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Abstract

Cluster Algebras and Integrable Systems

by

Harold Matthew Williams

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nicolai Reshetikhin, Chair

We present a series of results at the interface of cluster algebras and integrable systems,
discussing various connections to the broader world of representation theory, geometry, and
mathematical physics.

In chapter 3 we develop a rigorous theory of Poisson-Lie structures on ind-algebraic groups
and treat the case of symmetrizable Kac-Moody groups within this framework. We use this as
a setting for the construction of integrable systems on Hamiltonian reductions of symplectic
leaves of affine Lie groups, providing generalizations of the relativistic periodic Toda chain to
all affine types.

In chapter 4 we formulate and prove a precise relationship between the Chamber Ansatz
of [FZ99] and the general phenomenon of duality between cluster varieties. We also extend
the construction of cluster structures on double Bruhat cells of algebraic groups to the setting
of symmetrizable Kac-Moody groups, in particular encompassing the examples considered in
chapter 3.

In chapter 5 we realize the cluster structures associated with Q-systems as amalgamations
of those on double Bruhat cells of simple algebraic groups. We use this to identify Q-system
dynamics with those of a factorization mapping, thus deducing their integrability in a uniform
way for various Dynkin types, and relate them to the Fomin-Zelevinsky twist automorphism.
In the process we also provide cluster realizations of twisted Q-systems.

In chapter 6 we identify the Hamiltonians of the open quadratic Toda system (equivalently
the conserved quantities of the Q-systems studied in chapter 5) as cluster characters, certain
generating functions of Euler characteristics of quiver Grassmannians. Heuristically this
means the Hamiltonians should be interpreted as generalized canonical basis elements, and
we explain how such an expression is predicted by the appearance of the relevant cluster
structures in supersymmetric gauge theory.
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Chapter 1

Introduction and Overview

The broad theme of this dissertation is the interplay between cluster algebras and integrable
systems within the larger context of representation theory, geometry, and mathematical
physics.

Cluster algebras emerged around the turn of the century as abstractions of combinatorics
arising in the theory of canonical bases [FZ02]. They were quickly discovered both to possess
a deep theory of their own and to arise in many unanticipated mathematical and physical
contexts, from representation theory [Lec10] and total positivity [Fom10] to the geometry of
moduli spaces [FG06b] and quantum field theory [CNV10].

Integrable systems on the other hand have a long history in mathematics and physics,
dating back to the 19th century. An integrable system is essentially a Hamiltonian system
with maximal symmetry, or more precisely a Poisson manifold with a maximal collection of
Poisson-commuting functions. The position of integrable systems in modern mathematics is
largely characterized by the fact that their symmetry is often an expression of some deeper
underlying structure, typically geometric, representation-theoretic, or combinatorial in nature.
It is from this point of view that the connection between integrable systems and cluster
algebras seems most natural, since cluster algebras themselves usually reflect some larger
geometric or combinatorial structure.

In chapter 2 we collect some necessary background material, mostly on Kac-Moody groups
and cluster algebras. Informally, a cluster structure on a variety is an infinite family of toric
charts with distinguished coordinates, and transition functions of a specific form [FZ02]. To
each coordinatized chart (called a cluster) is associated a skew-symmetrizable “exchange”
matrix, which encodes the transition functions (called cluster transformations) to another
cluster (which we say is obtained by mutation). An explicit rule produces the new exchange
matrix from the original one, so the mutation process can be iterated indefinitely, recovering
the entire infinite family of clusters. The special coordinate functions on each chart are
called cluster variables; the set of all cluster variables is a linearly independent subset of the
coordinate ring of the variety, endowing it with an abstraction of (a subset of) a canonical
basis.

Chapter 3 is concerned with the development of a rigorous theory of Poisson-Lie structures
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on ind-algebraic groups. In particular we treat the standard Poisson structure on a symmetriz-
able Kac-Moody group. We use this as a setting for the construction of integrable systems
on Hamiltonian reductions of symplectic leaves of affine Lie groups, providing generalizations
of the relativistic periodic Toda chain to all affine types.

The symplectic leaves of a symmetrizable Kac-Moody group are classified by its double
Bruhat cells. In Chapter 4 we extend the construction of cluster structures on double Bruhat
cells of algebraic groups to this setting. We also formulate and prove a precise relationship
between the Chamber Ansatz of [FZ99] and the general phenomenon of duality between
cluster varieties. Roughly speaking, we explain how the formula for the Chamber Ansatz is
a consequence of the presence of two dual cluster structures on the simply-connected and
adjoint forms of a double Bruhat cell, explaining the relationship between the approaches of
[FG06a] and [BFZ05].

In chapter 5 we turn to Q-systems, certain recurrence relations arising in the representation
theory of quantum loop algebras. In [Ked08; DK09] these were discovered to be expressible
as sequences of cluster transformations. We prove that the relevant cluster structures are
in fact amalgamations of those on Coxeter double Bruhat cells of simple algebraic groups.
We use this to identify Q-system dynamics with those of factorization mappings, deducing
their integrability in a uniform way for various Dynkin types, and relate them to the Fomin-
Zelevinsky twist automorphism. In the process we also provide cluster realizations of twisted
Q-systems.

Finally, in chapter 6 we identify the conserved quantities of the An Q-systems (equivalently
the Hamiltonians of the open quadratic Toda system) as cluster characters, certain generating
functions of Euler characteristics of quiver Grassmannians. Heuristically this means the
Hamiltonians should be interpreted as generalized canonical basis elements, and we explain
how such an expression is predicted by the appearance of the relevant cluster structures in
supersymmetric gauge theory. In particular, these cluster structures also coincide with that
those on the moduli spaces of irregular local systems associated with the Seiberg-Witten
geometry of pure N = 2 SU(N) Yang-Mills theory.

The results of chapters 3 and 4 are based on [Wil13b; Wil13a], respectively.
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Chapter 2

Background on Lie Theory and
Cluster Algebras

In this chapter we collect the essential background material on Lie theory (especially Kac-
Moody groups) and cluster algebras that will be required later. The material is mostly
standard, and references are given throughout. The only minor exceptions are some statements
such as Proposition 2.1.21 which are straightforward generalizations to the Kac-Moody case
of known statements about simple algebraic groups.

2.1 Lie Theory and Kac-Moody Groups

Kac-Moody Algebras

We briefly recall the theory of Kac-Moody algebras [Kac94]. A generalized Cartan matrix C
is an r × r integer matrix such that

1. Cii = 2 for all 1 ≤ i ≤ r

2. Cij ≤ 0 for i 6= j

3. Cij = 0 if and only if Cji = 0.

We will assume throughout that C is symmetrizable; that is, there exist positive integers
d1, . . . , dr such that diCij = djCji for all 1 ≤ i, j ≤ r. To the matrix C is associated a Lie
algebra g := g(C). The Cartan subalgebra h ⊂ g contains simple coroots {α∨

1 , . . . , α
∨
r }, its

dual contains simple roots {α1, . . . , αr}, and these satisfy 〈αj|α
∨
i 〉 = Cij . The dimension of h,

which we denote throughout by r̃, is equal to 2r − rank(C).
The algebra g is generated by h and the Chevalley generators {e1, f1, . . . , er, fr}, subject

to the relations

1. [h, h′] = 0 for all h, h′ ∈ h
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2. [h, ei] = 〈αi|h〉ei

3. [h, fi] = −〈αi|h〉fi

4. [ei, fi] = α∨
i

5. [ei, fj] = ad(ei)
1−Cijej = ad(fi)

1−Cijfj = 0 for all i 6= j.

The roots of g are the elements α ∈ h∗ such that

gα = {X ∈ g | [h,X] = 〈α|h〉X for all h ∈ h}

is nonzero. Any nonzero root is a sum of simple roots with either all positive or all negative
integer coefficients, and we say it is a positive or negative root accordingly. We then have
subalgebras

n+ =
⊕

α>0

gα, n− =
⊕

α<0

gα.

If g′ denotes the derived subalgebra of g and h′ =
⊕r

i=1 Cα
∨
i , then we have vector space

decompositions
g = n− ⊕ h⊕ n+, g′ = n− ⊕ h′ ⊕ n+.

The Weyl group W is the subgroup of Aut(h∗) generated by the simple reflections

si : β 7→ β − 〈β|α∨
i 〉αi.

A nonzero root is said to be real if it is conjugate to a simple root under W , and imaginary
otherwise. A reduced word for an element of W is an expression w = si1 · · · sin such that n is
as small as possible; the length ℓ(w) is then defined as the length of such a reduced word.

We fix a complex algebraic torus H with Lie algebra h, which in the following section
will be the Cartan subgroup of the group associated with g. The integral weight lattice
P := Hom(H,C∗) can be regarded as a sublattice of h∗, with

〈ω|α∨
i 〉 ∈ Z

for all ω ∈ P and all simple coroots α∨
i . We fix once and for all a basis {ω1, . . . , ωr̃} of P ,

the fundamental weights, such that

〈ωj|α
∨
i 〉 = δi,j, 1 ≤ i ≤ r, 1 ≤ j ≤ r̃.

The choice of fundamental weights lets us uniquely define Cij for r ≤ i ≤ r̃ by the requirement
that

αj =
∑

1≤i≤r̃

Cijωi. (2.1.1)

Given a ∈ H, we will denote the value of the character λ ∈ P at a as aλ. Conversely,
given t ∈ C∗ and a cocharacter λ∨ ∈ Hom(C∗, H), we write tλ

∨
for the corresponding element
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of H. Having fixed the basis ω1, . . . , ωr̃ of P , we have a corresponding dual basis of the
cocharacter lattice Hom(C∗, H). We denote its elements by α∨

1 , . . . , α
∨
r̃ , since for i < r these

are just the coroots of G.
The set of dominant weights is P+ := {λ ∈ P : 〈λ|α∨

i 〉 ≥ 0 for all 1 ≤ i ≤ r}. For each
λ ∈ P+ there is an irreducible g-representation L(λ) with highest weight λ, unique up to
isomorphism. The representation L(λ) is the direct sum of finite-dimensional h-weight spaces,
and its graded dual L(λ)∨ is an irreducible lowest-weight representation.

Let σ be the involution of g determined by

σ(h) = −h for all h ∈ H, σ(ei) = −fi, σ(fi) = −ei, (2.1.2)

and let ρλ : g → EndL(λ) be the map defining the action of g on L(λ). Then there is
a g-module isomorphism between L(λ)∨ and the representation whose underlying vector
space is L(λ) and whose g-action is given by ρλ ◦ σ. In particular this isomorphism yields a
nondegenerate symmetric bilinear form

L(λ)⊗ L(λ) ∼= L(λ)∨ ⊗ L(λ)→ C.

We say g(C) is of finite type if C is positive definite, and affine type if C is positive
semidefinite. In the former case it is a finite-dimensional semisimple Lie algebra, while in the
latter it admits an alternative description in terms of loop algebras.

More precisely, let g(C) be a semisimple Lie algebra with Cartan matrix C. Its loop

algebra Lg := g(C)⊗ C[z±1] has a universal central extension L̃g := Cc⊕ Lg with bracket

[Xzm + Ac, Y zn + Bc] = [X, Y ]zm+n + δm+n,0〈X, Y 〉c.

The action of d
dz

on Lg by derivations extends to an action on L̃g, so we have the semidirect

product L̂g := C d
dz

⋉ L̃g. There is an extended Cartan matrix C̃ such that L̂g ∼= g(C̃) and

L̃g ∼= g′(C̃). To form C̃ we adjoin an extra row and column to C by setting

C0,0 = 2, Ck,0 = −θ(α
∨
k ), and C0,i = −αi(α

∨
θ ).

Here θ =
∑r

i=1 θiαi is the highest root of g(C), and we will always normalize the form on
g(C) so that 〈θ, θ〉 = 2 (to simplify later formulas we will also use the convention θ0 = 1).
Note that we index the simple roots of a general Kac-Moody algebra by {1, . . . , r}, while we
index affine simple roots by {0, . . . , r}. Every affine Kac-Moody algebra is either of the form

L̂g or a twisted version thereof; for simplicity we will always take “affine” to mean “untwisted
affine” unless explicitly stated.

Kac-Moody Groups and Double Bruhat Cells

To a generalized Cartan matrix C we may also associate a group G, which is a simply-
connected complex algebraic group when C is positive-definite [KP83a; Kum02]. In general



CHAPTER 2. BACKGROUND ON LIE THEORY AND CLUSTER ALGEBRAS 6

G is an ind-algebraic group, and shares many important properties with the simple algebraic
groups, in particular a Bruhat decomposition and generalized Gaussian factorization.

For each real root α, G contains a one-parameter subgroup xα(t), and G is generated by
these together with the Cartan subgroup H (for simple roots, we will write x±i(t) := x±αi

(t)).
We denote the subgroups generated by the positive and negative real root subgroups by
N+ and N−, respectively, and we also have the positive and negative Borel subgroups
B± := H ⋉N±.

For each 1 ≤ i ≤ r there is a unique embedding ϕi : SL2 → G such that

ϕi

(
t 0
0 t−1

)
= tα

∨
i , ϕi

(
1 t
0 1

)
= xi(t), ϕi

(
1 0
t 1

)
= x−i(t).

The Weyl group W is isomorphic with NG(H)/H, where NG(H) is the normalizer of H in G.
The simple reflections si have representatives in G of the form

si = xi(−1)x−i(1)xi(−1) = ϕi

(
0 −1
1 0

)
(2.1.3)

si = xi(1)x−i(−1)xi(1) = ϕi

(
0 1
−1 0

)
. (2.1.4)

In particular, for any w ∈ W we have well-defined representatives

w = si1 · · · sin , w = si1 · · · sin ,

where si1 · · · sin is any reduced word for w.
Recall that an ind-variety X is the union of an increasing sequence of finite-dimensional

varieties Xn whose inclusions Xn →֒ Xn+1 are closed embeddings [Sha81]. We say a map

X
φ
−→ Y of ind-varieties is regular if for all i ∈ N there exists an n(i) such that φ(Xi) ⊂ Yn(i)

and the restrictions Xi

φ|Xi−−→ Yn(i) are regular. If the Xn are affine, the coordinate ring of X is

C[X] = lim←−C[Xn],

topologized as an inverse limit of discrete vector spaces; regular maps of affine ind-varieties
induce continuous homomorphisms between their coordinate rings. We can also form products
of ind-varieties in the obvious way.

Definition 2.1.5. An ind-algebraic group (or ind-group) X is an ind-variety with a regular
group operation X ×X → X.

To define the ind-group structure on G, consider the integrable g-representation

V =
r̃⊕

i=1

(L(ωi)⊕ L(ωi)
∨).
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The group G acts on integrable highest weight representations of g and their restricted duals,
hence on V . If vi and v∨i are the highest and lowest weight vectors of L(ωi) and L(ωi)

∨,

respectively, the map g 7→ g ·
∑r̃

i=1(vi + v∨i ) embeds G injectively into V . We may filter V
by finite direct sums of its weight spaces, and the intersections of G with these are closed
subvarieties that define an ind-group structure on G [Kum02, p. 7.4.14]. The subgroups H,
N±, and B± are then closed subgroups.

Proposition 2.1.6. ([Kum02, pp. 6.5.8, 7.4.11]) The multiplication map N−×H ×N+ → G
is a biregular isomorphism onto an open subvariety G0. Thus for any g ∈ G0 we may write

g = [g]−[g]0[g]+

for some unique [g]± ∈ N± and [g]0 ∈ H. Moreover, the maps

G0 → N± (resp. H), g 7→ [g]± (resp. [g]0)

are regular.

Proposition 2.1.7. ([GLS11, p. 7.2]) We have

G0 = {x ∈ G|∆
ωj(x) 6= 0 for all 1 ≤ j ≤ r̃},

where the ∆ωj are the principal minors of Definition 2.1.19.

Proposition 2.1.8. ([Kum02, p. 7.4.2]) The group G has positive and negative Bruhat
decompositions

G =
⊔

w∈W

B+ẇB+ =
⊔

w∈W

B−ẇB−,

where ẇ is any representative of w in G.

In particular, G is a disjoint union of the double Bruhat cells

Gu,v := B+u̇B+ ∩ B−v̇B−.

To obtain a more explicit description of the double Bruhat cells, we introduce the
ℓ(w)-dimensional unipotent subgroups

N+(w) := N+ ∩ ẇN−ẇ
−1, N−(w) := N− ∩ ẇ

−1N+ẇ

associated to any w ∈ W . These have complementary infinite-dimensional subgroups

N ′
+(w) := N+ ∩ ẇN+ẇ

−1, N ′
−(w) := N− ∩ ẇ

−1N−ẇ.

Proposition 2.1.9. ([Kum02, p. 6.1.3]) For any w ∈ W , the multiplication maps

N±(w)×N
′
±(w)→ N±

are biregular isomorphisms.
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The Bruhat decomposition then admits the following refinement:

Corollary 2.1.10. The natural maps

N+(w)→ N+(w)ẇB+/B+, N−(w)→ B−\B−ẇN−(w)

are biregular isomorphisms. In particular, the Bruhat cells can be written as

B+ẇB+ = N+(w)ẇB+, B−ẇB− = B−ẇN−(w).

Corollary 2.1.11. For any x ∈ B+ẇB+, we have ẇ−1x ∈ G0. Then

π+(x) := ẇ[ẇ−1x]−ẇ
−1 ∈ N+(w)

and x = π+(x)ẇb+ for some b+ ∈ B+. Similarly, if x ∈ B−ẇB−, then xẇ
−1 ∈ G0,

π−(x) := ẇ−1[xẇ−1]+ẇ ∈ N−(w),

and x = b−ẇπ−(x) for some b− ∈ B−.

Proposition 2.1.12. The map

Gu,v → N+(u)×N−(v)×H, x 7→ (π+(x), π−(x), [u
−1x]0)

provides an isomorphism of Gu,v with the open set

{(n+, n−, h)|vn−n
−1
+ u−1 ∈ G0} ⊂ N+(u)×N−(v)×H.

In particular, Gu,v is a rational affine variety of dimension ℓ(u) + ℓ(v) + r̃.

Proof. By an elementary calculation one checks that

(n+, n−, h) 7→ n+uh[vn−n
−1
+ u−1]+

provides the inverse map. By Proposition 2.1.7 the given open set is the nonvanishing locus
of the pullback of

∏
1≤j≤r̃ ∆

ωj ∈ C[G] along the regular map

(n+, n−, h) 7→ vn−n
−1
+ u−1.

The last statement then follows since N+(u)×N−(v)×H is an open subvariety of Aℓ(u)+ℓ(v)+r̃.

For each simple root α, G′ has a corresponding SL2 subgroup Gα generated by x±α(t).
In Theorem 3.2.10 we will use the following observation:

Proposition 2.1.13. G′ is generated by the simple root SL2 subgroups Gα.
1

1Since G′ is infinite-dimensional it does not suffice to observe that the Lie algebras of the Gα together

generate g. For example, the Lie algebra of N+ ⊂ L̃SL2 is generated by the two simple positive root spaces,
yet N+ is not generated by any proper subcollection of the 1-parameter positive root subgroups [KP83a].
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Proof. It suffices to show that the real root 1-parameter subgroups lie in the subgroup
generated by the Gα, since these generate G′. By definition a real root β is one of the form
w(α) for some simple root α and w ∈ W . Then we can write the subgroup xβ(t) as ẇxα(t)ẇ

−1

for any representative ẇ of w in G′. But by eq. (2.1.3) this can be written in terms of simple
root 1-parameter subgroups.

Remark 2.1.14. We could also consider a completed version of the Kac-Moody group G,
as in [Kum02, p. 6.1.16]. In the affine case, this corresponds to using the formal loop group
rather than the polynomial loop group. However, only the smaller group G has a double
Bruhat decomposition, since the completed group does not have a Bruhat decomposition with
respect to B−. Furthermore, the formal loop group does not admit evaluation representations,
so it is not the right object to consider in the context of the integrable systems constructed
in Section 3.4.

Affine Kac-Moody Groups

In affine type, Kac-Moody groups admit an alternative description as central extensions of
loop groups. Let C be a finite type Cartan matrix and G the corresponding simply connected
complex algebraic group with Lie algebra g. To avoid conflating this group with the associated
infinite-dimensional group, we will generally use G rather than G to denote the Kac-Moody
group of the extended matrix C̃ (likewise U± and B± will denote the unipotent and Borel
subgroups of G). If LG := G(C[z±1]) is the group of regular maps from C∗ to G, there is a
universal central extension

1 −→ C∗ −→ L̃G −→ LG −→ 1

and an isomorphism G ′ ∼= L̃G. The rotation action of C∗ on LG extends to L̃G, and G is
isomorphic with the semidirect product C∗ ⋉ L̃G [Kum02, p. 13.2.9].

The central extension splits canonically over the subgroups G(C[z]) and G(C[z−1]) of LG,

so we have C∗ ×G(C[z]),C∗ ×G(C[z−1]) ⊂ L̂G. Evaluation at z = 0 gives a homomorphism
C∗ ×G(C[z])→ G, and B+ is the preimage of the positive Borel subgroup of G. Similarly
B− ⊂ C∗×G(C[z−1]) is the preimage of the negative Borel subgroup of G under evaluation at

z =∞ [Kum02, p. 13.2.2]. The Cartan subgroup H̃ of L̃G splits as the product of the center

of L̃G and the Cartan subgroup H of G, embedded as constant maps (we write the Cartan

subgroup of an affine Kac-Moody group as H̃ to distinguish it from the Cartan subgroup of
G).

A faithful n-dimensional G-representation yields a closed embedding G →֒ Matn×n, hence
an inclusion LG →֒ Matn×n ⊗ C[z±1]. The subsets

LGm :=

{
A(z) =

m∑

k=−m

Ak
ijz

k : A(z) ∈ LG

}
⊂ Matn×n ⊗ C[z±1]
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are affine varieties, and the natural maps LGm →֒ LGm+1 are closed embeddings. This
defines an ind-variety structure on LG, which is independent of the choice of representation.

It is clear that under this ind-variety structure the evaluation maps LG→ G are regular;
the same cannot be said of the ind-variety structure LG inherits as a Kac-Moody group.
Our discussion of double Bruhat cells is based on the latter structure, but for integrable
systems we will consider functions pulled back along evaluation maps. Thus to ensure these
yield regular functions on double Bruhat cells we must verify the compatibility of the two
ind-variety structures. This is essentially well-known, but for convenience we include a proof.
We use LGpol to refer to LG with the ind-variety structure described in this section, and
LGKM to refer to the ind-variety structure described in Section 2.1.

Proposition 2.1.15. The ind-variety structures LGpol and LGKM are equivalent. That is,
the identity map is a biregular isomorphism between them.

Proof. We first show that the induced structures (U±)pol and (U±)KM are equivalent (note
that U± is manifestly a closed subgroup of LGpol). If w◦ is the longest element of the Weyl
group of G, U ′

−(w◦) and U−(w◦) are closed subgroups of LGpol, and Proposition 2.1.9 is clearly
true for (U±)pol. Thus showing the claim for U± reduces to showing it for U ′

±(w◦).
We now invoke the corresponding theorem about the affine GrassmannianX := LG/G(C[z]) =

L̃G/P , where P ⊂ L̃G is the parabolic subgroup corresponding to the subset {α1, . . . , αr} ⊂
{α0, . . . , αr} of simple affine roots. Like LG, X has two equivalent but a priori distinct
ind-variety structures [Kum02, p. 13.2.18]. First, it is a disjoint union of Schubert cells
Xw = B+ẇP/P , and is filtered by finite-dimensional projective varieties

Xn =
⋃

ℓ(w)≤n

Xw.

Alternatively, X can be written as an increasing union of closed subvarieties of finite-
dimensional Grassmannians. We refer the reader to [Kum02, p. 13.2.15] for the precise
construction, noting only that it is clear that LGpol acts regularly on X. In particular,

U ′
−(w◦)pol acts faithfully on the dense open subset of L̃G0/P, and U

′
−(w◦)pol ∼= G0/P ∼=

U ′
−(w◦)KM . The claim for U+ follows similarly.
In particular, the two ind-variety structures on U−×H×U+ coincide. By Proposition 2.1.6

this is isomorphic with an open subset LG0 ⊂ LGKM . But it is clear that LG0 is open in
LGpol, and that Proposition 2.1.6 holds for LGpol. Thus the two ind-variety structures on

L̃G0 are equivalent, and since the translates of L̃G0 form an open cover of LG the proposition
follows.

Remark 2.1.16. All but finitely many of the varieties used in either definition of the ind-
variety structure are singular, and unavoidably so: in [FGT08] it was shown that X and LG
cannot be written locally as an increasing union of smooth subvarieties. Thus LG is not a
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complex manifold, even though we have the following property: for any g ∈ LG the canonical
map

lim←− Sym∗(mi(g)/mi(g)
2)→ lim←−

∞⊕

n=0

mi(g)
n/mi(g)

n+1

is an isomorphism, where mi(g) ⊂ C[LGi] is the vanishing ideal of g [Kum02, p. 4.3.7].

Strongly Regular Functions and Generalized Minors

When G is infinite-dimensional, there are several natural algebras of functions one may
consider on it. Being an ind-variety, G is the increasing union of finite-dimensional varieties,
and the inverse limit of their coordinate rings is a complete topological algebra of functions
on G. For our purposes it is more practical to consider a proper subalgebra of this, the ring
of strongly regular functions.

Given a dominant integral weight λ ∈ P+ we have an irreducible highest-weight g-module
L(λ) and its graded dual L(λ)∨, both of which integrate to representations of G. Recall from
Section 2.1 that L(λ) is equipped with a nondegenerate bilinear form. For each v1, v2 ∈ L(λ),
we use this to define a function on G by taking

g 7→ 〈v1|g · v2〉.

We regard this as a matrix coefficient of the image of g in End L(λ).

Definition 2.1.17. ([KP83b]) The algebra of strongly regular functions, which we will
denote simply by C[G], is the algebra generated by all such matrix coefficients of irreducible
highest-weight representations.

Proposition 2.1.18. ([KP83b, Theorem 1]) The algebra C[G] is closed under the G × G
action

((g1, g2) · f)(g) = f(g−1
1 gg2).

Furthermore, as G×G-modules there is an isomorphism

C[G] ∼=
⊕

λ∈P+

(L(λ)∨ ⊗ L(λ)).

Definition 2.1.19. Given a fundamental weight ωi and a pair w,w′ ∈ W , the generalized
minor ∆ωi

w,w′ is the matrix coefficient

g 7→ 〈wvωi
|gw′vωi

〉,

where vωi
is a highest-weight vector of L(ωi). The principal minor ∆ωi := ∆ωi

e,e is characterized
by the fact that on the dense open set G0,

∆ωi : g = [g]−[g]0[g]+ 7→ [g]ωi

0 .
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The other minors can then be expressed in terms of ∆ωi by

∆ωi

w,w′(g) = ∆ωi(w−1gw′).

Proposition 2.1.20. The algebra C[G] is a unique factorization domain in which the gener-
alized minors are prime. Two minors ∆

ωj
u,v and ∆ωi

u′,v′ are relatively prime unless uωj = u′ωi

and vωj = v′ωi.

Proof. That C[G] is a unique factorization domain is Theorem 3 in [KP83b], and the fact
that the principal minors are prime is contained in the proof thereof. Since an arbitrary
generalized minor only differs from a principal minor by an automorphism of C[G], it is also
prime.

If uωj = u′ωi and vωj = v′ωi, it is clear from Definition 2.1.19 that the generalized minors
∆

ωj
u,v and ∆ωi

u′,v′ differ by a scalar multiple. On the other hand, if uωj 6= u′ωi or vωj 6= v′ωi,

it is clear from the decomposition in Proposition 3.2.12 that ∆
ωj
u,v and ∆ωi

u′,v′ are linearly
independent. But the only units of C[G] are the constant functions [KP83b, p. 2.1c], so the
proposition follows.

The identity established in the next proposition plays a key role in the cluster algebras
constructed on double Bruhat cells, providing the prototypical example of an exchange
relation. It is a direct generalization of [FZ99, p. 1.17], which in turn generalizes several
classical determinantal identities. The proof below follows that in [FZ99, p. 1.17], though
when the Cartan matrix does not have full rank and r < r̃ = dim(H) it is important to use
eq. (2.1.1) in interpreting the right-hand side of the identity.

Proposition 2.1.21. Suppose u, v ∈ W satisfy ℓ(usi) > ℓ(u) and ℓ(vsi) > ℓ(v) for some
1 ≤ i ≤ r. Then

∆ωi
u,v∆

ωi
usi,vsi

= ∆ωi
usi,v

∆ωi
u,vsi

+
∏

1≤k≤r̃
k 6=i

(∆ωk
u,v)

−Cki .

Proof. It suffices to consider u = v = e. In the case of arbitrary u, v, showing both sides are
equal when evaluated at some x ∈ G is then equivalent to showing both sides take the same
value at u−1xv in the identity case.

Let
f1 = ∆ωi

e,e∆
ωi
si,si
−∆ωi

si,e
∆ωi

e,si
, f2 =

∏

1≤k≤r̃
k 6=i

(∆ωk
e,e)

−Cki .

We claim that f1 and f2 satisfy the following conditions, where we consider C[G] as a G×G
representation as in Proposition 3.2.12:

1. They are invariant under N− ×N+.

2. They have weight (αi − 2ωi, 2ωi − αi).



CHAPTER 2. BACKGROUND ON LIE THEORY AND CLUSTER ALGEBRAS 13

3. They both evaluate to 1 at the identity.

These conditions uniquely determine a function on the dense subset G0, hence on all of G, so
together imply the proposition.

The fact that f2 satisfies the given conditions is essentially immediate; for (2) we must
recall the definition of Cij for r ≤ j ≤ r̃ in eq. (2.1.1). Likewise conditions (2) and (3) hold
straightforwardly for f1.

We claim then that f1 is invariant under right translations by N+. Clearly it is invariant
under right translation by xj(t) for j 6= i and t ∈ C, so we need only show that it is invariant
under right translations by xi(t).

