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Abstract: A decline in cognitive function following cancer treatment is one of the most commonly
reported post-treatment symptoms among patients with cancer and those in remission, and include
memory, processing speed, and executive function. A clear understanding of cognitive impairment
as a result of cancer and its therapy can be obtained by delineating structural and functional changes
using brain imaging studies and neurocognitive assessments. There is also a need to determine
the underlying mechanisms and pathways that impact the brain and affect cognitive functioning
in cancer survivors. Exosomes are small cell-derived vesicles formed by the inward budding of
multivesicular bodies, and are released into the extracellular environment via an exocytic pathway.
Growing evidence suggests that exosomes contribute to various physiological and pathological
conditions, including neurological processes such as synaptic plasticity, neuronal stress response,
cell-to-cell communication, and neurogenesis. In this review, we summarize the relationship between
exosomes and cancer-related cognitive impairment. Unraveling exosomes’ actions and effects on the
microenvironment of the brain, which impacts cognitive functioning, is critical for the development
of exosome-based therapeutics for cancer-related cognitive impairment.

Keywords: exosomes; cancer; chemotherapy; cognitive impairment; cell communication

1. Introduction

The uncontrolled division and cellular changes that lead to abnormal cell growth and metastasis
are defining hallmarks of cancer [1]. Cancer cells do not respond appropriately to the signals that
control normal cellular behavior, with the potential to spread throughout the body and invade normal
tissues and organs. The conventional therapies for cancer, such as chemotherapy and radiation therapy,
aim to ablate cancer cells through a variety of mechanisms that include mitotic catastrophe, necroptosis,
autophagy, and apoptosis [2–4]. However, these treatments can lead to many short- and long-term
side effects including cachexia, fatigue, neuropathy, and cognitive impairment, several of which impair
patients’ quality of life and ability to function. Given the increased number of individuals who survive
after a cancer diagnosis, one of the key concerns arising among cancer survivors is a decline in cognitive
performance [5,6].

Cognitive impairments that occur following cancer diagnosis and treatment are collectively
known as cancer-related cognitive impairment (CRCI) [7]. In recent years, a fairly consistent body of
research has reported on the clinical complaints related to CRCI in both pediatric and adult cancer
survivors [8,9]. CRCI is characterized as deficits in several cognitive domains including memory,
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attention, learning, and executive function [10]. CRCI adversely affects cancer patients and survivors,
causing distress and reduced quality of life, and impacts many facets of their daily lives [11]. CRCI is
complicated by many factors including the direct effects of cancer, genetic predisposition (e.g., carrier
of apolipoprotein E type epsilon 4 allele [12] and brain-derived neurotrophic factor Met allele [13]),
comorbidities independent of the actual disease, and/or treatments or combinations of treatments
administered for the disease [14].

Efforts to better understand cancer- and cancer-therapy-associated cognitive impairment have
relied on methods ranging from cognitive functioning assessment to imaging technologies on brain
structure and function (e.g., magnetic resonance imaging scan). However, these approaches may be
limited to help us understand the etiology and pathophysiology of cognitive dysfunction. The emerging
application of the use of liquid biopsies (e.g., plasma and cerebrospinal fluid) as a strategy for biomarker
discovery to detect, assess and monitor CRCI is fast-expanding and evolving [15,16]. In published
literature, studies have revealed that genetics and neurobiological and immunological mechanisms
may be involved in the biogenesis and development of CRCI. Preclinical studies have also provided
insights into the pathophysiological mechanisms underlying CRCI, including neurotoxicity and
inflammatory factors, which were shown to be responsible for CRCI [17]. Nevertheless, the underlying
mechanisms of CRCI have yet to be established. While the role of exosomes in cancer has been
well-documented [18–20], the role of cancer exosomes and their ability to interact with the nervous
system to modulate neurological processes such as neuronal functioning and stress response have
attracted considerable attention.

Exosomes, as a distinct class of extracellular vesicles with spherical morphology and size ranging
from 30–150 nm, were found to influence physiological and pathological conditions, such as immune
homeostasis, pregnancy, infectious diseases, cancer, and neurological disorders [15,21]. Exosomes
are endocytic vesicles formed by the inward budding of multivesicular bodies. Their fusion with
the cellular plasma membrane results in their extracellular release. Exosome origin determines cell
targeting and the transfer of its content into the targeted cell. The composition of exosomes is influenced
by a variety of factors, especially dependent on the origin of the cells from which they are released [22].
Depending on the nature of exosomes, they may have many roles in different physiological and
pathological settings, with beneficial or detrimental activity [23,24].

