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Abstract: Microparticles play a role in cardiovascular disease pathology. The flavanol-like epicatechin
is increasingly considered due to its cardioprotective effects. The aim of this study was to investigate
the impact of epicatechin on microparticle generation, phenotype and procoagulant properties.
Plasma samples from 15 healthy subjects were incubated with increasing concentrations of epicatechin
(1 to 100 µM). Then, the expression of glycoprotein IIb, phosphatidylserine (PS), glycoprotein Ib
(GPIb) and P-selectin was assessed by flow cytometry analysis after (or not) platelet stimulation.
Microparticle procoagulant activity was determined using ZymuphenTM MP and ZymuphenTM

MP-TF for phospholipid and tissue factor content, and with thrombin generation (TG) assays for
procoagulant function. Platelet microparticles that express GPIb (/µL) decreased from 20,743 ± 24,985
(vehicle) to 14,939 ± 14,333 (p = 0.6), 21,366 ± 16,949 (p = 0.9) and 15,425 ± 9953 (p < 0.05) in
samples incubated with 1, 10 and 100 µM epicatechin, respectively. Microparticle concentration
(nM PS) decreased from 5.6 ± 2.0 (vehicle) to 5.1 ± 2.2 (p = 0.5), 4.5 ± 1.5 (p < 0.05) and 4.7 ± 2.0
(p < 0.05) in samples incubated with 1, 10 and 100µM epicatechin, respectively. Epicatechin had no
impact on tissue factor-positive microparticle concentration. Epicatechin decreased TG (endogenous
thrombin potential, nM.min) from 586 ± 302 to 509 ± 226 (p = 0.3), 512 ± 270 (p = 0.3) and 445 ± 283
(p < 0.05). These findings indicate that epicatechin affects microparticle release, phenotype and
procoagulant properties.

Keywords: cardiovascular disease; coagulation; epicatechin; hemostasis; microparticles

1. Introduction

Microparticles are small, anucleate vesicles ranging from 100 to 1000 nm in size. They are released
by many cell types, including platelets, monocytes, red and endothelial cells by exocytosis from the cell
membranes upon cell activation, stress or apoptosis [1]. Microparticles are delimited by a phospholipid
bilayer and express proteins from the cell of origin [2]. Microparticles are detected in healthy subjects,
and their release increases in various pathological conditions, such as cancer, diabetes, sepsis and
cardiovascular diseases (CVD) [3–5].

Platelet microparticles (PMPs) represent the main fraction of circulating microparticles and are
formed upon platelet activation, glycoprotein (Gp) IIb-IIIa signaling or after exposure to shear stress [6,7].
PMPs express Gp IIb-IIIa (CD41) and Gp Ib (CD42b), phospholipids (e.g., phosphatidylserine (PS)
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and phosphatidylcholine) and activation markers, such as P-selectin (CD62P) [8]. There are growing
evidences for PMP physiological and pathological roles. For instance, PMP can interfere in cell-to-cell
communication through various mechanisms, from the direct stimulation of target receptors to
integration of surface receptors in a target cell. PMPs can also transfer their cytoplasmic content,
including RNA [9], and modulate the adaptive immunity by stimulating the immune response [10].
PMPs also play a major role in pathological processes, such as infections, mainly through the transfer
of receptors to recipient cells to allow virus entry, and in systemic diseases, such as rheumatoid
arthritis, by amplification of the local inflammatory response [11]. PMPs also play a role in cancer
development by favoring angiogenesis and tumor cell invasion, and can be predictive markers of
metastasis formation and tumor aggressiveness [12–14]. Due to their high procoagulant activity, PMPs
are a prognostic marker of choice in CVD [15,16]. Indeed, PMP concentration is increased following
myocardial damage after acute myocardial infarction [17], particularly PMP sub-populations that
express specific markers, such as P-selectin [18]. Large PMPs are associated with specific conditions,
such as carotid atherosclerosis [19] and myocardial infarction, and also with the circulation of the
thrombin-antithrombin complex and soluble CD40 ligand [20], the increase of which correlates with
higher risk of cardiovascular events [21]. PMPs seem to play a key role in CVD due to the expression of
phospholipids and procoagulant surface markers, and their capacity to recruit leukocytes, to transfer
miRNAs and to promote inflammation [22–24].

