence had a 

repetition time (TR) of 7.04 milliseconds with 6 echoes and a flip angle of 3 degrees. It 

had a field of view (FOV) of 50 cm, and a NEX of 0.75. It had 256 frequency encodes and 

128 phase encoding steps, with the final image having an in-plane resolution of 1.95 x 1.95 

mm. The 5 mm slices had similar parameters to the 10 mm slices, except with a TR of 7.10 

milliseconds and a flip angle of 4 degrees.  

The DWI that was done on fat had b-values of b=2000 and b=3000 s/mm2. This was done 

on the fat frequency spectrum to measure the diffusion of fat. The TR, FOV, NEX, slice 

thickness, and slice gap were 1800 milliseconds, 50 cm, and 2 for each b-value, 8 mm, 

and 2 mm, respectively. The diffusion measurement was done on fat by shifting the center 

frequency by 440 Hz. The fat diffusion measurements were done in three directions.  

The T1 mapping of the SAT was done in a single slice in the umbilical region and using a 

saturation recovery pulse sequence. This used a flip angle of 45 degrees with inversion 

times (TIs) of 198, 343, 488, 633, 1833, 3032, 4233 ms and one acquisition without an 

inversion time. The FOV and slice thickness were 50 cm and 10 mm, respectively. The 

intensity images were then processed into T1 maps during analysis. 
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CHAPTER 4 – OBSTRUCTIVE SLEEP APNEA COHORT: 

4.1 – Cohort: 

This study involved two cohorts. The first cohort was from the “Insulin Resistance and 

Sleep Apnea: The Role of Hypoxia” study (Krystal and Schwarz et al.). This study recruited 

participants with varying degrees of obstructive sleep apnea. Laboratory tests were 

performed to measure multiple metabolic health variables like insulin level, fasting blood 

glucose, lipid panel, liver function test, etc. Then, the participants underwent 

multiparametric MRI and whole-body DXA scans to get image-based measurements of 

fat content in the abdomen and visceral organs. Our study compared the MRI-derived 

liver fat fraction, liver fat content, pancreatic fat fraction, and SAT and VAT fat volume at 

a consistent intervertebral level with the apnea-hypopnea index (AHI). The AHI is a 

continuous score that categorizes the severity of obstructive sleep apnea. This helped us 

gain insight into the variability in fat deposition as a function of disease severity. 

4.2 – Image Processing Pipeline: 

To meet the objectives of the OSA cohort, the analysis had to be done on the fat fraction 

images. The fat and water images generated from the 10 mm IDEAL-IQ sequence were 

converted into fat fraction (FF) maps offline that were scaled by a factor of 10 to provide 

a higher dynamic range and to better visualize the structures. The pixel value from these 

scaled fat fraction maps would be in units of 0.1% and help better highlight subtle fat 

fraction changes. The regions of interest were segmented on the FF-10 images (scaled fat 

fraction images). 
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The liver segmentation was done using a pre-trained convolutional neural network (CNN) 

model.[19] The model used in-phase, out-of-phase, R2*, and FF-10 images to segment the 

liver semi-automatically (Figure 4.1). The initial slices and the end slices of the liver, and 

the last slice where the heart is visualized close to the liver, are prescribed to the CNN. 

This method provided consistency across cases without any observer bias that could 

happen with manual segmentation.  

 
Fig. 4.1: CNN-based segmentation of the liver. The image shows the 
segmentation of the CNN overlaid on the Fat Fraction map. The model was able to 
successfully isolate the border of the liver without picking up other organs. 

 

The SAT and the VAT segmentations were also done using a pre-trained CNN model 

(Figure 4.2), which used the same approach as the liver segmentation CNN. The 

pancreatic segmentation (Figure 4.3) was done manually on the 5 mm scaled fat fraction 

maps. This manual method is a process that has been tested previously for inter-user and 

intra-user validity.[20] Three sizes that had the best coverage of the pancreas were selected, 

and the center slice was selected to begin the segmentation. The region of interest (ROI) 

was drawn in a way that it was at least one voxel away from visceral fat in all three 

dimensions. The ROI drawn on the center slice was compared with the slices before and 
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after it. The ROI was edited to exclude fat in those slices. The smaller ROI, which does not 

cover fat in all three slices, is finally overlaid on the center slice, and the fat fraction is 

measured. This method ensured that the ROI measures just the fat fraction of the 

pancreatic parenchyma, and the measurement is not affected by visceral fat.  

 
Fig. 4.2: CNN-based segmentation of the subcutaneous and visceral 
adipose tissue. The image shows the segmentation of the CNN as a binary image. The 
measurements on SAT and VAT were done after overlaying the mask on a fat fraction 
map. 