Exosomes have emerged as important mediators of intercellular communication with the ability to
shuttle bioactive molecules (e.g., microRNAs [miRNAs] and proteins) between neighboring and distant
cells, modulating the biological activities such as immune response, cell proliferation, and cell signaling
pathways of the recipient cells. In this review, we highlight the role of exosomes in intercellular
signaling in the nervous system and discuss the existing evidence on the relationships of exosomes in
cancer-related symptoms, with a focus on CRCI and its potential value in CRCI research.

2. Methods

Published literature based on a PubMed and ScienceDirect search using a combination of the
terms [extracellular vesicles] or [vesicles] or [exosom*] and [cognit*] or [impair and [cancer] or [metast*]
and [therapy] or [treat*] in their title or abstract were evaluated. Included studies fulfilled guidelines
recommended for extracellular vesicle characterization (e.g., the report of at least one extracellular
vesicle marker of transmembrane and cytosolic proteins) as well as experimental procedures involving
their separation and isolation [25–27].

3. Exosomes and the Nervous System

The nervous system, made up of a highly interconnected neuronal network, responds to internal
and external stimuli, and is responsible for relaying sensory information and coordinating bodily
function. Neurons are nerve cells within the nervous system that serve to sense, process, and transmit
signals between different parts of the body. Neurons communicate with each other through electrical
signals (e.g., action potentials) and chemical mediators (e.g., neurotransmitters) [28]. In recent years,
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emerging evidence has indicated that exosomes mediate inter-neuronal communication and play a
critical role in neuronal physiology and pathology [29]. The dynamics, activities, and signaling among
neurons and/or non-neuronal cells, through either electrical signals, chemical activities, or exosomes
are believed to impact our perceptions, thoughts, and behaviors [30].

3.1. Exosomes and Neuronal Communication

Exosome biogenesis begins with the formation of multivesicular bodies (MVBs) within the
endosomal compartment of the cell. The formation of MVBs is driven by endosomal sorting complexes
required for transport (ESCRT) machinery, which sort and package molecules by incorporating them
into vesicles. The fusion of MVBs with lysosomes results in the degradation of the encapsulated
materials. Meanwhile, MVBs that are directed to fuse with the cell plasma membrane are secreted
extracellularly as exosomes. Evidence of MVBs within neurons was observed under an electron
microscope while studying the structure of neurons [31]. MVBs are differentially distributed within
the neuronal compartments and many have been found to reside in the cell body and dendrites [32].
An in vitro study demonstrated that MVBs in neuronal cells harbor and transport neurotrophin
signaling-endosomes retrogradely in the axon to the cell body [33]. Several studies [32,34] also provide
evidence that MVBs can undergo anterograde axonal transport. A study revealed that Aβ42, a neuronal
amyloid β-peptide, was absent from the postsynaptic compartments and was enriched only within
MVBs in presynaptic compartments [35]. MVBs residing in synaptic boutons have been shown to be in
close contact with the presynaptic membrane [36]. The ability of MVBs to be transported anterogradely
or retrogradely, which ultimately leads to the release of exosomes extracellularly, suggests that
exosomes participate in the bidirectional inter-neuronal transfer of information (Figure 1). Notably,
exosomes released by neuronal cells were shown to cause rapid changes in translation of messenger
RNAs (mRNAs) in the postsynaptic region to affect synaptic plasticity, suggesting its role in the
neural plasticity-associated translational regulation [37]. Exosomes, as a novel means of inter-neuronal
communication, may play critical roles in many physiological processes such as synapse growth and
plasticity [38].

Figure 1. Cont.
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Figure 1. Multivesicular bodies can move retrogradely and anterogradely in neural cells (A-B),
which may lead to their release into the extracellular space as exosomes. Exosomes participating in
intercellular communication (signaling among neurons and/or non-neuronal cells, C–G) play a critical
role in neuronal physiology and pathology.

