A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings

ACEEE 2018 Summer Study on Buildings Daniel Gerber, Vagelis Vossos, Richard Brown, Chris Marnay, Wei Feng dgerb@lbl.gov Lawrence Berkeley National Laboratory

Motivation

- Solar PV generation, battery storage, and most loads are natively DC
- How much efficiency savings with DC building distribution?
- Particularly relevant for Zero Net Energy (ZNE) and microgrid buildings

Research Goal

- Determine the cost savings with DC distribution
- Modeled buildings for study
 - Medium sized office building, retail, and restaurant
 - PV and Load profiles for San Francisco, CA
 - Electrical loss models in Modelica

Office Building with AC Distribution

Office Building with DC Distribution

Techno-Economic Analysis Overview

 $PBP = \frac{Total Installed Cost_{DC} - Total Installed Cost_{AC}}{Annual Operating Cost_{AC} - Annual Operating Cost_{DC}}$

Total Installed Cost - Loads

Building load profiles

- Electronics: wall adapters required for AC
- Lighting: LED drivers required for AC and DC
- Motor Loads (HVAC, elevator): Bridge rectifiers required for AC, but very low cost

Total Installed Cost – Equipment

Parameter	Minimum/	Maximum	Unit		
	Default Value	Value			
First Cost Parameters		•	•		
AC inverter cost	190	290	\$/kW		
AC battery inverter cost	370	660	\$/kW		
DC optimizer cost	100	220	\$/kW		
DC grid-tie inverter*	370	660	\$/kW		
DC 380-48 V converter	250	450	\$/kW		
AC circuit breaker (20A)	16	18	\$/unit		
DC circuit breaker (20A)	30	36	\$/unit		
AC LED driver	Cost-power regress	ion, ±10%	\$/unit		
DC LED driver	Cost-power regress	ion, ±10%	\$/unit		
AC wall adapter cost	Cost-power regress	ion, ±10%	\$/kW		
Sales tax	8.5%	%			
Operating Cost Parameters			•		
Distr. Syst. Efficiency	Varies		%		
System lifetime	8	12	years		
Office discount rate	5.05% with 1.05 sto	deviation	%		
Restaurant discount rate	6.07% with 0.92%	%			
Retail discount rate	5.63% with 1.05%	std deviation	%		
Electricity prices	Varies by time-of-u	\$/kWh			
Electricity price trends	94% - 114% of base	%			
Monte Carlo Simulation Parameters					
Number of simulations	1000 runs				

- Grid equipment costs from online sources
- Monte Carlo analysis with Gaussian distribution

Lifetime Operating Cost - Loss Analysis

- AC building loss dominated by load packaged rectifiers
- DC building loss dominated by grid tie inverter
- Both buildings suffer battery chemical loss

Results

		50% PV, No Batt.	50% PV, 50% Batt.	50% PV, 100% Batt.	100% PV, No Batt.	100% PV, 50% Batt.	100% PV, 100% Batt.
	Mean LCC Savings (\$)	-57,000	56,000	83,000	-112,000	90,000	181,000
Medium Office	% Simulations with Positive LCC Savings	3.0%	94.3%	99.1%	0.3%	96.8%	100.0%
	Mean PBP (years)	13.0	4.0	2.3	17.2	3.3	0.0
Retail	Mean LCC Savings (\$)	-79,000	-27,000	-21,000	-63,000	11,000	64,000
	% Simulations with Positive LCC Savings	0.0%	14.9%	21.8%	0.3%	64.7%	98.2%
	Mean PBP (years)	21.1	11.4	10.6	17.3	6.4	1.9
	Mean LCC Savings (\$)	14,000	56,000	60,000	-29,000	42,000	109,000
Restaurant	% Simulations with Positive LCC Savings	92.9%	100.0%	100.0%	5.7%	98.8%	100.0%
	Mean PBP (years)	4.9	0	0	12.6	2.1	0

- LCC savings correspond to 10 years (average equipment lifetime)
- Greatest DC savings with lots of PV and battery
- Lowest DC savings with lots of PV and no battery

Backup

Modelica

- Object oriented modeling language
- Useful for complex systems that span electrical, mechanical, etc. domains
- GUI provided by Dymola or Open Modelica
- Popular for building and automotive simulations

Load Models

- All loads are DC or have internal DC stage
- AC building: loads are native/internal DC
 - All loads require load-packaged rectifier
- DC building: loads are direct DC
 - Lighting requires LED driver
 - HVAC (VFD motors) and plug loads assumed to be able to interface directly with DC distribution lines
- Load profiles are from Energy Plus

Converter Models

٠

AC Product	CEC Efficiency
String Inverter	96.0%
Battery Inverter	92.1%
Low Power Rectifier	89.9%
High Power Rectifier	90.8%
AC LED Driver	90.2%

DC Product	CEC Efficiency
Power Optimizer	99.4%
MPPT Chg. Controller	98.5%
DC-DC Transformer	97.6%
Grid Tie Inverter	96.6%
DC LED Driver	95.6%

- Converters represent the most significant power loss
- Loss is based on efficiency curves obtained from manufacturer product data
- Power quality is not modeled in this study

Battery Model

- P_{excess} = P_{solar} P_{load}
- Charge battery when excess P_{excess} > 0
- Discharge battery when P_{excess} < 0

Wire Model

- Model resistive losses as lumped resistance
- Wire gauge from expected load ampacity
- Wire length modeled by geometric methods

Efficiency Results

- Efficiency for annual simulation: 1 (Total Loss / Total Load)
- Efficiency savings with DC increases with solar capacity and battery capacity
- Baseline parameter values
 - 390 kW solar capacity amount required for ZNE
 - 1380 kW-h battery capacity 50% of amount required to store all excess solar on sunniest day

Results - Medium Office Building

Medium Office Building						
Parameter/PV & Battery Scenario	50% PV, No Batt.	50% PV, 50% Batt.	50% PV, 100% Batt.	100% PV, No Batt.	100% PV, 50% Batt.	100% PV, 100% Batt.
AC First Cost (\$)	93,000	190,000	212,000	152,000	272,000	331,000
DC First Cost (\$)	245,000	245,000	245,000	365,000	334,000	332,000
AC LCC (\$)	843,000	973,000	1,006,000	300,000	530,000	660,000
DC LCC (\$)	894,000	911,000	917,000	412,000	439,000	479,000
Mean LCC Savings (\$)	-57,000	56,000	83,000	-112,000	90,000	181,000
% Simulations						
with Positive LCC Savings	3.0%	94.3%	99.1%	0.3%	96.8%	100.0%
Mean PBP	12.0	4.0		17.0		0.0
(years)	13.0	4.0	2.3	17.2	3.3	0.0

- LCC savings correspond to 10 years (average equipment lifetime)
- Greatest DC savings with lots of PV and battery
- Lowest DC savings with lots of PV and no battery