 

 
Fig. 4.3: Manual segmentation of the pancreas. The image shows the 
segmentation of the pancreas overlaid on a 5 mm fat fraction map. Care was taken by 
the operator to not include visceral fat in the segmentation. 
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4.3 – Analysis: 

Statistical analysis was done on various measures derived from superimposing the 

segmentations from the liver, pancreas, subcutaneous adipose tissue, and visceral adipose 

tissue. The dependent and independent variables being compared are outlined in Table 

4.1. A description of the variables used in a secondary analysis that aimed to validate the 

utility of the MRI metrics is given in Table 4.2. 

Table 4.1: Variables analyzed in the Obstructive Sleep Apnea cohort 
INDEPENDENT VARIABLES DEPENDENT VARIABLES 

• Apnea-Hypopnea Index (AHI) 
Score 

• AHI – Categories (Mild, Moderate 
and Severe) 

• Oxygen Desaturation Time (in 
minutes) 

• Liver Fat Fraction (in %) 

• Liver Fat Content (FF x Volume) (in 
cc) 

• Pancreatic Fat Fraction (in %) 

• SAT Volume at L3-L4 Level (in cc) 

• VAT Volume at L3-L4 Level (in cc) 

  

The independent variables primarily analyzed for the OSA cohort were measures of 

disease severity. The most commonly and widely used measure of OSA severity is the 

apnea-hypopnea index (AHI). This is the average number of apneas and hypopneas per 

hour of sleep in patients with OSA. The AHI values can be further used to bin patients 

into severity categories. OSA patients can be categorized into mild (AHI of 5 to less than 

15 events per hour), moderate (AHI of 15 to less than 30 events per hour), and severe (AHI 

of greater than 30 per hour).[21] An apnea is a drop in nasal airflow of 90% or more lasting 

at least 10 seconds. A hypopnea is a drop in nasal pressure of at least 30% for at least 10 

seconds with a drop in oxygen saturation of at least 4%. The analysis of the OSA cohort 

compared the MRI metrics against AHI as a continuous score (in units of events per hour) 
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and as categories of mild, moderate, and high. Additionally, another metric called the 

oxygen desaturation time was measured. This is the number of minutes the patient had 

an oxygen saturation of 88% or less. The MRI metrics that were compared as the 

dependent variables were the mean liver fat fraction (as a percentage), mean pancreatic 

fat fraction (as a percentage), SAT, and VAT volume at a consistent L3-L4 intervertebral 

level (in cc), and liver fat content (in cc). The liver fat content is a measure calculated as a 

product of the liver fat fraction and the segmented liver volume. This would give the fat 

content as a volume instead of a fraction.  

Table 4.2: Variables used to validate MRI measures 
INDEPENDENT VARIABLES DEPENDENT VARIABLES 

• Sex 

• BMI 

• HOMA-IR levels 

• HOMA-IR categories 

• Liver Fat Fraction (in %) 

• Liver Fat Content (FF x Volume) (in 
cc) 

• Pancreatic Fat Fraction (in %) 

• SAT Volume at L3-L4 Level (in cc) 

• VAT Volume at L3-L4 Level (in cc) 

 

As part of the secondary analysis, the same MRI metrics (liver fat fraction, liver fat 

content, pancreatic fat fraction, SAT, and VAT volume) were compared against standard 

clinical measures like sex and BMI. Furthermore, to verify if the chosen MRI metrics 

served as a good indicator of metabolic health, they were compared with a known clinical 

score of insulin resistance called the HOMA – IR (homeostatic model assessment for 

insulin resistance). This measure is a calculated value using the fasting insulin and 

glucose values measured as part of the metabolic panel that the OSA subjects underwent.  
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Using a linear regression method, the MRI metrics were compared with continuous 

variables like AHI score, oxygen desaturation time, BMI, and HOMA-IR levels. The 

correlation coefficient and the p-value were used to conclude whether each variable 

correlated with each MRI metric. The MRI metrics and each categorical independent 

variable underwent non-parametric comparisons for each pair using Wilcoxon’s method. 

The p-value of the mean score difference of each metric between each pair of independent 

variables was calculated. 

4.4 – Results:  

4.4.1 – Cohort Demographics: 

The obstructive sleep apnea cohort had an initial participant sample size of 34. The 

sample size of the analyzed group was 33. One participant was excluded because their 

lipid profile and liver enzyme results were deranged. Their liver fat fraction was also very 

high (41.05%), and further examination suggested a family history of liver disease. This 

caused a lot of confounding factors, which could affect the results, hence warranting the 

exclusion of this participant’s data. 