Several studies demonstrated that a diet rich in polyphenols is inversely associated with CVD
risk and mortality [25–27]. It has also been suggested that polyphenols influence the functions
of platelets, one of the major players in the atherothrombotic process. Different polyphenols and
especially flavonoids can modulate platelet activation and aggregation [28–30]. Epicatechin is a major
representative of the flavanol subclass of flavonoids due to its abundance in highly consumed plant
foods, such as cocoa, apples, tea and grapes [31,32]. A wealth of data from preclinical models and
clinical trials indicates that epicatechin has cardioprotective effects by improving endothelial and
platelet functions, reducing blood pressure and limiting atherosclerosis [33,34]. It has been reported
that different polyphenols and plant food extracts can affect PMP formation [35–38]; however, to our
knowledge, there is no study on the specific impact of epicatechin on PMPs. The aim of this study was
to investigate in vitro epicatechin effect on PMP generation, phenotype and procoagulant properties
by incubating human plasma with increasing concentrations of epicatechin.

2. Materials and Methods

2.1. Subjects

Fifteen healthy volunteers, 12 women and 3 men (mean age 30 years (21–42)) were enrolled.
Exclusion criteria were history of bleeding and thromboembolism, ongoing antiplatelet drug or
anticoagulant therapy and abnormal blood cell count, including thrombocytopenia <150 G/L
and coagulation disorders fibrinogen <2.0 or >4.0 g/L, prothrombin time >15.5 s and activated
partial thromboplastin time >39 s. Ethical approval was obtained from the local ethics committee
(CPP Sud-Est VI, ref AU765).

2.2. Blood Sampling and Processing

Blood was collected by venipuncture in 0.109 M citrate tubes (Beckton Dickinson, le Pont de Claix,
France) with 15 µg/mL of corn trypsin inhibitor to inhibit contact factor activation and after discarding
the first few milliliters of blood. Platelet-rich plasma (PRP) was obtained by centrifugation at 200 g
at room temperature for 10 min, without brake. Platelet-poor plasma (PPP) was prepared by double
centrifugation (2200 g, 20 ◦C for 15 min) with an intermediate plasma decantation, according to the
International Society on Thrombosis and Hemostasis (ISTH) guidelines [39]. PPP samples were stored
at −80 ◦C until testing (less than 3 months), if necessary. Before the experiments, frozen plasma
samples were thawed in a water bath at 37 ◦C for 5 min. Microparticle-rich plasma (MRP) was obtained



Nutrients 2020, 12, 2935 3 of 13

from PPP centrifugation at 14,000 g at room temperature for 1 h. The microparticle-containing pellet
was resuspended in 100 µL of the supernatant after centrifugation (and thus microparticle-poor) to
concentrate microparticles by 5.0-fold.

(-)-Epicatechin stock solution (Extrasynthèse, Lyon, France; 12.5 mM in DMSO) was diluted
with phosphate buffered saline (PBS) to 0.1, 1 and 10 mM working solutions that were then added
to the plasma samples to reach the target final concentrations of 1, 10 and 100 µM with a constant
1/100 dilution. An equivalent volume of vehicle was added to samples without epicatechin. Plasma
samples were incubated with epicatechin at 37 ◦C for 10 min.

Cytometry Analysis of Microparticles

All cytometry analyses were performed with fresh samples. The impact of epicatechin on
microparticles was determined in three conditions (all samples were pre-incubated with epicatechin):
after incubation of PRP samples with PBS, to assess the direct role of epicatechin on microparticle
production and their phospholipid and protein membrane composition (condition 1); after PRP
incubation with platelet activators to simulate microparticle production (calcium ionophore A23187
(Sigma-Aldrich, Saint-Louis, MO, USA)) (condition 2) and with thrombin receptor activating peptide
(TRAP; Roche, Mannheim, Germany) (condition 3), and to study epicatechin role in microparticle
production and composition (Figure A1). Afterwards, samples were incubated with FITC-conjugated
annexin-V (PS labeling), anti-CD41a-PE (glycoprotein IIb, clone HIP8), anti-CD42b-APC (glycoprotein
Ib, clone HIP1) and anti-CD62P-BV421 (P-selectin, clone AK-4) antibodies (all from BD Biosciences) at
room temperature in the dark for 20 min. Isotype controls (at the same concentration as the primary
antibodies) were used as negative controls to differentiate non-specific background and specific
antibody signals. Immediately after labeling, samples were resuspended in 250 µL of 0.20 µm-filtered
annexin-V buffer and were analyzed on a BD FACS Canto II (BD Biosciences, Le Pont de Claix, France),
equipped with three lasers (407, 488 and 633 nm wavelengths) and the BDFACS Diva software (v.8.0.1).