3.2. Neuronal and Non-Neuronal Cell Cross-Talk Mediated by Exosomes

Neurons and non-neuronal cells are parts of the nervous system that form a highly complex
network in which each communicates with and complements the other to support neural network
formation, organization, and functioning [39,40]. Exosomes have been described as a novel form of
information exchange between cells with the capability to influence various cellular functions [29].
The ability of exosomes to regulate and influence a diverse range of biological processes within the
nervous system has been reported [41,42]. Neuronal signals through neurotransmitter glutamate
could regulate exosome release by oligodendrocytes [43]. It was discovered that the internalization
of oligodendrocyte exosomes by neurons resulted in improved neuronal viability under nutrient
deprivation and oxidative stress conditions [43]. Under thermal and oxidative stress, astrocytes
were found to release exosomes harboring Hsp70, which has a pro-survival effect on neurons [44].
Microglia-derived exosome uptake by neurons has been shown to induce sphingosine production in
neurons and enhance excitatory neurotransmission [45]. Interestingly, the uptake of oligodendrocyte
exosomes by microglia did not trigger an inflammatory response, suggesting that these exosomes may
be targeted to microglia for the degradation of excess myelin components [46]. These data suggest
that exosomes released by local neurons and supporting cells such as oligodendrocytes, astrocytes,
and microglia participate in intercellular communication (Figure 1) and that their role of supporting
and maintaining neuronal homeostasis within the nervous system is critical to proper nerve cell, neural
circuit, and nervous system function.

3.3. Exosomes’ Ability to Cross the Blood–Brain Barrier

The blood–brain barrier is a tightly regulated interface that protects the brain and maintains a
homeostatic environment. Exosomes’ ability to breach the blood–brain barrier was implicated in a range
of different pathophysiological processes. Exosomes released by the choroid plexus could cross the
brain parenchyma and be taken up by microglia and astrocytes [47,48]. During systemic inflammation,
choroid plexus-derived exosomes internalized by microglia and astrocytes could trigger miRNA target
repression and induce the upregulation of inflammatory genes [47]. Moreover, in response to peripheral
inflammation, cerebellar Purkinje neurons uptake of exosomes from the periphery displayed altered
miRNA profiles [49]. A recent study on Parkinson’s disease revealed that exosomes secreted by human
erythrocytes contained pathogenic α-synuclein, which co-localized with microglia and was observed
in the cerebral nuclei, cortex, interbrain, midbrain, and substantia nigra [50,51]. The results suggested
that peripheral insults provoking systemic inflammation could induce exosomes from the peripheral
circulation to cross the blood–brain barrier [50,51]. Andras et al. also demonstrated the ability of the
human immunodeficiency virus to increase the exosomal amyloid beta cargo and their release from
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brain endothelial cells to mediate the transfer of amyloid beta to astrocytes and pericytes, resulting
in amyloid accumulation in the infected brain [52]. It is notable that under pathological conditions,
peripheral exosomes contribute to the leakiness of the blood–brain barrier and, upon entry, can affect
the brain’s biological activities [49,53,54].

4. Roles of Exosomes in the Nervous System

Exosomes are released constitutively or stimulus-dependently by numerous cell types within the
nervous system [55]. Exosomes secreted by cells represent a means of cellular waste disposal or to
mediate the intercellular exchange of their bioactive molecular cargo [29]. The fundamental molecular
mechanisms of exosome biogenesis, and their release and uptake by targeted cells, are intended to
ensure the proper functioning of the nervous system through optimal inter-neuronal communication
and information processing [56]. On the other hand, the dysregulation of exosomes and their properties
can lead to the development of a pathological state [56]. Exosomes engaged in a complex network
of biological and pathological processes modulate and influence nervous system function including
neuronal development, repair, maintenance and regeneration [55].