The sample size was 33, with 24 (72.7 %) males and 9 (27.3 %) females. The mean age of 

the participants was 49.3 years, with a maximum of 78 years and a minimum age of 28 

years. The mean BMI was 32.08. Figure 4.4 shows the distribution of age, BMI, race, and 

ethnicity of the participants of the OSA cohort. 
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a. Distribution of Age b. Distribution of BMI 

 

 

c. Distribution of Races d. Distribution of Ethnicity 
Fig. 4.4: Demographic data of the Obstructive Sleep Apnea Cohort 

 

4.4.2 – Sleep Severity Metrics vs MRI measures: 

The MRI metrics were initially compared against the AHI categories (mild, moderate, and 

severe). The liver fat fraction was significantly different between severe and moderate 

(p=0.03) and severe and mild (p=0.01) categories of participants. Liver fat content was 

significantly different between severe and moderate categories (p=0.03). Pancreatic fat, 

on the other hand, was significantly different between severe and mild categories 

(p=0.02). Overall, these measures of ectopic fat depositions in the liver and pancreas were 

consistently higher in the participant group with severe levels of OSA. 
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Interestingly, the SAT volume at L3-L4 intervertebral level was significantly different, 

only between mild and moderate categories (p=0.02). However, this was different, as 

participants with moderate OSA had lower SAT volume than those with mild OSA. The 

VAT volume at the L3-L4 level was similar between the different groups. The results of 

the one-way analysis between the significant variables discussed above are described as 

box plots in Figure 4.5. 

  
a. Liver Fat Fraction (in %) vs AHI 

Categories (*p=0.01, **p=0.03) 
b. Liver Fat Content (in cc) vs AHI 

Categories (**p=0.03) 

  
c. Pancreatic Fat Fraction (in %) vs 

AHI Categories (*p=0.02) 
d. Subcutaneous Adipose Tissue 

Volume (in cc) vs AHI Categories 
(**p=0.02) 

Fig. 4.5: Apnea-Hypopnea Index (AHI) Categories vs MRI Metrics in OSA 
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Similarly, the same metrics were compared against the AHI score as a continuous 

variable. The continuous AHI score was significantly positively correlated with liver fat 

fraction (p=0.01), liver fat content (p=0.005), and pancreatic fat fraction (p=0.003) 

(Figure 4.6). SAT and VAT volume at the L3-L4 level were not significantly correlated 

with the AHI score.  

  
a. Liver Fat Fraction (in %) vs AHI 

Score (p=0.01) 
b. Liver Fat Content (in cc) vs AHI 

Score (p=0.005) 

 
c. Pancreatic Fat Fraction (in %) vs AHI Score (p=0.003) 

Fig. 4.6: Bivariate fit of AHI Score vs MRI Measures in OSA 
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Furthermore, when the metrics were compared against the oxygen desaturation time (in 

minutes), it was significantly correlated with liver fat fraction (p=0.002), liver fat content 

(p<0.0001), pancreatic fat fraction (p=0.008) and L3-L4 SAT volume (p=0.02). Time 

spent with less than 88% oxygen saturation was not significantly correlated with VAT 

volume. The correlation analysis between the oxygen desaturation times and the MRI 

measures is shown in Figure 4.7. One value of this metric was significantly higher than 

the others. When the analysis was rerun while excluding this value, the liver fat fraction 

and liver fat content were still significantly correlated while pancreatic fat fraction and 

SAT volume lost significance. On the other hand, VAT volume, which was not significant 

before, gained significance after the exclusion of this outlier. 
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a. Liver Fat Fraction (in %) vs 

Oxygen Desaturation Time 
(p=0.002) 

b. Liver Fat Content (in cc) vs Oxygen 
Desaturation Time (p<0.0001) 

  
c. Pancreatic Fat Fraction (in %) vs 

Oxygen Desaturation Time 
(p=0.008) 

d. Subcutaneous Adipose Tissue 
Volume (in cc) vs Oxygen 

Desaturation Time (p=0.02) 
Fig. 4.7: Oxygen Desaturation Time vs MRI Metrics in OSA 

 

4.4.3 – MRI Measures Compared with Clinical Measures: 

To verify the utility of the chosen MRI measures with clinical insulin resistance measures 

and whether other variables like sex and BMI confounded these measures, further 

analysis was done between MRI measures and other independent variables. The same 

MRI metrics were compared with BMI, sex, HOMA-IR levels, and HOMA-IR categories. 