It is immediate that ∆ωi
e,e(xxi(t)) = ∆ωi

e,e(x) and ∆ωi
s,e(xxi(t)) = ∆ωi

s,e(x). We claim further
that

∆ωi
e,si

(xxi(t)) = ∆ωi
e,si

(x) + t∆ωi
e,e(x), (2.1.22)

∆ωi
si,si

(xxi(t)) = ∆ωi
si,si

(x) + t∆ωi
si,e

(x). (2.1.23)

To see this, first note that for a highest-weight vector vωi
of L(ωi) we have

xi(t)si · vωi
= si · vωi

+ tvωi
. (2.1.24)

This is a simple computation in SL2 representation theory; when we decompose L(ωi) as a
ϕi(SL2)-representation, vωi

generates a copy of the standard SL2-representation. But now
eqs. (2.1.22) and (2.1.23) follow immediately in light of Definition 2.1.19, and we conclude
that

f1(xxi(t)) = ∆ωi
e,e(x)(∆

ωi
si,si

(x) + t∆ωi
si,e

(x))−∆ωi
si,e

(x)(∆ωi
e,si

(x) + t∆ωi
e,e(x))

= f1(x).

One easily checks that f1(x) = f1(σ(x
−1)), where σ is the automorphism of G induced

from eq. (2.1.2). From this the right N+-invariance of f1 implies its left N−-invariance, hence
condition (1) indeed holds for f1.

2.2 Cluster Algebras

In this section we fix some basic definitions and facts concerning cluster algebras and X -
coordinates. More extensive references include [FZ07; FG09; GHK13]. The only nonstandard
item is our discussion of amalgamation: while this is usually understood as a gluing operation
between seeds [FG06a], we will require self-amalgamations of individual indecomposable
seeds.

Definition 2.2.1. (Seeds) A seed Σ consists of:

1. An index set I = If ⊔ Iu with a decomposition into frozen and unfrozen indices.
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2. An I × I exchange matrix B with Bij ∈ Z unless i, j ∈ If .

3. Skew-symmetrizers di ∈ Z>0 such that Bijdj = Bjidi.

Definition 2.2.2. (Mutation) For any unfrozen index k the mutation of Σ at k is the
seed µk(Σ) defined as follows. It has the same index set, frozen and unfrozen subsets, and
skew-symmetrizers as Σ. Its exchange matrix µk(B) is given by

µk(B)ij =

{
−Bij i = k or j = k

Bij +
1
2
(|Bik|Bkj +Bik|Bkj|) i, j 6= k.

(2.2.3)

Two seeds Σ and Σ′ are said to be mutation equivalent if they are related by a finite
sequence of mutations. Note that the term seed is often taken to include the additional data
of an identification of the corresponding cluster variables with a transcendence basis of a
fixed function field.

Definition 2.2.4. (Cluster Variables and X -coordinates) To a seed Σ we associate two
Laurent polynomial rings C[A±1

i ] and C[X±1
i ], whose generators are indexed by I and referred

to as cluster variables and X -coordinates, respectively. These are the coordinate rings of two
algebraic tori, denoted by AΣ and XΣ. There is a canonical map pΣ : AΣ → XΣ defined by
p∗ΣXi =

∏
j∈I A

Bij

j . The torus XΣ has a canonical Poisson structure given by

{Xi, Xj} = BijdjXiXj.

While working over the complex numbers is sufficient for our purposes, it is not essential.
Also, what we refer to as X -coordinates are often called Y -variables elsewhere in the literature.

Remark 2.2.5. The tori AΣ and XΣ are dual in following sense: the ring C[X±1
i ] should be

identified with the group ring of the free abelian group ZI generated by I, and (when B is
skew-symmetric) C[A±1

i ] should be identified with the group ring of its dual lattice (ZI)∗. In
particular, the exchange matrix endows ZI with a skew-symmetric form, which is the origin
of the map pΣ and the Poisson structure on XΣ.

Definition 2.2.6. (Cluster Transformations) To each mutation µk of seeds is associated
a pair of rational maps between the corresponding tori, called cluster transformations and
also denoted by µk. These satisfy

AΣ AΣ′

XΣ XΣ′

µk

pΣ pΣ′

µk

,
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where Σ′ = µk(Σ), and are defined explicitly by2

µ∗
k(A

′
i) =





Ai i 6= k

A−1
k

( ∏

Bkj>0

A
Bkj

j +
∏

Bkj<0

A
−Bkj

j

)
i = k (2.2.7)

and

µ∗
k(X

′
i) =

{
XiX

[Bik]+
k (1 +Xk)

−Bik i 6= k

X−1
k i = k,

(2.2.8)

where [Bik]+ := max(0, Bik).

The new cluster variables A′
i could also be defined directly as elements of the function

field C(AΣ), omitting specific mention of the torus A′
Σ.

Definition 2.2.9. (Cluster Algebras and X -varieties) The A- and X -spaces A|Σ| and
X|Σ| are the schemes obtained from gluing together along cluster transformations all such
tori of seeds mutation equivalent to an initial seed Σ. The map pΣ extends to a map
p|Σ| : A|Σ| → X|Σ|, and the Poisson structure on XΣ extends to one on X|Σ|. The upper cluster
algebra A(Σ) is the algebra of regular functions on A|Σ|, or equivalently

A(Σ) := C[A|Σ|] =
⋂

Σ′∼Σ

C[AΣ′ ] ⊂ C(A|Σ|).

The cluster algebra A(Σ) is the subalgebra of the function field C(A|Σ|) generated by the
collection of all cluster variables of seeds mutation equivalent to Σ.

Although in general the A- and X -spaces associated with a seed can be defined over Z,
we will only consider the associated complex schemes in the remainder of the paper. In fact,
since the expressions in eqs. (2.2.7) and (2.2.8) are subtraction-free, one can consider the
associated P-points of these spaces for any semifield P. This leads in particular to the notion
of the positive real part of these spaces, but this will not play a direct role in the present
work.

A key property of cluster algebras is the Laurent phenomenon, summarized in the following
proposition.

Proposition 2.2.10. ([FZ02, p. 3.1]) For any seed Σ the cluster algebra A(Σ) is contained in
the upper cluster algebra A(Σ). In other words, the cluster variables of any seed are Laurent
polynomials in the cluster variables of any seed mutation equivalent to it.

A generic seed is mutation equivalent to infinitely many other seeds. However, the
following proposition guarantees that in favorable circumstances an upper cluster algebra is
already determined by a finite number of them.

2Note that our exchange matrix conventions are transpose to those of, for example, [FZ07].
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Proposition 2.2.11. ([BFZ05, p. 1.9]) Let Σ be a seed such that the submatrix of B formed
by its unfrozen rows has full rank. Then

A(Σ) = C[AΣ] ∩
⋂

k∈Iu

C[Aµk(Σ)].

In other words, the upper cluster algebra A(Σ) only depends on Σ and the seeds obtained
from it by a single mutation.

For seeds with frozen variables, the map p|Σ| : A|Σ| → X|Σ| admits a family of modifications
depending on an If × If matrix. This fact is crucial for the quantization of cluster algebras,
and in the present context we will it is also essential for understanding the cluster structures
associated with double Bruhat cells as in Proposition 4.2.28.

Proposition 2.2.12. Let M be an I × I matrix such that Mij = 0 unless both i and j are

frozen. Let Σ be any seed such that B̃ = B +M is an integer matrix, and let pM : AΣ → XΣ

be the regular map defined by

p∗M(Xi) =
∏

j∈I

A
B̃ij

j .

Then pM extends to a regular map pM : A|Σ| → X|Σ|.
3

Proof. First observe that if Σ′ is any seed mutation equivalent to Σ, its exchange matrix
B′ again has the property that B′ + M has integer entries. This follows from the fact
that the mutation rules eq. (2.2.3) can only change the exchange matrix entries by integer
values. In particular, the formula in the statement of the proposition yields a regular map
p′M : AΣ′ → XΣ′ when we replace B by B′.

To check that these descend to a map A|Σ| → X|Σ|, we must verify that they commute
with the cluster transformations. That is, if Σ′ is obtained from Σ by mutation at k, we want
to show that that there is a commutative diagram

AΣ AΣ′

XΣ XΣ′

µk

pM p′M

µk

3A special case of this is proved in [GSV03, Lemma 1.3].
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Note that p∗M(Xi) = p∗(Xi)
∏

j∈If
A

Mij

j . If i 6= k, we have

(µk ◦ pM)∗(X ′
i) = µ∗

k

(
p(X ′

i)
∏

j∈If

(A′
j)

Mij
)

= (µk ◦ p)
∗(X ′

i)
∏

j∈If

A
Mij

j

and

(pM ◦ µk)
∗(X ′

i) = p∗M
(
XiX

[Bik]+
k (1 +Xk)

−Bik
)

= (p ◦ µk)
∗(X ′

i)
∏

j∈I0

A
Mij

j ,

and the equality of these follows from their equality in the M = 0 case. On the other hand,
since p∗(Xk) = p∗M(Xk), it follows trivially that (µk ◦ pM)∗(X ′

k) = (pM ◦ µk)
∗(X ′

k), and the
proposition follows.

Definition 2.2.13. (σ-periods) Let µ̂ = µi1 ◦ · · · ◦ µik be a sequence of mutations of a seed
Σ and σ a permutation of I such that

µ̂(B)ij = Bσ(i)σ(j).

In other words, µ̂(Σ) and Σ are isomorphic after relabeling by σ. Then we say µ̂ is a σ-period
of Σ, or that µ̂ is a mutation-periodic sequence when σ and Σ are understood. To such a
mutation-periodic sequence is associated a pair of rational automorphisms of the tori AΣ and
XΣ, denoted by µ̂σ, which we refer to as cluster automorphisms and which are intertwined by
the map pΣ. More formally, these are defined by

µ̂∗
σ(Ai) = (µi1 ◦ · · · ◦ µik)

∗(Aσ−1(i)), µ̂∗
σ(Xi) = (µi1 ◦ · · · ◦ µik)

∗(Xσ−1(i)).

Definition 2.2.14. (Amalgamation) If Σ, Σ̃ are seeds and π : I ։ Ĩ a surjection of their

index sets, we say Σ̃ is the amalgamation of Σ along π if

1. For all distinct i, j ∈ I, π(i) = π(j) implies i, j ∈ If and Bij = 0.

2. For all k, ℓ ∈ Ĩ,

B̃kℓ =
∑

i,j:π(i)=k,
π(j)=ℓ

Bij.

3. π(Iu) ⊂ Ĩu.

4. di = dπ(i) for all i ∈ I.
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To such an amalgamation of seeds is associated an amalgamation map π : XΣ ։ XΣ̃, which is
Poisson and defined by

π∗(X̃j) =
∏

i:π(i)=j

Xi.

In particular, an amalgamation Σ̃ of Σ can be associated with any bijection ϕ : I1
∼
→ I2

between disjoint subsets of If such that Bi,ϕ(i) = 0 and di = dϕ(i) for all i ∈ I1. We set

Ĩ = I r I1, Ĩu = Iu, Ĩf = If r I1, defining the map π : I ։ Ĩ as the identity on I r I1
and ϕ on I1. The exchange matrix B̃ is then uniquely determined by the hypotheses of
Definition 2.2.14.

Remark 2.2.15. In the spirit of Remark 2.2.5, amalgamation should be understood as
deriving from an inclusion of lattices ZĨ ⊂ ZI, where for each i ∈ Ĩ we identify the generator
ei of ZĨ with the element

∑
π(j)=i ej of ZI.

Definition 2.2.14 is somewhat flexible about the relation between frozen and unfrozen
subsets of I and Ĩ, and in typical situations we may have π(i) be unfrozen though i is frozen.
It is also typically the case that Σ is a direct sum of two other seeds Σ1 and Σ2 (for the
obvious notion of direct sum), and the map ϕ identifies some frozen indices of Σ1 with frozen
indices of Σ2. However, our examples require the more general notion given here.

A crucial feature of amalgamations is that under certain mild conditions they commute
with cluster transformations:

Proposition 2.2.16. Suppose Σ̃ is the amalgamation of Σ along π : I ։ Ĩ, and that π
also satisfies the hypotheses of Definition 2.2.14 with respect to µk(Σ) and µk(Σ̃) for some

unfrozen index k. Then µk(Σ̃) is also the amalgamation of µk(Σ) along π, and the respective
amalgamation maps and cluster transformations commute:

XΣ XΣ′

XΣ̃ XΣ̃′ .

µk

π π

µk

Proof. For each i ∈ Ĩ, we must check that (π ◦ µk)
∗X ′

i = (µk ◦ π)
∗X ′

i. This is clear for i = k,
while for i 6= k we have

(π ◦ µk)
∗X ′

i =
∏

π(j)=i

(XjX
[Bjk]+
k (1 +Xk)

−Bjk)

(µk ◦ π)
∗X ′

i = (
∏

π(j)=i

Xj)X
[Bik]+
k (1 +Xk)

−Bik .
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Since Bik =
∑

π(j)=iBjk by assumption, the result follows if

∑

π(j)=i

[Bjk]+ = [
∑

π(j)=i

Bjk]+.

This in turn holds if Bjk and Bℓk are of the same sign whenever π(j) = π(k) = i. But if Bjk

and Bℓk were of opposite signs for some such j, ℓ, B′
jℓ would be nonzero, contradicting our

hypothesis about π.

When frozen variables of two distinct seeds are glued together by an amalgamation, the
assumption that π satisfies the needed hypotheses with respect to the mutated seeds always
holds. However, when Σ is not a direct sum this need not be the case. For example, if B is
the adjacency matrix of the quiver

1 2 3

then we can form an amalgamation by gluing the vertices 1 and 3 together. However, after
mutating the original quiver at vertex 2, we will have B′

13 6= 0, hence this is no longer an
admissible amalgamation.
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Chapter 3

Infinite-dimensional Poisson-Lie
Theory and Affine Integrable Systems

3.1 Introduction

The goals of this chapter are to set up a rigorous, working theory of Poisson-Lie structures
on ind-algebraic groups, treat the case of symmetrizable Kac-Moody groups within this
framework, and use this as a setting for the construction of integrable systems on symplectic
leaves of affine Lie groups.

The development of Poisson-Lie theory, that is, of Poisson structures compatible with a
group operation, accompanied the discovery of quantum groups in the context of quantum
integrable systems [Dri88]. The resulting subject witnessed a rich interplay between Poisson
geometry, the representation theory of quantum algebras, and exact solvability of statistical
and quantum systems. Though Poisson brackets on loop groups are often related to more
interesting physical models than those on finite-dimensional Lie groups, in practice they
are dealt with less rigorously as well. The literature on Poisson-Lie theory contains many
treatments of the foundations of the finite-dimensional case [KS96; CP94; RSTS94], generally
referred to without comment when infinite-dimensional examples are treated in applications.
While this is satisfactory for performing computations relevant to any given model, it is not
from the perspective of setting up a complete mathematical theory.

The sort of infinite-dimensional groups for which we aim to fill this gap are ind-algebraic
groups, geometrically the increasing unions of finite-dimensional algebraic varieties. These
include in particular the groups associated with Kac-Moody algebras of arbitrary type and
groups of algebraic loops into a simple Lie group. For these Kac-Moody groups we also
generalize the classification of their symplectic leaves by double Bruhat cells, well-known in
finite type.

Theorem. (3.2.7, 3.2.10, 3.2.13, 3.3.3) The completed coordinate ring of a symmetrizable
Kac-Moody group G is a topological Poisson algebra. Its symplectic leaves are classified by
the double Bruhat cells of G, which are smooth, finite-dimensional Poisson subvarieties.



CHAPTER 3. INFINITE-DIMENSIONAL POISSON-LIE THEORY AND AFFINE

INTEGRABLE SYSTEMS 21

We note that although the essential features of the finite-type case carry over completely
to the general case, there are fundamental geometric differences that demand careful consid-
eration. In particular, vector fields on ind-varieties can not in general be integrated, making
even the existence of symplectic leaves a nontrivial fact. Moreover, affine Kac-Moody groups,
our main examples, are known to be everywhere singular [FGT08], a pathology obviously
quite foreign to the finite-dimensional case and which indicates the care needed when passing
to infinite dimensions.

After developing these foundations, we describe a class of completely integrable Hamilto-
nian systems generalizing the relativistic periodic Toda lattice, introduced in [Rui90]. We

identify the phase space of this particular system with a double Bruhat cell of the A
(1)
n affine

Kac-Moody group, and its Hamiltonians with restrictions of invariant functions. This refines
the well-known observation that it admits a Lax form which is Hamiltonian with respect
to the Poisson-Lie bracket induced by the trigonometric r-matrix [Sur91]. A larger family
of systems can then be obtained by transporting the construction to other double Bruhat
cells and other groups. On a general double Bruhat cell the invariant functions will not
necessarily restrict to a maximal set of Poisson-commuting functions, but we show that a
sufficient condition for this is that the cell correspond to a pair of Coxeter elements in the
affine Weyl group. This construction generalizes that of [Hof+00], which treated semisimple
algebraic groups and where the term Coxeter-Toda lattice was introduced for the resulting
systems.

Theorem. (3.4.6) For an affine Kac-Moody group G and a Coxeter element c of the affine
Weyl group, the conjugation quotient Gc,c/H is equipped with a canonical integrable system, a
generalized relativistic periodic Toda lattice.

3.2 Ind-Groups and Poisson-Lie Theory

This section is devoted to foundational results on the Poisson-Lie theory of ind-algebraic
groups, and Kac-Moody groups in particular. Recall that a Poisson-Lie group is a Lie group
equipped with a Poisson structure such that the group operation G×G→ G is a Poisson
map; we refer to [KS96; CP94; RSTS94] for a detailed exposition in the finite-dimensional
case.

Standard Poisson-Lie Structure on SL2

We briefly review the standard Poisson structure on SL2; this is both a model for the general
case, and essential for the explicit computations we will perform in Section 3.4. The Lie
algebra sl2 has generators

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
,
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and an invariant form unique up to fixing the scalar d := 2
(H,H)

. If Ωd ∈ g ⊗ g is the
corresponding Casimir, we write Ωd = Ω+− + Ω0 + Ω−+, where Ω0 ∈ h⊗ h,Ω+− ∈ n+ ⊗ n−,
and Ω−+ ∈ n− ⊗ n+. We have the standard quasitriangular r-matrix is

r = Ω0 + 2Ω+− = d(
1

2
H ⊗H + 2X ⊗ Y ). (3.2.1)

That is, r is a solution of the classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0,

and its symmetric part is adjoint invariant [CP94, p. 2.1.11].
Trivializing the tangent bundle by right translations, we define a Poisson bivector whose

value at g ∈ SL2 is Adg(r)−r. The resulting tensor is skew-symmetric since the symmetric part
of r is invariant, and its compatibility with the group structure is immediate by construction.
Moreover, the Yang-Baxter equation implies the Jacobi identity for the corresponding Poisson
bracket [KS96, p. 4.2].

Given the parametrization

SL2 =

{(
A B
C D

)
: AD − BC = 1

}
,

the Poisson brackets of the coordinate functions are

{B,A} = dAB, {B,D} = −dBD, {B,C} = 0,

{C,A} = dAC, {C,D} = −dCD, {D,A} = 2dBC.

To notate the dependence of the bracket on d, we denote the corresponding Poisson algebraic
group by SL

(d)
2 .

Poisson Ind-Varieties

Our treatment of infinite-dimensional Poisson-Lie theory is based on the following definition;
for simplicity all ind-varieties are tacitly taken to be affine unless stated otherwise.

Definition 3.2.2. A Poisson ind-variety is an ind-variety X with a Poisson bracket on C[X],
continuous as a map C[X]⊗ C[X]→ C[X]. A Poisson map is a regular map of ind-varieties
which intertwines the Poisson brackets on their coordinate rings.

Whenever V = lim←−Vi and W = lim←−Wi are inverse limits of (discrete) vector spaces, we

have the completed tensor product V ⊗̂W := lim←−Vi ⊗Wi. For example, if X and Y are

ind-varieties, C[X]⊗̂C[Y ] is just the coordinate ring of X × Y . V ⊗W sits in V ⊗̂W as a
dense subspace with respect to its inverse limit topology, and whenever we refer to a topology
on V ⊗W (as in the preceding definition) we mean its subspace topology.
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Remark 3.2.3. The role of the inverse limit topology on V is to restrict our attention to
operations that can be defined through the Vi. A linear map φ : V → W is continuous if and
only if for each i and all k ≫ 0 there are linear maps φki : Vk → Wi which commute with
each other, the maps defining the inverse systems, and φ in the obvious ways (note that for
each i, φki is defined for k sufficiently large, but how large k must be depends on i). In other
words, taking the inverse limit is a full and faithful functor from the category of pro-vector
spaces indexed by N to the category of topological vector spaces. This allows us to go back
and forth between topological statements about V and purely algebraic statements about
the Vi. In particular, we have the following useful observation:

Lemma 3.2.4. Let φ : V → A and ψ : W → B be continuous linear maps between inverse
limits of discrete vector spaces (indexed by N). Then φ⊗ ψ extends continuously to a map
φ⊗̂ψ : V ⊗̂W → A⊗̂B of completed tensor products.

Proof. Since φ and ψ are continuous, they are determined by collections of maps {φki : Vk →
Ai | k ≫ 0} and {ψki : Wk → Bi | k ≫ 0} as above. But then for each i we have linear maps
φki ⊗ ψki : Vk ⊗Wk → Ai ⊗ Bi for k sufficiently large. These readily satisfy the necessary
compatibility requirements, hence yield a continuous linear map φ⊗̂ψ : V ⊗̂W → A⊗̂B.

Proposition 3.2.5. For any Poisson ind-varieties X and Y , X×Y has a canonical Poisson
structure.

Proof. The bracket on C[X] ⊗ C[Y ] ⊂ C[X × Y ] may be given by the usual formula {f ⊗
φ, g⊗ ψ}X×Y := {f, g}X ⊗ φψ + fg⊗ {φ, ψ}Y . The fact that this extends to all of C[X × Y ]
follows from Lemma 3.2.4 and the continuity of the brackets on X and Y .

Definition 3.2.6. A Poisson Ind-Group is an ind-algebraic group G which is a Poisson
ind-variety and whose group operation G×G→ G is Poisson.

As in the case of SL2, it will be convenient to define Poisson brackets implicitly by
providing a bivector field. However, the groups we are interested in need not be inductive
limits of smooth varieties (see Remark 2.1.16), so we must be careful in discussing their
tangent bundles. The following proposition guarantees that nonetheless the trivialized tangent
bundle behaves as expected.

Proposition 3.2.7. Let G be an ind-group and g its Lie algebra. There is a bijection between
continuous n-derivations of C[G] and regular maps G →

∧n
g (by n-derivation we mean a

skew-symmetric map C[G]⊗̂ . . . ⊗̂C[G]→ C[G] which is a derivation in each position). Given

a map K : G →
∧n

g, the corresponding n-derivation K̃ takes the functions f1, . . . , fn ∈ C[G]
to the function

K̃(f1, . . . , fn) : g 7→ 〈K(g)|deℓ
∗
gf1 ∧ · · · ∧ deℓ

∗
gfn〉.
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Proof. We prove the case n = 1, the higher rank case not being substantively different. We
first show that the regularity of K ensures that the stated formula takes regular functions to
regular functions, and that this assignment is continuous. Note that g is an ind-variety via its
filtration by the TeGi, and that there is a correspondence between regular maps K : G → g

and continuous linear maps K∗ : g∗ → C[G]. Thus given K we have a continuous linear
endomorphism of C[G] given by

K̃ := m ◦ (1⊗̂K∗) ◦ (1⊗̂de) ◦∆.

Here ∆ : C[G] → C[G]⊗̂C[G] is the coproduct on C[G] and m is the extension of the
multiplication map to C[G]⊗̂C[G]. We have implicitly used Lemma 3.2.4 and the fact that de
is continuous. This composition recovers the formula stated in the proposition when evaluated
on a function f ∈ C[G], and in particular expresses it as a manifestly continuous map from
C[G] to itself.

Conversely, given a continuous derivation K̃ of C[G], we consider the map K∗ : C[G]→
C[G] given by

K∗ := m ◦ (S⊗̂K̃) ◦∆,

where S is the antipode of C[G]. If me ⊂ C[G] is the maximal ideal of the identity, we
let the reader check that K∗ annihilates m2

e, hence descends to a continuous linear map
K∗ : g∗ = me/m

2
e → C[G]. As observed earlier, this data is equivalent to a regular map

K : G → g. Furthermore, from the defining property of the antipode it follows that this
construction and the one above are inverse to each other.

In particular, a Poisson structure on an ind-group G is determined by a Poisson bivecter
π : G →

∧2
g. Restating the compatibility of the bracket on G with the group operation in

terms of π we obtain the following definition.

Definition 3.2.8. A polyvector field K : G →
∧n

g is multiplicative if K(gh) = Adh−1K(g)+
K(h).

Remark 3.2.9. The derivative deK : g →
∧n

g of a multiplicative polyvector field is a
1-cocycle of g with values in

∧n
g. If π is a Poisson bivector, then deπ is a Lie cobracket

which makes g a Lie bialgebra. The dual of deπ is a continuous Lie bracket on g∗, which
is the essentially the Poisson bracket on C[G]. That is, the maximal ideal of the identity
me ⊂ C[G] is a Lie subalgebra and m2

e ⊂ me an ideal, hence there is an induced Lie bracket
on g∗. We will not need this observation, except in Section 3.3 where we describe an explicit
alternative description of the bracket on g∗ in the Kac-Moody case.

The Standard Poisson-Lie Structure of a Kac-Moody Group

We now define the standard Poisson-Lie structure on a symmetrizable Kac-Moody group G.
The construction follows the same lines as for SL2 (or any semisimple Lie group), but the
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general case presents certain technical problems absent when considering finite-dimensional
groups.

The invariant form on g lets us identify it G-equivariantly with a dense subspace of
g∗, hence g∗⊗̂g∗ may be viewed as a completion of g ⊗ g. We denote this by g⊗̂g, and
in particular there is an element Ω of g⊗̂g associated with the invariant form on g. We
write Ω as Ω+− + Ω0 + Ω−+, where Ω0 ∈ h ⊗ h, Ω+− ∈ n+⊗̂n−, and Ω−+ ∈ n−⊗̂n+. Then
r = Ω0 + 2Ω+− is a pseudoquasitriangular r-matrix [Dri88, Section 4]; that is, r satisfies
the classical Yang-Baxter equation and has adjoint-invariant symmetric part, but cannot be
written as a sum of finitely many simple tensors.

As in the finite-dimensional case, we want to define a Poisson bivector π : G →
∧2

g by
π(g) = Adg(r) − r. Now, however, r is not an element of g ⊗ g but rather a completion
thereof, so we must specifically prove that π(g) is actually an element of

∧2
g.

Theorem 3.2.10. The map g 7→ Adg(r)− r defines a bivector field π : G →
∧2

g.

Proof. First we check that Adg(r)− r ∈ g⊗ g for all g ∈ G. We begin with the case where g
lies in the SL2 subgroup Gα for some simple root α. First decompose g as a direct sum of
Gα-subrepresentations corresponding to α-root strings. That is, let

g[β] =
⊕

n∈Z

gβ+nα, g =
⊕

[β]∈Q/Zα

g[β],

where Q is the root lattice of G. Since α is simple, for any [β] we have either g[β] ⊂ n+,
g[β] ⊂ n−, or β ∈ Zα. Furthermore, the invariant form on g restricts to a nondegenerate
Gα-invariant pairing between g[β] and g[−β].

Now we can rewrite the r-matrix as

r = rα +
∑

[β]∈Q/Zα
β>0

r[β].

Here r[β] is the element of g[β]⊗g[−β] representing their Gα-invariant pairing and rα ∈ g[α]⊗g[α].
In particular, since r[β] is Gα-invariant, Adg(r[β]) = r[β] and

Adg(r)− r = Adg(r[α])− r[α].

The right hand side is manifestly finite-rank, hence Adg(r)− r ∈ g⊗ g for g ∈ Gα.
It is then straightforward to see that Adg(r) − r ∈ g ⊗ g whenever g is a product of

elements from simple root subgroups, and by Proposition 2.1.13 any g ∈ G ′ is of this form.
Moreover, since r lies in the zero weight space of g⊗̂g it is fixed by the Cartan subgroup H.
Since G is generated by H and G ′, it follows that Adg(r)− r ∈ g⊗ g for any g ∈ G. We have
Adg(r)− r ∈

∧2
g ⊂ g⊗ g because the symmetric part of r is adjoint invariant. Finally, the

fact that π is regular follows from the fact that the adjoint action of G on
∧2

g is regular.
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By Proposition 3.2.7, π defines a continuous skew-symmetric bracket on C[G] satisfying
the Leibniz rule. That this bracket satisfies the Jacobi identity is a consequence of the fact
that r is a solution of the classical Yang-Baxter equation. To make this precise for a general
Kac-Moody group we must first introduce a certain dense subalgebra of C[G].

Recall the embedding

G →֒ V =

dim(H)⊕

i=1

(L(ωi)⊕ L(ωi)
∨)

used to define the ind-variety structure on G. The weight grading of V expresses it as a direct
sum V =

⊕
α∈Q Vα of finite-dimensional subspaces.

Definition 3.2.11. The algebra of strongly regular functions on V is the symmetric algebra
of its graded dual,

C[V ]s.r. = Sym∗(
⊕

α∈Q

V ∗
α ).

The algebra C[G]s.r. of strongly regular functions on G is the image of C[V ]s.r. in C[G] under
the restriction map.1

Proposition 3.2.12. C[G]s.r. is a dense subalgebra of C[G]. For any f ∈ C[G]s.r. and
g ∈ G, ℓ∗g(f) is again strongly regular, and the differential def lies in the graded dual
g∨ :=

⊕
α∈Q g∗α ⊂ g∗.

Proof. The first and last statements are immediate. That ℓ∗g(f) is strongly regular follows
from the fact that the coadjoint action of G on the algebraic dual g∗ preserves the graded
dual of g.

Proposition 3.2.13. The bracket on C[G] defined by the bivector π(g) = Adg(r)− r satisfies
the Jacobi identity.