Flow cytometer performance tracking was performed daily using the BD cytometer setup and
tracking beads (BD Biosciences). To ensure a limited background noise, filtered PBS (0.20 µm filter)
was analyzed before each run at least for 10 min.

For each analysis, 100 µL of fresh PPP diluted at 1/100 or 1/200 was transferred to a TruCount tube
(BD Biosciences) containing a lyophilized pellet that releases a known number of fluorescent beads to
allow microparticle quantification.

Before each series of sample analysis, fluorescent Megamix-Plus SSC Beads (Biocytex, Marseille,
France), a mix of fluorescent beads ranging from 0.1 to 1 µm, were used to define the gate consistent
with the microparticle size, according to the manufacturer’s instructions. The Megamix-Plus by its
standardized acquisition defines microparticles between 0.17 and 0.5 µm equivalent-SSC and allows
discriminating between small and large microparticles (i.e., smaller and bigger than 0.22 µm-eq SSC).
PMPs were characterized on the basis of the side scatter threshold defined using Megamix-Plus SSC
Beads and labeling with CD41a, a constitutive platelet receptor.

2.3. Phospholipid-Induced Procoagulant Activity of Microparticles

Microparticle procoagulant activity was determined using ZymuphenTM MP-ACTIVITY
(Hyphen-biomed, Neuville, France), a functional immunological assay, according to the manufacturer’s
protocol. Briefly, after pre-incubation with epicatechin, 5 µL of each PPP sample was incubated in
a well of a microplate coated with annexin V that can bind to electronegative phospholipids at the
microparticle surface. In the presence of calcium, factors (F) Xa and FVa, prothrombin are activated into
thrombin in relation with microparticle exposure to phospholipids. Thrombin activity was measured
by absorbance at 405 nm on a spectrophotometer (Spark, Tecan, Switzerland) following cleavage of a
specific substrate. Plasma microparticle concentration was expressed in nM of PS equivalent.
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2.4. Tissue factor (TF)-Induced Procoagulant Activity of Microparticles

Microparticle procoagulant activity was determined using ZymuphenTM MP-TF (Hyphen-biomed),
a functional immunological assay, according to the manufacturer’s protocol. Briefly, after pre-incubation
with epicatechin, 20 µL of PPP was incubated in wells coated with an anti-TF monoclonal antibody.
In the presence of calcium, FVIIa and FX, TF-positive microparticles form the TF-FVIIa complex and
activate FX into FXa. TF-induced microparticle procoagulant activity was correlated with FXa activity
on a specific substrate measured by absorbance at 405 nm on a spectrophotometer (Tecan) and was
expressed in pg/mL.

2.5. Thrombin Generation Assays

Thrombin generation assays (TGA) were used in two experimental conditions to measure
epicatechin effect on microparticle procoagulant activity by following the thrombin formation kinetics.
First, MRP samples were incubated with increasing concentrations of epicatechin, as before, to evaluate
the anticoagulant impact of epicatechin. Second, PRP samples were incubated with epicatechin before
platelet stimulation by addition of 20 µM of the calcium ionophore A23187 (Sigma-Aldrich) that
promotes platelet activation and apoptosis [40]. Then, MRPs were prepared as described above, and
TGA were performed to evaluate the impact of epicatechin on the release of procoagulant microparticles
from platelets.

TGA were performed using a modified Calibrated Automated Thrombogram method developed
by Hemker [41], with a fluorometer (Fluoroscan Ascent, ThermoLab Systems, Franklin, TN, USA)
equipped with a dispenser. Briefly, in 96-well plates (Immulon 2HB, Waltham, MA, USA), 30 µL of
MRP samples was used as the source of phospholipids and TF. Then, 70 µL of a pool of normal plasma
from 10 healthy donors, 20 µL of fluorogenic substrate and CaCl2 (FluCa-Kit®, Thrombinoscope BV)
were added to the wells. In parallel, each sample was calibrated with Thrombin Calibrator® (Stago,
Asnières, France) and the same pool of normal plasma. The main parameter was the endogenous
thrombin potential (ETP, area under the curve). All tests were performed in duplicate with a maximum
difference <10% for ETP (nM.min) between curves. Raw data were analyzed using ThrombinoscopeTM

V5 (Thrombinoscope BV, Maastricht, The Netherlands).