HOMA-IR was categorized into high and low based on whether they are greater than or 

5

10

15

20

25
Liv

er
 F

at
 P

er
ce

nt
ag

e

0 50 100 150 200 250
Time Spent <88% O2 Saturation (in minutes)

0

100

200

300

400

500

600

700

Liv
er

 F
at

 c
on

te
nt

 (in
 c

c)

0 50 100 150 200 250
Time Spent <88% O2 Saturation (in minutes)

5

10

15

Pa
nc

re
at

ic 
Fa

t P
er

ce
nt

ag
e

0 50 100 150 200 250
Time Spent <88% O2 Saturation (in minutes)

0

100

200

300

400

500

600

700

L3
L4

 S
AT

 V
ol

um
e 

(in
 c

c)

0 50 100 150 200 250
Time Spent <88% O2 Saturation (in minutes)



 20 

equal to a chosen cut-off value. Multiple studies have varying suggestions for which value 

to use as a cut-off. Based on the scope of our study, we chose 2.2 as the cut-off value.[22] 

Analysis showed that in the OSA cohort, among the five metrics, only VAT volume at the 

L3-L4 level was significantly different between women and men. Men had significantly 

higher volumes of fat in Visceral adipose tissue than women (p=0.04). Other metrics were 

not affected by sex. BMI was significantly correlated with liver fat content (p=0.03), SAT 

volume (p<0.0001), and VAT volume (p=0.001). Liver fat fraction and pancreatic fat 

fraction were not significantly correlated to BMI. When compared to the HOMA-IR levels 

as a continuous variable, the liver fat fraction (p=0.01), liver fat content (p=0.01), SAT 

volume (p=0.008), and VAT volume (p=0.01) were positively correlated with it. 

Furthermore, the liver fat fraction (p=0.01), liver fat content (p=0.007), SAT volume 

(p=0.007), and VAT volume (p=0.02) were significantly higher in participants with 

HOMA-IR levels greater than 2.2.  

Based on the linear fitting models of liver fat content to BMI, the liver fat content values 

were adjusted to account for BMI. This adjusted liver fat content was compared again 

with the AHI values. The adjusted liver fat content was still positively correlated with the 

AHI score (p=0.005) as a continuous variable. 

4.5 – Discussion: 

 In the OSA cohort, the participants with higher AHI scores had significantly higher levels 

of liver fat fraction, liver fat content, and pancreatic fat fraction. These measures of 

ectopic fat deposition correlated with AHI as a continuous variable and significantly 

differed between different AHI categories. Of note, participants with severe OSA always 

had higher measures of ectopic fat. Visceral and subcutaneous adipose tissue volumes at 
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the L3-L4 vertebral level were not significantly different. Compared with clinical 

measures, VAT volume was significantly higher in males compared to females. 

Furthermore, liver fat content and VAT volume were significantly correlated with BMI 

values. The positive correlation was still significant when liver fat was adjusted for BMI 

and then compared to AHI scores. Liver fat fraction, liver fat content, pancreatic fat 

fraction, and VAT volume were significantly correlated with HOMA-IR categories.  

Ectopic fat deposition in the liver and the development of non-alcoholic fatty liver disease 

in association with OSA have been well documented.[23] While significant literature is 

available regarding ectopic depositions of fat in OSA, [24] its role in the development of 

fatty pancreas is an area of active research.[25] The results from this study corroborate 

literature that highlights the sensitivity of MRI-PDFF in measuring and quantifying fat 

depositions in the liver.[26] Additionally, the liver fat content as a metric is useful in 

quantifying fat in the liver in the context of its volume. The results of this study with 

respect to pancreatic fat highlight the utility of PDFF in measuring pancreatic fat and 

demonstrate this additional metric of poor metabolic health associated with OSA and OSA 

severity. 
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CHAPTER 5 – IDEO COHORT: 

5.1 – Cohort: 

The second cohort was derived from the “Inflammation, Diabetes, Ethnicity and Obesity 

(IDEO) Cohort” study (Koliwad et al.). This study involved the development of a 

multiethnic cohort with obesity and inflammation. The cohort contained participants 

with and without HIV infection. The participants underwent abdominal fat biopsy as part 

of the multi-panel metabolic assessment. This sample was then tested for hydroxyproline. 

This amino acid is an essential building block of collagen and can serve as a biomarker for 

fibrosis.[27] These participants also underwent multiparametric MRI scans of the 

abdomen. The same MRI metrics analyzed for the first cohort were compared against the 

IDEO cohort's hydroxyproline levels. MRI metrics were also compared against other 

clinical measures like sex, BMI, lipid profile, etc. 

5.2 – Image Processing Pipeline and Analysis: 

The image processing pipeline used to analyze the IDEO cohort was similar to what was 

done for the OSA cohort (described in Section 4.2). However, the key changes in the 

analysis were based on the independent variables used to compare the MRI metrics. 