Proof. We recall the proof when G is a semisimple algebraic group [KS96], and then explain
the necessary adjustments in the general case. First, we write the bracket as a difference of
the two brackets {, }1 and {, }2 defined by the bivectors π1(g) = Adg(r) and π2(g) = r. Now
consider separately the expressions

{φ, {ψ, ξ}i}i + {ψ, {ξ, φ}i}i + {ξ, {φ, ψ}i}i

for i ∈ {1, 2} and φ, ψ ∈ C[G]. On writing these out explicitly in terms of r one sees that half
of the terms vanish by the Yang-Baxter equation, while the remaining terms are the same for
both {, }1 and {, }2. Thus they cancel when we take the difference of {, }1 and {, }2, yielding
the Jacobi identity for the original bracket.

1Our use of the term “strongly regular” differs from that in section 2 of [KP83b], but is consistent with
Section 4 of loc. cited.
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When G is infinite-dimensional, this argument fails since π1 and π2 are not finite-rank
bivectors in the sense of Proposition 3.2.7. However, in light of Proposition 3.2.12, they
do define biderivations {, }1 and {, }2 on the algebra of strongly regular functions on G.
Moreover, the Yang-Baxter equation implies the Jacobi identity for the bracket on C[G]s.r. by
an identical computation as in the finite-dimensional case. But since C[G]s.r. is dense in C[G]
and the bracket is continuous, the proposition follows.

We call the resulting Poisson structure on G the standard Poisson structure. It is essentially
characterized by the following proposition.

Proposition 3.2.14. G ′ and H are Poisson subgroups of G, the latter with the trivial Poisson
structure. For any simple root α, Gα is a Poisson subgroup isomorphic with SL

(dα)
2 .

Proof. We know that only the skew-symmetric part of r, which lies in n+⊗̂n−⊕n−⊗̂n+ ⊂ g′⊗̂g′,
contributes to the Poisson bivector, proving the claim for G ′. The statement about H follows
from the observation that r lies in the zero weight space of g⊗̂g, hence Adh(r)− r = 0 for
any h ∈ H.

In the proof of Theorem 3.2.10 we found that for g ∈ Gα, π(g) = Adg(r[α])− r[α], where
r[α] is the component of r in the Lie algebra of Gα. But from the definition of r and eq. (3.2.1),

it is clear that r[α] is precisely the r-matrix of SL
(dα)
2 , and the proposition follows.

Proposition 3.2.15. ([RSTS94, p. 12.24]) If φ, ψ ∈ C[G] are invariant under conjugation,
then

{φ, ψ} = 0.

Proof. At any g ∈ G we check that

{φ, ψ}(g) = 〈Adg(r)− r|dφ ∧ dψ〉

= 〈r|Ad∗
g(dφ ∧ dψ)− dφ ∧ dψ〉

= 0,

since Ad∗
g(dφ ∧ dψ) = dφ ∧ dψ by assumption.

3.3 Symplectic Leaves of Kac-Moody Groups and the

Double Bruhat Decomposition

In this section we show that the double Bruhat cells of a symmetrizable Kac-Moody group G
are Poisson subvarieties, and in particular obtain a decomposition of G into symplectic leaves.
Recall that the symplectic leaves of a finite-dimensional Poisson manifold are the orbits of its
piecewise Hamiltonian flows, have canonical symplectic structures, and define a generalized
foliation of G. The existence of symplectic leaves in G is nontrivial, since a vector field on a
general ind-variety need not have integral curves even if the ind-variety is smooth.
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We will obtain an explicit characterization of the symplectic leaves of G in Theorem 3.3.3,
but first we offer an elementary proof of their existence. We will use Propositions 2.1.12
and 3.3.12 from Section 4.2, but their proofs do not rely on the results of this section.

Proposition 3.3.1. The double Bruhat cells Gu,v are Poisson subvarieties of G.

Proof. In Proposition 3.3.12 we construct dominant Poisson map φi from a Poisson variety
to Gu,v. It follows that the closure of Gu,v in G is a Poisson subvariety: the kernel of φ∗

i in
C[G] is an open Poisson ideal, hence the closure of Gu,v is the (maximal) spectrum of the
Poisson algebra C[G]/kerφ∗

i . The closure of Gu,v is can be explicitly written as
⋃

u′≤u,v′≤v

Gu
′,v′ ,

and in particular Gu,v is the complement of a divisor in its closure. But such an open subset
of an affine Poisson variety inherits a canonical Poisson structure [Van01, p. 2.35].

Corollary 3.3.2. The group G is the disjoint union of finite-dimensional symplectic leaves.

Proof. Follows from Proposition 3.3.1 and the fact that double Bruhat cells are smooth and
finite-dimensional (Proposition 2.1.12).

We can get a more precise description of the symplectic leaves of G by introducing the
dual group G∨ and the double group D. These are ind-groups defined by

G∨ := {(b−, b+) ∈ B− × B+ | [b−]0 = [b+]
−1
0 }, D := G × G.

The dual group G∨ sits inside D in the obvious way, and we view G as a subgroup of D via
its diagonal embedding.

Theorem 3.3.3. The symplectic leaves of a symmetrizable Kac-Moody group G are the
connected components of its intersections with the double cosets of G∨ in D.

The proof of this theorem proceeds in several steps, closely following [LW90] in the
finite-dimensional case. The idea of the proof remains the same, but we indicate how some
arguments must be rephrased or altered to remain valid in the current setting. In particular,
one does not expect a priori to have such a theorem for arbitrary Poisson ind-groups, as
at several points we must appeal to particular properties of Kac-Moody groups and their
standard Poisson structure.

First note that the Lie algebra of G∨ is

g∨ = {(X−, X+) ∈ b− ⊕ b+ | [X−]0 = −[X+]0},

where [X±]0 denotes the component of X± in h. The Lie algebra d = g⊕ g of D is then the
direct sum of g∨ and g, the latter embedded diagonally. Moreover, g∨ and g are maximal
isotropic subalgebras under the nondegenerate invariant form

〈(X1, Y1), (X2, Y2)〉 = 〈X1, X2〉 − 〈Y1, Y2〉.
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In particular, this form identifies g∨ with the graded dual of g, justifying its notation.2

Given this identification, the bracket on d can be rewritten in terms of the coadjoint
actions of g and g∨ on each other. That is, if X1, X2 ∈ g and Y1, Y2 ∈ g∨, then

[(X1, Y1), (X2, Y2)] = ([X1, X2] + ad∗Y1
X2 − ad

∗
Y2
X1, [Y1, Y2] + ad∗X1

Y2 − ad
∗
X2
Y1). (3.3.4)

Definition 3.3.5. Let π be the standard Poisson bivector on G. For any µ ∈ g∗ we define
the (left) dressing vector field as

Xµ := ιµ(π).

Taken together these yield a continuous map X : g∗⊗̂C[G]→ C[G] which is a derivation in
the right component. Furthermore, one can recover the Poisson bivector π from X. Explicitly,
the map

m ◦ (X13⊗̂S2) ◦ (1⊗̂∆) : g∗⊗̂C[G]→ C[G]

factors through g∗⊗̂g∗ as in the proof of Proposition 3.2.7, and is dual to the map π : G →
∧2

g.
Here ∆ is the coproduct on C[G], S is the antipode, m is multiplication in C[G], and the
notation X13 means we apply X to the first and third terms of g∗⊗̂C[G]⊗̂C[G].

Lemma 3.3.6. Let K be a multiplicative polyvector field. (1) If X is a left-invariant vector
field, LXK is also left-invariant. Here LXK is the Lie derivative of K with respect to X.
(2) If de(K) = 0, then K is identically zero.

Proof. We take K to be a vector field, the higher rank case being similar.
(1) Left-invariance of X is equivalent to ∆ ◦X = (1⊗̂X) ◦∆, and multiplicativity of K is

equivalent to ∆ ◦K = (1⊗̂K) ◦∆+ (K⊗̂1) ◦∆. Then LXK is left-invariant by the following
equality of maps from C[G] to C[G]⊗̂C[G]:

∆ ◦ LXK = ∆ ◦ (X ◦K −K ◦X)

= (1⊗̂X) ◦ (K⊗̂1 + 1⊗̂K) ◦∆− (K⊗̂1 + 1⊗̂K) ◦ (1⊗̂X) ◦∆

= (1⊗̃LXK) ◦∆

(2) Since de(K) = 0, LXK|e = 0 for any left-invariant X. But LXK is itself left-invariant
by (1), hence is identically zero. In particular, since we can integrate the left-invariant
vector fields corresponding to the real root spaces, K is invariant under left translation by
the corresponding 1-parameter subgroups. Since G is generated by these subgroups and
H = exp(h), K is invariant under all left-translations. But K is multiplicative, hence K|e = 0
and K must then be identically zero.

2Though one can intrinsically define the Lie algebra structure on g∗ for an arbitrary Poisson ind-group
(Remark 3.2.9), one cannot expect the existence of a corresponding dual group in general, since Lie’s third
theorem fails in this generality.
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Proposition 3.3.7. The dressing fields Xµ satisfy the twisted multiplicativity condition

Xµ(gh) = Xµ(h) + Adh−1 [XAd
h−1(µ)

(g)],

and the derivative deXµ : g→ g is the coadjoint action ad∗
µ. Moreover, X : g∗⊗̂C[G]→ C[G]

is the only continuous derivation satisfying these properties.

Proof. Twisted multiplicativity of the dressing fields follows readily from the definition of
multiplicativity. Likewise, the fact that Xµ = ad∗

µ follows from unwinding the definition
of the bracket on g∗. We omit the calculations, which resemble those of Proposition 3.2.7
and Lemma 3.3.6.

Suppose Y : g∗⊗̂C[G]→ C[G] is a continuous derivation and satisfies the given properties.

In the same way that we can recover π from X, we recover a bivector field Ỹ from Y . The
twisted multiplicativity of Y is again equivalent to the multiplicativity of Ỹ , and deỸ = deπ
since the derivatives of X and Y coincide at the identity. The difference π − Ỹ is then
multiplicative bivector field whose derivative at the identity is zero. Then by Lemma 3.3.6
π − Ỹ is identically zero, hence X = Y .

Consider the left action of G∨ on D/G∨, and the induced action of g∨ by vector fields. Note
that the quotient of D/G∨ exists as an ind-variety; D/(B−×B+) is a product of opposite affine
Grassmannians, and D/G∨ is a torus bundle over it (compare with [Kum02, p. 7.2]). The
fibers of the projection from G to D/G∨ are the orbits of right multiplication by Γ := G ∩ G∨.
This intersection is a finite group, specifically the group of square roots of the identity in H.
The image of G in D/G∨ is open by the following proposition and the fact that the quotient
map G → G/B± is open [Kum02, p. 7.4.10].

Proposition 3.3.8. The image of the multiplication map G ×G∨ → D, which is the same as
the image of G × (B− ×B+)→ D, is the open set {(g, g′) | g−1g′ ∈ G0}. Here G0 is the image
of U− ×H × U+ in G as in Proposition 2.1.6. Similarly, the image of G∨ × G → D is the
open set {(g, g′) | g(g′)−1 ∈ G0}.

Proof. If (g, g′) = (kb−, kb+) for some k ∈ G, (b−, b+) ∈ G
∨, then g−1g′ = b−1

− b+ ∈ G0.
Conversely, if g−1g′ ∈ G0 choose u± ∈ U± and h ∈ H such that g−1g′ = u−h

2u+. Then in D
we have the factorization

(g, g′) = (gu−h, gu−h) · (h
−1u−1

− , hu+),

proving the first claim. The second then follows by taking the inverses of the two subsets
considered in the first statement.

In particular the map G → D/G∨ induces isomorphisms on the tangent spaces at every
point. Thus we can pull back vector fields on D/G∨ to vector fields on G.

Proposition 3.3.9. Pulling back the vector fields on D/G∨ corresponding to the infinitesimal
left action of g∨, we obtain exactly the dressing vector fields on G.
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Proof. We apply the uniqueness statement of Proposition 3.3.7. That these vector fields lin-
earize to the coadjoint action at the identity follows from eq. (3.3.4). Twisted multiplicativity
follows from differentiating the following version at the group level.

Consider the open set D0 = {(g, g′) | g−1g′, g(g′)−1 ∈ G0}. By Proposition 3.3.8, any
element of D0 can be written as d · g for some (d, g) ∈ G∨ × G. We can also factor it as
gd · dg for some (gd, dg) ∈ G × G∨, where gd and dg are uniquely defined up to right and left
multiplication by Γ, respectively. In particular, the (local) left action of G∨ on the image of
G in D/G∨ can be written ℓd : gG

∨ 7→ gdG∨. But now by considering an element of the form
ghd, where g, h ∈ G, we obtain the identity (g · h)d = gd · h(d

g). This equality must be taken
modulo the action of Γ. However, since Γ is finite it is strictly true in a neighborhood of
e ∈ G∨ in the analytic topology, and this is sufficient to obtain the corresponding statement
about the infinitesimal action of g∨ as in [LW90].

Proof of Theorem 3.3.3. The orbits of the action of B± on G/B± are Schubert cells, which in
particular are smooth finite-dimensional subvarieties. It follows straightforwardly that the
orbits of the action of G∨ on D/G∨ are also smooth finite-dimensional subvarieties, and since
G → D/G∨ is étale the same is true of the preimages of these orbits in G.

By Proposition 3.3.9, the tangent space to such a preimage at any g ∈ G is exactly the span
of the dressing vector fields at that point. Note that the span of the Xµ|g in TgG for µ ∈ g∨

is the same as the span of the Xµ|g with µ arbitrary, since this subspace is finite-dimensional
and g∨ is dense in g∗. Thus the connected components of the preimages of the G∨-orbits in
D/G∨ are symplectic leaves of G. But these are exactly the intersections of G with the double
cosets of G∨ in D.

The intersections of G with the double cosets of G∨ are characterized by the following
theorem. This was proved in the finite-dimensional case in [KZ02] and [Hof+00], and with
Theorem 3.3.3; the proofs given there apply verbatim in the general case.

Theorem 3.3.10. Given u, v ∈ W , let Hu,v ⊂ H be the subgroup of elements of the form
(u̇−1h−1u̇)(v̇−1hv̇), and let Su,v = {g ∈ Gu,v|[u̇−1]0v̇

−1[gv̇−1]0v̇ ∈ H
u,v}. Then the intersections

of Gu,v with the double cosets of G∨ in D are the subsets Su,v · h for h ∈ H. In particular,
the symplectic leaves of a fixed double Bruhat cell are isomorphic with one another.

Explicit Poisson Brackets on Double Bruhat Cells

Recall from Section 3.3 that the double Bruhat cell Gu,v is a Poisson subvariety of G. By
modifying the map xi of Definition 4.2.1, we now realize the symplectic leaves of Gu,v (more
precisely, their intersections with Gi) as reductions of a Hamiltonian torus action. In particular,
we obtain modified factorization coordinates along with explicit formulas for their Poisson
brackets. This analysis will be revisited from the point of view of cluster X -coordinates in
Section 4.3.
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First observe that SL
(d)
2 has two distinguished symplectic leaves

Sd
+ =

{(
A B
0 A−1

)
: A,B 6= 0

}
, Sd

− =

{(
D−1 0
C D

)
: C,D 6= 0

}
.

The Poisson brackets on Sd
+ and Sd

− are given by {B,A} = dAB and {D,C} = dCD,
respectively. Now define a symplectic variety

Si := S
|di1 |

ǫ(i1)
× · · · × S

|dim |

ǫ(im),

where ǫ(ij) is the sign of ij.
If Hk is the Cartan subgroup of Gαk

, we also define two tori

Hi := (H/H ′)×
∏

ni(k)=0

Hk, Ĥi :=
∏

ni(k) 6=0

H
ni(k)−1
k .

Here ni(k) is the total number of times the simple reflection sk appears in our reduced
expressions for u and v, that is,

ni(k) = #{j : |ij| = k, 1 ≤ j ≤ m}.

As before, H ′ = H ∩ G ′ is the subgroup of H generated by the coroots.

Definition 3.3.11. Let φi be the map given by

φi : Hi × Si → G
u,v, (a, gi1 , . . . , gim) 7→ a · φi1(gi1) · · ·φim(gim).

We can define a similar map for the derived subgroup G ′ by omitting the H/H ′ factor in the
definition of Hi.

Proposition 3.3.12. The map φi is Poisson, with Hi being given the trivial Poisson structure.
Its image is Gi and its fibers are the orbits of a simply transitive action of Ĥi.

Proof. The first assertion follows from Proposition 3.2.14. That the image of φi is Gi follows
from a straightforward comparison of the definitions of φi and xi. We describe the action of
Ĥi by considering each of the H

ni(k)−1
k factors individually. For each k let j1 < · · · < jni(k)

be the indices such that |ijn | = k. Then for any element thk
n of the nth Hk factor, where

1 ≤ n ≤ n(k)− 1, let

thk
n · (a, gi1 , . . . , gim) = (a, gi1 , . . . , gijn · t

hk
n , . . . , t

−hk
n · giℓ · t

hk
n , . . .

. . . , t−hk
n · gijn+1

, . . . , gim).

Here thk
n · giℓ · t

−hk
n refers to the conjugation action of φk(Hk) on φiℓ(S±).

In particular, φi induces an isomorphism between the invariant ring C[Hi × Si]
Ĥi and the

coordinate ring C[Gi]. Since we know the Poisson brackets of the coordinate functions on
Hi × Si, we obtain an explicit description of the Poisson structure of Gi.
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3.4 Integrable Systems via Affine Double Bruhat

Cells

We now turn to our motivating application of the abstract theory of the previous sections,
the construction of integrable systems on the reduced Coxeter double Bruhat cells of L̃G.

Affine Coxeter Double Bruhat Cells

In this section we specialize the discussion of Section 3.3 to the affine case G ′ ∼= L̃G, and
explicitly calculate the factorization coordinates and their Poisson brackets for a distinguished

class of double Bruhat cells. We moreover consider the quotient of L̃G
u,v

by the conjugation
action of H, laying the ground for our analysis of the Hamiltonians of the integrable systems
constructed in the next section.

Definition 3.4.1. If u and v are Coxeter elements of the affine Weyl group we say that

L̃G
u,v

is a Coxeter double Bruhat cell. Recall that w ∈ W is a Coxeter element if in some
(hence any) reduced expression for w each simple reflection appears exactly once.

We may write any reduced word for v as sσ(0) . . . sσ(r) for some permutation σ ∈ Sr+1, and
likewise any reduced word for u as sτ(0) . . . sτ(r) for some permutation τ . Given reduced words
for u and v, we will only explicitly write out the factorization coordinates for the unshuffled
double reduced word i = (sσ(0) . . . sσ(r)sτ(0) . . . sτ(r)). This will simplify our notation but still
let us perform the calculations needed in Section 3.4.

The map φi of Definition 3.3.11 now takes the form

φi : (gσ(0), . . . , gσ(r), g
′
τ(0), . . . , g

′
τ(r)) 7→

φσ(0)(gσ(0)) . . . φσ(r)(gσ(r))φτ(0)(g
′
τ(0)) . . . φτ(r)(g

′
τ(r)),

where

(gσ(0), . . . , gσ(r), g
′
τ(0), . . . , g

′
τ(r)) ∈ Si = S

dσ(0)

+ × · · · × S
dσ(r)

+ × S
dτ(0)
− × · · · × S

dτ(r)
− .

We will let Ai, Bi and Ci, Di denote the standard coordinates on Sdi
+ and Sdi

− , respectively.

Since u and v are Coxeter elements, the torus Ĥi is equal to
∏r

k=0Hk, and its action on
Si is given by

thk · (gσ(0), . . . , g
′
τ(r)) = (gσ(0), . . . , gk · t

hk , . . . , t−hk · gσ(r) · t
hk , t−hk · g′τ(0) · t

hk , . . .

. . . , t−hk · g′k, . . . , g
′
τ(r)).

To write this in coordinates we introduce the notation i <σ k to mean σ−1(i) < σ−1(k), or
simply that i appears to the left of k in the reduced word for v; likewise we define i <τ k.
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Then we have

thk : (Ai, Bi)→





(Ai, Bi) i <σ k

(tAi, t
−1Bi) i = k

(Ai, t
−CkiBi) i >σ k

, (Ci, Di)→





(Ci, t
CkiDi) i <τ k

(tCi, tDi) i = k

(Ci, Di) i >τ k

,

where Cki is the corresponding entry in the Cartan matrix of L̃G. If we let

Ti = AiD
−1
i , Vi = BiDi(

∏

k<σi

DCki

k ), Wi = (
∏

k>τ i

A−Cki

k )A−1
i Ci,

then
C[L̃Gi] ∼= C[Si]

Ĥi ∼= C[T±1
0 , V ±1

0 ,W±1
0 , . . . , T±1

r , V ±1
r ,W±1

r ].

In Section 3.4 we will consider the quotient of L̃G
u,v

by the adjoint action of H. This
is again a Poisson variety, since H acts by Poisson automorphisms. This is similar to the
reduced double Bruhat cells considered in [Zel00; YZ08], though they consider the quotient

by left multiplication rather than conjugation. We now derive coordinates on L̃G
u,v
/H along

with their Poisson brackets.
If hk ∈ h satisfies αi(h

k) = δi,k, then for k 6= 0 we have

th
k

: (Ti, Vi,Wi)→





(Ti, t
−θkVi, t

θkWi) i = 0

(Ti, tVi, t
−1Wi) i = k

(Ti, Vi,Wi) i 6= 0, k.

Now setting Si = ViWi and Q = V0(
∏

i 6=0 V
θi
i ), a straightforward calculation yields

C[L̃Gi/H] ∼= C[T±1
0 , S±1

0 , . . . , T±1
r , S±1

r , Q±1]. (3.4.2)

The Poisson structure is determined by the pairwise brackets of these generators; the nonzero
ones are exactly

{Si, Tk} = 2diSiTiδi,k, {Q, Tk} = dkθkQTk,

{Si, Sk} = 2dkCki([i >σ k >τ i]− [i >τ k >σ i])SiSk, (3.4.3)

{Q,Sk} =

(∑

i 6=k

θidkCki([i >σ k >τ i]− [i >τ k >σ i])

)
QSk.

Here [i >σ k >τ i] is equal to 1 if both i >σ k and k >τ i, and is equal to 0 otherwise (also
recall that θ0 = 1 by convention).

In particular, though the dimensions of the symplectic leaves of L̃G
u,v

depend on the
specific choice of u and v, our computations of the bracket on L̃Gi/H imply the following:

Proposition 3.4.4. The symplectic leaves of L̃Gi/H are of dimension 2r+2, and Q2(
∏

k S
−θk
k )

is a Casimir.
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Complete Integrability

We first recall the following definition:

Definition 3.4.5. A completely integrable Hamiltonian system on an affine Poisson variety
is a collection of Poisson-commuting functions H1, . . . , Hn whose associated Hamiltonian
vector fields are generically independent, and whose number is half the dimension of a
generic symplectic leaf (this is the maximum possible number given the independence
requirement).

Invariant functions on L̃G Poisson commute with each other by Proposition 3.2.15, and
we will construct such functions as follows. Any regular function on G can be pulled back
along the evaluation map L̃G × C∗ → G to a regular function on L̃G × C∗. Choosing a
coordinate z on C∗ identifies the coordinate ring of L̃G× C∗ with the set of regular maps
L̃G→ C[z±1]. If our original function on G is the character of a representation V , we refer

to the resulting map L̃G→ C[z±1] as the evaluation character of V . The coefficient of any

power of z in an evaluation character is then an invariant scalar function on L̃G.
Together, all such coefficients of evaluation characters provide an infinite collection of

pairwise Poisson-commuting functions on L̃G. Thus a natural strategy for constructing
integrable systems is to restrict these functions to the double Bruhat cells of L̃G. On a
general cell, however, it may be that too few of these functions remain independent to form
a maximal set of Poisson-commuting functions. Our main theorem provides a sufficient
condition for obtaining an integrable system this way, or more precisely after reducing by the
conjugation action of H.

Theorem 3.4.6. The reduced Coxeter double Bruhat cell L̃G
u,v
/H is the phase space of an

integrable system whose Hamiltonians H1, . . . , Hr+1 are coefficients of evaluation characters.
We take H1, . . . , Hr to be the constant coefficients of the evaluation characters of the r funda-
mental representations of G, and Hr+1 to be the z-linear coefficient of the evaluation character
of a certain representation V . This is the irreducible representation whose highest weight
is in the W -orbit of µ := −

∑
k 6=0(θk +

∑
j>σk

θjCkj)ωk, where the ωk are the fundamental
dominant weights of G and θ0 = 1.

Note that in the statement of the theorem we could have taken V to be any sufficiently
large representation. The given choice is essentially the minimal possible choice to ensure

that Hr+1 restricts nontrivially to L̃G
u,v
/H.

Proof. By Proposition 3.4.4 the symplectic leaves of L̃G
u,v
/H are (2r + 2)-dimensional, so

the stated functions will form an integrable system once we show that their Hamiltonian

vector fields remain independent when restricted to L̃G
u,v
/H. Since L̃Gi is dense in L̃G

u,v
it

suffices to consider their restrictions to L̃Gi/H, where we can use the explicit coordinates
given by eq. (3.4.2).
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First we show that Hr+1 is nonzero when restricted to L̃G
u,v
/H. We can compute the

evaluation character of V by decomposing the action of g with respect to a weight basis.
Specifically, let Vλ be the λ-weight space of V , πλ the projection of V onto Vλ given by the
weight space decomposition, and Hλ the regular function defined by Hλ(g) := trVλ

(πλ ◦ g).
Then Hr+1 =

∑
Hλ, where the sum runs over the nonzero weight spaces of V .

Recall that for any g ∈ L̃Gi we have the factorization

g = φσ(0)(gσ(0)) . . . φσ(r)(gσ(r))φτ(0)(g
′
τ(0)) . . . φτ(r)(g

′
τ(r)), (3.4.7)

where

gi =

(
Ai Bi

0 A−1
i

)
, g′i =

(
D−1

i 0
Ci Di

)
.

From Lemma 3.4.8 we conclude that the weight spaces in V of weight µ +
∑

k≥j θσ(k)ασ(k)

are nonzero for all j. From this and eq. (3.4.7) we see that for any v ∈ Vµ, the component
of φσ(j)(gj) . . . . . . φσ(r)(gr) · v of weight µ +

∑
k≥j θσ(k)ασ(k) is nonzero for all j. Since

sσ(0) . . . sσ(r)(µ) = µ, it follows that the z-linear term of Hµ contains a monomial whose Bi

components are exactly B0(
∏

i 6=0B
θi
i ). One can compute from the weight spaces involved

that this monomial does not depend on the Ai. By inspecting the generators of C[L̃Gi/H]
from eq. (3.4.2) we conclude that this monomial must be a scalar multiple of Q. In particular
Hµ can be written as a sum of scalar multiple of Qz and other terms not of this form. The
reader may check using eq. (3.4.7) that Hλ cannot contain any scalar multiple of Qz unless
λ = µ. In particular, the z-linear term of the evaluation character is nonzero, since we have
ruled out any cancellation of the Qz.

The independence of Hr+1 and the remaining Hamiltonians follows from the fact that the

restriction of Hr+1 to L̃Gi/H is linear in Q, while the other Hamiltonians do not depend
on Q. Indeed, suppose M is any monomial in the restriction of an evaluation character to
L̃Gi/H. It is straightforward to see that the power of z accompanying M is the difference of

the exponents of B0 and C0 in M . Since Q is the only generator of C[L̃Gi/H] whose powers
of B0 and C0 are distinct, it follows that the zk-term of an evaluation character has degree k
with respect to Q.

Finally, we claim that the Hamiltonians H1, . . . , Hr are algebraically independent. De-
compose each Hi as Ji +Ki, where Ji has degree zero with respect to the Si, and Ki is a
sum of monomials of nonzero degree in the Si. Since Hi is the restriction of a function on
L̃G, limBj ,Cj→0Hi exists for all j, so these monomials are in fact of positive degree in the Si.

We claim that the Ji are independent. The projection H̃ → H induces an inclusion C[H] ⊂

C[H̃], and we identify C[H̃] with C[T±1
0 , . . . , T±1

r ] in the obvious way. Then restricting the
characters of the i fundamental representations to H and including them in C[T±1

0 , . . . , T±1
r ],

we obtain exactly the functions Ji; it is a standard result that the restrictions of the
fundamental characters to H are independent.

Now suppose there is some polynomial relation among theHi. That is, for some polynomial
p in r variables we have p(H1, . . . , Hr) = 0. For any polynomial p we can consider the
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decomposition of p(H1, . . . , Hr) into a component of degree zero in the Si and a component
which depends nontrivially on the Si. But the Ki are all of strictly positive degree in the Si,
hence the degree zero part of p(H1, . . . , Hr) is exactly p(J1, . . . , Jr). Thus p(H1, . . . , Hr) = 0
implies p(J1, . . . , Jr) = 0, so p must be identically zero. Finally, one can check using eq. (3.4.3)
and Proposition 3.4.4 that for the Hamiltonians H1, . . . , Hr+1, their algebraic independence
implies the generic independence of their Hamiltonian vector fields.

Lemma 3.4.8. We have sσ(j) . . . sσ(r)(µ) = µ +
∑

k≥j θσ(k)ασ(k) for all j. Here s0, α0 are
understood as sθ, −θ rather than affine simple roots. In particular, sσ(0) . . . sσ(r)(µ) = µ, since
θ0α0 = −

∑
i 6=0 θiαi.