4.1. Exosomes in Neuroprotection

Exosomes with neuroprotective properties have been described as taking part in an important
mechanism contributing to neuronal survival and function. A recent study revealed that astroglial
released exosomes containing Apolipoprotein D (ApoD) have neuroprotective roles in neurons [57].
The investigators reported that the uptake of ApoD-exosomes by neuronal cells showed greater viability
under oxidative stress, suggesting that ApoD-exosomes might promote functional integrity as well as
the survival of neurons [57]. Xin et al. reported that miR-17-92 cluster-enriched exosomes could activate
the PI3K/Akt/mTOR/GSK-3β signaling pathway and enhance neural plasticity and functional recovery
in rodents with stroke [58]. Several authors [59–62] have also reported the impact of mesenchymal stem
cell (MSC) exosomes on functional outcomes (e.g., cognitive and sensorimotor functions) in rodents with
traumatic brain injury (TBI). MSC exosomes administered into rodent models of TBI revealed reduced
cortical lesions, attenuated cellular apoptosis, and modulated neuroinflammation [59,60]. The outcomes
of the neurological assessment of rodents with TBI demonstrated improved neurobehavioral
performance and accelerated functional recovery [59,60]. Moreover, MSC exosomes’ ability to
mediate neuronal survival and improved functionality (e.g., cognition and memory function) have
been described in various neurological disorders including status epilepticus [63], Parkinson’s disease,
and Alzheimer’s disease [64]. Exosome interactions with the nervous system are capable of inducing
neurogenesis, promoting axonal and vascular remodeling, and modulating neuroinflammation, thereby
mediating a neuroprotective mechanism and improved neurological outcomes.

4.2. Exosomes in Neurodegeneration

While exosomes’ role in neuroprotection is evident by the fact that they promote functional integrity
and the survival of neurons, their involvement in neurodegeneration is attributed to their abilities to
transfer pathogenic entities and promote the spread of diseases [65,66]. The pathogenesis underlying
many neurodegenerative disorders (e.g., status epilepticus, Parkinson’s disease, and Alzheimer’s
disease), both sporadic or genetically inherited forms, were consequences of molecular and cellular
mechanisms that involve the abnormal misfolding and aggregation of proteins [67,68]. The abnormal
accumulation and aggregation of disease-specific proteins could form intracellular inclusions or
extracellular aggregates [68]. Amyloid beta and tau deposition in the brain has been identified as
a toxic event by which exosome mediates to impair synaptic structure and function in Alzheimer’s
disease [69], while the progressive accumulation of α-synuclein in the brain through exosomes has
been linked to Parkinson’s disease [50,70]. Recent evidence has also implicated exosomes in aging
processes [71]. Eitan et al. observed that exosome concentration in the plasma was found to decrease
with age in humans and that the reduced exosome concentration in the circulation may be due, in part,
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to the increased internalization of exosomes by B cells, which were observed in the older individuals as
compared to the younger individuals [72]. In a mouse study, Zhang et al. found a correlation between
the age-dependent loss of hypothalamic neural stem/progenitor cells and aging-related physiological
decline [73]. They also revealed that a concomitant decrease in exosomal miRNAs in the cerebrospinal
fluid is associated with the loss of hypothalamic neural stem/progenitor cells, which led to accelerated
aging in mice. However, a slowing of aging was observed when the mice were treated with exosomes
from healthy hypothalamic neural stem/progenitor cells, suggesting that aging speed is substantially
controlled by hypothalamic stem cells, partially through the release of exosomal miRNAs. Together,
exosomes involved in the transport of pathogenic biomolecules (e.g., proteins and miRNAs) can
contribute to the progression of neurodegenerative diseases.

5. Exosomes and Clinical Symptoms Associated with Cancer and Its Therapy

Exosomes and their role in the evolution of cancer have expanded over the years. Many
investigators have reported that oncogenic signaling molecules found in cancer exosomes were, in part,
responsible for the pathogenesis and development of cancer [74]. Cancer cells also release exosomes
that mediate therapy resistance, resulting in increased cancer cell survival and DNA repair [75].
In recent years, the impact of cancer and cancer therapies on neurobiological and behavioral changes
(e.g., cachexia, fatigue, peripheral neuropathy, and cognitive impairment) is being recognized as an
important clinical issue among cancer survivors. Several investigators [53,76–78] highlighted that
changes in exosomal content and their release as a result of cancer and its therapy may influence
neurobiological functioning and alter behavior.