While the OSA cohort was compared with the AHI score as a severity measure, the 

hydroxyproline value derived from the abdominal fat biopsy was the variable of interest 

in the IDEO cohort. The independent and dependent variables that were compared in the 

IDEO cohort are described in Table 5.1. 
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Table 5.1: Variables analyzed in the Inflammation Diabetes Ethnicity and Obesity 
cohort 

INDEPENDENT VARIABLES DEPENDENT VARIABLES 

• Hydroxyproline Levels (in ng/mg) 

• Hydroxyproline levels as categories 
(High vs Low) 

• Liver Fat Fraction (in %) 

• Liver Fat Content (FF x Volume) (in 
cc) 

• Pancreatic Fat Fraction (in %) 

• SAT Volume at L3-L4 Level (in cc) 

• VAT Volume at L3-L4 Level (in cc) 

 

Hydroxyproline levels were plotted against the MRI measures as a continuous variable in 

units of ng/mg and as categorical groups of low and high hydroxyproline. Limited work 

exists for which value to choose as a cut-off for high hydroxyproline and its association 

with insulin resistance.[28] A 350 ng/mg cut-off was used to define high and low 

hydroxyproline in the cohort. On preliminary analysis of hydroxyproline levels with 

metabolic measures such as lipid profile, insulin, and HbA1c, these measures were higher 

in Hydroxyproline values in the 300 to 400 ng/mg range. Hence, 350 ng/mg was chosen 

as the arbitrary cut-off to compare with MRI measures. The secondary analysis of the 

measures with the clinical variables like sex, age, and HOMA-IR was also done on this 

cohort, similar to what is described in Table 4.2. The continuous variables were compared 

using linear regression, and the categories of hydroxyproline levels were compared non-

parametrically using the Wilcoxon method. 
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5.3 – Results: 

5.3.1 – Cohort Demographics: 

The sample size of the participants who were analyzed from the IDEO cohort was 58. This 

sample was split into 42 males (72.4%) and 16 females (27.6%). The mean age of the 

sample was 50.5 years, with a maximum age of 71 years and a minimum age of 23 years. 

The mean BMI was 27.9, with an outlier of 64.6. Among the participants of this cohort, 

67.24 % of them had a HIV-positive status. Figure 5.1 depicts the demographic data of the 

IDEO cohort. 

  
a. Distribution of Age b. Distribution of BMI 

 
 

c. Distribution of Races d. Distribution of Ethnicity 
Fig. 5.1: Demographic data of the IDEO Cohort 
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5.3.2 – Hydroxyproline Levels vs MRI Metrics: 

As mentioned in the previous section, liver fat fraction, liver fat content, pancreatic fat 

fraction, SAT volumes, and VAT volumes at the L3-L4 level were compared with 

hydroxyproline groups and values. When compared with the Hydroxyproline categories, 

the liver fat fraction (p=0.03), pancreatic fat fraction (p=0.03), SAT volume (p=0.01), and 

VAT volume (p=0.002) were higher in the high hydroxyproline groups. Liver fat content 

was not significantly different between both groups. Compared with the Hydroxyproline 

level as a continuous variable and analyzed using linear regression, SAT volume 

(p=0.003) and VAT volume (p=0.007) were significantly positively correlated. The other 

metrics, such as liver fat fraction, liver fat content, and pancreatic fat fraction, were not 

correlated with continuous hydroxyproline levels. These results are described using box 

plots and linear graphs in Figure 5.2. 
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a. Liver Fat Fraction (in %) vs 

Hydroxyproline Categories 
(p=0.03) 

b. Pancreatic Fat Fraction (in %) vs 
Hydroxyproline Categories 

(p=0.03) 

  
c. Subcutaneous Adipose Tissue 

Volume (in cc) vs Hydroxyproline 
Categories (p=0.01) 

d. Visceral Adipose Tissue Volume 
(in cc) vs Hydroxyproline 

Categories (p=0.002) 

  
e. Subcutaneous Adipose Tissue 

Volume (in cc) vs Hydroxyproline 
levels (in ng/mg) (p=0.003) 

f. Visceral Adipose Tissue Volume 
(in cc) vs Hydroxyproline levels (in 

ng/mg) (p=0.007) 
Fig. 5.2: Hydroxyproline vs MRI metrics in IDEO Cohort 
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5.3.3 – MRI Measures Compared with Clinical Measures: 

As described in section 4.4.3, the MRI metrics were also compared with clinical metrics 

in the IDEO cohort. The liver fat fraction, liver fat content, pancreatic fat fractions, and 

adipose tissue volumes were compared against sex, BMI, HOMA-IR categories, and 

HOMA-IR levels. In the IDEO cohort, there were no significant sex differences in liver fat 

fraction, liver fat content, pancreatic fat fraction, VAT, and SAT volumes. Analysis with 

the BMI values showed that SAT volume (p<0.0001) and VAT volume (p<0.0001) were 

significantly and positively correlated. Liver fat fraction (p<0.0001), liver fat content 

(p<0.0001), pancreatic fat fraction (p=0.02), SAT volume (p=0.03), and VAT volume 

(p<0.0001) were significantly higher in participants with higher HOMA-IR level (>2.2). 