Proof of Lemma 3.4.8. We induct on j: assuming the statement for j + 1 we compute that

sσ(j) . . . sσ(r)(µ) = sσ(j)(µ+
∑

k>j

θσ(k)ασ(k))

= (µ+
∑

k>j

θσ(k)ασ(k))− 〈µ+
∑

k>j

θσ(k)ασ(k)|hσ(j)〉ασ(j)

= µ+
∑

k≥j

θσ(k)ασ(k)

For σ(j) 6= 0 the last equality follows from the definition of µ, while for σ(j) = 0 it follows
from calculating that:

〈µ+
∑

k>σ0

θkαk|h0〉 = 〈µ+
∑

k>σ0

θkαk| −
∑

k 6=0

dkθkhk〉

=
∑

k 6=0

dkθk(θk +
∑

j>σk

θjCkj)−
∑

k 6=0
j>σ0

dkθkθjCkj

=
∑

k 6=0

dkθk(θk +
∑

j 6=0
j>σk

θjCkj) +
∑

k<σ0

dkθkCk0 −
∑

k 6=0
j>σ0

dkθkθjCkj

=
1

2

∑

j,k 6=0

dkθjθkCkj −
∑

j 6=0
k<σ0

dkθjθkCkj −
∑

k 6=0
j>σ0

dkθkθjCkj

= −1.

Here we use the fact that
∑

j,k 6=0 dkθjθkCkj = 〈θ|hθ〉 = 2, Ck0 = −
∑

j 6=0 θjCkj, and Ckk =
2.

Remark 3.4.9. Even for double Bruhat cells on which there are too few independent
coefficient functions to obtain an integrable system, it was shown in [Res03] that in the
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finite-dimensional case one obtains superintegrable systems. This is a stronger statement
than simply having a collection of Poisson-commuting functions. In particular, the dynamics
are restricted to isotropic analogues of Liouville tori. One expects this to hold in the affine
case as well, but we do not pursue this here.

The Relativistic Periodic Toda System

We now show that the relativistic periodic Toda system of [Rui90] can be realized (up to

symplectic reduction) as an affine Coxeter-Toda system of type A
(1)
n for a natural choice of

Coxeter elements. In canonical coordinates pk, qk this system corresponds to the Hamiltonian

m∑

k=0

ehpk(1 + h2exp(qk+1 − qk)), (3.4.10)

where h is a nonzero parameter and we impose the periodic boundary conditions pk+m+1 = pk,
qk+m+1 = qk [Sur91]. For now we consider the complex form where pk and qk take values in C.

Consider the double Bruhat cell of L̃SLn with u and v both equal to the element
s0s1 · · · sn, where the simple roots of SLn are numbered in the usual way. We note that from
the computations in Section 3.4 it follows that the symplectic leaves of this cell are already
(2r+2)-dimensional, so the corresponding Coxeter-Toda system is integrable before reduction
by H.

If H1 ∈ C[(L̃SLn)i] is the Hamiltonian obtained from the constant term of the character
of the defining representation of SLn, a simple calculation yields that

H1 =
n∑

i=0

TiT
−1
i−1(1 + Si), (3.4.11)

where T−1 and S−1 are read as Tn and Sn.
To connect this with the relativistic Toda system, we introduce auxiliary variables

c0, . . . , cn, d0, . . . , dn, on which we define a Poisson structure by setting

{ck, dk} = 2ckdk, {ck, dk+1} = −2ckdk+1, {ck, ck+1} = −2ckck+1,

with all other brackets among the generators equal to zero (here dn+1 and cn+1 are understood
as d0 and c0). The algebra C[c±1

0 , d±1
0 , . . . , c±1

n , d±1
n ] is then the coordinate ring of a (2n+ 2)-

dimensional Poisson torus with 2n-dimensional symplectic leaves.

Now observe that this Poisson variety can be obtained as a reduction of both (L̃SLn)i
and the phase space of the relativistic Toda system (for m = n and h = 2). That is, we have
surjective Poisson maps given by

ci 7→ SiTiT
−1
i−1, di 7→ TiT

−1
i−1 and ci 7→ 4e2pi−qi+qi+1 , di 7→ e2pi .

Moreover, the following proposition is clear from eqs. (3.4.10) and (3.4.11):
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Proposition 3.4.12. The Hamiltonian

H1 =
n∑

i=0

ci + di

pulls back to the Hamiltonians of the relativistic Toda and Coxeter-Toda systems under the
maps given above, hence defines a Hamiltonian system which is a common reduction of these
two integrable systems.

Finally, we recall that the relativistic Toda system is usually defined on the real phase
space with canonical coordinates pk, qk. Because of the exponentials in the Hamiltonian, the

corresponding real slice of the Coxeter-Toda phase space is the subset of (L̃SLn)i on which
the factorization coordinates take positive real values. This totally positive part of the double
Bruhat cell has many interesting combinatorial properties and was the principal motivation
for [FZ99]. Thus in the present context we find that total positivity arises naturally when we
compare our construction with the usual real form of the relativistic Toda system.
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Chapter 4

Cluster Duality and Kac-Moody
Groups

4.1 Introduction

The goals of this chapter are to exhibit the Chamber Ansatz of [FZ99] as an example of
duality between cluster varieties, and to extend the construction of cluster structures on
double Bruhat cells of algebraic groups to the setting of symmetrizable Kac-Moody groups.

The dsicovery of cluster algebras by Fomin and Zelevinsky was precipitated in part by their
analysis of the identities satisfied by generalized minors encountered in the study of double
Bruhat cells [FZ99]. These minors were used to write explicit formulas for the inverses of
certain birational parametrizations of these cells, generalizing the Chamber Ansatz previously
introduced in the context of unipotent cells [BFZ96; BZ97]. After the axiomatization of
cluster algebras in [FZ02], these generalized minors were reinterpreted as cluster variables in
an upper cluster algebra structure on the coordinate ring of the double Bruhat cell [BFZ05].

Soon after [FZ02] it was discovered that the combinatorial data encoding a cluster
algebra encodes a second, dual type of algebraic structure, variously called coefficients or
Y -variables [FZ07], τ -coordinates [GSV03], and X -coordinates [FG09]. The two structures
may be regarded as a dual pair of varieties covered by toric charts and connected by a regular
map, which in a precise sense is a geometrization of the natural map from a lattice with a
skew-symmetric form to its dual. Concrete instances of this map include the projection from
decorated Teichmüller space to Teichmüller space [FG07] and the transformation of T -system
solutions to corresponding Y -system solutions [KNS11]. In [FG06a] a class of X -coordinates
were constructed on the double Bruhat cells of the adjoint form of a semisimple algebraic
group. These are given by another family of birational parametrizations of the cell, related to
those studied in [FZ99] but defined in terms of coweight subgroups rather than one-parameter
unipotent subgroups. However, the relationship between these X -coordinates and the cluster
variables of [BFZ05] was not studied explicitly.

Our first main result is to demonstrate that the generalized Chamber Ansatz of [FZ99],
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when expressed in terms of the coweight parametrization of a double Bruhat cell, is in fact
an instance of the map between dual cluster varieties. In particular, this change of variables
turns the initially opaque formulas of [FZ99] into ones whose form is completely intuitive from
the perspective of the general theory. Moreover, we prove this in the setting of an arbitrary
symmetrizable Kac-Moody group, generalizing along the way many previous results of [FZ99;
BFZ05; FG06a] on the double Bruhat cells of semisimple algebraic groups. In particular, we
show that the coordinate rings of all such double Bruhat cells are upper cluster algebras,
verifying a conjecture of [BFZ05].

Theorem. (4.3.2) The double Bruhat cells Gu,v, Guv
Ad of a symmetrizable Kac-Moody group

and its adjoint form have the structure of a dual pair of cluster varieties. This identifies the
twist map of [FZ99] and its infinite-dimensional generalization with the natural map between
dual cluster varieties, up to the addition of nondegenerate terms intertwining frozen variables.
The Poisson structure on Guv

Ad inherited from the standard r-matrix Poisson structure of
Section 3.2 coincides with the canonical cluster Poisson structure.

Whereas cluster variables are motivated by the theory of canonical bases, X -coordinates
are more natural from the perspective of Poisson geometry. In particular, an exchange matrix
endows the corresponding X -coordinates with a canonical Poisson bracket, which in the
case of double Bruhat cells coincides with that induced by the standard Poisson structure
on the group. The characters of the group restrict to Poisson-commuting functions on the
double Bruhat cell, and in some cases form a completely integrable system [Hof+00; Res03].
Many interesting examples come from non-unipotent cells in affine Kac-Moody groups (as
in Section 3.4), and this is one of our main motivations for studying double Bruhat cells
in this generality. Moreover, this context calls specific attention to role of the coweight
parametrization, in that the resulting X -coordinates provide the link between these systems
and those constructed from the dimer partition function of a bipartite torus graph [FM13;
GK11].

4.2 Coordinates on Double Bruhat Cells

When G is a semisimple algebraic group, each double Bruhat cell Gu,v is endowed with several
natural families of coordinate systems. To any double reduced word for (u, v) is associated
a parametrization of Gu,v by one-parameter simple root subgroups, the definition of which
is motivated by the theory of total positivity [FZ99]. In [FG06a], a modified version of this
parametrization was introduced on the adjoint form of G using coweight subgroups; the
resulting coordinates are convenient for working with the standard Poisson bracket, and
transform as cluster X -coordinates as the double reduced word is varied.

Explicitly describing the inverse maps to these parametrizations amounts to solving certain
factorization problems in the group. In the case of one-parameter simple root subgroups the
solution was found in terms of twisted generalized minors in [FZ99]. In Section 4.2 we extend
this result to the setting of symmetrizable Kac-Moody groups, after generalizing the various
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coordinates as necessary in Section 4.2. In Section 4.2 we use this to solve the corresponding
factorization problem for the coweight parametrization. In the process we will directly recover
the entries of the exchange matrix defined in [BFZ05].

Double Reduced Words and Parametrizations

Let G be a symmetrizable Kac-Moody group and Gu,v a fixed double Bruhat cell. A double
reduced word i = (i1, . . . , im) for (u, v) is a shuffle of a reduced word for u written in the
alphabet {−1, . . . ,−r} and a reduced word for v written in the alphabet {1, . . . , r}.

Definition 4.2.1. Let i be a double reduced word for (u, v), and set m = ℓ(u) + ℓ(v). Let
Ti denote the complex torus (C∗)m+r̃ with coordinates t1, . . . , tm+r̃. Then we have a map
xi : Ti → G given by

xi : (ti, . . . , tm+r̃) 7→ xi1(t1) · · · xim(tm)t
α∨
1

m+1 · · · t
α∨
r̃

m+r̃.

Here xi(t) and x−i(t) denote the one-parameter subgroups corresponding to αi and −αi,
respectively. When G is an algebraic group this was defined in [FZ99], where the following
result was also proved.

Proposition 4.2.2. The map xi is an open immersion from Ti to G
u,v.

Proof. First we show that the image of xi is contained in Gu,v. For each 1 ≤ i ≤ r, we have
xi(t) ∈ B+ and x−i(t) ∈ B+siB+. Thus if k1 < · · · < kℓ(u) ⊂ {1, . . . ,m} are the indices of the
negative entries in i,

xi(t1, . . . , tm+r̃) ∈ B+ · · · B+sik1B+ · · · B+sikℓ(u)B+ · · · B+.

Recall that for w,w′ ∈ W ,

B+wB+ · B+w
′B+ = B+ww

′B+

whenever ℓ(ww′) = ℓ(w) + ℓ(w′) [Kum02, p. 5.1.3]. Thus in particular xi(t1, . . . , tm+r̃) ∈
B+uB+, and by the same argument xi(t1, . . . , tm+r̃) ∈ B−vB−.

Suppose that
xi(t1, . . . , tm+r̃) = xi(t

′
1, . . . , t

′
m+r̃)

but (t1, . . . , tm+r̃) 6= (t′1, . . . , t
′
m+r̃), and let k be the smallest index such that tk 6= t′k. If

k > m this is a contradiction, since an element of H factors uniquely as a product of coroot
subgroups.

On the other hand, if k ≤ m, then i′ := (ik, . . . , im) is a double reduced word for some
(u′, v′), and xi′(tk, . . . , tm+r̃) = xi′(t

′
k, . . . , t

′
m+r̃). Multiplying both sides on the left by xik(−t

′
k),

we obtain
xi′(tk − t

′
k, . . . , tm+r̃) = xi′′(t

′
k+1, . . . , t

′
m+r̃),
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where i′′ := (ik+1, . . . , im). But by the first part of the proposition the left and right sides lie
in different double Bruhat cells, hence by contradiction xi must be injective. But an injective
regular map between smooth complex varieties of the same dimension is an open immersion,
and the proposition follows.

A closely related family of parametrizations was introduced in [FG06a] for semisimple
algebraic groups. Whereas so far we have taken G to be simply-connected, to describe these
X -coordinates we must consider its adjoint version. When the Cartan matrix is not of full
rank and the center of G is positive-dimensional, we will abuse terminology and use GAd to
denote a variant of the adjoint group.

Recall from Section 2.1 that the fundamental weight basis of P induces a dual basis of
the cocharacter lattice Hom(C∗, H). We denote it by α∨

1 , . . . , α
∨
r̃ since the first r are exactly

the coroots of G. In parallel with this we define elements αr+1, . . . , αr̃ of P by

αi = D
r∑

j=1

d−1
j Cijωj,

where D is the least common integer multiple of d1, . . . , dr. Then ⊕1≤i≤r̃Zαi is a full rank
sublattice of P , and its kernel {h ∈ H|hαi = 1, 1 ≤ i ≤ r̃} is a discrete subgroup of the center
of G. We let GAd denote the quotient of G by this discrete subgroup. Of course, if C has full
rank this is exactly the adjoint form of G.

If HAd is the image of H in GAd, the character lattice of HAd is canonically isomorphic
with ⊕1≤i≤r̃Zαi. In particular, the cocharacter lattice of HAd inherits a dual basis ω∨

1 , . . . , ω
∨
r̃

of fundamental coweights such that 〈αi|ω
∨
j 〉 = δi,j for 1 ≤ i, j ≤ r̃. We will denote elements

of the corresponding one-parameter subgroups of HAd by tω
∨
i , where t ∈ C∗; in other words,

tω
∨
i is defined so that

(tω
∨
i )αj = tδij .

We can now define Cij := 〈αj|α
∨
i 〉 for all 1 ≤ i, j ≤ r̃. The definitions of αi for i > r are

chosen exactly to obtain the following proposition, which the reader may easily verify.

Proposition 4.2.3. The r̃ × r̃ integer matrix with entries Cij is nondegenerate and sym-
metrizable (with di = D for i > r). Moreover, the coweights and coroots are related by

α∨
i =

r̃∑

j=1

Cijω
∨
j .

Example 4.2.4. Let G be the untwisted affine Kac-Moody group corresponding to a simply-
connected simple algebraic group G̊. That is, G is the semidirect product of C∗ and the
universal central extension of the group of regular maps from C∗ to G̊. Then the center Z(G̊)
of G̊ sits inside G as constant maps, and we may choose the fundamental coweights so that
GAd = G/Z(G̊).
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Definition 4.2.5. Let i = (i1, . . . , im) be a double reduced word for (u, v), and let I denote
the index set I = {−r̃, . . . ,−1} ∪ {1, . . . ,m}. Let Xi denote the torus (C

∗)I with coordinates
{Xi}i∈I . We will write Ei := xi(1) for i ∈ {±1, . . . ,±r}. Then we have a map xi : Xi → Gu,v

Ad

given by

xi : (X−r̃, . . . , Xm) 7→ X
ω∨
r̃

−r̃ · · ·X
ω∨
1

−1Ei1X
ω∨
|i1|

1 · · ·EijX
ω∨
|ij |

j · · ·EimX
ω∨
|im|

m .

Though we have also used xi to denote the map of Definition 4.2.1, it will always be clear
from the context which we mean. The following proposition may be deduced straightforwardly
from Theorem 5.2.8.

Proposition 4.2.6. The map xi : Xi → Gu,v
Ad is an open immersion. Moreover, the restriction

of the quotient map πG : Gu,v → Gu,v
Ad to Ti is a finite covering of Xi.

In particular, the ti and Xi may be regarded as implicitly defined rational coordinates on
Gu,v and Gu,v

Ad . In [FZ99], the former coordinates were explicitly described in the semisimple
case in terms of a certain family of generalized minors whose definition we now recall.

Given an index 1 ≤ k ≤ m and a double reduced word i, we define two Weyl group
elements

u<k := s
1
2
(1−ǫ1)

i1
· · · s

1
2
(1−ǫ(k−1))

i(k−1)
, v>k := s

1
2
(ǫn+1)

in
· · · s

1
2
(ǫ(k+1)+1)

ik+1
,

where ǫk is equal to 1 if ik > 0 and −1 if ik < 0. In short, u<k is the part of the reduced word
for u whose indices in i are less than k, and v>k is the inverse of the part of the reduced word
for v whose indices in i are greater than k. For purposes of the following definition, we will
also set v>k = v−1 if k < 0.

Definition 4.2.7. If i = (i1, . . . , im) is a double reduced word for (u, v), let I denote the
index set {−r̃, . . . ,−1}∪{1, . . . ,m} and let ik = k for k < 0. Then to each k ∈ I we associate
a generalized minor

Ak,i := ∆
ω|ik|
u≤k,v>k .

When the choice of double reduced word is clear we will abbreviate this to Ak.

Remark 4.2.8. One may define the postive part Gu,v
>0 of Gu,v as the image of Rm+r̃

>0 ⊂ Ti in
Gu,v; when G is a semisimple algebraic group this is an important object in the theory of
total positivity, the study of which motivated the work [FZ99]. Though total positivity will
not play a direct role in the present article, we note in passing that the above definition of
Gu,v

>0 agrees with the analogous definition in terms of the coweight parametrization. That is,
if g ∈ Gu,v

>0 it follows straightforwardly that πG(g) ∈ G
u,v
Ad is in the image of Rm+r̃

>0 ⊂ Xi.
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The Twist Isomorphism

To precisely describe the relationships among the various coordinates introduced in Section 4.2,
we will require a certain isomorphism of inverse double Bruhat cells, called the twist map
in [FZ99]. In this section we recall its key properties, which extend readily to the setting of
Kac-Moody groups.

Definition 4.2.9. We write x 7→ xθ for the automorphism of G which acts as follows on the
Cartan subgroup and Chevalley generators:

aθ = a−1 (a ∈ H), xi(t)
θ = x−i(t) (1 ≤ i ≤ r).

Definition 4.2.10. For any u, v ∈ W , the twist map ζu,v : Gu,v → Gu−1,v−1
is defined by

ζu,v : x 7→
(
[u−1x]−1

− u−1xv−1[xv−1]−1
+

)θ
. (4.2.11)

Proposition 4.2.12. The twist map ζu,v is an isomorphism of Gu,v and Gu−1,v−1
whose

inverse is ζu
−1,v−1

.

Proof. That ζu,v is well-defined on Gu,v follows from Corollary 2.1.11. To see that x′ =
ζu,v(x) ∈ B−v̇

−1B−, we simplify eq. (4.2.11) as

x′ =
(
[u−1x]0[u

−1x]+y
−1
−

)θ
v−1 ∈ G0v

−1,

where y− = π−(x) as in Corollary 2.1.11. In particular,

[x′v]+ = (y−1
− )θ ∈ N−(v)

θ = N+(v
−1), (4.2.13)

hence x′ ∈ B−v̇
−1B−. Similarly one can see that

[ux′]− = (y−1
+ )θ ∈ N−(u

−1), (4.2.14)

hence x′ ∈ B+u̇
−1B+. But now the fact that ζu,v and ζu

−1,v−1
are inverse to each other

follows from plugging our expressions for [x′v]+ and [ux′]− into the definition of ζu
−1,v−1

and
simplifying.

Proposition 4.2.15. The twist map ζu,v restricts to an isomorphism of the open sets Gu,v
0

and Gu−1,v−1

0 . Moreover, if x ∈ Gu,v
0 , x′ = ζu,v(x), we have

[x′]0 = [u−1x]−1
0 [x]0[xv−1]−1

0 . (4.2.16)
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Proof. We can rewrite eq. (4.2.11) as

x′ =
(
[u−1x]0[u

−1x]+x
−1[xv−1]−[xv−1]0

)θ
,

and the proposition follows from taking the Cartan part of each side.

If w = si1 · · · siℓ(w)
is a reduced word for w ∈ W , we define Weyl group elements

w<k := si1 · · · sik−1
, w>k := siℓ(w)

· · · sik ,

and similarly w≤k, w≥k.

Proposition 4.2.17. If x ∈ Gu,v
0 , x′ = ζu,v(x), and 1 ≤ j ≤ r̃,

∆ωj
v>k,e

(y−) =
∆

ωj
e,v≤k(x

′)

∆
ωj
e,v(x′)

, ∆ωj
e,u<k

(y+) =
∆

ωj
u≥k,e(x

′)

∆
ωj

u−1,e(x
′)
.

Proof. First we claim that if y± = π±(x) and y
′
± = π±(x

′), then

y′+ = u
−1
(y−1

+ )θu, y′− = v(y−1
− )θv−1.

This follows straightforwardly from eq. (4.2.13) and eq. (4.2.14).
We can use these identities to write

∆ωj
v>k,e

(y−) = ∆ωj(v≤k
−1
vy−) = ∆ωj(v≤k

−1
(y

′−1
− )θv).

One can check that ∆ωj((g−1)θ) = ∆ωj(g) for all g ∈ G, hence

∆ωj(v≤k
−1
(y

′−1
− )θv) = ∆ωj(v−1y′−v≤k).

By Corollary 2.1.11, x′ = b−v
−1y′− for some b− ∈ B−. Then

∆ωj(v−1y′−v≤k) = ∆ωj(b−1
− x′v≤k) = [b−]

−ωj

0 ∆ωj(x′v≤k).

Now since v−1y′−v ∈ N+,

∆ωj
e,v(x

′) = ∆ωj(b−v
−1y′−v) = [b−]

ωj

0 .

But then

[b−]
−ωj

0 ∆ωj(x′v≤k) =
∆

ωj
e,v≤k(x

′)

∆
ωj
e,v(x′)

,

proving the first part of the proposition. The remaining statement then follows by essentially
the same argument.
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Factorization in Unipotent Groups

In Theorem 4.2.24 we derive expressions for the ti as Laurent monomials in the twists of the
Ai, generalizing the main result of [FZ99] to the Kac-Moody setting. The strategy of the
proof is the same as in the finite-dimensional case. We build up to the main theorem by
solving a series of more elementary factorization problems, starting with the factorization of
the unipotent subgroup N−(w) as a product of one-parameter subgroups. This in turn lets
us solve the factorization problem for the unipotent cell Nw

+ := N+ ∩ B−ẇB−. From here
we can extract the solution for a general double Bruhat cell by reducing to the case of an
“unmixed” double reduced word.

For w ∈ W , recall the unipotent group N−(w) = N− ∩ ẇ
−1N+ẇ and fix a reduced word

w = si1 · · · sin . For short we will write

wk := w≥k = sin · · · sik .

Now define one-parameter subgroups

yk(pk) = wk+1x−ik(pk)wk+1
−1,

where we take wn+1 = e.

Lemma 4.2.18. For any pk ∈ C we have

wm
−1yk(pk)wm ∈

{
N− m > k

N+ m ≤ k.

Proof. Follows straightforwardly from the standard fact that if ℓ(wsi) > ℓ(w) for some w ∈ W ,
then w(αi) is again a positive root.

Proposition 4.2.19. The map yi : C→ N−(w) given by

(p1, . . . , pn) 7→ y = y1(p1) · · · yn(pn)

is an isomorphism. Its inverse is given explicitly by

pk = ∆
ωik
wk,wk+1(y).

Proof. That yi is an isomorphism is well-known [GLS11, p. 5.2]. Let yk = yk(pk) be as in
Lemma 4.2.18, and

y<k = y1 · · · yk−1, y>k = yk+1 · · · yn.

In particular,
y = y<k · yk · y>k.

It follows from Lemma 4.2.18 that

wk
−1y<kwk ∈ N−, wk+1

−1y>kwk+1 ∈ N+.
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But we then have

∆
ωik
wk,wk+1(y) = ∆ωik ((wk

−1y<kwk)wk
−1ykwk+1(wk+1

−1y>kwk+1))

= ∆ωik (wk
−1ykwk+1)

= ∆ωik (sik
−1x−ik(pk))

= pk.

The first two lines follow from the definitions of the generalized minors, while the last is a
simple computation in SL2 representation theory (similar to eq. (2.1.24)).

Factorization in Unipotent Cells

We can now solve the factorization problem for the unipotent cell Nw
+ := N+ ∩ B−ẇB−.

Given a reduced word w = si1 · · · sin , N
w
+ has a birational parametrization

(C∗)n → Nw
+ , (t1, . . . , tn) 7→ xi1(t1) · · · xin(tn).

The inverse map is described in Proposition 4.2.23, which relies on the following two lemmas.

Lemma 4.2.20. Let 1 ≤ i ≤ r. Then any x ∈ N− can be written as six
′si

−1x−i(t) for some
x′ ∈ N− and t ∈ C. Morevover, t is given by

t = ∆ωi
si,e

(x).

Proof. That g admits such an expression is an immediate consequence of Proposition 2.1.9.
To verify that t is given by the stated formula, we check that

∆ωi
si,e

(x) = ∆ωi(x′six−i(t))

= ∆ωi(six−i(t))

= t.

The last line is another simple SL2 computation.

Lemma 4.2.21. Let x = xi1(t1) · · · xin(tn) ∈ N
w
+ and x′ = xi2(t2) · · · xin(tn) ∈ N

w′

+ . Here
w′ = si1w, and i′ = (i2, . . . , in) is a reduced word for w′. Let p2, . . . , pn be complex numbers
such that y′ = π−(x

′) = yi′(p2, . . . , pn). Then

y = π−(x) = yi(p1, . . . , pn),

where
p1 := ∆

ωi1
si1 ,e

(x−i1([w
′y′]

−αi1
0 t−1

1 )[w′y′]−1
− ).

Moreover, t1 can be recovered as

t1 = [w′y′]
ωi1

−αi1
0 [wy]

−ωi1
0 .
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Proof. We denote yi(p1, . . . , pn) by ỹ during the proof. To show y = ỹ it suffices to show that
wỹ ∈ G0 and [wỹ]+ = x, or equivalently that wỹx−1 ∈ B−. Now one can calculate that

wỹx−1 = si1
−1x−i1(p1)[w

′y′]−[w′y′]0x1(−t1). (4.2.22)

Applying Lemma 4.2.20 to x−i1([w
′y′]

−αi1
0 t−1

1 )[w′y′]−1
− , we know that

x−i1([w
′y′]

−αi1
0 t−1

1 )[w′y′]−1
− = si1y

′′si1
−1x−i1(p1)

for some y′′ ∈ N−. Combining this with eq. (4.2.22) lets us write

wỹx−1 = (y′′)−1si1
−1x−i1([w

′y′]
−αi1
0 t−1

1 )[w′y′]0xi1(−t1)

= (y′′)−1si1
−1[w′y′]0x−i1(t

−1
1 )xi1(−t1)

= (y′′)−1si1
−1[w′y′]0si1t

−α∨
i1

1 x−i1(−t
−1
1 ) ∈ B−.

The last line can be checked directly in ϕi1(SL2).
If we take the H-components of each side, we see further that

[wy]0 = si1
−1[w′y′]0si1t

−α∨
i1

1 .

The last assertion then follows by applying the character ωi1 to each side.

Proposition 4.2.23. Let t1, . . . , tn be nonzero complex numbers and let x = xi1(t1) · · · xin(tn) ∈
Nw

+ . Then

tk =
1

∆
ωik
wk,e(y)∆

ωik
wk+1,e(y)

∏

1≤j≤r̃
j 6=ik

(∆ωj
wk+1,e

(y))−Cj,ik ,

where y = π−(x) ∈ N−(w) and wk = sin · · · sik .

Proof. Let

x≥k := xik(tk) · · · xin(tn), y≥k = wk[x≥kwk]+wk
−1, z≥k = wk

−1y≥k.

Then applying Lemma 4.2.21 to x≥k we obtain

tk = [z≥(k+1)]
ωik

−αik

0 [z≥k]
−ωik

0 .

We claim then that [z≥k]0 = [wk
−1y]0. This follows from

wk
−1y = (wk

−1y<kwk)wk
−1y≥k

= (wk
−1y<kwk)z≥k,
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and the observation that
(wk

−1y<kwk) ∈ N−

which follows from Lemma 4.2.18. But then

tk = [wk+1
−1y]

(ωik
−αik

)

0 [wk
−1y]

−ωik

0

= [wk+1
−1y]

(ωik
−
∑

1≤j≤r̃ Cj,ik
ωj)

0 [wk
−1y]

−ωik

0

= [wk+1
−1y]

(−ωik
−
∑

j 6=ik
Cj,ik

ωj)

0 [wk
−1y]

−ωik

0

=
1

∆
ωik
wk,e(y)∆

ωik
wk+1,e(y)

∏

1≤j≤r̃
j 6=ik

(∆ωj
wk+1,e

(y))−Cj,ik ,

completing the proof.

Factorization in Double Bruhat Cells

We now turn to the factorization problem in an arbitrary double Bruhat cell Gu,v.
Let i = (i1, . . . , im) be a double reduced word for (u, v). For 1 ≤ j ≤ m and k ∈ I =

{−r̃, . . . ,−1} ∪ {1, . . . ,m}, we define1

Ψj,k := −ǫjǫk
(
[j = k] + [j = k+]

)
+
C|ik|,|ij |

2

(
ǫj(ǫk+ − ǫk)[k

+ < j]− (1 + ǫjǫk)[k < j < k+]

)
;

let us explain the notation. For an index k ∈ I, we let

k+ := min{ℓ ∈ I : ℓ > k, |iℓ| = |ik|},

setting k+ = m+ 1 if there are no such ℓ (recall that we set ik = k for k < 0). Also recall
that ǫk is equal to 1 if ik > 0 and −1 if ik < 0, with ǫm+1 = 1 for purposes of the above
formula. Note that Ψj,k can only take the values 0, ±1, and ±C|ik|,|ij |.

For k ∈ I, recall the generalized minors

Ak := Ak,i = ∆
ω|ik|
u≤k,v>k

from Definition 4.2.7. We let x 7→ xι denote the involutive antiautomorphism of G determined
by

aι = a−1 for a ∈ H, xi(t)
ι = xi(t) for 1 ≤ i ≤ r.

It is clear that ι restricts to an isomorphism of Gu,v and Gu−1,v−1
, hence in particular ζu

−1,v−1
◦ι

is an automorphism of Gu,v.