5.1. Cancer Cachexia

Cancer cachexia is a condition that causes extreme weight loss and muscle wasting. The underlying
mechanisms of the exosomes mediating cancer cachexia have recently been investigated. It was
discovered that miRNAs and proteins in exosomes were responsible for the pathogenesis of the
disease [79]. Several miRNAs (e.g., miR-155, miR-21, and miR-29a [80,81]) in exosomes were identified
as orchestrating the molecular and biochemical disruptions observed in cachexia. The miRNAs
transported in exosomes could contribute to muscle mass wasting by modulating inflammatory
pathways and regulating protein synthesis and degradation pathways in the skeletal muscle [80,82].
In a functional study, Zhang et al. showed that tumor exosomes containing heat shock proteins
(i.e., Hsp70 and Hsp90) could stimulate muscle catabolism through the activation toll-like receptor
4 on muscle cells, which further leads to the tumor induction of cachexia in mice [83]. Exosomes’
participation in promoting the catabolism of muscle cells and mediating skeletal muscle atrophy was
observed as contributing to cancer cachexia.

5.2. Cancer-Related Fatigue

Cancer-related fatigue is another side effect of cancer and its treatment. It has been defined
as a distressing, persistent, subjective sense of physical, emotional, and/or cognitive tiredness or
exhaustion related to cancer and/or cancer treatment that is not proportional to recent activity and that
interferes with usual functioning [84]. While the use of proteomics to understand cancer-related fatigue
remains to be established [85], Minton et al. demonstrated differences in plasma protein expression
in cancer-related fatigue syndrome compared to non-fatigued control subjects [86]. Nevertheless,
Khalyfa et al. showed that chronic sleep fragmentation can alter exosomal miRNA cargo and affect
the biological function (i.e., proliferative, migratory, and extravasation properties) of lung tumor cells
in mice [87]. Similar results were also observed when human adenocarcinoma tumor cell lines were
treated with plasma exosomes derived from patients with obstructive sleep apnea [87]. It was also
reported that physical fatigue can be linked to the exosomal transfer of miRNAs affecting skeletal
muscle function [88]. Although the etiology of cancer-related fatigue is poorly understood, studies
revealed differences in their exosomal cargo content between a control group and a cancer-related
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fatigue group. Delineating the mechanisms that exosomes regulate may provide further insights to
better understand exosomes’ role in cancer-related fatigue.

5.3. Peripheral Neuropathy

Peripheral neuropathy refers to damage of the peripheral nerves. Cancer and its treatment can
cause peripheral neuropathy. Recently, a case control study by Chen et al. discovered that exosomes
isolated from the serum of breast cancer patients receiving taxane treatment contained different
subcellular and functional categories of proteins [89]. It was discovered that twelve protein signatures
were associated with the development of taxane-induced peripheral neuropathy [89]. The study
found that taxane-treated patients who developed severe neuropathy did not regain a homeostatic
balance between inflammation and detoxification. It was suggested that patients identified as having
low inflammatory and detoxification responses before taxane treatment may have a greater risk of
developing taxane-induced peripheral neuropathy [89]. Although the link between exosomes and
taxane-induced peripheral neuropathy has not been well-characterized, exosomes may play a role in
mediating the homeostatic balance between inflammation and detoxification, which could be critical to
reducing the risk of developing peripheral neuropathy in cancer patients undergoing taxane treatment.

While cancer survivors also suffer from cognitive dysfunction, it has been reported that the
development of CRCI is a multifactorial process [90]. In addition to cancer and cancer treatment,
numerous other factors such as cancer cachexia [91] and cancer-related fatigue [90] participate in the
process of influencing CRCI. The role of exosomes and CRCI will be further discussed in the next
section. The effort to unravel the functional role of exosomes and their cargo content can provide
important insight into the mechanisms by which exosomes mediate.

6. Association of Exosomes and CRCI

As it is increasingly recognized that cognitive dysfunction is a complication of cancer and its
treatment, numerous studies have provided evidence that multiple domains of cognition such as
memory, concentration, and executive function can be seen affected in patients with CRCI [9,91]. To
harmonize the study of cognitive function in patients with cancer, the International Cognitive and
Cancer Task Force (ICCTF) developed recommendations focusing on key dimensions of cognition
(i.e., learning, memory, executive function, and processing speed) [7,92]. The recommended tests for
assessing these various functions include the Hopkins Verbal Learning Test–Revised (for learning and
memory), Trail Making Test (for executive function and processing speed), and Controlled Oral Word
Association Test (for executive function). In addition, novel approaches including the incorporating of
neuroimaging (e.g., magnetic resonance imaging scan) and basic/translational science (e.g., biomarker
studies and preclinical animal models) would facilitate a better understanding of the pathophysiology
of CRCI [92]. In recent years, several studies have provided preliminary evidence, and have suggested
the existence of a relationship between exosomes and CRCI. Here, we review the literature by which
exosomes affect cognition as a result of cancer and its treatment.