All these metrics were also positively correlated with HOMA-IR as a continuous measure 

with p-values of 0.001, 0.002, 0.01, 0.007, and <0.0001, respectively. 

To adjust for the variability in MRI metrics due to BMI, the cohort was divided into two 

categories of high and low BMI values (using a cut-off value of 25). Analysis was 

performed on the two groups separately for correlation between MRI metrics and 

hydroxyproline values. The differences in metrics were not significant in the high BMI 

category. However, in the low BMI category, the VAT volume (p=0.02), liver fat fraction 

(p=0.03), and liver fat content (p=0.02) were all significantly higher in the high 

hydroxyproline group.  
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5.4 – Discussion: 

In the IDEO cohort, liver fat fraction, pancreatic fat fraction, and VAT volume 

significantly differed between participants with high and low hydroxyproline levels on 

their abdominal fat biopsy. These ectopic fat measures were significantly higher in 

participants with higher hydroxyproline levels. SAT and VAT volumes were also 

significantly correlated with hydroxyproline levels as a continuous variable. The sex 

differences in VAT in the OSA cohort were not seen in the IDEO cohort. VAT volume was 

correlated with BMI, while liver fat fraction, liver fat content, and VAT volume were 

significantly correlated with HOMA-IR categories. When the cohort was divided into 

groups with high BMI and low BMI, it was seen that VAT volume was not correlated with 

hydroxyproline level in the high BMI group. However, in the low BMI group, the liver fat 

fraction, liver fat content, and VAT volume were significantly higher in participants with 

high hydroxyproline levels. 

Literature suggests that fat fibrosis is associated with poor metabolic health and the 

deposition of fat in the liver.[29][30] There are no studies that correlate fat fibrosis and fatty 

pancreas. The results from this study emphasize the point of ectopic fat measures being 

higher in people with higher fat fibrosis. Studies suggest that fibrosis alters the 

extracellular matrix of the subcutaneous adipose tissue. This would mean that it would 

also impair its function. It is reasonable to conclude that fat storage in these cases of 

fibrosis is higher in the visceral compartment. This theory is consolidated by the results 

from this study that VAT volume is higher in people with fibrosis. Additionally, the 

grouping of participants based on BMI and analysis shows that this effect is more 

significant in leaner people. 
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CHAPTER – 6: NOVEL MEASURES OF FAT FIBROSIS DETECTION: 

6.1: Cohort: 

The cohort selection for running the exploratory analysis of fat fibrosis using Diffusion-

weighted imaging and T1 mapping was different from the other analyses. Even though the 

subjects for this analysis were selected from the IDEO cohort, T1 maps with the same 

protocol and DWI with high b-values on fat (b=2000 and b=3000 s/mm2) were not 

present in all these subjects. Hence, a sample size of n=16 was chosen to analyze DWI. 

For the T1 mapping, data from 13 participants was analyzed. Fat fraction maps were 

available for a wider sample of participants. FF median and FF mode of the SAT at L3-L4 

level were analyzed for 58 participants. All these metrics were compared with the 

hydroxyproline levels and categories. 

6.2 Image Processing Pipeline: 

ADC maps for both b=2000 s/mm2 and b=3000 s/mm2 were generated. These maps were 

calculated using the intensities of diffusion images of b=2000 s/mm2 and b=0, and 

b=3000 s/mm2 and b=0. Diffusion images for each b-value were taken in three different 

directions. The maps were computed as the geometric mean of the ADC values in all these 

directions. Figure 6.1 shows an example of the b=3000 s/mm2 ADC maps.  
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Fig. 6.1: ADC map generated from Diffusion-Weighted Imaging of fat with 
b=3000 s/mm2 

 

The T1 maps were generated from the intensity images from the saturation-recovery T1 

mapping protocol. Each image from the T1 mapping protocol has nine volumes, with each 

volume corresponding to a different inversion time. A linear fitting method was developed 

to calculate the T1 value of each pixel from the slice. The linear fitting was done using the 

intensity values of the corresponding pixel from the nine volumes with different inversion 

times. A MATLAB (MATLAB, Version R2023A, Natick, MA, USA) code was developed to 

calculate the T1 map using this method. An image of the T1 map generated from this 

method is shown in Figure 6.2. Fat fraction maps of the SAT were generated the same way 

as those mentioned in the processing pipeline for the previous analysis. SAT was 

segmented using the same CNN discussed previously. However, to avoid edge artifacts 

and noise in the peripheral regions of the SAT, a morphological erosion was done to the 

CNN-generated SAT segments, such that only a small segment from the deep SAT, which 

is devoid of any artifact or noise effect, is selected for analysis of ADC and T1 values. 