2.6. Statistical Analysis

Statistical analyses were performed with the Prism software, version 6 (GraphPad software, Inc.,
La Jolla, CA, USA). Tests were two-sided, with a type I error set at α = 0.05. Continuous data were
presented as the mean ± standard deviation (SD). The statistical significance of differences between
classes was determined with ANOVA, or the Friedman test when the ANOVA conditions were not met
(normality and homoscedasticity verified with the Bartlett test), followed by the appropriate multiple
comparison post-hoc tests (Tukey–Kramer or Dunn test, respectively).

3. Results

3.1. PMP Phenotype by Flow Cytometry

Pre-incubation with epicatechin did not have any effect on PMP concentration (PMP/µL) in PRP
samples incubated with PBS (64,153 ± 45,388 for samples incubated with vehicle and 68,726 ± 41,966,
77,864 ± 49,161 and 59,841 ± 29,101 for samples incubated with 1 µM, 10 µM and 100 µM of epicatechin,
respectively), with the calcium ionophore (537,613 ± 481,651 PMP/µL for samples incubated with
vehicle and 683,474 ± 469,130, 551,204 ± 349,680 and 578,943 ± 375,997 for samples incubated with
1 µM, 10 µM and 100 µM of epicatechin, respectively) and with TRAP (100,870 ± 97,521 PMP/µL for
samples incubated with vehicle and 117,215 ± 68,917, 101,101 ± 46,059 and 111,693 ± 76,321 for samples
incubated with 1 µM, 10 µM and 100 µM of epicatechin, respectively). The concentrations of the two
PMP populations (small and large) were not modified by pre-incubation with epicatechin, in all tested
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conditions. Of note, the inter-individual variability of PMP concentration was high, as indicated by the
coefficient of variation of 70%.

On the other hand, epicatechin influenced the expression of CD62P at the PMP surface. When
PRP was incubated with PBS, the percentage of CD62P-positive PMP decreased from 20.5 ± 13.7 in
samples incubated with vehicle to 15.1 ± 10.4 (p < 0.05), 18.6 ± 11.5 (p = 0.34) and 15.3 ± 9.3 (p < 0.05)
in samples incubated with 1 µM, 10 µM and 100 µM of epicatechin, respectively. The percentage of
small and large CD62P-positive PMP also was modified: 13.4 ± 10.5 versus 7.8 ± 9.3 (p < 0.05), 9.3 ± 8.6
(p = 0.17), 7.4 ± 6.7 (p < 0.05) for small PMP, and 21.4 ± 14.3 versus 16.1 ± 9.5 (p < 0.05), 19.6 ± 12.3
(p = 0.16), 16.6 ± 9.7 (p < 0.05) for large PMP in samples incubated with vehicle versus 1 µM, 10 µM and
100 µM epicatechin, respectively. When PRP samples were incubated with the calcium ionophore or
TRAP, the percentage of CD62P-positive PMP remained stable (31.4 ± 17.2 to 34.4 ± 11.9, and 13.0 ± 9.6
to 13.4 ± 9.5 for samples pre-incubated with vehicle and 100 µM epicatechin followed by calcium
ionophore and TRAP, respectively), without any impact on the two sub-populations (small and large).

Epicatechin did not have any effect on the expression of PS (bound to annexin V), a driving
force of the coagulation propagation phase. PS-positive PMP concentration (per µL) remained stable
after incubation of PRP samples with PBS (51,136 ± 32,617 for samples incubated with vehicle and
57,889 ± 33,060, 64,977 ± 42,499 and 49,983 ± 25,245 for samples incubated with 1 µM, 10 µM and
100 µM epicatechin, respectively), with the calcium ionophore (471,828 ± 317,764 for samples incubated
with vehicle and 571,121 ± 367,628 for samples incubated with 100 µM epicatechin) and with TRAP
(84,045 ± 89,370 for samples incubated with vehicle and 81,023 ± 42,741 for samples incubated with
100 µM epicatechin). After incubation with the calcium ionophore and TRAP, PS-positive PMP
concentration remained stable also in the two sub-populations.

Epicatechin influenced the expression of CD42b (glycoprotein Ib) that participates in the
coagulation process. After incubation with PBS, CD42b-positive PMP concentration (PMP/µL)
decreased from 20743 ± 24985 in samples incubated with vehicle to 14,939 ± 14,333 (p = 0.6),
21,366 ± 16,949 (p = 0.9) and 15,425 ± 9953 (p < 0.05) in samples incubated with 1 µM, 10 µM and
100 µM epicatechin, respectively (Figure 1A). This decrease was mainly explained by the reduction in
the concentration of CD42b-positive PMPs in the small subpopulation, from 1350 ± 1234 (in samples
incubated with vehicle) to 783 ± 488 (p < 0.05) (in samples incubated with 100 µM epicatechin)
(Figure 1B), while the large CD42b-positive PMP subpopulation remained stable.
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Figure 1. Impact of epicatechin on the concentration of platelet microparticles (PMPs) that express
glycoprotein Ib. (A) Total PMP population. (B) Small PMP subpopulation. * Significant effect of intensity.