6.1. Cancer Exosomes and Cognitive Impairment

Exosomes released by cancer cells of the central nervous system (CNS) (e.g., brain tumor)
or non-CNS (e.g., cancer that spreads from the periphery to the brain) can contribute to reduced
cognition by modulating the cellular mechanism that perturbs brain function. Certain cancers (e.g.,
glioblastoma [78,93] and medulloblastoma [76,94]) arising from the CNS have been shown to express
exosomes that could affect cellular integrity. For example, glioblastoma was shown to remodel the tumor
microenvironment and lead to chemotherapy resistance (e.g., temozolomide) through the intracellular
transfer of oncogenic long non-coding RNA SBF2-AS1 by exosomes [93]. In addition to the ability
to achieve chemoresistance, glioblastoma secretion of pro-permeability factor (e.g., Semaphorin3A)
through exosomes has been associated with the loss of endothelial barrier integrity, resulting in
debilitating cognitive deficits [78].
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Exosomes released by non-CNS cancer cells can play a significant role in cancer progression
and metastasis. It has been observed that cancer cells discard the tumor suppressor miRNA, such as
miR23b through exosomes to acquire metastatic properties [95]. Moreover, a variety of cancers
including lung cancer, breast cancer, and melanoma can lead to brain metastasis [96]. Kuroda et al.
reported that CD46, integrin α5, or integrin αV receptors in blood–brain barrier endothelial cells are
involved in the internalization of exosomes derived from the brain-metastatic melanoma cell [97].
In addition to brain metastasis, melanoma is frequently associated with CNS complications including
cognitive impairment [97,98]. While it remains to be determined, cancer complications and the loss
of blood–brain barrier integrity might be exacerbated by exosomes secreted by cancer cells, such as
melanoma exosomes [97].

Cancer cells were also found to secrete exosomes that enact on other mechanisms (e.g., interfere
with cytokine-mediated immune-activation pathways), which mediates immune modulation [99].
Tumor-derived exosomes were shown to regulate the function of immune cells including macrophages,
T-cells, and natural killer cells [100]. It has been discovered that breast cancer-derived exosomes
containing a high level of annexin A2 induced the expression of vascular endothelial growth factor
receptor 1 and matrix metalloproteinase 9 in lung and brain sections [101]. The study also found that high
annexin A2 in exosomes triggers macrophage-mediated activation of the p38 mitogen-activated protein
kinases, nuclear factor-kappa B pathways, and the signal transducer and activator of transcription 3
pathways, as well as increased pro-inflammatory cytokines [101]. It is plausible that exosomes released
by cancer cells could interact with immune cells to affect distant organs (e.g., lungs and brain) and
their function.

Exosomes released by cancer cells of CNS may act locally and modulate the cellular mechanism
to affect brain activity and influence cognitive function directly. Meanwhile, exosomes released by
non-CNS cancer cells may induce impaired cognitive function in several ways. This includes their
ability to activate brain metastasis in cancer cells that compromises blood–brain barrier integrity, to
harbor a pro-permeability factor that induces the permeability of the blood–brain barrier, and/or
to trigger the stress response in the brain through a peripheral immune challenge by immune cells
directed by cancer exosomes.

6.2. Cancer-Therapy-Derived Exosomes and Cognitive Impairment

The use of radiation therapy in the treatment of a variety of CNS-related malignancies can affect
brain structure and function, leading to cognitive deterioration [102]. Radiation used in cancer therapy
can also activate the biogenesis and induce exosome secretion from cancer cells [103]. Hinzman et al.
highlighted that several molecules (i.e., triglycerides, platelet activating factor, carnitine, and C-16
sphinganine) involved in inflammation were enriched in the exosomes of mice exposed to cranial
ionizing radiation [104]. In addition, the exosomes of irradiated mice expressed a higher level
of CD63 and were morphologically different from those of sham-irradiated mice [104]. Although
radiation therapy has a significant effect on cognitive functioning, a few studies have demonstrated
the potential use of exosomes derived from neural stem cells to ameliorate radiation-induced cognitive
dysfunction [105,106].