1Recall that if P (x1, . . . ) is a boolean function of some variables {x1, . . . }, [P (x1, . . . )] denotes the
integer-valued function of the xi whose value is 1 when P is true and 0 when P is false.



CHAPTER 4. CLUSTER DUALITY AND KAC-MOODY GROUPS 51

Theorem 4.2.24. Let G be a symmetrizable Kac-Moody group, u, v ∈ W , and i = (i1, . . . , im)
a double reduced word for (u, v). Then if x = xi(t1, . . . , tm+r̃) and x

′ = (ζu
−1,v−1

◦ ι)(x), we
have

tj =
∏

k∈I

Ak(x
′)Ψj,k (4.2.25)

for 1 ≤ j ≤ m, and

tm+j =
∏

k∈I
|ik|=j

Ak(x
′)

1
2
(ǫ

k+−ǫk). (4.2.26)

for 1 ≤ j ≤ r.2

Proof. The double reduced word i = (i1, . . . , im) for (u, v) induces an opposite double reduced
word iop = (j1, . . . , jm) for (u−1, v−1), by setting jk = im+1−k. Let kop := m + 1 − k and
t′k := tkop , so that

xι = t
−α∨

r̃

m+r̃ · · · t
−α∨

1
m+1xj1(t

′
1) · · · xjm(t

′
m).

We first consider the case where i is “unmixed”; that is, k < ℓ whenever ǫk > 0 and ǫℓ < 0.

Then xι ∈ Gu,v
0 and [xι]0 = t

−α∨
r̃

m+r̃ · · · t
−α∨

1
m+1. By Propositions 4.2.12 and 4.2.15 we have

tm+j = [xι]
−ωj

0 = [u−1x′]
ωj

0 [x′]
−ωj

0 [x′v−1]
ωj

0 .

One can then check that this agrees with eq. (4.2.26) in this case.
Next observe that since i is unmixed, y− := π−(x

ι) is equal to π−([x
ι]+), and

[xι]+ = xjℓ(v)op (t
′
ℓ(v)op) · · · xjm(t

′
m) ∈ N

v−1

+ .

For 1 ≤ k ≤ ℓ(v), we can use Proposition 4.2.23 to obtain

tk = t′kop =
1

∆
ωik

(v−1)>(k+1)op ,e
(y−)∆

ωik

(v−1)>kop ,e
(y−)

( ∏

1≤j≤r̃
j 6=ik

(∆
ωj

(v−1)>kop ,e
(y−))

−Cj,|ik|

)
.

Applying Proposition 4.2.17 to each term and using the observation that (v−1)≤kop = v≥k, we
can rewrite this as

tk =
1

∆
ωik
e,v≥(k+1)(x

′)∆
ωik
e,v≥k(x

′)

( ∏

1≤j≤r̃
j 6=ik

∆ωj
e,v≥k

(x′)−Cj,|ik|

)( ∏

1≤j≤r̃

∆
ωj

e,v−1(x
′)Cj,|ik|

)

2Though equivalent to [FZ99, Theorem 1.9] in finite type, the formulation here differs slightly to better
match the conventions of [BFZ05]. The statement in [FZ99] does not involve ι, and correspondingly the ti are

expressed in terms of cluster variables on the inverse double Bruhat cell Gu−1,v−1

. Also, our definition of
Ψj,k differs from the corresponding definition in [FZ99] in order to facilitate the proof of Proposition 4.2.28.
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Using the fact that i is unmixed, one checks that this is equivalent to

tk = Ak(x
′)−1Ak−(x

′)−1

( ∏

ℓ∈I
ℓ<k<ℓ+

Aℓ(x
′)−C|iℓ|,|ik|

)( ∏

1≤j≤r̃

A−j(x
′)Cj,|ik|

)
.

Here k− ∈ I is defined by (k−)+ = k. Again, the reader may check that this expression agrees
with eq. (4.2.25) in this case.

For ℓ(v) < k ≤ m, we note that π+(x
ι) = π+([x

ι]−) and if a = t
α∨
1

m+1 · · · t
α∨
r̃

m+r̃,

[xι]− = xj1(a
α|j1|t′1) · · · xjℓ(u)(a

α|jℓ(u)|t′ℓ(u)).

From here eq. (4.2.25) follows by a similar argument as above, again invoking Proposi-
tions 4.2.17 and 4.2.23. One arrives at

tk = Ak(x
′)−1Ak−(x

′)−1

( ∏

ℓ∈I
ℓ<k<ℓ+

Aℓ(x
′)−C|iℓ|,|ik|

)( ∏

ℓ:ℓ+>m

Aℓ(x
′)C|iℓ|,|ik|

)
×

×

(∏

ℓ∈I

Aℓ(x
′)−

1
2
C|iℓ|,|ik|(ǫℓ+−ǫℓ

)
,

which agrees with eq. (4.2.25) given that i is unmixed.
Now suppose two double reduced words i and i′ differ only by the exchange of two

consecutive positive and negative indices. That is, for some 1 ≤ k < m and 1 ≤ i, j ≤ r we
have

ik = i′k+1 = j, ik+1 = i′k = −i.

We claim that if the theorem holds for i it also holds for i′. Specifically, suppose that

x = xi(t1, . . . , tm+r̃) = xi′(t
′
1, . . . , t

′
m+r̃),

and that the tℓ satisfy eqs. (4.2.25) and (4.2.26). Then we claim the t′ℓ also satisfy eqs. (4.2.25)
and (4.2.26) with respect to the Aℓ,i′ .

This is trivial unless i = j. In that case, a straightforward computation in ϕi(SL2) yields
that

t′m+i = tm+i(1 + tktk+1), t′m+ℓ = tm+ℓ for ℓ 6= i,

t′ℓ = tℓ for ℓ < k, t′ℓ = tℓ(1 + tktk+1)
ǫℓC|i,iℓ| , for k + 1 < ℓ ≤ m,

t′k = tk+1(1 + tktk+1)
−1, t′k+1 = tk(1 + tktk+1).

Using the expression for (1 + tktk+1) provided by Lemma 4.2.27 and simplifying the result,
one can then check directly that eqs. (4.2.25) and (4.2.26) hold for the t′ℓ. But then since the
image of xi intersects the image of xi′ along a dense subset, we conclude that eqs. (4.2.25)
and (4.2.26) hold for all points in the image of xi′ .
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Lemma 4.2.27. Suppose Theorem 4.2.24 holds for a double reduced word i with ik = −ik+1 =
i for some 1 ≤ i ≤ r. Let i′ be the double reduced word obtained by exchanging ik and ik+1.
Then for x = xi(t1, . . . , tm+r̃) and x

′ = ζu
−1,v−1

◦ ι we have

1 + tktk+1 =
Ak,i(x

′)Ak,i′(x
′)

Ak−,i(x′)Ak+1,i(x′)
.

Proof. Letting u′ = u<k, v
′ = v>(k+1), we first calculate that

Ak,i = ∆ωi

u′,v′ , Ak,i′ = ∆ωi

u′si,v′si
,

Ak+1,i = ∆ωi

u′si,v′
, Ak−,i = ∆ωi

u′,v′si
.

Using eq. (4.2.25) and the fact that ǫk = −ǫk+1 = 1, we also have

1 + tktk+1 = 1 + Ak+1,i(x
′)−1Ak−,i(x

′)−1

( ∏

ℓ<k<ℓ+

Aℓ,i(x
′)−C|iℓ|,i

)

=

∆ωi

u′si,v′
(x′)∆ωi

u′,v′si
(x′) +

∏
1≤j≤r̃
j 6=i

∆
ωj

u′,v′(x
′)−Cji

∆ωi

u′si,v′
(x′)∆ωi

u′,v′si
(x′)

.

But then by Proposition 2.1.21 this yields

1 + tktk+1 =
∆ωi

u′,v′(x
′)∆ωi

u′si,v′si
(x′)

∆ωi

u′si,v′
(x′)∆ωi

u′,v′si
(x′)

,

and the lemma follows.

X -coordinates and Generalized Minors

Recall that the coweight parametrization xi : Xi → Gu,v
Ad of Definition 4.2.5 yields a set {Xi}i∈I

of rational coordinates on Gu,v
Ad . Since the image of Ti in G

u,v is a finite cover of Xi in G
u,v,

the pullbacks of the Xi to G
u,v are Laurent monomials in the ti, and, by Theorem 4.2.24, in

the twisted generalized minors. In this section we derive explicit formulas for this, rewriting
the generalized Chamber Ansatz of [FZ99] in terms of the Xi. We will see that the resulting
formula recovers the exchange matrix defined in [BFZ05].

Proposition 4.2.28. Fix a double reduced word i for (u, v), let {Xi}i∈I be the corresponding
rational coordinates on Gu,v

Ad , and let {Ai}i∈I be the corresponding generalized minors on
Gu,v. Then if pG : G→ GAd is the composition of the automorphism ι ◦ ζu,v of Gu,v with the
quotient map G→ GAd, we have

p∗G(Xj) =
∏

k∈I

A
B̃j,k

k .
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Here B̃ = B +M , where B and M are the I × I matrices given by3

Bjk =
C|ik|,|ij |

2

(
ǫj[j = k+]− ǫk[j

+ = k] + ǫj[k < j < k+][j > 0]− ǫj+ [k < j+ < k+][j+ ≤ m]

− ǫk[j < k < j+][k > 0] + ǫk+ [j < k+ < j+][k+ ≤ m]

)

and

Mjk =
1

2
C|ik|,|ij |

(
[j+, k+ > m] + [j, k < 0]

)
.

Proof. Recall from Proposition 4.2.6 that the image of Ti in G
u,v is a finite cover of Xi in

Gu,v
Ad under the quotient map. Thus it follows from Theorem 4.2.24 that there exists some

integer matrix N such that

p∗G(Xj) =
∏

k∈I

A
Njk

k .

To compute N , define new variables t′1, . . . , t
′
m+r̃ by

t′k =
∏

j<k
|ij |=|ik|

Xǫk
j .

Here if k > m we set |ik| = k −m and ǫk = +1. The t′k are uniquely determined by the
requirement that

X
ω∨
r̃

−r̃ · · ·X
ω∨
1

−1Ei1X
ω∨
|i1|

1 · · ·EimX
ω∨
|im|

m = xi1(t
′
1) · · · xim(t

′
m)

r̃∏

k=1

(t′m+k)
ω∨
k .

Moreover, inverting this change of variables one finds that

Xj =
∏

1≤k≤m+r̃

(t′k)
Djk , (4.2.29)

where D is the integer matrix with rows labelled by I, columns labelled by 1, . . . ,m+ r̃, and

Djk = ([j+ = k]− [j = k])ǫk.

We now compare the t′k with the coordinates tk on Gu,v induced from

xi : (t1, . . . , tm+r̃) 7→ xi1(t1) · · · xim(tm)
r̃∏

k=1

(tm+k)
α∨
k .

3We keep the notation introduced at the beginning of Section 4.2.
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If πG : Gu,v → Gu,v
Ad is the quotient map, then we can check that

π∗
Gt

′
j =

m+r̃∏

k=1

t
Ejk

k , (4.2.30)

where E is the (m+ r̃)× (m+ r̃) matrix given by

Ejk = δjk[j ≤ m] + C|ik|,|ij |[j, k > m].

By Theorem 4.2.24 we have

(ι ◦ ζu,v)∗tj =
∏

k∈I

A
Fj,k

k , (4.2.31)

where Fj,k is the integer matrix with rows labelled by 1, . . . ,m+ r̃, columns labelled by I,
and

Fjk = [j ≤ m]Ψj,k +
1

2
[j > m][|ij| = |ik|](ǫk+ − ǫk).

Here Ψj,k is as in Section 4.2, and if k+ > m for some k ∈ I, we set ǫk+ = +1.
We can now compute N by multiplying the matrices D, E, and F , and simplifying the

resulting conditional expression. Before doing any serious simplification, a straightforward
initial calculation yields

Njk = [j+ ≤ m]ǫj+Ψj+,k − [j > 0]ǫjΨj,k +
C|ik|,|ij |

2
[j+ > m](ǫk+ − ǫk). (4.2.32)

Unwinding the definition of Ψ we see that

ǫjΨj,k =
C|ik|,|ij |

2

(
−ǫk[j = k]− ǫk[j = k+]− (ǫj + ǫk)[k < j < k+] + (ǫk+ − ǫk)[k

+ < j]

)
.

Plugging this and the corresponding expression for ǫj+Ψj+,k into eq. (4.2.32), we obtain

Njk =
C|ik|,|ij |

2

(
ǫk[j = k]

(
[j > 0]− [j+ ≤ m]

)
− ǫk[j

+ = k] + ǫk[j = k+]

+ (ǫj + ǫk)[k < j < k+][j > 0]− (ǫj+ + ǫk)[k < j+ < k+][j+ ≤ m]

+ (ǫk+ − ǫk)
(
[k+ < j+][j+ ≤ m]− [k+ < j][j > 0] + [j+ > m]

))
.

(4.2.33)

The reader may verify that for any j, k ∈ I,

[k+ < j+][j+ ≤ m]− [k+ < j][j > 0] + [j+ > m]

= [j < k+ < j+][k+ ≤ m] + [j = k+] + [j+, k+ > m].
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This identity lets us rewrite eq. (4.2.33) as

Njk =
C|ik|,|ij |

2

(
[j = k]

(
[j < 0] + [j+ > m]

)
+ ǫj[j = k+]− ǫk[j

+ = k]

+ (1− ǫk)[j
+, k+ > m][j 6= k] + ǫj[k < j < k+][j > 0]

− ǫj+ [k < j+ < k+][j+ ≤] + ǫk+ [j < k+ < j+][k+ ≤ m]

+ ǫk
(
[k < j < k+][j > 0]− [k < j+ < k+][j+ ≤ m]

− [j < k+ < j+][k+ ≤ m]
))
.

(4.2.34)

By another boolean computation the reader may check that

[k < j < k+][j > 0]− [k < j+ < k+][j+ ≤ m]− [j < k+ < j+][k+ ≤ m]

= −[j < k < j+][k > 0] + [j 6= k]
(
[j+, k+ > m]− [j, k < 0]

)

for any j, k ∈ I. But now we can use this to rewrite eq. (4.2.34) as

Njk =
C|ik|,|ij |

2

(
[j+, k+ > m] + [j, k < 0] + ǫj[j = k+]− ǫk[j

+ = k] + ǫj[k < j < k+][j > 0]

− ǫj+ [k < j+ < k+][j+ ≤]− ǫk[j < k < j+][k > 0] + ǫk+ [j < k+ < j+][k+ ≤ m]

)

= B̃j,k,

completing the proof.

4.3 Double Bruhat Cells as Dual Cluster Varieties

Corresponding to a double reduced word for (u, v) we associated in Section 4.2 a collection of
generalized minors. In [FZ99] it was discovered that as the double reduced word is varied,
these collections vary by certain subtraction-free relations, which served as prototypes for the
cluster algebra exchange relations introduced in [FZ02]. In [BFZ05] it was shown that the
generalized minors are organized into an upper cluster algebra structure on the coordinate
ring of a double Bruhat cell in a semisimple algebraic group; in this section we extend this
result to the double Bruhat cells of any symmetrizable Kac-Moody group.

In fact, the cluster algebra associated with a double Bruhat cell is encoded by an exchange
matrix we have already seen, when we computed the inverse of the coweight parametrization
in Section 4.2. This is an instance of a general phenomenon, that one can define X -coordinates
from cluster variables via the monomial transformation defined by the exchange matrix. In
the present situation, however, this is reversed: we start with independently defined cluster
variables and X -coordinates, and derive this monomial transformation directly from the
Chamber Ansatz. We summarize our main results in Theorem 4.3.2, which relates the
simply-connected and adjoint forms of the double Bruhat cell and the twist map as a pair of
dual cluster varieties and the natural map between them [FG09].
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Seeds Associated with Double Reduced Words

Before reinterpreting the results of Section 4.2 in terms of cluster algebras, let us explain
how to associate a seed Σi with any double reduced word i for (u, v). This allows us to state
the main result, Theorem 4.3.2, which incorporates the generalized minors and twist map
into a modified cluster ensemble in the sense of Proposition 2.2.12.

Definition 4.3.1. Let i be a double reduced word for (u, v), and let m = ℓ(u) + ℓ(v). We
define a seed Σi as follows. The index set is I = {−r̃, . . . ,−1} ∪ {1, . . . ,m}, and an index
k ∈ I is frozen if either k < 0 or k+ > m. To each index k > 0 is associated a weight
1 ≤ |ik| ≤ r̃, which we extend to k < 0 by setting |ik| = |k|. The exchange matrix B := Bi is
defined by

bjk =
C|ik|,|ij |

2

(
ǫj[j = k+]− ǫk[j

+ = k]

+ ǫj[k < j < k+][j > 0]− ǫj+ [k < j+ < k+][j+ ≤ m]

− ǫk[j < k < j+][k > 0] + ǫk+ [j < k+ < j+][k+ ≤ m]

)
.

We let dk = d|ik|, where the right-hand side refers to the symmetrizing factors of the
Cartan matrix. One easily checks that the skew-symmetrizability of B follows from the
symmetrizability of the Cartan matrix.

Note that the exchange matrix defined in [BFZ05] is equal to the transpose of the matrix
formed by the unfrozen rows of B. Our main results are summarized in the following theorem.

Theorem 4.3.2. Let G be a symmetrizable Kac-Moody group, u, v ∈ W elements of its Weyl
group, and i a double reduced word for (u, v). Consider the seed Σi defined in Definition 4.3.1
and let A|Σi|, X|Σi| be the associated complex A- and X -spaces. Let M be the I × I matrix
with entries

Mjk =
1

2
C|ik|,|ij |

(
[j+, k+ > m] + [j, k < 0]

)
,

and let pG : Gu,v → Gu,v
Ad be the composition of the automorphism ι ◦ ζu,v of Gu,v from

Theorem 4.2.24 and the quotient map from G to GAd.

1. There is a regular map a|Σi| : A|Σi| → Gu,v which identifies the generalized minors
of Definition 4.2.7 with the corresponding cluster variables on AΣi

. It induces an
isomorphism of C[Gu,v] and the upper cluster algebra C[A|Σi|].

2. There is a regular map x|Σi| : X|Σi| → Gu,v
Ad which extends the map XΣi

→ Gu,v
Ad of

Definition 4.2.5. It is Poisson with respect to the standard Poisson-Lie structure on
GAd and the Poisson structure on X|Σi| defined by the exchange matrix B.
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3. The matrix B̃ = B +M has integer entries, hence there is an associated regular map
pM : A|Σi| → X|Σi|. These maps together form a commutative diagram:

A|Σi| Gu,v

X|Σi| Gu,v
Ad .

a|Σi|

pM pG

x|Σi|

The proof will occupy the rest of the chapter. We treat each statement separately, as
Theorems 4.3.11, 4.3.16 and 4.3.17.

Remark 4.3.3. In general the map p0 between dual cluster varieties has positive-dimensional
fibers, and its image is a symplectic leaf of the X -space. However, it is clear from Proposi-
tion 4.2.28 that pM is a finite covering map. Thus it is natural to summarize Theorem 4.3.2
as saying that the double Bruhat cells Gu,v, Gu,v

Ad are dual cluster varieties and the map
pG is a nondegenerate version of the natural map, differing only in how the frozen A- and
X -variables are related.

This statement should be understood with the caveat that the maps a|Σi|, x|Σi| are typically
not biregular; rather, the complement of their images will have codimension at least 2. In
addition, the scheme X|Σ| is not separated in general. Thus while the restriction of x|Σi| to
any individual torus XΣ is injective, this is not obviously the case for the entire map x|Σi|.

Example 4.3.4. The exact form of the modified exchange matrix B̃ is clarified by considering
the degenerate example where u and v are the identity. The relevant double Bruhat cells
are then the Cartan subgroups H and HAd, and the cluster variables and X -coordinates are
their respective coroot and coweight coordinates. The change of variables between these is
the Cartan matrix, and this is exactly what the definition of B̃ reduces to in this case (note
that the twist map is trivial when u and v are).

The theorem then says that in general to get the twisted change of variables matrix,
we add to the exchange matrix a copy of the Cartan matrix split in half between the “left”
and “right” frozen variables. As a typical example, let u and v be Coxeter elements of the
affine group of type A

(1)
1 . For the natural choice of fundamental weights the extended Cartan

matrix is

C =




2 −2 1
−2 2 0
1 0 0


 .
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Example 4.3.5. If we take i = (−1,−2, 1, 2), then from the definitions one checks that

B =




0 0 −1
2

1 0 −1
2

0
0 0 1 −2 1 0 0
1
2
−1 0 1 0 0 0

−1 2 −1 0 0 −1 0
0 −1 0 0 0 2 −1
1
2

0 0 1 −2 0 1
0 0 0 0 1 −1 0




, M =




0 0 1
2

0 0 1
2

0
0 1 −1 0 0 0 0
1
2
−1 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
1
2

0 0 0 0 1 −1
0 0 0 0 0 −1 1




,

B̃ =




0 0 0 1 0 0 0
0 1 0 −2 1 0 0
1 −2 1 1 0 0 0
−1 2 −1 0 0 −1 0
0 −1 0 0 0 2 −1
1 0 0 1 −2 1 0
0 0 0 0 1 −2 1




.

Note in particular that while B is degenerate, reflecting the fact that the symplectic leaves
of Gu,v

Ad have positive codimension, | det B̃| = 2, reflecting the fact that pG is a double cover.

Furthermore, B̃ has integral entries, while B may in general have half-integral entries where
both the row and column correspond to frozen variables.

Remark 4.3.6. When G is not of finite type, it is sometimes convenient to distinguish
between two different versions of its adjoint form. What we have so far called GAd we will
sometimes refer to as the maximal adjoint form Gmax

Ad (so {ωi}
r̃
i=1 is a basis of its Cartan

subgroup’s cocharacter lattice), while by the minimal adjoint form Gmin
Ad we will mean the

quotient of G by Z(G) (so {ωi}
r
i=1 is a basis of its Cartan subgroup’s cocharacter lattice). For

example, if C is of untwisted affine type, G′ is a central extension of the group LG̊ of regular
maps from C∗ to a simple Lie group G̊, and G is the semidirect product G′ ⋊ C∗. Gmax

Ad

is then quotient of G by Z(G̊), embedded as constant maps, while Gmin
Ad is the semidirect

product(LG̊/Z(G̊))⋊C∗ .
If i is a double reduced word for u, v, we have minimal and maximal seeds Σmin

i , Σmax
i

with respective index sets

Imin := {−r, . . . ,−1} ∪ {1, . . . ,m}, Imax := {−r̃, . . . ,−(r + 1)} ∪ Imin,

and exchange matrices as in Definition 4.3.1. Definition 4.2.5 now yields charts XΣmin
i
→֒

(Gmin
Ad )

u,v and XΣmax
i
→֒ (Gmax

Ad )u,v, while Definition 4.2.7 yields charts AΣmin
i
→֒ (G′)u,v and

AΣmax
i
→֒ Gu,v (where G′ is the derived subgroup of G). Theorem 4.3.2 can be extended to
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assert commutativity of the following diagram:

AΣmin
i

AΣmax
i

XΣmax
i

XΣmin
i

(G′)u,v Gu,v (Gmax
Ad )u,v (Gmin

Ad )
u,v.

pmod
Σmax
i

pG

Here the top left and top right maps are induced by the inclusion of lattices ZImin →֒ ZImax

following Remark 2.2.5.

Cluster Transformations of X -coordinates

Recall that in Definition 4.2.5 we constructed an explicit regular map xΣi
: XΣi

→ Gu,v
Ad (from

now on we identify the tori Xi and XΣi
in the obvious way). If Σ′ is obtained from Σi by a

single mutation, we now show that this extends to a regular map XΣ′ → Gu,v
Ad , compatible

with the cluster transformation between XΣi
and XΣ′ . This generalizes a closely related

statement in [Zel00, p. 4.4].

Proposition 4.3.7. Let Σi be the seed associated with a double reduced word i, and Xk :=
Xµk(Σi) for some index k ∈ Iu. There is a unique regular map xk : Xk → Gu,v

Ad such that the
following diagram commutes:

XΣi
Xk

Gu,v
Ad

µk

xΣi
xk

Proof. First note that since µk and xΣi
are birational, there is a unique rational map xk

making the diagram commute; the claim is that this is in fact regular.
We will let Yi := X ′

i denote the X -coordinates on Xk. The cluster transformation eq. (2.2.8)
lets us express the Xi as rational functions of the Yi, and with this in mind we write the
rational map xk as

(Y−r̃, . . . , Ym) 7→ X
ω∨
r̃

−r̃ · · ·X
ω∨
1

−1Ei1X
ω∨
|i1|

1 · · ·X
ω∨
|im|

m (4.3.8)

Note that if i > k+ or i+ < k, we have Yi = Xi by eq. (2.2.8) and Definition 4.3.1. In
particular, the corresponding terms in eq. (4.3.8) do not affect whether or not the overall
expression defines a regular map. Thus it suffices to consider the case where k = 1 and
k+ = m, to which we will now restrict our attention (given this, we will write i in place of
|i1| = |im|).
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Define rational maps gj : X1 → G by

gj =





(∏
j∈I X

ω∨
|ij |

j

)
xi1(X

−ǫ1
1 X−ǫ1

m )xim(X
−ǫm
m ) j = 1

xim(−X
−ǫm
m )xij

(∏
j≤ℓ<m
|ij |=|iℓ|

X
−ǫj
ℓ

)
xim(X

−ǫm
m ) 1 < j ≤ m,

again interpreting the Xi as rational functions of the Yi on the right-hand side. Then

X
ω∨
r̃

−r̃ · · ·X
ω∨
1

−1Ei1X
ω∨
|i1|

1 · · ·X
ω∨
|im|

m = g1 · · · gm,

so it suffices to prove that each gj is regular (and that their product lands in Gu,v
Ad). The

details of the argument depend on the signs of i1 and im, so we consider the distinct cases
separately.

Case 1, i1 = im = i: First consider g1. By Definition 4.3.1 we have b−i,1 = −1 and
bm,1 = 1, hence

X−i = Y−iY1(1 + Y1)
−1, Xm = Ym(1 + Y1).

Thus

(∏

j∈I
|ij |=i

X
ω∨
i

j

)
=

(
Y−iY1(1 + Y1)

−1

)ω∨
i

Y
−ω∨

i

1

(
Ym(1 + Y1)

)ω∨
i

= (Y−iYm)
ω∨
i ,

which is a regular function of the Yj.
In fact, for any 1 ≤ j ≤ r̃ such that i 6= j, there are as many indices k ∈ I with |ik| = j

and bk,1 > 0 as there are with |ik| = j and bk,1 < 0. One has bk,1 > 0 exactly either when
1 < k < k+ < m and ǫk = −ǫk+ = −1, or when k = −j, 1 < k+ < m, and ǫk+ = 1. Similarly
bk,1 < 0 exactly either when 1 < k < k+ < m and ǫk = −ǫk+ = 1, or when 1 < k < m < k+

and ǫk = 1. One can check that the latter situations are in bijection with the former.
If |ik| = j for some index k ∈ I, we have

Xk =





Yk(1 + Y1)
−Cij bk,1 > 0

YkY
−Cij

1 (1 + Y1)
Cij bk,1 < 0

Yk bk,1 = 0.

But then by the above remark the positive and negative powers of (1 + Y1) in

∏

k∈I
|ik|=j

X
ω∨
j

k
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cancel each another out, leaving a total expression which depends regularly on the Yk. Since

this holds for all 1 ≤ j ≤ r̃, it follows that
∏

j∈I X
ω∨
|ij |

j is a regular function of the Yk.
Furthermore, we have

xi1(X
−ǫ1
1 X−ǫ1

m )xim(−X
−ǫm
m ) = xi

(
Y1Y

−1
m (1 + Y1)

−1
)
xi
(
Y −1
m (1 + Y1)

−1
)

= xi(Y
−1
m ),

and it follows that g1 is regular.
Now consider gj for j > 1. If ǫj = −1, then by following a similar analysis as above one

sees that
∏

j≤ℓ<m
|ij |=|iℓ|

X
−ǫj
ℓ is actually a regular function of the Yk, since all (1 + Y1) terms cancel

out. Since in this case the Ei terms commute with Eij , it follows that gj is regular.

If ǫj = 1, then
∏

j≤ℓ<m
|ij |=|iℓ|

X
−ǫj
ℓ is equal to (1 + Y1)

−Ci,|ij | times some Laurent monomial q in

the Yk. But then

xi
(
− Y −1

m (1 + Y1)
−1
)
xij
(
q(1 + Y1)

−Ci,|ij |
)
xi
(
Y −1
m (1 + Y1)

−1
)

is regular by Lemma 4.3.9.
Case 2, i1 = i, im = −i: Again, first consider g1. Now b−i,1 and bm,1 are both equal to

−1, so
X−i = Y−iY1(1 + Y1)

−1 and Xm = YmY1(1 + Y1)
−1.

Thus

∏

j∈I
|ij |=i

X
ω∨
|ij |

j =

(
Y−iY1(1 + Y1)

−1

)ω∨
i

Y
−ω∨

i

1

(
YmY1(1 + Y1)

−1

)ω∨
i

=

(
Y−iYm(1 + Y1)

−2

)ω∨
i

.

This time for any 1 ≤ j ≤ r̃ with j 6= i, there is exactly one more index k ∈ I with |ik| = j
and bk,1 > 0 than there is with |ik| = j and bk,1 < 0. One has bk,1 > 0 exactly when either
1 < k < m and ǫk = −1, or k = −j with either k+ > m or 1 < k+ < m and ǫk+ = 1. On the
other hand bk,1 < 0 if and only if 1 < k < k+ < m and ǫk = −ǫk+ = 1. Thus

∏

k∈I
|ik|=j

X
ω∨
j

k

is the product of (1 + Y1)
−Cijω

∨
j and a term which is regular in the Yk.