After incubation with the calcium ionophore or TRAP, the concentration of CD42b-positive
PMPs was comparable in samples pre-incubated with vehicle and epicatechin. The changes in
CD42b-positive PMP levels in the small subpopulation were associated with a decrease in the median
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CD42b fluorescence signal from 85 ± 77 in samples incubated with vehicle to 45 ± 50 (p < 0.01),
61 ± 40 (p < 0.5) and 46 ± 45 (p < 0.5) in samples incubated with 1 µM, 10 µM and 100 µM epicatechin,
respectively (Figure 2).
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In all experimental conditions, incubation with epicatechin induced an imbalance in the small to
large PMP ratio (%). After incubation with PBS, this ratio decreased from 9.4 ± 5.6 in samples incubated
with vehicle to 8.3 ± 5.3 (p = 0.9), 6.8 ± 5.1 (p < 0.01) and 6.4 ± 4.5 (p < 0.05) in samples incubated with
1 µM, 10 µM and 100 µM epicatechin, respectively. After incubation with the calcium ionophore, this
ratio decreased from 31.9 ± 15.6 in samples incubated with vehicle to 25.7 ± 14.8 (p < 0.01), 26.9 ± 16.1
(p < 0.05) and 24.9 ± 10.8 (p < 0.05) in samples incubated with 1 µM, 10 µM and 100 µM epicatechin,
respectively. After PRP incubation with TRAP, the ratio dropped from 20.3 ± 32.8 in samples incubated
with vehicle to 11.0 ± 8.2, 8.7 ± 8.2 and 6.4 ± 4.8 (p < 0.05) in samples incubated with 1 µM, 10 µM and
100 µM epicatechin, respectively.

3.2. Epicatechin Effect on Microparticle-Induced Coagulation

Epicatechin influenced microparticle concentration when their procoagulant activity in response
to phospholipids was assessed using the ZymuphenTM MP activity kit. PS-positive microparticle
concentration (nM PS) decreased from 5.6 ± 2.0 in samples incubated with vehicle to 5.1 ± 2.2 (p = 0.5),
4.5 ± 1.5 (p < 0.05) and 4.7 ± 2.0 (p < 0.05) in samples incubated with 1, 10 and 100 µM epicatechin,
respectively (Figure 3A).

No impact of epicatechin on TF-positive microparticle concentration (pg/mL) was observed when
the procoagulant activity was induced by TF and assessed using the ZymuphenTM MP-TF kit: 2.0 ± 0.8
in samples incubated with vehicle, and 2.0 ± 0.9 (p = 0.9), 1.8 ± 0.8 (p = 0.9) and 1.9 ± 0.8 (p = 0.9) in
samples incubated with 1, 10 and 100 µM epicatechin, respectively (Figure 3B).

Epicatechin influenced TGA performed with MRP as source of phospholipids and TF. ETP (nM.min)
decreased from 586± 302 in samples incubated with vehicle to 509± 226 (p = 0.3), 512 ± 270 (p = 0.3) and
445 ± 283 (p < 0.05) in samples incubated with 1, 10 and 100 µM epicatechin, respectively (Figure 4A).
Thrombin peak (nM) also decreased from 9 ± 6 in samples incubated with vehicle to 7 ± 5 (p = 0.2),
7 ± 5 (p = 0.4) and 6 ± 5 (p < 0.05) in samples incubated with 1, 10 or 100 µM epicatechin, respectively
(Figure 4B). Thrombin activation kinetics tended to change, but not significantly. Specifically, lag time
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and time to peak ranged from 40.2 ± 19.5 and 69 ± 32 in samples incubated with vehicle to 53.1 ± 25.2
and 88 ± 38 in samples incubated with 100 µM epicatechin, respectively.

In calcium-stimulated PRP, ETP decreased from 779 ± 246 in samples incubated with vehicle to
739 ± 243 (p < 0.05), 774 ± 257 (p = 0.4) and 708 ± 268 (p < 0.001) in samples incubated with 1, 10 and
100 µM epicatechin, respectively (Figure 5A). Thrombin peak also decreased from 65 ± 34 in samples
incubated with vehicle to 60 ± 33 (p < 0.05), 68 ± 33 (p = 0.6) and 64 ± 41 (p < 0.05) in samples incubated
with 1, 10 and 100 µM epicatechin, respectively (Figure 5B). Thrombin activation kinetics were similar
in all experimental conditions, with a lag time of about 15 min and a time to peak of about 22 min.