6.3. Mechanisms Associated with Exosomes and CRCI

Exosomes released by cells could serve as a means to discard undesired biomolecules or mediate a
variety of paracrine signaling mechanisms. Exosomes could protect their cargoes from degradation (e.g.,
enzymatic cleavage) and overcome immune surveillance during their transit through the extracellular
microenvironment. Cancer cells have been found to remove tumor suppressor miRNAs through
exosomes in order to promote metastasis [95]. Cancer cells also release exosomes to promote tumorigenic
phenotypes, which includes growth, invasion, and immunosuppression [107]. Exosomes released by
cancer cells that accumulate in the brain could induce blood–brain barrier permeability [53], and their
translocation into brain tissue may elicit functional changes in behavior and cognition [91]. While
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cancer therapies adversely impact cognition, they also affect exosome biogenesis and release causing
changes to the anatomy of the brain [104]. Cancer therapies also cause cellular stress that affect the
release and composition of exosomes, thereby impacting neighboring and distant cells (e.g., brain) [108].
Moreover, radio- and chemotherapy may also influence the development of treatment-resistant cancer
cells [75], possibly through cellular reprogramming [109] and/or the formation of brain metastasis [110].
Genetics [54,111], age [71], existing comorbidities [112,113], lifestyle [114,115], and environmental [116]
factors are likely to alter the extracellular fate of exosomes, which leads to CRCI (Figure 2). Changes in
exosomal cargo content and their release may further influence diverse mechanisms/pathways capable
of impacting the brain and CNS function, which could result in CRCI (Figure 3).

Figure 2. Exosomes release as a result of cancer and cancer therapy may alter cognitive functions,
resulting in cognitive impairment in cancer survivors. Genetics, age, existing comorbidities, lifestyle,
and environmental factors predisposed to (dotted lines) cancer and cancer therapy may affect exosome
biogenesis, its cargo content, function, and activity to influence cognitive functioning including memory,
attention, executive function, language, and processing speed.

Figure 3. Flow diagram describing the potential role of exosomes and their ability to influence the
microenvironment of the brain and central nervous system (CNS), which causes cognitive impairment
in cancer survivors.
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7. Potential Implication of Exosomes in CRCI Research

Exosomes play a part in fundamental physiological processes, such as neuronal communication,
but also participate in pathological conditions, such as cancer and chemotherapy-induced cognitive
impairment. Although the precise mechanisms underlying CRCI remain to be established, several
studies suggest there is a link between exosomes and CRCI. Exosome biogenesis, its cargo content,
function, and activity may be influenced by cancer [97], cancer therapies [93,102], genetics [54,111],
age [71], existing comorbidities [112,113], lifestyle [114,115], and environmental [116] factors.
Differences in exosomal content (e.g., miRNAs and proteins) and release may exert protective or
damaging effects that could alter the brain and CNS function, and cause declining cognitive health
in cancer survivors. Unraveling the mechanisms and pathways influenced by exosomes is critical
to understand the relationship between exosomes, insults (e.g., cancer and cancer therapy) and the
neurocognitive network in the brain [117]. Advancing our knowledge on exosomes and neurocognition
is critical to develop exosome-based therapeutics. The action of stem cell-derived exosomes within the
irradiated microenvironment of the brain was shown to have neuroprotective properties, and was
found to reduce radiation-induced pathology and cognitive dysfunction [106]. The potential uses
of exosomes derived from stem cells might serve as a promising strategy to ameliorate cognitive
dysfunction in patients suffering from CRCI.

8. Conclusions

Exosomes are small cell-derived vesicles, initially thought to function as a means of cellular waste
disposal, but later discovered to be critical mediators of intercellular signaling. Exosome biogenesis
and composition depends on cellular origin and homeostatic state. Exosomes are multifunctional,
acting and functioning differently under physiological and pathological conditions. The ability of
exosomes to cross the blood–brain barrier, which enables bidirectional exchange of biomolecules,
indicates exosomes may serve as potential biomarkers of CNS health and disease. In this review,
we summarize the role of exosomes and their ability to influence the microenvironment of the brain,
resulting in CRCI. Investigations of cell-type specific exosomes and their cargo are necessary to
delineate novel mechanisms/pathways and better understand how exosomes impact CNS function and
CRCI. Advancing our knowledge in the biology of exosomes will be critical for the future development
of exosome-based therapeutics for CRCI.
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