It follows that
∏

j∈I X
ω∨
|ij |

j is the product of a regular term and

∏

1≤j≤r̃

(1 + Y1)
−Cijω

∨
j = (1 + Y1)

−α∨
i .
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Finally g1 itself is then the product of a regular term and

(1 + Y1)
−α∨

i xi1(X
−ǫ1
1 X−ǫ1

m )xim(X
−ǫm
m ) = (1 + Y1)

−α∨
i xi
(
Y −1
m (1 + Y1)

)
x−i

(
YmY1(1 + Y1)

−1
)

= ϕi

(
1 Y −1

m

Y1Ym 1 + Y1

)
,

hence is regular.
Now consider gj for j > 1. This time if ǫj = 1,

∏
j≤ℓ<m
|ij |=|iℓ|

X
−ǫj
ℓ is a Laurent monomial in

the Yk, the (1 + Y1) terms cancelling. If ǫj = −1, the relevant expression becomes

x−i

(
− YmY1(1 + Y1)

−1
)
xij
(
q(1 + Y1)

−Ci,|ij |
)
x−i

(
YmY1(1 + Y1)

−1
)

for some Laurent monomial q in the Yk. Again, this is regular by Lemma 4.3.9.
The remaining cases of i1 = im = −i and i1 = −im = −i do not differ substantively from

the above two; the details are left to the reader.
It is clear that the image of X1 in GAd lands in the closure of Gu,v

Ad . Consider the
extension of the regular map pG : Gu,v → Gu,v

Ad to a rational map between their closures. By
Propositions 2.2.12 and 4.2.28 we can write the rational functions p∗G(Yi) on G

u,v as Laurent
monomials in A′

1 and the Ai with i 6= 1, where A′
1 is the rational function on Gu,v obtained

by eq. (2.2.7). Since pG is a finite covering map, by Proposition 4.2.28 the determinant D of

the matrix B̃ is a nonzero integer. In particular, we can write each (Ai)
D with i 6= 1 as a

Laurent monomial in the p∗G(Yi). But the generalized minors ∆ωi
u,e and ∆ωi

e,v−1 are frozen cluster
variables, hence their Dth powers can be expressed as Laurent monomials in the p∗G(Yi). Thus
these powers, hence the minors themselves, are nonvanishing on p−1

G (X1). Since pG is the
composition of a biregular automorphism of Gu,v and the quotient map πG : Gu,v → Gu,v

Ad , it
follows that these minors do not vanish on π−1

G (X1). The fact that the image of X1 lies in
Gu,v then follows by Lemma 4.3.10.

The following result was proved in finite type in [Zel00, Lemma 4.4]. However, the proof
in loc. cited does not extend to the general case, as it involves exponentiating Lie algebra
elements which in general have components in imaginary root spaces.

Lemma 4.3.9. For distinct 1 ≤ i, j ≤ r the map C∗ × C→ N± given by

(p, q) 7→ x±i(p
−1)x±j(p

−Cijq)x±i(−p
−1)

extends to a regular map C2 → N±.

Proof. We prove the statement for N+; the N− version then follows after applying the
involution θ. Recall from [Kum02, p. 7.4] that the map

N+ →
⊕

1≤i≤r̃

L(ωi)
∨, n 7→ n · (v1, . . . , vr̃)
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is a closed embedding of ind-varieties, where vi is the lowest-weight vector of L(ωi)
∨. Thus it

suffices to show that
(p, q) 7→ xi(p

−1)xj(p
−Cijq)xi(−p

−1) · vk

extends regularly to p = 0 for all 1 ≤ k ≤ r̃. This is immediate unless k is equal to i or j.
If k = j, then

xi(p
−1)xj(p

−Cijq)xi(−p
−1) · vj = xi(p

−1) · (vj + p−Cijqejvj),

where ej is jth the positive Chevalley generator. Since ejvj is a lowest-weight vector for the
ϕi(SL2)-subrepresentation it generates and 〈−ωj + αj|α

∨
i 〉 = Cij, we have

xi(p
−1) · (vj + p−Cijqejvj) =

∞∑

n=0

p−n e
n
i

n!
(vj + p−Cijqejvj)

= vj +

−Cij∑

n=0

p−Cij−n qe
n
i ej
n!

vj.

Since this last expression depends only on nonnegative powers of p, the claim follows.
If k = i, a similar calculation yields

xi(p
−1)xj(p

−Cijq)xi(−p
−1) · vi = xi(p

−1)xj(p
−Cijq) · (vi − p

−1eivi)

= xi(p
−1) ·

(
vi −

−Cij∑

n=0

p−1−nCij
qnenj ei

n!
vi

)
.

If n > 0, enj eivi is a lowest-weight vector for the ϕi(SL2)-subrepresentation it generates.
Otherwise, −ωi + nαj would have a nonzero weight space in L(ωi)

∨, which would generate a
nontrivial ϕj(SL2)-representation containing vi, a contradiction.

Since 〈−ωi + αi + nαj|α
∨
i 〉 = 1 + nCij,

xi(p
−1) · p−1−nCij

qnenj ei

n!
vi =

−1−nCij∑

m=0

p−1−nCij−m
qnemi e

n
j ei

m!n!
vi.

But since −1− nCij −m ≥ 0 for all m ≤ −1− nCij, the right hand side depends only on
nonnegative powers of p. But xi(p

−1)xj(p
−Cijq)xi(−p

−1) · vi is a sum of such terms with
n > 0 and

xi(p
−1) · (vi − p

−1eivi) = vi,

hence extends to a regular map at p = 0.

Lemma 4.3.10. The closure of Gu,v in G is

Gu,v =
⊔

u′≤u
v′≤v

Gu′,v′ ,
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where we use the Bruhat order on W . If x ∈ Gu,v, then x ∈ Gu,v if and only if ∆ωi
u,e(x) 6= 0

and ∆ωi

e,v−1(x) 6= 0 for all 1 ≤ i ≤ r̃.4

Proof. The decomposition of Gu,v follows easily from the corresponding statement about
Schubert varieties [Kum02, p. 7.1]. It is also clear from their definitions that the stated
generalized minors do not vanish on Gu,v. Thus we must show that if x ∈ Gu,v \Gu,v, one of
the stated minors vanishes on it.

Suppose that u′ ≤ u in the Bruhat order. By definition, there exist positive real roots
β1, . . . , βk such that u = u′r1 · · · rk, where rj ∈ W is the reflection

rj : λ 7→ λ− 〈λ|β∨
j 〉βj.

Here β∨
j is the positive coroot associated with βj . Moreover, these satisfy ℓ(u′r1) < ℓ(u′r1r2) <

· · · < ℓ(u), which in particular implies that u′r1 · · · rj−1(βj) > 0 for all j [Kum02, p. 1.3.13].
If u′ ≤ u, we claim that for each ωi,

u′(ωi)− u(ωi) ∈
⊕

1≤j≤r

Nαj.

For any 1 < j ≤ r we have

u′r1 · · · rj−1(ωi)− u
′r1 · · · rj(ωi) = 〈ωi|β

∨
j 〉u

′r1 · · · rj−1(βj).

But then

u′(ωi)− u(ωi) =
∑

1<j≤r

(
u′r1 · · · rj−1(ωi)− u

′r1 · · · rj(ωi)
)

=
∑

1<j≤r

〈ωi|β
∨
j 〉u

′r1 · · · rj−1(βj),

which is indeed a sum of positive roots with nonnegative coefficients. Furthermore, if u′ is
strictly less than u in the Bruhat order, u′(ωi)− u(ωi) must be nonzero for some 1 ≤ i ≤ r.
But then for any x ∈ B+u

′B+, we have ∆ωi
u,e(x) = 0. A straightforward adaptation of this

argument implies that for any x ∈ B−v
′B− with v′ < v, ∆ωi

e,v−1(x) = 0 for some 1 ≤ i ≤ r,
and the lemma follows.

Cluster Transformations of Generalized Minors

Recall that to a double reduced word i we associated in Definition 4.2.7 a collection {Ai}i∈I of
generalized minors. In this section we identify these with the cluster variables corresponding
to the seed Σi and study their cluster transformations.

4In finite type a stronger version of this is stated in [BFZ05, Proposition 2.8], following from the proof of
[FZ00, Proposition 3.3].
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Theorem 4.3.11. There is a regular map a|Σi| : A|Σi| → Gu,v which identifies the generalized
minors of Definition 4.2.7 with the corresponding cluster variables on AΣi

. This map induces
an isomorphism of C[Gu,v] and the upper cluster algebra C[A|Σi|].

When G is a semisimple algebraic group, this is the content of [BFZ05, p. 2.10]. As in loc.
cited, the proof we give is modelled on that of a closely related result in [Zel00], which treats
the case of reduced double Bruhat cells. Most of the work is delegated to a series of lemmas
that take up the bulk of the section; first we show how these lemmas assemble into the proof
of Theorem 4.3.11.

Proof of Theorem 4.3.11. By Lemma 4.3.12, Proposition 2.2.11 applies to Σi, hence

C[A|Σi|] = C[AΣi
] ∩

⋂

k∈Iu

C[Ak].

On the other hand, by Lemma 4.3.15, the maps aΣi
: AΣi

→ Gu,v, ak : Ak → Gu,v induce an
isomorphism

C[Gu,v] ∼= C[AΣi
] ∩

⋂

k∈Iu

C[Ak].

Then since Gu,v is an affine variety (Proposition 2.1.12), we have Gu,v ∼= SpecC[A|Σi|]. But
then a|Σi| is just the canonical map A|Σi| → SpecC[A|Σi|].

Lemma 4.3.12. The submatrix of B formed by its unfrozen rows has full rank.

Proof. First let
I+ = {k ∈ I : k− ∈ Iu}.

We claim the submatrix of B whose rows are those indexed by Iu and whose columns are
indexed by I+ is lower triangular with nonzero diagonal entries. The diagonal entries are
of the form bk,k+ , hence equal to ±1 by Definition 4.3.1. On the other hand if an entry bk,ℓ
of this submatrix lies above the diagonal then ℓ > k+. Again, from the definition of B we
must have bk,ℓ = 0. Thus this square submatrix has full rank, and it follows that the matrix
formed by the unfrozen rows has full rank.

Lemma 4.3.13. For each unfrozen index k ∈ I, let A′
k be the rational function on Gu,v

obtained from the exchange relation

A′
k = A−1

k

(∏

bkj>0

A
bkj
j +

∏

bkj<0

A
−bkj
j

)
.

Then A′
k is in fact regular.

Proof. It suffices to consider the case k = 1, k+ = m, where we will in fact show that A′
1 is

the restriction to Gu,v of a strongly regular function on G. In the general case, consider the
double reduced word i′ = (ik, . . . , ik+). Then one has

A′
k,i(x) = A′

1,i′(u<k
−1xv>k+),
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hence A′
k,i is the restriction of a strongly regular function if A′

1,i′ is.
We obtain the following formulas for A′

1 depending on the signs of i1 and im. We will let
E± = {1 < j < m|ǫj = ±1}, J± = {|ij||1 ≤ j < m, j− < 0}, and i := |i1| = |im|.

Case 1, i1 = im = i

A′
1∆

ωi
e,si

= ∆ωi

e,v−1

∏

k∈E+

k+ /∈E+

(∆
ω|ik|
u≤k,v>k)

−C|ik|,i +∆ωi
e,e

∏

k∈E+

k− /∈E+

(∆
ω|ik|
u<k,v≥k)

−C|ik|,i

Case 2, i1 = im = −i

A′
1∆

ωi
si,e

= ∆ωi
u,e

∏

k∈E−

k− /∈E−

(∆
ω|ik|
u<k,v>k)

−C|ik|,i +∆ωi
e,e

∏

k∈E−

k+ /∈E−

(∆
ω|ik|
u≤k,v>k)

−C|ik|,i

Case 3, i1 = i, im = −i

A′
1∆

ωi
e,e = ∆ωi

e,v−1∆
ωi
u,e

∏

k∈E+

k+∈E−

(∆
ω|ik|
u≤k,v>k)

−C|ik|,i

+

( ∏

k∈E−

k− /∈E−

(∆
ω|ik|
u≤k,v>k)

−C|ik|,i

)( ∏

j∈[1,r̃]\J−

(∆
ωj

e,v−1)
−Cij

)

Case 4, i1 = −i, im = i

A′
1∆

ωi
si,si

= ∆ωi
e,si

∆ωi
si,e

∏

k∈E−

k+∈E+

(∆
ω|ik|
u≤k,v>k)

−C|ik|,i

+

( ∏

k∈E+

k+ /∈E+

(∆
ω|ik|
u≤k,v>k)

−C|ik|,i

)( ∏

j∈[1,r̃]\J+

(∆
ωj

e,v−1)
−Cij

)

We now impose the further assumption that j < k for all j ∈ E+, k ∈ E−, before returning
to the general case. Letting S± = {|ik| : k ∈ E±} ⊂ [1, r̃], we can then simplify the above
formulas as:

Case 1, i1 = im = i

A′
1∆

ωi
e,si

= ∆ωi

e,v−1

∏

ℓ∈S+

(∆ωℓ
e,e)

−Cℓi +∆ωi
e,e

∏

ℓ∈S+

(∆ωℓ

e,v−1)
−Cℓi
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Case 2, i1 = im = −i

A′
1∆

ωi
si,e

= ∆ωi
u,e

∏

ℓ∈S−

(∆ωℓ
e,e)

−Cℓi +∆ωi
e,e

∏

ℓ∈S−

(∆ωℓ
u,e)

−Cℓi

Case 3, i1 = i, im = −i

A′
1∆

ωi
e,e = ∆ωi

e,v−1∆
ωi
u,e

∏

ℓ∈S+∩S−

(∆ωℓ
e,e)

−Cℓi +

(∏

ℓ∈S−

(∆ωℓ
u,e)

−Cℓi

)( ∏

ℓ∈([1,r̃]\S−)∪S+

(∆ωℓ

e,v−1)
−Cℓi

)

Case 4, i1 = −i, im = i

A′
1∆

ωi
si,si

= ∆ωi
e,si

∆ωi
si,e

+

( ∏

ℓ∈[1,r̃]\{i}

(∆ωℓ
e,e)

−Cℓi

)

In each case, one can apply Proposition 2.1.21 to deduce that A′
1 is indeed regular. For

example, in case 1, multiplying both sides of the above equation by

∏

j∈[1,r̃]\({i}∪S+)

(∆ωj
e,e)

−Cji =
∏

j∈[1,r̃]\({i}∪S+)

(∆
ωj

e,v−1)
−Cji

we obtain

A′
1∆

ωi
e,si

( ∏

j∈[1,r̃]\({i}∪S+)

(∆ωj
e,e)

−Cji

)

= ∆ωi

e,v−1

∏

ℓ∈[1,r̃]\{i}

(∆ωℓ
e,e)

−Cℓi +∆ωi
e,e

∏

ℓ∈[1,r̃]\{i}

(∆ωℓ

e,v−1)
−Cℓi

= ∆ωi

e,v−1(∆
ωi
e,e∆

ωi
si,si
−∆ωi

e,si
∆ωi

si,e
) + ∆ωi

e,e(∆
ωi
e,si

∆ωi

si,v−1 −∆ωi
si,si

∆ωi

e,v−1)

= ∆ωi
e,si

(∆ωi
e,e∆

ωi

si,v−1 −∆ωi
si,e

∆ωi

e,v−1).

By Proposition 2.1.20, ∆ωi
e,si

is a prime element of C[G] distinct from the ∆
ωj
e,e for j 6= i, hence∏

j∈[1,r̃]\({i}∪S+)(∆
ωj
e,e)−Cji must divide (∆ωi

e,e∆
ωi

si,v−1 −∆ωi
si,e

∆ωi

e,v−1) in C[G]. But then

A′
1 = (∆ωi

e,e∆
ωi

si,v−1 −∆ωi
si,e

∆ωi

e,v−1)/

( ∏

j∈[1,r̃]\({i}∪S+)

(∆ωj
e,e)

−Cji

)

is indeed an element of C[G]. We omit the remaining cases, which may be dealt with using
the same strategy.

Now suppose i and i′ are two double reduced word differing only in that ik = i′k+1 = j
and ik+1 = i′k = −j

′ for some 1 ≤ k < m and 1 ≤ j, j′ ≤ r. We claim that if A′
1,i is regular,

so is A′
1,i′ . This is straightforward unless j = j′ and Cji 6= 0, so we restrict our attention to
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this case. The argument in each of the above cases is essentially the same, so we will only
consider Case 1 in detail.

Let P1 and P2 (P ′
1 and P ′

2) be the two monomials appearing in the right-hand side of the
exchange relation defining A′

1,i (A
′
1,i′). We must show that ∆ωi

e,si
divides P ′

1 + P ′
2 in C[Gu,v]

given that it divides P1 + P2.
If u′ = u≤k, v

′ = v>k, one can check that

P ′
1 + P ′

2 =

(
P1(∆

ωj

u′,v′sj
∆

ωj

u′sj ,v′
)−Cji + P2(∆

ωj

u′,v′∆
ωj

u′sj ,v′sj
)−Cji

)

((∆
ωj

u′,v′sj
)[k− /∈E+](∆

ωj

u′sj ,v′
)[k++∈E+]∆

ωj

u′,v′)
−Cji

.

Here, e.g., [k− ∈ E+] is the function which is 1 if k− ∈ E+, and 0 otherwise. By Proposi-
tion 2.1.20, ∆ωi

e,si
and the denominator of the right-hand side are relatively prime, so it suffices

to show that ∆ωi
e,si

divides the numerator. This in turn is equivalent to showing that ∆ωi
e,si

divides
(∆

ωj

u′,v′sj
∆

ωj

u′sj ,v′
)−Cji − (∆

ωj

u′,v′∆
ωj

u′sj ,v′sj
)−Cji ,

or simply that it divides
∆

ωj

u′,v′sj
∆

ωj

u′sj ,v′
−∆

ωj

u′,v′∆
ωj

u′sj ,v′sj
.

But since ∆ωi
e,si

= ∆ωi

u′,v′ , this follows from Proposition 2.1.21.

Lemma 4.3.14. There is an open immersion aΣi
: AΣi

→ Gu,v such that the generalized
minors Ai from Definition 4.2.7 pull back to the corresponding cluster variables on AΣi

.
If k ∈ Iu is any unfrozen index and Ak := Aµk(Σi), then there is also an open immersion
ak : Ak → Gu,v forming a commutative diagram

AΣi
Ak

Gu,v.

µk

aΣi
ak

In particular, the regular functions {Ai|i ∈ I, i 6= k} ∪ {A′
k} ⊂ C[Gu,v] pull back to the

corresponding cluster variables on Ak.

Proof. The existence of the stated map aΣi
follows readily from Theorems 5.2.8 and 4.2.24.

Moreover, aΣi
is birational, hence there is a unique rational map ak making the given diagram

commute; we claim it is in fact regular.
There is a commutative square

Ak Gu,v

Xk Gu,v
Ad ,

ak

p′M
pG

xk
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where xk is the regular map defined in Proposition 4.3.7. Since ak is birational and the remain-
ing maps are regular and dominant, the diagram embeds C[Xk] and C[Gu,v

Ad ] as subalgebras of
the function field C(Ak). Moreover, we have C[Gu,v

Ad ] ⊂ C[Xk] inside C(Ak).
Since p′M is finite and Ak is normal, C[Ak] is the integral closure of C[Xk] in C(Ak). For

the same reason, C[Gu,v] is the integral closure of C[Gu,v
Ad ] in C(Ak). But then the containment

C[Gu,v
Ad ] ⊂ C[Xk] inside C(Ak) implies a containment C[Gu,v] ⊂ C[Ak] of their integral closures,

and it follows that ak is regular.
It is clear from the construction that ak pulls back the regular functions {Ai|i ∈ I, i 6=

k} ∪ {A′
k} on G

u,v to the corresponding cluster variables on Ak. It follows in particular that
ak is injective. But an injective birational morphism of smooth varieties is an open immersion,
and the proposition follows.

Lemma 4.3.15. Let U ⊂ Gu,v be the open subset

U := AΣi
∪
⋃

k∈Iu

Ak,

where we identify AΣi
, Ak := Aµk(Σi) with their images in Gu,v following Lemma 4.3.14.

Then the complement of U in Gu,v has complex codimension greater than 1.

Proof. We first claim that the unfrozen generalized minors Ak are distinct irreducible elements
of C[Gu,v], while the frozen ones are units. If k is frozen, either k < 0 or k+ = m+ 1. In the
former case, Ak = ∆

ω|ik|

e,v−1 , while in the latter Ak = ∆
ω|ik|
u,e . But in either case the fact that Ak

is nonvanishing on Gu,v follows easily from the definition of the generalized minors.
Observe then that a Laurent monomial M =

∏
k∈I A

nk

k in the initial cluster variables is
regular on Gu,v if and only if nk ≥ 0 for all unfrozen k. This follows from the definition of
A′

k, since M is regular on Ak and hence expressible as a Laurent polynomial in A′
k and the

Ai with i 6= k. Suppose then that for some unfrozen index k we can write Ak as a product of
two regular functions P,Q ∈ C[Gu,v]. Clearly P and Q are themselves Laurent monomials in
the Ai. But since PQ = Ak, one of them must only involve frozen variables, hence is a unit
in C[Gu,v]. The fact that they are distinct is clear since their restrictions to AΣi

are distinct.
We now claim that each A′

k is the product of some irreducible element A′′
k ∈ C[Gu,v] and

a Laurent monomial in the Ai with i 6= k. For suppose P is an irreducible factor of A′
k. Then

P must be expressible as a Laurent monomial in A′
k and the Ai with i 6= k, since it divides

A′
k. On the other hand, since P is regular on AΣi

, it follows from the definition of A′
k that

A′
k appears with a nonnegative exponent in this monomial expression. But then in the prime

factorization of A′
k there is exactly one irreducible factor such that this exponent is 1, and

the statement follows. Again, it is clear that this irreducible element A′′
k is distinct from the

Ai since their restrictions to Ak are distinct.
Finally, we observe that the complement Gu,v \ U is the locus where either Aj and Ak

vanish for two distinct j, k ∈ I, or A′′
k and Ak vanish for some k ∈ Iu. Let x ∈ G

u,v be any
element in the complement of U . Since x /∈ AΣi

, Ak(x) must equal zero for some k ∈ Iu.
But x /∈ Ak, so either A′′

k(x) = 0 or Aj(x) = 0 for some j 6= k. Thus Gu,v \ U is the union
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of finitely many subvarieties cut out by two distinct irreducible equations, and the lemma
follows.

Theorem 4.3.16. There is a regular map x|Σi| : X|Σi| → Gu,v
Ad extending the map XΣi

→ Gu,v
Ad

of Definition 4.2.5. We have a commutative diagram

A|Σi| Gu,v

X|Σi| Gu,v
Ad ,

a|Σi|

pM pG

x|Σi|

where pM and pG are as defined in Theorem 4.3.2

Proof. It follows from Proposition 4.2.28 that pM is well-defined and that there is a rational
map x|Σi| making the diagram commute. Let Σ′ be any seed mutation equivalent to Σi and
let x′ be the restriction of this rational map to XΣ′ ; it will follow that x|Σi| is regular if we
show that each such x′ is regular.

We have a commutative diagram

AΣ′ Gu,v

XΣ′ Gu,v
Ad ,

a′

p′M
pG

x′

where a′ is the restriction of a|Σi| to AΣ′ . If we pull back C[Gu,v
Ad ] along x

′ ◦ p′M to the function
field C(AΣ′), we see that its image is contained in C(XΣ′). On the other hand, if we perform
the same pullback along pG ◦ a

′, we see that the image of C[Gu,v
Ad ] is contained in C[AΣ′ ].

Since p′M is surjective, any rational function on XΣ′ which pulls back to a regular function on
AΣ′ must have been regular on XΣ′ . Thus the intersection of C(XΣ′) and C[AΣ′ ] in C(AΣ′) is
exactly C[XΣ′ ]. Thus x′ pulls back C[Gu,v

Ad ] to C[XΣ′ ], hence is regular.

Poisson Brackets of X -coordinates

We now complete the proof of Theorem 4.3.2, demonstrating that the map x|Σi| : X|Σi| → Gu,v
Ad

is Poisson. First we recall some rudiments of Poisson-Lie theory [CP94].
Any symmetrizable Kac-Moody group G is a Poisson ind-algebraic group in a canonical

way (see Section 3.2). That is, its coordinate ring is equipped with a continuous Poisson
bracket such that the multiplication map G×G→ G is Poisson. The double Bruhat cells of
G are Poisson subvarieties, and on any given double Bruhat cell H acts transitively on the set
of symplectic leaves by left multiplication. This standard Poisson structure is characterized
by the fact that the maps

ϕi : SL
di
2 → G
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are Poisson. Here SLdi
2 refers to the following Poisson-Lie structure on SL2: if we write

SL2 =

{(
A B
C D

)
: AD − BC = 1

}
,

then the brackets of the coordinate functions on SLdi
2 are given by

{B,A} =
di
2
AB, {B,D} = −

di
2
BD, {B,C} = 0,

{C,A} =
di
2
AC, {C,D} = −

di
2
CD, {D,A} = diBC.

The Cartan subgroup of G is a Poisson-Lie subgroup endowed with the trivial Poisson
structure. Then since the kernel of G→ GAd is a discrete subgroup of H, GAd in turn inherits
the standard Poisson structure from G.

Theorem 4.3.17. The regular map x|Σi| : X|Σi| → Gu,v
Ad defined in Theorem 4.3.16 is Poisson.5

Proof. Since XΣi
is dense in X|Σi|, it suffices to check that the original map XΣi

→ Gu,v
Ad is

Poisson. Thus if {, }G denotes the restriction of the standard Poisson bracket on Gu,v
Ad , we

must check that
{Xj, Xk}G = bjkdkXjXk

for all j, k ∈ I. We recall that the upper and lower Borel subgroups of SLd
2 are Poisson

subgroups. For 1 ≤ k ≤ m let Bik denote the positive Borel subgroup of SL
d|ik|

2 if ǫk = 1,
and its negative Borel subgroup if ǫk = −1. There is then a Poisson map

mi : H × Bi1 × · · · ×Bim → Gu,v
Ad

given by the maps ϕ|ik| and multiplication in GAd, and whose image coincides with XΣi
. We

define coordinates Pk, Qk on each Bik by

Bik =

{(
Pk Qk

0 P−1
k

)
: (Pk, Qk) ∈ C∗ × C

}

for ǫk = +1 and

Bik =

{(
Pk 0
Qk P−1

k

)
: (Pk, Qk) ∈ C∗ × C

}

for ǫk = −1. In either case the Poisson bracket on H × Bi1 × · · · ×Bim is given by

{Pj, Qk} =
d|ik|
2
PkQkδjk.

5In finite type this is the result of [FG06a, Proposition 3.11].
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Since mi is dominant and Poisson, the brackets among the Xi are determined by the
brackets of their pullbacks along mi. Moreover, since the coordinate functions on H are
Casimirs, it suffices to consider the restrictions of these pullbacks to Bi1 × · · · ×Bim .

Note that

ϕ|ik|(Bik) = P
α∨
|ik|

k (P−1
k Qǫk

k )
ω∨
|ik|Eik(PkQ

−ǫk
k )

ω∨
|ik|

=

( ∏

j 6=|ik|
1≤j≤r̃

P
C|ik|,|ij |

ω∨
j

k

)
(PkQ

ǫk
k ))

ω∨
|ik|Eik(PkQ

−ǫk
k )

ω∨
|ik| .

Then writing out mi explicitly and comparing with Definition 4.2.5 one obtains

m∗
iXj = (PjQ

−ǫj
j )[j>0](Pj+Q

ǫ
j+

j+ )[j
+≤m]

( ∏

j<k<j+

k>0

P
C|ik|,|ij |

k

)
.

But now one can check directly that

{Xj, Xk}G
XjXk

= ǫjdk[j = k+]− ǫkdk[j
+ = k] + ǫjdj

Ckj

2
[k < j < k+][j > 0]

− ǫj+dj
Ckj

2
[k < j+ < k+][j+ ≤ m]− ǫkdk

Ckj

2
[j < k < j+][k > 0]

+ ǫk+dk
Ckj

2
[j < k+ < j+][k+ ≤ m]

= bjkdk.
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Chapter 5

Q-Systems, Factorization Dynamics,
and the Twist Automorphism

5.1 Introduction

The goals of this chapter are to realize the cluster structures associated with Q-systems
as amalgamations of those on double Bruhat cells, use this to identify Q-system dynamics
with those of a factorization mapping (hence deduce their integrability), relate these to the
Fomin-Zelevinsky twist automorphism, and provide cluster realizations of twisted Q-systems.

Q-systems are nonlinear recurrence relations associated with affine Dynkin diagrams,
arising in the Bethe ansatz and the representation theory of Yangians and quantum loop
algebras [KR87; Nak03; Her06; Her10]. There is by now a large literature related to them and
their relatives (see [KNS11, Section 13] for a survey), and in particular it was discovered in
[Ked08; DK09] that they may be realized as sequences of cluster transformations in certain
cluster algebras. In this chapter we provide concrete realizations of these cluster algebras
in terms of double Bruhat cells and their amalgamations. The relevant sequences of cluster
transformations are then identified with factorization mappings on quotients of double Bruhat
cells, leading to their discrete integrability. Moreover, these sequences provide an alternate
description of the Fomin-Zelevinsky twist automorphism in terms of cluster transformations,
yielding explicit formulas relating twisted and untwisted cluster variables.

Theorem. (5.2.4, 5.3.6) The conjugation quotient Gc,c/H has a natural cluster structure
obtained from that of Gc,c by amalgamation. Its exchange matrix is of the form

BC :=

(
0 Ct

−Ct 0

)
,

where C is the Cartan matrix of G. Up to normalization, there is a Q-system which can be
realized by exchange relations in the corresponding cluster algebra; its type is the affinization
of that of G when this is simply-laced, otherwise it is of a twisted type related to that of G by
folding.
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When G is of type An this reformulates a result of [GSV11], and our use of amalgamation
to construct cluster structures on adjoint quotients derives from the construction of [FM13].
When G is not simply-laced, this provides a novel cluster algebraic realization of the Q-
systems of twisted type, though the cluster structures associated in [DK09] to Q-systems of
nonsimply-laced untwisted type do not fit into our framework. We note that in the context
of double Bruhat cells, what arises more naturally are the Y -system analogues of Q-systems,
which differ by a standard change of variables. In different language, we work directly with
X -coordinates rather than cluster variables; this is essential in using amalgamation to form
the quotient cluster structures we need.