Figure 6.3 shows an eroded ROI that segments a region from the deep SAT. The median 

FF value of the SAT was analyzed to avoid the same problem of the region of interest 

(ROI) picking up unwanted edge artifacts. The mean is altered by these edge pixels, but 
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the median is a more robust measure less affected by outliers. Hence, the median fat 

fraction from the SAT was analyzed.  

 
Fig 6.2: T1 map computed using the linear fitting method 

 

 
Fig 6.3: ADC map with the eroded SAT segmentation overlaid 

 

6.3 – Analysis: 

The analysis for this exploratory section of the study was done on three sets of variables 

compared against the Hydroxyproline levels as continuous and categorical variables. 

Table 6.1 outlines the independent and dependent variables used for this analysis. The 

dependent variables that were used were ADC values (both with b=2000 and b=3000 
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s/mm2) (n=16), the median T1 values (n=13) from the eroded SAT segments, and the 

median fat fraction of the SAT (n=58). The continuous independent variables are 

analyzed using linear regression. The categorical variables are analyzed using the non-

comparison of each pair using the Wilcoxon method. 

Table 6.1: Variables compared for exploratory analysis to detect fibrosis 
INDEPENDENT VARIABLES DEPENDENT VARIABLES 

• Hydroxyproline Levels (in ng/ml) 

• Hydroxyproline levels as categories 
(High vs Low) 

• ADC Values on SAT (in ×10-6 
mm2/s) 

• ADC2000 

• ADC3000 

• Median T1 values on SAT (in msec) 

• Median Fat Fraction of SAT (in %) 

 

6.4 – Results: 

The non-parametric comparison of the high and low hydroxyproline categories showed 

no statistically significant difference between groups in ADC-2000 and ADC-3000 values. 

However, a decreasing trend in both ADCs could be seen between low and high groups. 

When the ADC values were analyzed against hydroxyproline levels as a continuous 

variable, the ADC-3000 values were significantly negatively correlated (p=0.04). The 

ADC-2000 values also decreased with increasing values of hydroxyproline, but this did 

not reach levels of statistical significance (p=0.16). Some of these findings from the ADC 

analysis are depicted in Fig. 6.4. 
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a. Mean ADC-3000 of Subcutaneous 
fat vs Hydroxyproline levels 

(p=0.04) 

b. Mean ADC-3000 (×10-6 mm2/s) of 
Subcutaneous fat vs 

Hydroxyproline categories 
(p=0.16) 

Fig. 6.4: Analysis of ADC-3000 against Hydroxyproline Values 

 

Analysis of the Median T1 values against the Hydroxyproline levels showed no significant 

difference. An overall decreasing trend of the median T1 values with increasing 

Hydroxyproline was seen; however, it was not statistically significant (p=0.6). Similarly, 

the median fat fraction of the SAT was neither significantly different with different 

categories of hydroxyproline nor significantly correlated with hydroxyproline values as a 

continuous variable. 

There were 13 cases with values for all three parameters (ADC3000, median T1, and 

median FF of SAT). A preliminary stepwise nominal regression modeling was done to 

show promising results in identifying participants with high hydroxyproline levels. The 

stepwise modeling was done using JMP Statistical Discovery software (JMP Pro, Version 

18, SAS Institute Inc., Cary, NC, USA). The stopping parameter for the model was a p-

value threshold. The p-value to enter was 0.25, and the p-value to leave was set at 0.2. 
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The whole model had a p-value of 0.01. The ADC 3000 and median T1 measures were 

selected, with the ADC3000 having the greatest effect in improving the model’s 

performance. The Receiver-Operating Curve (ROC) was plotted (Figure 6.5), showing the 

model's capability to identify cases with high hydroxyproline. The area under the curve 

(AUC) was 0.928. 