These data showed that 100 µM epicatechin can inhibit microparticle-mediated coagulation
without affecting the lag time of thrombin generation.
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4. Discussion

There is strong evidence of the antiplatelet effects of dietary polyphenols, and it is suggested that
polyphenols may have an impact on microparticles [42]. The present study investigated epicatechin role
in microparticle formation and procoagulant potential that plays a key role in CVD (Figure 6) [43,44].
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Figure 6. Overview of the impacts of epicatechin on microparticles.

Our findings show that overall, epicatechin does not influence the concentration of PMPs, which
were identified by labeling with the constitutive platelet receptor CD41a, even after platelet activation
by agonists, such as TRAP or a calcium ionophore. However, some PMP sub-populations seem to
be affected by epicatechin. Indeed, the percentage of total (small and large) P-selectin-expressing
PMPs decreased, while PS expression was unchanged. The expression of GpIb at the PMP surface,
particularly in small PMPs, was reduced already by incubation with 1 µM of epicatechin. Epicatechin
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also generated an imbalance between large and small GpIb-positive PMPs, following stimulation with
the calcium ionophore, by increasing the large microparticle fraction.

There is evidence that microparticles smaller than 0.5µm have specific properties, such as inhibition of
the collagen/adenosine-diphosphate-mediated formation of platelet thrombi [45]. The epicatechin-induced
decrease in GpIb-positive microparticles could impair their reactivity to thrombin and von Willebrand
factor [46], and might have a direct impact on myocardial infarction pathogenesis [47]. Furthermore,
epicatechin effect from 1 µM on P-selectin-expressing PMPs could have a beneficial effect on the risk of
major adverse cardiovascular events after myocardial infarction [48,49], probably because of P-selectin
role in thrombosis and in the recruitment of leukocytes in inflammation [50,51].

Microparticles are procoagulant factors due to their membrane that supports the coagulation
enzymatic cascade. This property is reinforced by anionic phospholipids (e.g., PS) and TF, the main
coagulation activator [52]. Here, we observed a functional impact of epicatechin on microparticle
procoagulant role. Specifically, incubation with epicatechin reduced their phospholipid-mediated
procoagulant activity (from 10 µM of epicatechin), but not the activity mediated by TF. Interestingly,
TGA, which uses microparticles as phospholipid source and TF to trigger coagulation, is decreased
by epicatechin. These data seem to demonstrate that epicatechin can inhibit microparticle-mediated
coagulation by affecting the number and phenotype of the released microparticles, and/or the enzymatic
reaction of coagulation.

Several studies have shown that initiation of thrombin generation is mainly supported by
microparticles derived from monocytes, and not by PMPs [53,54]. However, PMPs contribute to
clot propagation and to prothrombotic activities after initiation [55], Surprisingly, we found that
PS-expressing PMPs were not modified by epicatechin. It was previously reported that epicatechin can
inhibit thrombin activity [56,57]. This could explain the effect on the procoagulant activity mediated
by phospholipids and on thrombin generation, and the absence of effect on the procoagulant action
mediated by TF. Taken together, these data support epicatechin interest in CVD through its action
on microparticles (PMP generation and size/properties) and on thrombin generation. Its capacity to
modulate microparticles could contribute to its health protective effects [58].

This study has some limitations. Ottaviani et al. showed that among the stereoisomers of
flavan-3-ol, (-)-epicatechin is the one with the highest bioavailability [59]. It would also be interesting
to explore the effect of long-term in vivo exposure to lower concentrations of epicatechin, instead of
short in vitro exposure to higher concentrations [60]. In vivo, epicatechin is present in the plasma as
conjugated derivatives, resulting from phase II metabolism occurring after its intestinal absorption [61].
More studies are needed to thoroughly assess the bioactivity of epicatechin metabolites at physiologically
relevant concentrations that we could not perform because they are not available yet. This is an in vitro
study that must be completed by mechanistic investigations.

In conclusion, we demonstrated that epicatechin positively affects microparticle generation,
phenotype and procoagulant properties, particularly PMPs. Given microparticle importance in CVD
and the major complications of CVD, these data open new perspectives on how epicatechin can affect
coagulation that deserve to be confirmed in in vivo studies.
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