Given the above result, the sequence of mutations underlying the Q-system gives rise to a
corresponding sequence of cluster transformations on Gc,c/H.

Theorem. (5.2.8, 5.3.7) Under the identification of their associated cluster structures, the
dynamics of the Q-system correspond to those of a certain factorization mapping on the
quotient Gc,c/H. In particular, these Q-systems are discrete integrable in the Liouville sense.

Factorization mappings play an important role in discrete integrable systems, analogous to
that of Lax forms in continuous-time integrable systems [DLT89; MV91; Ves91]. Given a rule
for factoring a group element g as a product g = hk, one defines a corresponding factorization
mapping by g 7→ kh, typically restricted to some subvariety of G. The factorization relevant
for our purposes is defined via the decomposition of an element into opposite Borel subgroups,
which is unambiguously defined up to conjugation by H. In addition to making contact
with Q-systems, the requirement that c be a Coxeter element guarantees that the invariant
functions onG descend to form an integrable system onGc,c/H, which has a natural symplectic
structure [Hof+00]. The factorization mapping manifestly preserves these invariant functions,
hence as observed in [Hof+00] is discrete integrable in the Liouville sense. The discrete
integrability of the corresponding Q-system then follows as a corollary of our setup; in type
An this integrability is well-known from a number of different perspectives [GSV11; DK10].
In fact, Gc,c/H is also equipped with an integrable system (a generalization of the relativistic
periodic Toda lattice) when G is an affine Kac-Moody group [Wil13b], and inherits a quotient
cluster structure as well.

Theorem. (5.2.8) If G is an affine Kac-Moody group, the factorization mapping on Gc,c/H
is again equivalent to an integrable mutation sequence in a quotient cluster structure.

In type A
(1)
n a generalization of this is treated in [FM13], and is related to the Hirota

bilinear difference equation (or octahedron recurrence). In other simply-laced affine types it
is related to the analogues of Q-systems for quantum toroidal algebras [Her07].

Since amalgamation commutes with mutation in a suitable sense, our setup also gives
rise to a distinguished sequence of cluster transformations on Gc,c itself. This turns out to
be closely related to the Fomin-Zelevinsky twist automorphism, which relates the cluster
variables and factorization parametrization associated with a double reduced word.
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Theorem. (5.4.1) The twist automorphism of Gc,c maps the toric chart associated with
any seed to the chart obtained from the mutation sequence associated with the factorization
mapping on G(c,c)/H. This holds when G is any symmetrizable Kac-Moody group, and yields
explicit formulas expressing twisted cluster variables as Laurent monomials in the untwisted
cluster variables of a different cluster.

Versions of the twist map exist on many varieties of Lie-theoretic origin with natural cluster
structures. This result parallels similar ones for unipotent cells [GLS12] and Grassmannians
[MS13], which show that certain twisted cluster variables differ by a change of coefficients
from the untwisted cluster variables obtained from a distinguished sequence of mutations.

Our interest in understanding properties of the exchange matrices BC also comes from
their appearance (in the simply-laced case) as BPS quivers of pure N = 2 gauge theories
[Ali+11; CD12]. In this setting the BPS spectrum of an N = 2 theory is encoded as a rational
torus automorphism, the monodromy operator or spectrum generator, which in the presence
of certain finiteness properties is a mutation-periodic sequence of cluster transformations
(often called a maximal green sequence in the cluster algebra literature). For pure N = 2
gauge theories, this mutation sequence is in fact an iteration of the Q-system sequence
[Ali+11], hence in particular is itself discrete integrable.

5.2 Factorization Dynamics as Cluster

Transformations

In this section we discuss factorization mappings from the perspective of cluster transforma-
tions. To any Cartan matrix C we associate a seed ΣC with a canonical mutation-periodic
sequence. We realize this seed as an amalgamation of a Coxeter double Bruhat cell, which
can be identified with its quotient under conjugation by the Cartan subgroup. We show
that the mutation-periodic sequence corresponds to a factorization mapping on this quotient.
In finite type this mapping is known to be discrete integrable [Hof+00], and we show it is
also integrable in affine type. We will freely use the notation and concepts introduced in
Section 4.2 and Remark 4.3.6.

Definition 5.2.1. For any symmetrizable r-by-r Cartan matrix C, let ΣC be the seed with
IC = (IC)u = {1, . . . , 2r}, exchange matrix

BC :=

(
0 Ct

−Ct 0

)
,

and di derived from the symmetrizers of C in the obvious way. We let µ̂ be the mutation
sequence µ1 ◦ · · · ◦ µr of ΣC , and σ the permutation of I interchanging i and i+ r.

Proposition 5.2.2. The mutation sequence µ̂ is a σ-period of ΣC, that is

µ̂(BC)ij = (BC)σ(i)σ(j).
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Proof. Since (BC)σ(i)σ(j) = −(BC)ij, we must check that µ̂(BC) = −BC . This is immediate
for the top-left and off-diagonal r-by-r blocks of µ̂(BC). We then calculate that

µ̂(BC)i+r,j+r =
1

2

∑

1≤k≤r

(Ck,i|Cj,k| − |Ck,i|Cj,k)

=
1

2

∑

k=i,j

(Ck,i|Cj,k| − |Ck,i|Cj,k)

=0.

Fix a Coxeter element c = s1 · · · sr in the Weyl group associated with C, and a double
reduced word i = (−1, . . . ,−r, 1, . . . , r) for u = v = c. In fact the essential content of
this section and the next hold when u and v are possibly distinct Coxeter elements, see
Remark 5.2.5. When C is not of finite type, GAd will refer to the minimal form of the
adjoint group associated with C, and Σi to the corresponding minimal seed. Note that
Ii = {−1, . . . ,−r} ∪ IC .

Lemma 5.2.3. Let Ct
U , C

t
L be the upper- and lower-triangular r × r matrices with 1’s on

the diagonal such that Ct
U + Ct

L = Ct. That is,

(Ct
U)ij = δij + [i < j]Cji, (Ct

L)ij = δij + [i > j]Cji.

Then the exchange matrix of Σi has the form

BΣi
=




Ct
U −

1
2
Ct Ct

L 0

−Ct
U 0 −Ct

L

0 Ct
U Ct

L −
1
2
Ct


 ,

where we have ordered the indices as −1, . . . ,−r, 1, . . . , 2r.

Proof. Can be checked directly from Definition 4.3.1.

For any u, v ∈ W , we denote by Gu,v
Ad/HAd the quotient of Gu,v

Ad under conjugation by
HAd, with the following caveat. If j is any double reduced word for u, v, then since HAd is

generated by coweight subgroups and X
ω∨
|ik|

k commutes with Ej for |j| 6= |ik|, it follows from
the definition of xj that the conjugation action of HAd preserves the image of XΣj

, and that
a good geometric quotient XΣj

/HAd exists. In fact, from eq. (2.2.8) it is clear that for any
seed Σ′ mutation-equivalent to Σj, the corresponding chart XΣ′ ⊂ Gu,v

Ad has a good quotient
by HAd. These charts cover an open subset of Gu,v

Ad whose complement is of codimension at
least 2, hence this open subset also has a good quotient by HAd. The question of whether or
not the whole cell Gu,v

Ad admits a good quotient will not be relevant for our purposes, so we
will simply write Gu,v

Ad/HAd with the understanding that we may need to restrict to an open
subset.
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-2 2 4

-1 1 3

2 4

1 3

amalgamation

Figure 5.1: The quivers of Σi and ΣC when C is of type A2. The dashed arrows correspond to
entries of Bi equal to ±

1
2
; since they connect frozen vertices they do not affect the structure

of cluster transformations, but record the Poisson brackets among frozen variables. The
amalgamation itself “glues together” some of the frozen variables: -1 to 3 and -2 to 4.

Theorem 5.2.4. The seed ΣC is the amalgamation of Σi along the map π : Ii ։ IC given by

π(k) =

{
k k > 0

|k|+ r k < 0.

The map xi : XΣi
→֒ Gc,c

Ad descends to an open immersion XΣC
→֒ Gc,c

Ad/HAd intertwining the
quotient and amalgamation maps:

XΣi
Gc,c

Ad

XΣC
Gc,c

Ad/HAd.

xi

π π

xi

Proof. Using Lemma 5.2.3, one can immediately verify that the hypothesis of Definition 2.2.14
are satisfied by ΣC , Σi, and π. The conjugation-invariant subalgebra C[XΣi

]HAd is manifestly
generated by the Xi, X−iXi+r, and their inverses for 1 ≤ i ≤ r. But this is equal to π∗C[XΣC

],
hence we obtain the map XΣC

→֒ Gc,c
Ad/HAd.

Remark 5.2.5. If j is any double reduced word for u, v ∈ W , the conjugation action of HAd

on Gu,v
Ad will always have a comparably simple expression in the associated X -coordinates.

However, it is not always the case that quotient map XΣj
։ XΣj

/HAd is an amalgamation
map. For example, if u = c but v = e, the hypotheses of Definition 2.2.14 will not be satisfied
by the quotient map. However, if u and v are (possibly distinct) Coxeter elements, there

will be a unique amalgamation Σ̃ of Σj and isomorphism XΣ̃

∼
→ XΣj

/HAd intertwining the
quotient and amalgamation maps from XΣj

. In fact, when u and v are Coxeter elements

conjugate to c, the reader can check that the resulting seed Σ̃ is mutation-equivalent to ΣC .
For GLn, this was previously observed (from a different point of view) in [GSV11].
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Recall that an integrable system on a (smooth) symplectic variety is a Poisson-commutative
subalgebra of its coordinate ring whose differentials generically span Lagrangian subspaces of
its cotangent spaces, inducing a Lagrangian foliation of an open subset. By an integrable
system on a Poisson variety we will mean an algebra of functions which restricts to an
integrable system on a generic symplectic leaf.

Proposition 5.2.6. ([Hof+00],[Wil13a]) If C is of finite or affine type, the restrictions of
the conjugation-invariant functions on GAd form an integrable system on Gc,c

Ad/HAd.

Proof. We only comment that the affine case treated in [Wil13a] and Section 3.4 is slightly
different from the present one, though the proof there extends straightforwardly. In loc.
cited it was shown that the invariants restrict to form an integrable system on (G′)c,c/H,
where G′ is the central extension of the algebraic loop group LG̊. This is actually more
delicate, as its symplectic leaves are of dimension 2r + 2, rather than 2r (where r is the
rank of G̊). For the present case the needed Hamiltonians are derived from the invariant

ring C[G̊]G̊: we pull back this subalgebra along the evaluation map LG̊× C∗ → G̊ and take
the component invariant under the C∗ action (in particular they extend to functions on the
semidirect product LG̊⋊ C∗). The Hamiltonians for groups of twisted affine type may be
produced similarly by embedding them into algebraic loop groups as subgroups invariant
under a diagram automorphism.

We recall the following basic result about cluster structures of double Bruhat cells; we
omit its extension to the Kac-Moody case, which is straightforward.

Proposition 5.2.7. ([FG06a]) Suppose that i = (i1, . . . , im), i′ = (i′1, . . . , i
′
m) differ by

swapping two adjacent indices differing only by a sign. That is, for some 1 ≤ k < m,
ik = −ik+1, and

i′ℓ =

{
−iℓ ℓ = k, k + 1

iℓ otherwise.

Then the corresponding sets of X -coordinates on Gu,v
Ad differ by the cluster transformation at

k:

XΣi
XΣi′

Gu,v
Ad

µk

xi xi′

Theorem 5.2.8. The cluster automorphism µ̂σ of XΣC
coincides with the restriction of the

following rational automorphism of Gc,c
Ad/HAd. Given g ∈ Gc,c

Ad/HAd, there will generically be
unique elements h1, h2 ∈ HAd such that, up to conjugation by HAd,

g =

(
(

y∏

1≤i≤r

Ei)h1

)(
(

y∏

1≤i≤r

Fi)h2

)
.
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The rational automorphism of Gc,c
Ad/HAd is then the factorization mapping

g =

(
(

y∏

1≤i≤r

Ei)h1

)(
(

y∏

1≤i≤r

Fi)h2

)
7→

(
(

y∏

1≤i≤r

Fi)h2

)(
(

y∏

1≤i≤r

Ei)h1

)
,

taken up to conjugation by HAd. Here the product notation indicates we order the terms from
left to right by increasing i. In particular, µ̂σ preserves the restrictions of any conjugation-
invariant functions on GAd, and in finite or affine type is discrete integrable in the Liouville
sense.

Proof. By Proposition 5.2.7, the X -coordinates on XΣi
and XΣ′

i
(where Σ′

i = µ̂(Σi)) are
related by
(

y∏

1≤i≤r

X
ω∨
i

−i

)(
y∏

1≤i≤r

FiX
ω∨
i

i

)(
y∏

1≤i≤r

EiX
ω∨
i

i+r

)
=

(
y∏

1≤i≤r

(X ′
−i)

ω∨
i

)(
y∏

1≤i≤r

Ei(X
′
i)

ω∨
i

)(
y∏

1≤i≤r

Fi(X
′
i+r)

ω∨
i

)
.

It is straightforward to see that each of the seeds µk ◦ · · · ◦ µr(Σi) satisfy the hypotheses of
Definition 2.2.14 with respect to π : Ii ։ IC , hence we can apply Proposition 2.2.16 to obtain

XΣi
XΣ′

i

XΣC
XΣ′

C
.

µ̂

π π

µ̂

In particular, the X -coordinates on XΣC
and XΣ′

C
are related by

(
y∏

1≤i≤r

FiX
ω∨
i

i

)(
y∏

1≤i≤r

EiX
ω∨
i

i+r

)
=

(
y∏

1≤i≤r

Ei(X
′
i)

ω∨
i

)(
y∏

1≤i≤r

Fi(X
′
i+r)

ω∨
i

)
,

up to conjugation by HAd.
The isomorphism XΣ′

C

∼
→ XΣC

given by σ then induces a rational automorphism of
Gc,c

Ad/HAd through
(

y∏

1≤i≤r

Ei(X
′
i)

ω∨
i

)(
y∏

1≤i≤r

Fi(X
′
i+r)

ω∨
i

)
7→

(
y∏

1≤i≤r

Fi(X
′
i+r)

ω∨
i

)(
y∏

1≤i≤r

Ei(X
′
i)

ω∨
i

)
.

But this is just the map described in the theorem, with h1 =
∏
(X ′

i)
ω∨
i and h2 =

∏
(X ′

i+r)
ω∨
i .

That µ̂σ preserves invariant functions is clear, hence we obtain discrete integrability in finite
and affine types by Proposition 5.2.6. Note that in affine type even though the symplectic
leaves of XΣC

are of positive codimension, µ̂σ preserves the distinguished symplectic leaf
hence restricts to an integrable symplectomorphism of it.
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5.3 Q-Systems and Discrete Integrability

Q-systems are nonlinear recurrence relations associated with affine Dynkin diagrams X
(κ)
N . We

review their normalized versions and cluster-algebraic realizations following [Ked08; DK09],
which we extend to include twisted types. In twisted and simply-laced untwisted types these
systems are encoded by the seeds ΣC studied in the previous section. The Q-system itself is
realized by a sequence of cluster transformations coinciding with that of the corresponding
factorization mapping, though realized by cluster variables rather than X -coordinates. Since
the relevant exchange matrix is nondegenerate, the two sets of variables differ by a finite
map, leading to the discrete integrability of these Q-systems.

Recall that affine Dynkin diagrams are classified by pairs of a finite-type diagram XN

and an automorphism of order κ. This induces an automorphism of the simple Lie algebra of
type XN , whose invariant subalgebra is also simple and whose type we denote by YM . Clearly
for untwisted types (κ = 1) we have XN = YM , while for twisted types the correspondence is

given below. It is summarized by the fact that the Langlands dual of X
(κ)
N is the affinization

of the Langlands dual of YM .

X
(κ)
N A

(2)
2r−1 D

(2)
r+1 E

(2)
6 D3

4

YM Cr Br F4 G2

Definition 5.3.1. The Q-system of type X
(κ)
N is the following recurrence relation in the

commuting variables {Q(a)
n }, where n ∈ Z is a discrete “time” variable and a is an index

labeled by the roots of YM . If X
(κ)
N is of untwisted simply-laced type and C the Cartan matrix

of type XN , the corresponding Q-system is

(Q(a)
n )2 = Q

(a)
n−1Q

(a)
n+1 +

∏

b 6=a

(Q(a)
n )−Cba .
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1 2 r − 1 r

0

0 1 r − 1 r

0 1 2 3 4 0 1 2

A
(2)
2r−1 D

(2)
r+1

E
(2)
6 D

(3)
4

Figure 5.2: Affine Dynkin diagrams of twisted type and enumerations of their vertices. The
diagram YM is the subdiagram whose nodes have nonzero labels.

For X
(κ)
N of twisted type, the corresponding Q-systems are as follows [Hat+02; Her10]:

A
(2)
2r−1

{
(Q

(a)
n )2 = Q

(a)
n−1Q

(a)
n+1 +Q

(a−1)
n Q

(a+1)
n 1 ≤ a < r

(Q
(r)
n )2 = Q

(r)
n−1Q

(r)
n+1 + (Q

(r)
n )2

D
(2)
r+1





(Q
(a)
n )2 = Q

(a)
n−1Q

(a)
n+1 +Q

(a−1)
n Q

(a+1)
n 1 ≤ a < r − 1

(Q
(r−1)
n )2 = Q

(r−1)
n−1 Q

(r−1)
n+1 +Q

(r−2)
n (Q

(r)
n )2

(Q
(r)
n )2 = Q

(r)
n−1Q

(r)
n+1 +Q

(r−1)
n

E
(2)
6





(Q
(1)
n )2 = Q

(1)
n−1Q

(1)
n+1 +Q

(2)
n

(Q
(2)
n )2 = Q

(2)
n−1Q

(2)
n+1 +Q

(1)
n Q

(3)
n

(Q
(3)
n )2 = Q

(3)
n−1Q

(3)
n+1 + (Q

(2)
n )2Q

(4)
n

(Q
(4)
n )2 = Q

(4)
n−1Q

(4)
n+1 +Q

(3)
n

D3
4

{
(Q

(1)
n )2 = Q

(1)
n−1Q

(1)
n+1 +Q

(2)
n

(Q
(2)
n )2 = Q

(2)
n−1Q

(2)
n+1 + (Q

(1)
n )3

Here we set Q
(0)
n = 1 and enumerate the roots of YM as in fig. 5.2.

We omit the definition of the Q-systems of nonsimply-laced untwisted type, as they lie
outside the scope of our main result. Also absent from the above discussion is the twisted
type A

(2)
2n ; its relationship with the corresponding finite type is more subtle, and it does not

admit an interpretation in terms of cluster transformations.1 Thus when referring to a generic
twisted type X

(κ)
N we will tacitly assume it is not of type A

(2)
2n .

The correspondence betweenX
(κ)
N and YM allows us to write the aboveQ-systems uniformly

as follows:

Proposition 5.3.2. Let X
(κ)
N be of twisted type or simply-laced untwisted type, and C the

Cartan matrix of the associated finite type YM . Then the Q-system of type X
(κ)
N may be

1It contains the relation (Q
(r)
n )2 = Q

(r)
n−1Q

(r)
n+1 +Q

(r−1)
n Q

(r)
n , whose terms cannot be rearranged into an

exchange relation since Q
(r)
n appears on both sides.
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written as

(Q(a)
n )2 = Q

(a)
n−1Q

(a)
n+1 +

∏

b 6=a

(Q(a)
n )−Cba .

Proof. Follows by inspection of the above list and the definition of YM .

To realize Q-systems in terms of cluster transformations, it is convenient to replace them
with certain normalized, but equivalent, Q-systems. These normalized variables differ from
those of the usual Q-system via rescaling by certain roots of unity.

Proposition 5.3.3. ([Ked08; DK09]) The normalized Q-system

Q̃
(a)
n−1Q̃

(a)
n+1 = (Q̃(a)

n )2 +
∏

b 6=a

(Q̃(b)
n )−Cba (5.3.4)

is equivalent to the ordinary Q-system under the rescaling Q̃
(a)
n = ǫaQ

(a)
n , where the ǫa ∈ C

are defined by
∏

1≤a≤r ǫ
Cab
a = −1 for all 1 ≤ b ≤ r.

Proof. Note that the existence of such ǫa follows from the nondegeneracy of C. The derivation
of eq. (5.3.4) is then straightforward.

Remark 5.3.5. The normalized Q-systems also have a direct interpretation in terms of T -
systems. These are relations among q-characters of Kirillov-Reshetikhin modules, in variables
{T (a)

n (u)} where n and a are as before and u ∈ C is a spectral parameter. In the simply-laced
case, the relations are

T (a)
n (u+ 1)T (a)

n (u− 1) = T
(a)
n−1(u)T

(a)
n+1(u) +

∏

b 6=a

(T (b)
n (u))−Cba .

By forgetting the spectral parameter u, we obtain the usual Q-system, but by forgetting
instead the parameter n we obtain the normalized Q-system. A similar statement holds
for the twisted case, with some subtlety in that we must only consider u modulo a certain
additive constant.

Given a finite-type Cartan matrix C, we let A
(1)
k , . . . , A

(2r)
k denote the cluster variables

associated with the seed µ̂k
σ(ΣC) for k ∈ Z. Recall from Definition 5.2.1 that the exchange

matrix of ΣC is

BC :=

(
0 Ct

−Ct 0

)
,

the mutation sequence µ̂ is µ1 ◦ · · · ◦ µr, and σ interchanges i and i + r. As elements of
the (upper) cluster algebra C[A|ΣC |] the relations among the A

(i)
k are in fact equivalent to

normalized Q-systems under the identification A
(i)
k 7→ Q̃

(i)
k . Note that A

(i+r)
k = A

(i)
k+1 for

1 ≤ i ≤ r, so we lose no information by restricting our attention to A
(1)
k , . . . , A

(r)
k .
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Theorem 5.3.6. Let C be a finite-type Cartan matrix, and A
(1)
k , . . . , A

(r)
k cluster variables

associated with µ̂k
σ(ΣC).

1. ([Ked08; DK09]) If C is of simply-laced type XN , the relations among the cluster

variables A
(i)
k coincide with those of the normalized Q-system of type X

(1)
N .

2. If C is of nonsimply-laced type YM , the relations among the cluster variables A
(i)
k

coincide with those of the normalized Q-system of the associated twisted type X
(κ)
N .

Proof. Given the definition of the normalized Q-systems in eq. (5.3.4), this is a straightforward
check involving the definition of the exchange matrix BC and the cluster automorphism
µ̂σ.

Theorem 5.3.7. For X
(κ)
N of twisted type or simply-laced untwisted type, the corresponding

Q-system is discrete integrable in the Liouville sense.

Proof. The statement should be understood in light of Theorem 5.3.6, which says that
incrementing the discrete time variable n of the (normalized) Q-system is equivalent to
expanding the rational symplectomorphism µ̂σ of AΣC

in terms of cluster variables. Since
the matrix BC is nondegenerate, the canonical map pΣC

: AΣC
→ XΣC

is a finite cover.
In particular, AΣC

inherits from XΣC
a symplectic structure and the integrable system of

Proposition 5.2.6. Since pΣC
: AΣC

→ XΣC
intertwines the associated automorphisms µ̂σ of

AΣC
and XΣC

, and the latter preserves the integrable system on XΣC
by Theorem 5.2.8, the

former is also discrete integrable. Since the normalized and unnormalized Q-systems differ
by an invertible rescaling, the integrability of the normalized Q-system implies that of the
unnormalized version.

5.4 The Twist Automorphism

Since amalgamation commutes with mutation, the mutation sequence of ΣC studied in the
previous sections lifts to a mutation sequence on the double Bruhat cell Gc,c itself. We
now show that this sequence is intimately connected with the twist automorphism of Gc,c.
Specifically, any two clusters related by the corresponding sequence of cluster transformations
are also mapped to each other by the twist automorphism. Equivalently, the twist pulls back
cluster variables to cluster monomials of the seed obtained by this mutation sequence. While
these pullbacks are generally not cluster variables, the unfrozen cluster variables are taken
to monomials with only a single unfrozen factor, so in this sense the twist acts by a change
of coefficients. From the perspective of Poisson geometry this is quite natural; it is known
that the twist automorphism is Poisson [GSV03], hence both twisted and untwisted cluster
variables have quadratic brackets with respect to the standard Poisson-Lie structure.

Theorem 5.4.1. Let G be a symmetrizable Kac-Moody group, τ the twist automorphism
of Gc,c, and AΣ ⊂ Gc,c the toric chart associated with a seed Σ. Then τ restricts to an
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isomorphism of AΣ onto Aµ̂(Σ), where µ̂ = µ1 ◦ · · ·µr is the mutation sequence consisting
of a single mutation at each unfrozen index. In particular, if {Ai} and {A

′
i} are the cluster

variables associated with Σ and µ̂(Σ), respectively, then the {A′
i} and the twisted cluster

variables {τ ∗(Ai)} are Laurent monomials in each another. If Σ is the seed associated with
the double reduced word i = (−1, . . . ,−r, 1, . . . , r), this transformation is explicitly given by

A′
i =

∏

j∈I

(τ ∗Aj)
Mij ,

where M is the I × I matrix with entries

Mj,k =





〈ω|ij ||α
∨
|ik|
〉 (= δjk) 1 ≤ j, k ≤ r

〈cω|ij ||α
∨
|ik|
〉 j > r and k < 0

〈c−1ω|ij ||α
∨
|ik|
〉 j < 0, and k > r or k < −r

0 otherwise.

Proof. From Lemma 5.4.6 and Theorem 4.3.2 it follows immediately that

A′
i =

∏

j∈I

(τ ∗Aj)
(NBmod

Σ )ij ,

where N is the matrix of Lemma 5.4.6 and Bmod
Σ is the modified exchange matrix associated

with Σ as in Theorem 4.3.2. Most of the difficulty in verifying that the product of N and
Bmod

Σ is the given matrix M is encapsulated in Lemma 5.4.7. For example, for 1 ≤ i, k ≤ r,
we may use it to compute

(NBmod
Σ )i+r,−k = 〈(cωi)− ωi|ω

∨
k +

∑

j<k

Ckjω
∨
j 〉

= 〈(cωi)− ωi|α
∨
k − (ω∨

k +
∑

j>k

Ckjω
∨
j )〉

= 〈(cωi)− ωi|α
∨
k 〉+ δik

= 〈cωi|α
∨
k 〉.

Given that M = NBmod
Σ , the theorem follows by verifying that M satisfies the hypotheses

of Lemma 5.4.3 with respect to the exchange matrices BΣ and Bµ̂(Σ). Note that Bµ̂(Σ) = −BΣ,
as µ̂(Σ) is associated with the double reduced word (1, . . . , r,−1, . . . ,−r). This computation
then parallels that of M itself, again with Lemma 5.4.7 being the core of the calculation.

Remark 5.4.2. If C is of finite type, the decomposition of M into r-by-r blocks is

M =



0 0 c−1

0 Id 0
c 0 0


 .

Here we express c as a matrix via its action on the fundamental weight basis, and order the
indices by (−1, . . . ,−r, 1, . . . , 2r).
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Lemma 5.4.3. Let Σ, Σ̃ be two seeds with the same index set I and unfrozen subset Iu. For
an invertible I × I matrix M , let ϕM : AΣ̃

∼
→ AΣ be the isomorphism defined by

ϕ∗
M(Ai) =

∏

j∈I

Ã
Mij

j . (5.4.4)

Suppose that M satisfies the following conditions:

1. B̃ij = (BM)ij when i is unfrozen.

2. Mij = δij when j is unfrozen.

In particular Bij = B̃ij when i and j are both unfrozen, hence Σ and Σ̃ are of the same cluster
type. Then we have:

1. The map ϕM extends to an isomorphism between Aµk(Σ̃) and Aµk(Σ) for any unfrozen
index k. Specifically, if M ′ is the I × I matrix defined by

M ′
ij =

{
Mij i 6= k

2δkj −Mkj +
∑

ℓ∈I([BkℓMℓj]− − [Bkℓ]−Mℓj) i = k,
(5.4.5)

then the corresponding isomorphism ϕM ′ : Aµk(Σ̃)

∼
→ Aµk(Σ) satisfies

AΣ̃ AΣ

AΣ̃′ AΣ′ .

ϕM

µk µk

ϕM′

2. If Bij = 0 when i and j are both unfrozen (so Σ, Σ̃ are of cluster type An
1), then ϕM

extends to an isomorphism of A-spaces and upper cluster algebras.

Proof. To prove the first claim one must check that for any cluster variable A′
i on AΣ′ , we

have ϕ∗
M ′A′

i = (µk ◦ ϕM ◦ µk)
∗A′

i. The condition that Mij = δij when j is unfrozen ensures

this holds for i 6= k. The condition that B̃kj = (BM)kj ensures (µk ◦ϕM ◦µk)
∗A′

k is a Laurent
monomial in the cluster variables on AΣ̃′ , and the given formula for M ′ follows from explicitly
calculating this composition using eqs. (2.2.7) and (5.4.4).

The second claim follows inductively once we establish that M ′ satisfies the same hy-
potheses as M , but with respect to the seeds Σ′, Σ̃′. That M ′

ij = δij when j is unfrozen can
be checked generally without any assumptions on the cluster type of Σ. On the other hand,
a direct computation reveals that Bij vanishing when i and j are unfrozen is a sufficient

condition to ensure B̃′
ij = (B′M ′)ij when i is unfrozen.