 
Fig. 6.5: Receiver-Operating Curve (ROC) of model using ADC3000 and T1 
values of SAT to identify high hydroxyproline levels (>350 ng/mg)  

 

6.5 – Discussion: 

The preliminary analysis of the novel measures, such as the ADC measurement of SAT 

and T1 values using T1 mapping of SAT and SAT fat fraction, was promising. The most 

significant was the positive correlation between ADC-3000 values and hydroxyproline 

levels as a continuous variable. ADC-2oo0 did show a decreasing trend with higher 

hydroxyproline, but this did not reach levels of statistical significance. The median T1 

values of the SAT did show a decrease between high and low hydroxyproline levels, but 

they were not significant. The fat fraction values were similarly not significant. Combining 
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these three variables into a model to predict high hydroxyproline in SAT showed 

encouraging results, with a significant p-value and an AUC-ROC of 0.93. Limited sample 

size would be the biggest limitation in this part of the study. While the trends seem in line 

with what was expected from the literature, their not reaching levels of significance could 

be because of the limited sample size being analyzed. The promise of these measures in 

detecting fibrosis suggests that they could benefit from further analysis of more 

participants with uniform scanning protocols. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36 

CHAPTER – 7: CONCLUSION: 

7.1 – Implications: 

The comparison of the chosen MRI metrics against standard measures of insulin 

resistance and poor metabolic health, like HOMA-IR[31], showed that they are useful in 

getting valuable quantitative data on deranged metabolism. They were significantly 

associated across both cohorts. Liver fat measures (fat fraction and fat content) and 

pancreatic fat fraction were consistently higher in groups with poor metabolic outcomes 

(defined by high AHI values in OSA and high hydroxyproline levels in IDEO). One 

interesting observation in the IDEO cohort was the higher levels of visceral fat volume in 

participants with high levels of hydroxyproline on SAT. One possible explanation could 

be that impaired fat storage in the SAT contributes to its deposition in the visceral adipose 

tissue and other organs like the liver and pancreas. At the same time, when the subjects 

were grouped based on high and low BMI, the fat-depositing effect of SAT fibrosis was 

more significant in low BMI participants. This seems to imply that SAT fibrosis in 

someone already obese does not worsen their visceral adiposity, but fibrosis in a lean 

person has poorer metabolic outcomes. 

The ADC measurements with a b-value of 3000 s/mm2 had the best utility in measuring 

fat movement and hence had the best results in measuring restricted fat diffusion due to 

fibrosis. The diffusion of fat with high gradients is restricted by fibrosis - potentially 

because the size of the largest possible fat droplets may be limited when fibrosis is present. 

The T1 values were not significant but showed a decreasing trend. There is potential for 

this to be explored further with a larger sample size. The combined model in identifying 
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fibrosis was promising in its performance and has the potential to be improved with a 

larger sample size. 

7.2 – Strengths and Limitations of the Study: 

The semi-automated nature of segmenting the liver, SAT, and VAT had the benefit of 

nullifying operator bias during segmentation. Proton density fat fraction, the primary 

imaging modality used, had the advantage of being a quantitative and objective measure 

of fat content in the tissue. One limitation of the study is that the reference standards we 

used may have errors. AHI measures were determined from a single night’s sleep study 

and may differ from a typical night for the subject, affecting our comparisons to the AHI 

data. For instance, one of the data points in the analysis between MR metrics and oxygen 

desaturation time (below 88%) was significantly higher than the others. While there is a 

possibility that it indeed was a true reading, it is not implausible that the pulse oximeter 

sensor just fell off the patient’s finger while asleep. Hence, factors like this have the 

potential to alter our results. Additionally, the hydroxyproline measures were taken from 

an anterior biopsy, while our novel measures in the subcutaneous fat were generally from 

the deep subcutaneous fat in the posterior region. It is possible fibrosis is not uniform 

throughout the fat, impacting our comparisons to the hydroxyproline levels. The most 

significant limitation of the study is the need for a large sample size with uniform 

measurements for ADC and T1 measurements. While they showed promise, they were 

limited by the small sample size being analyzed. Furthermore, T1 measures are estimated 

using a linear estimation method without taking into account offset to the data and with 

an assumption of monoexponential relaxation, which may not reflect the actual behavior. 
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While this method is valuable in detecting trends with respect to hydroxyproline levels, a 

more advanced fitting method may detect more subtle differences. 

7.3: Conclusion: 

It can be concluded that subjects with worse grades of obstructive sleep apnea had worse 

measures of metabolic health compared to those with milder forms. Subjects with fibrosis 

in subcutaneous adipose tissue had higher measures of ectopic fat. Measures correlated 

with BMI were significantly associated with fibrosis of SAT in low BMI patients but not 

in high BMI patients. This suggests that SAT fibrosis in lean subjects is a risk factor for 

worse metabolic health. The promising pilot results of fat ADC with high b-values and T1 

values using T1 mapping suggest these may be able to noninvasively detect fibrosis in 

subcutaneous fat once evaluated with larger study populations. 
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