When C is not of finite type, we take GAd to be the maximal form of the adjoint group
in the following statement.
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Lemma 5.4.6. Let Xi ⊂ Gc,c
Ad be the toric chart associated with the double reduced word

i = (−1, . . . ,−r, 1, . . . , r), and Ai′ ⊂ Gc,c the chart associated with i′ = (1, . . . , r,−1, . . . ,−r).
Then the quotient map π : Gc,c

։ Gc,c
Ad restricts to a finite cover of Ai′ onto Xi. Equivalently,

the (pullbacks to Gc,c of the) X -coordinates associated with i are Laurent monomials in the
untwisted cluster variables associated with i′. In fact,

Ai =
∏

j∈I

(π∗Xj)
Nij ,

where

Njk =





〈cω|ij ||ω
∨
|ik|
〉 j > r, k < 0

〈c−1ω|ij ||ω
∨
|ik|
〉 j < 0, k > r

〈ω|ij ||ω
∨
|ik|
〉 otherwise.

Proof. By Definition 4.2.7 the cluster variables associated with i′ are generalized minors of
the form ∆ωi

e,c−1 , ∆
ωi
e,e, and ∆ωi

c,e. Calculating the matrix N consists of evaluating such minors
on an element of the form

g =

(
y∏

1≤i≤r̃

X
ω∨
i

−i

)(
y∏

1≤i≤r

FiX
ω∨
i

i

)(
y∏

1≤i≤r

EiX
ω∨
i

i+r

)
.

This involves fractional powers of the Xi, since the coweight subgroups themselves do not act
on the fundamental representations, but only covering groups of them.

By definition ∆ωi

e,c−1(g) = 〈vi|gsr · · · s1vi〉, where vi is a highest weight vector of the
fundamental representation of highest weight ωi. The key point is that while the action of Ei

or Fi on a vector of weight ω is in general a sum of components with weights of the form
ω + nαi, many of these can be discarded in the computation of a given generalized minor.
For example, one can check inductively that for 1 ≤ k ≤ r,

∆ωi

e,c−1(g)

= 〈vi|

(
y∏

1≤i≤r̃

X
ω∨
i

−i

)(
y∏

1≤i≤r

FiX
ω∨
i

i

)(
y∏

1≤i≤k

EiX
ω∨
i

i+r

)
sk · · · s1vi〉

(
r∏

j=k+1

X
〈sj ···s1ωi|ω

∨
j 〉

j+r

)
,

and from this that

∆ωi

e,c−1(g) = 〈vi|

(
y∏

1≤i≤r̃

X
ω∨
i

−i

)(
y∏

1≤i≤r

FiX
ω∨
i

i

)
vi〉

(
r∏

j=1

X
〈sj ···s1ωi|ω

∨
j 〉

j+r

)

=

(
r̃∏

j=1

X
〈ωi|ω

∨
j 〉

−j

)(
r∏

j=1

X
〈ωi|ω

∨
j 〉

j

)(
r∏

j=1

X
〈sj ···s1ωi|ω

∨
j 〉

j+r

)

Since
〈c−1ωi|ω

∨
j 〉 = 〈sj · · · s1ωi|ω

∨
j 〉 = 〈sr · · · s1ωi|ω

∨
j 〉,
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we obtain the stated values of Njk when j < 0. Note that up to a scalar factor this expression
depends on choosing si as the representative of si in G. The remaining entries of N can be
computed following the same logic.

Lemma 5.4.7. For 1 ≤ i, k ≤ r, the Coxeter element c = s1 · · · sr satisfies

〈(cωi)− ωi|ω
∨
k +

∑

j>k

Ckjω
∨
j 〉 = −δik,

〈(c−1ωi)− ωi|ω
∨
k +

∑

j<k

Ckjω
∨
j 〉 = −δik.

Proof. The two statements are equivalent by reversing the labeling of the simple roots, so it
suffices to prove the first. The claim is immediate if k ≥ i. For k < i, note that

〈(cωi)− ωi|ω
∨
k +

∑

j>k

Ckjω
∨
j 〉 = 〈(sk · · · siωi)− ωi|ω

∨
k +

∑

j>k

Ckjω
∨
j 〉.

A simple induction yields

sk · · · siωi = ωi +
i∑

j=k

( ∑

a1=j<···<aℓ=i

(−1)ℓ
ℓ−1∏

m=1

Cam,am+1

)
αj,

where the sum is taken over increasing sequences of any length from j to i, and the product is
taken to equal 1 when ℓ = 1. From this we compute that 〈(sk · · · siωi)−ωi|ω

∨
k +

∑
j>k Ckjω

∨
j 〉

is equal to
( ∑

a1=k<···<aℓ=i

(−1)ℓ
ℓ−1∏

m=1

Cam,am+1

)
+

i∑

j=k+1

( ∑

a1=j<···<aℓ=i

(−1)ℓ
ℓ−1∏

m=1

Cam,am+1

)
Ckj,

which vanishes since the two sums cancel.

Example 5.4.8. The simplest example is SL2, where c is the nonidentity element of W and
i = (−1, 1), i′ = (1,−1) are the only double reduced words for (c, c). Their respective cluster
variables are just matrix entries:

(A−1, A1, A2) = (∆12,∆22,∆21), (A′
−1, A

′
1, A

′
2) = (∆12,∆11,∆21).

The parametrization associated with i is

xi : (X−1, X1, X2) 7→ (X−1X1X2)
− 1

2

(
X−1X1X2 X−1X1

X1X2 1 +X1

)
.

From this we can directly evaluate the matrix N of Lemma 5.4.6, and along with the matrix
Bmod

Σ we have

N =
1

2




1 1 −1
1 1 1
−1 1 1


 , Bmod

Σ =




1 1 0
−1 0 −1
0 1 1


 .
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From this we compute the matrix M of Theorem 5.4.1, and the matrix M ′ of eq. (5.4.5):

M =




0 0 −1
0 1 0
−1 0 0


 , M ′ =




0 0 −1
−1 1 −1
−1 0 0




Theorem 5.4.1 then says that the twisted cluster variables are determined from these by

A′
i =

∏

j∈I

(τ ∗Aj)
Mij , Ai =

∏

j∈I

(τ ∗A′
j)

M ′
ij . (5.4.9)

On the other hand, by expanding ?? we compute the following explicit formula for the
twist:

τ :

(
a b
c d

)
7→

(
db−1c−1 b−1

c−1 d

)
.

From this we can compute the twisted cluster variables directly:

(τ ∗A−1, τ
∗A1, τ

∗A2) = (∆−1
21 ,∆11,∆

−1
12 ), (τ ∗A′

−1, τ
∗A′

1, τ
∗A′

2) = (∆−1
21 ,∆

−1
12 ∆22∆

−1
21 ,∆

−1
12 ).

Of course, this agrees with eq. (5.4.9), noting that M and M ′ are each their own inverses.
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Chapter 6

Integrable Systems, Canonical Bases,
and N = 2 Field Theory

6.1 Introduction

The goals of this chapter are to identify the Hamiltonians of the open quadratic Toda system
as generating functions of Euler characteristics of quiver Grassmannians, hence heuristically
as generalized canonical basis elements, and explain how such an expression is predicted by
the appearance of the relevant cluster structures in supersymmetric gauge theory.

Given a quiver Q, there is a close relationship between its representation theory and
the associated cluster algebra. In particular, there is a natural bijection between the set of
non-initial cluster variables and the set of rigid indecomposable representations (with suitable
relations imposed in the presence of oriented cycles). The expansion of a cluster variable
in terms of the initial cluster is completely determined by the structure of the associated
representation, being expressible as a generating function of Euler characteristics of its quiver
Grassmannians called the cluster character.

A primary motivation for the axiomatization of cluster algebras is to codify and abstract
part of the combinatorial structure of various examples of canonical bases. However, while
the cluster variables of a cluster algebra are to be regarded as prototypes of canonical basis
elements, in general they do not span it as a vector space and so do not encapsulate the
complete structure of a canonical basis. Nonetheless, in some cases where an interesting a
priori definition of a complete canonical basis of a cluster algebra is known, such as the dual
semicanonical basis of a unipotent cell, the basis elements which are not cluster variables are
still cluster characters (necessarily of nonrigid modules). Thus cluster characters provide a
flexible heuristic notion of a generalized canonical basis element, encompassing but extending
nontrivially the notion of a cluster variable. The main theorem of this chapter asserts that
the Hamiltonians of the quadratic open Toda systems studied in [GSV11; Hof+00] and
chapter 5 are in fact cluster characters, hence should be regarded as generalized canonical
basis elements.
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Theorem. (6.5.1) The Hamiltonians of the quadratic An open Toda systems are cluster
characters of nonrigid modules of the associated Jacobian algebra.

Recall that a potential W on a quiver Q is a formal sum of oriented cycles, and the
Jacobian algebra of a quiver with potential is the quotient of the path algebra CQ by the
cyclic derivatives of W . The proof of the above theorem relates the internal structure of the
relevant Jacobian algebra to a combinatorial model for computing the Hamiltonians of the
quadratic Toda system. This model realizes the Hamiltonians as weighted sums of paths in
an associated planar network, a point of view emphasized by [GSV11].

Though not needed directly in its proof, we argue in the last section that the most
compelling conceptual point of view on this result is that of nonabelian Hodge theory. In
particular, we argue that the double Bruhat cell SLc,c

n+1/H should be interpreted as a moduli
space of flat connections with irregular singularities, while the network used to compute
the Hamiltonians is the 1-skeleton of the spectral curve of the associated Hitchin system.
As functions on a space of flat connections, the Hamiltonians themselves become traces of
holonomies around closed loops. Such functions are the most basic geometric examples of
canonical basis elements, yielding an intuitive explanation for why these Hamiltonians should
be expressible as cluster characters. Crucial to this point of view is the appearance of the
relevant cluster structure in 4d N = 2 field theory. It is only by noticing that the relevant
quiver coincides with the BPS quiver of pure N = 2 Yang-Mills theory that we are able to
connect our double Bruhat cell to an irregular moduli space; the mathematics literature does
not contain a sufficiently general treatment of cluster structures in the presence of irregular
singularities to encompass this example.

6.2 Jacobian Algebras and Cluster Characters

In this section we recall the Jacobian algebra of a quiver with potential, the proper general-
ization of the path algebra of an acyclic quiver to the case of quivers with oriented cycles
[DWZ08]. We also recall the cluster character of a module, a generating function of the Euler
characteristics of its quiver Grassmannians [Pal08].

Given a quiver Q, a representation of Q is the assignment of a vector space Mv to every
vertex v of Q, and a linear map Ms(a) →Mt(a) to every arrow a with source s(a) and target
t(a). The path algebra CQ is the space of linear combinations of (possibly length zero) paths
in Q, with multiplication given by composition. That is, the product pq of two paths is
zero if t(q) 6= s(p) and is their composition otherwise. There is an equivalence between left
CQ-modules and representations of Q.

The completed path algebra ĈQ is the completion of CQ with respect to the ideal
generated by the arrows. A potential W is an element of Pot(CQ), the closure in ĈQ of
the ideal generated by all nontrivial cyclic paths in CQ. Given an arrow a of Q, the cyclic
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derivative ∂a : Pot(CQ)→ ĈQ is the unique continuous linear map such that

∂a(c) =
∑

c=paq

qp,

for any cycle c, where the sum is taken over all decompositions of c with p, q being possibly
lazy paths. We call a pair (Q,W ) a quiver with potential, and always assume W contains no

2-cycles. The Jacobian algebra J(Q,W ) is the quotient of ĈQ by the closure of the ideal
generated by all cyclic derivatives of W (we often write J when Q and W are understood).
We say the quiver with potential (Q,W ) is Jacobi finite if J is finite-dimensional, and always
assume this is the case.

We write J-mod for the category of finite-dimensional left J-modules; equivalently this is
the category of finite-dimensional representations of Q satisfying the relations imposed by
the cyclic derivatives of W . Given a labeling of the vertices of Q by {1, . . . , n}, we write Si

for the simple J-module supported at the ith vertex of Q and Pi for its projective cover.
In this section, to be more in line with the standard conventions on cluster characters,

we notate cluster variables by lower-case letters xi and X -coordinates by lower case letters
yi. That is, if Qij is the number of edges from i to j minus the number from j to i, and we
define a seed by Bij = Qji (note the transposition of the indices), we now denote the cluster
variables Ai by xi, and the X -coordinates Xi by yi. We will also abuse our notation slightly
and conflate yi with its pullback

∏n
j=1 x

Qji

j to C[x±1
1 , . . . , x±1

n ] when this meaning is clear.

Definition 6.2.1. Let M be a left J-module and

P 1
M → P 0

M →M → 0

the first two terms of a minimal projective resolution. The index indM is the class [PM
0 ]− [PM

1 ]
in K0(proj J), the Grothendieck group of the category of projective left J-modules. If
indM =

∑n
i=1 ai[Pi], we write xindM =

∏n
i=1 x

ai
i

The Grothendieck group K0(J-mod) has a basis given by the classes of the simple modules
Si, and using this we identify K0(J-mod) with Zn and the class of a module with its dimension
vector. Given a dimension vector e ∈ Zn and a J-module M , the quiver Grassmannian GreM
is the variety of e-dimensional subrepresentations of M . It is a projective variety naturally
embedded in the usual vector space Grassmannian of M .

Definition 6.2.2. The cluster character CC(M) of a J-moduleM is the Laurent polynomial

CC(M) = x− indM
∑

e∈K0(J-mod)

χ(GreM)y[M ]−e ∈ C[x±1
1 , . . . , x±1

n ].

Here χ is the topological Euler characteristic, and for a class e =
∑n

i=1 bi[Si] we write
ye =

∏n
i=1 y

bi
i . Note that if N is an e-dimensional submodule of M , [M ]− e is the class of

M/N .
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This definition is simpler but more limited in scope than that of [Pal08]. A richer picture
is provided by the cluster category C, a triangulated 2-Calabi-Yau category which unlike
J-mod is in a suitable sense independent of the choice of a particular initial seed. The choice
of initial seed given by Q determines a so-called cluster-tilting object T of C, and we have
an equivalence J-mod ∼= C/〈ΣT 〉, where Σ is the suspension functor of C and 〈ΣT 〉 the ideal
of all morphisms factoring through the additive subcategory generated by ΣT . As we will
only be concerned with cluster characters relative to a particular initial cluster, the category
J-mod is rich enough for our purposes. Note that we also work with left rather than right
modules and dualize the conventions of [Pal08] as needed.

The notion of a cluster character originates in [CC06] for Dynkin quivers, and is treated
in increasing generality in [CK06; Pal08; Pla11]. The definition is motivated by the following
fundamental property:

Theorem 6.2.3. For a suitable potential, the cluster character defines a bijection between
rigid indecomposables J(Q,W )-modules and non-initial cluster variables of the cluster algebra
associated with Q, extending to a bijection between rigid modules and the cluster monomials
of non-initial clusters.

For Dynkin quivers, the cluster monomials form a basis of their cluster algebra. However,
in general cluster monomials do not span their cluster algebra as a vector space, and the issue
of extending them to a complete basis is a fundamental one. One approach is to describe a
class of modules containing the rigid ones such that their cluster characters extend the set of
cluster monomials to a basis. In particular, the dual semicanonical basis of the coordinate
ring of a unipotent cell of a Kac-Moody group is of this form [GLS12].

6.3 The Jacobian Algebra of Qn

We now study in detail the Jacobian algebra of the quiver Qn associated with the cluster
structure on SLc,c

n+1/H described in Section 5.2. We change our indexing slightly so that the
vertices of Qn are indexed as follows:

1 3 2n-3 2n-1

2 4 2n-2 2n

The signed adjacency matrix of Qn is (up to reindexing) the skew-symmetric matrix BAn

introduced in Section 5.2. We label the edges of Qn as follows: for i ∈ {1, . . . , n} the two
vertical arrows from 2i to 2i− 1 are labeled ai and bi, for i ∈ {2, . . . , n} the leftward diagonal
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arrows from 2i− 1 to 2i− 2 are labeled ℓi, and for i ∈ {1, . . . , n− 1} the rightward diagonal
arrows from 2i− 1 to 2i+ 2 are labeled ri.

We will consider the potential

W =
n−1∑

i=1

aiℓi+1bi+1ri − biℓi+1ai+1ri,

so for each edge in the An Dynkin diagram there is a pair of cycles inW . The cyclic derivatives
of W are as follows:

∂aiW = ℓi+1bi+1ri − ri−1bi−1ℓi

∂biW = ri−1ai−1ℓi − ℓi+1ai+1ri

∂ℓiW = biri−1ai−1 − airi−1bi−1

∂riW = aiℓi+1bi+1 − biℓi+1ai+1.

Here any terms involving nonexistent edges such as rn or a0 are understood to be zero.
We can understand the structure of the resulting Jacobian algebra J explicitly as follows.

Since the above relations are all either a difference of two paths or a single path, J inherits
from CQ a basis indexed by certain equivalence classes of paths. Generally, suppose an ideal
I of a path algebra CQ is generated by a set of relations of this form, that is

I = 〈p1 − p
′
1, . . . , pm − p

′
m, q1, . . . , qℓ〉

for some paths pi, qi such that each pair pi, p
′
i has the same source and target. Then CQ/I

has a basis formed by the nonzero images of paths in CQ. An element of this basis is indexed
by the set of paths mapping to it, which is an equivalence class of the relation

α ∼ β ⇐⇒ α = apib, β = ap′ib for some paths a, b and some index i.

The equivalence classes corresponding to basis elements of CQ/I are those not intersecting I,
that is those with no representatives containing some qj as a subpath.

Let us describe these equivalence classes explicitly for the above potential on Qn. First,
note that any path in Qn is a sequence of edges that are alternately vertical (an ai or bi) and
diagonal (an ℓi or ri). Ignoring the indices, this is a perfect shuffle of a word in the alphabet
{a, b} and a word in the alphabet {ℓ, r}. Since the starting vertex of a path determines
both which indices appear and whether the shuffled word starts with a vertical or diagonal
edge, the data of a path is exactly the data of its starting vertex and a pair of words in the
alphabets {a, b} and {ℓ, r}. For example, the following path in Q3 with starting vertex 2 is
associated to the words aba and ℓrr:

ℓ3a3r2b2r1a1 =

1 3 5

2 4 6

a1 b2 a3



CHAPTER 6. INTEGRABLE SYSTEMS, CANONICAL BASES, AND N = 2 FIELD

THEORY 95

Conversely, a pair of words and a starting vertex corresponds to an honest path in Qn if
the lengths of the two words satisfy an obvious compatibility condition, and if the choice of
starting vertex does not force any of the edges to have an invalid index (such as an+1).

Viewing the data of a path in Qn this way makes it easy to understand the relations
imposed by W . They assert that two paths are equivalent if their associated words differ by
a pair of permutations. The induced basis of J is labeled by the resulting equivalence classes,
which are determined by the data of a starting vertex and the total number of times each
letter appears in the words of any of its representative paths. Suppose a path has starting
vertex either 2i or 2i− 1 for some i ∈ {1, . . . , n}, and that x and y are the number of times
it traverses an ℓ or r edge, respectively. Then its equivalence class is associated with a basis
element of J if and only if either x < i and y < n+ 1− i. Informally, if you change the path
so that it takes all its right steps before its left steps (or vice-versa), it shouldn’t fall off the
edge of Qn.

The projective module Pi is the subspace of J spanned by paths with starting vertex i. A
path starting at i and ending at vertex j is an element of the subspace (Pi)j supported at j.

Definition 6.3.1. For each i ∈ {1, . . . , n}, define a P1-family of modules Mλ
i as follows.

Given projective coordinates λ = (λ1 : λ2) we embed P2i−1 →֒ P2i by sending the generator
of P2i−1 (the length zero path at vertex 2i− 1) to the element λ1ai + λ2bi ∈ (P2i)2i−1. The
module Mλ

i is then the cokernel of this map.

From now on we will denote by νn : {1, . . . , n} → {1, . . . , n} the Nakayama involution
νn(i) = n+ 1− i.

Proposition 6.3.2. The module Mλ
i has a basis Bi = {b(x,y,v)} indexed by

{(x, y, v)|x, y ∈ N, v ∈ {2(i+ y − x), 2(i+ y − x)− 1}, x < i, y < νn(i)}.

We let b(x,y,v) be any nonzero element which is the image in Mλ
i of a path with starting vertex

2i, ending vertex v, and x and y the number of times it traverses an ℓ or r edge, respectively
(different paths of this form have images in Mλ

i differing by a scalar, and we choose one
arbitrarily). This basis has the property that the image of any element under the linear map
associated with an arrow of Qn is a scalar multiple of another basis element.

Proof. The argument is essentially the same as that for why the quotient CQ/I inherited
a basis from CQ when I was generated by relations of the form pi − p′i. Any two paths
associated with the data (x, y, v) as described differ only in the order of a and b edges they
traverse. The relations imposed by W asserted that two such paths give rise to the same
element of Pi if they traverse an a edge the same number of times (hence a b edge the same
number of times, since they correspond to the same (x, y, v)). For λ1, λ2 6= 0, taking the
quotient by P2i−1 imposes the relation that in Mλ

i two such paths differ by (−λ1

λ2
)k when one

traverses an a edge k more times than the other. For λ1 = 0 (resp. λ2 = 0), there is a unique
such path with nonzero image in Mλ

i , the one which only traverse a edges (resp. b edges).
The fact that the elements of Bi are compatible with the arrow maps of Mλ

i in the stated
way is an immediate property of elements which are images of paths.
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The compatibility of Bi with the arrow maps of Mλ
i lets us completely and explicitly

understand the submodule structure of Mλ
i . To this end we associate the following graph

with the module Mλ
i .

Definition 6.3.3. Let Gi denote the directed graph with vertices the elements of Bi, and an
arrow from b(x,y,v) to b(x′,y′,v′) if there exists an arrow e of Qn such that e · b(x,y,v) is a nonzero
scalar multiple of b(x′,y′,v′). We say a subgraph of Gi is admissible if it has the following
property: if b(x,y,v) is a vertex of Γ and there is an edge from b(x,y,v) to b(x′,y′,v′) in Gi, then
b(x′,y′,v′) is a vertex of Γ and this edge is an edge of Γ.

Proposition 6.3.4. Submodules of Mλ
i are in bijection with admissible subgraphs Γ of Gi.

The submodule NΓ corresponding to an admissible subgraph Γ is the subspace spanned by the
basis elements at its vertices.

Proof. It is immediate that the stated correspondence defines a bijection between admissible
subgraphs and the set of submodules which are spanned as vector spaces by a subset of Bi;
what we must show is that every submodule of Mλ

i has this property. To do this we show that
for any submodule N and any vertex v of Qn, the subspace Nv is preserved by a nilpotent
endomorphism Ev of (Mλ

i )v which forces it to be spanned by a subset of Bi.
If v = 2j for some j ∈ {1, . . . , n}, we let Ev = ℓj+1aj+1rjaj if λ2 6= 0 and Ev = ℓj+1bj+1rjbj

otherwise. Here we identify arrows of Qn with their corresponding endomorphisms of Mλ
i ;

the separate definition when λ2 = 0 is needed since the a arrows act by zero in that case.
Similarly, if v = 2j − 1 we let Ev = ajℓj+1aj+1rj if λ2 6= 0 and Ev = bjℓj+1bj+1rj otherwise.

The action of the Ev on the basis Bi is especially simple, namely Evb(x,y,v) is a nonzero
scalar multiple of b(x+1,y+1,v) unless x = i or y = νn(i), in which case Evb(x,y,v) = 0. In
particular, up to normalization and ordering of the b(x,y,v), Ev is equivalent to the standard
shift matrix. Of course, if N is a submodule of Mλ

i , then Nv must be invariant under the
action of Ev, and it follows from the form of Ev that Nv is spanned by a subset of Bi.

It is useful to visualize the graph Gi as follows. Defining a map Bi →֒ Z2 by b(x,y,v) 7→
(y − x,−(y + x) + (v − (i+ y − x))) and drawing Z2 as a grid in the plane in the usual way,
we obtain a planar realization of Gi where all arrows are directed downward. The admissible
subgraphs Γ are then just subgraphs that are “downward closed”.

6.4 Hamiltonians and Nonintersecting Paths

In this section we discuss the quadratic An Toda Hamiltonians and their explicit expression in
terms of cluster coordinates. In particular, we explain a combinatorial model that allows us
to write these Hamiltonians as weighted sums of nonintersecting paths in a planar network.

Throughout this chapter we fix the double reduced word

i = (1,−1, 2,−2, . . . , r,−r)
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for (c, c), with c the standard Coxeter element. This yields an indexing matching that used
in Section 6.3 for the vertices of the quiver Qn; that is, we have (Bi)ij = (Qn)ij where Bi is
the exchange matrix of the seed associated with i and (Qn)ij is the signed number of arrows
from i to j in the quiver Qn. Associated to i is a map Xi → PSLc,c

n+1/H defined by

(y1, . . . , y2n) 7→ E1y
ω∨
1

1 F1y
ω∨
1

2 · · ·Eny
ω∨
n

2n−1F2ny
ω∨
2n−1

2n .

Again, we use somewhat different notation in this chapter than previous ones: we write
yi instead of Xi, so Xi = SpecC[y±1

1 , . . . , y±1
2n ]. Note that the maps defined by the double

reduced words (1,−1, 2,−2, . . . , r,−r) and (1, . . . , r,−1, . . . ,−r) are essentially the same,
differing only in the indexing of their coordinates.

The HamiltonianHi is the pullback to Xi of the character of the fundamental representation∧i
Cn+1. Since Xi maps to the adjoint form of the group, the Hi will necessarily involve

fractional powers of the yi. However, the natural choice of positive real part of Xi determines

a canonical choice of root y
1

n+1

i . More precisely, we define formal coordinates y
1

n+1

i on a torus

X̂i = SpecC[(y
1

n+1

1 )±1, . . . , (y
1

n+1

2n )±1]. This has a covering map X̂i ։ Xi defined implicitly via

the map X̂i → SLc,c
n+1/H given by

(y
1

n+1

1 , . . . , y
1

n+1

2n ) 7→ E1(y
1

n+1

1 )(n+1)ω∨
1 · · ·F2n(y

1
n+1

2n )(n+1)ω∨
2n−1 .

We now explain a combinatorial description of the map Xi → PSLc,c
n+1/H (or more

precisely, of X̂i ։ SLc,c
n+1/H) in terms of a directed network Ni. The network Ni is a directed

graph embedded in a disk with n + 1 “input” vertices and n + 1“output” vertices on the
boundary of the disk. The sets of inputs and outputs will each be labeled by {1, . . . , n+ 1}.
We draw the inputs along the right boundary of the disk with their indices increasing as
one moves downward along the boundary, then draw the outputs along the left side so that
inputs and outputs of the same index have the same vertical height. We draw a horizontal
directed edge from each input to the output of the same index.

For each index ik in i we draw an internal edge from the |ik|th horizontal edge to the
(|ik|+ 1)th horizontal edge if ik > 0, and from the (|ik|+ 1)th horizontal edge to the |ik|th
horizontal edge if ik < 0. We draw these so that the source of the jth internal edge is on the
left of the target kth internal edge for j < k. We draw these internal edges with a slant so
they are always directed to the left; with this convention we may omit drawing the directions
on edges, since they are always directed to the left. Each internal edge thus corresponds to
an index in {1, . . . , 2n}, and we will label the region to the right of an internal edge by the
corresponding variable yi.

The network provides the following combinatorial description of the map X̂i ։ SLc,c
n+1/H.

More precisely, this map factors through SLc,c
n+1, and we describe the image of X̂i in SLn+1

directly as a family of (n + 1) × (n + 1) matrices. The (i, j) entry of a matrix will be a
weighted sum over all directed paths from the ith input to the jth output. The weight of the
bottom horizontal path (the unique path from the (n+ 1)th input to the (n+ 1)th output) is

y
−1
n+1

1 y
−1
n+1

2 . . . y
−n
n+1

2n−1y
−n
n+1

2n .
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The weights of other paths are then determined by the following rule. Two paths p,p′

can be viewed as elements of H1(Ni, ∂Ni), and if the difference p − p′ is a cycle oriented
counterclockwise around the region labeled yi, then the weight of p is yi times the weight of
p′. In other words, if p differs from p′ only in that it goes above the region yi rather than
below it, than its weight is yi times that of p′.

That this network prescription is indeed consistent with the definition of the map X̂i ։

SLc,c
n+1/H follows from two observations. First, the internal edges describe the actions of the

Ei and Fi in the standard basis of Cn+1. Second, each coweight subgroup can be written as

yω
∨
k = y

−k
n+1




y 0 · · · 0

0
. . .

y
... 1

...
. . . 0

0 · · · 0 1




,

where the diagonal matrix on the right hand side has its first k entries equal to y and its last
n+ 1− k equal to 1.

We also have a combinatorial description of how elements of SLn+1 in the image of X̂i act
on the other fundamental representions

∧i
Cn+1. The standard basis of

∧i
Cn+1 is indexed

by i-element subsets of {1, . . . , n+ 1}, and the family X̂i ⊂ SLc,c
n+1 acts on Vωi

by matrices
whose entries are weighted sums of i-tuples of directed nonintersecting paths. The weight of
an i-tuple of paths is the product of the weights of each path.

We will say a directed path in Ni is cyclic if its input and output have the same index.
Such paths give rise to cycles on N i, where N i is the closed graph obtained by gluing the ith
input to the ith output. The following observation is immediate:

Proposition 6.4.1. The Hamiltonian Hi, defined as the pullback to X̂i of the character of∧i
Cn+1, is the weighted sum of all i-tuples of nonintersecting cyclic paths in Ni.

Example 6.4.2. Let us illustrate the above discussion for SL2. On the left below we have
the relevant network and on the right the family of matrices it parametrizes. As all the edges
are directed leftward, we omit specifically notating the directions of the edges of the network.
It is convenient to pull out an overall scalar factor equal to the weight of the lowest horizontal
path, since with this normalization the weights of all paths become polynomials in the yi.

y
− 1

2
1 y

− 1
2

2

(
y1 y2

)
= y

− 1
2

1 y
− 1

2
2

(
y2 + y1y2 1

y2 1

)
.

Computing the Hamiltonian H1 requires taking the trace of the matrix on the right, which
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is the weighted sum of the three distinct cyclic paths on the left. We find that

H1 = y
− 1

2
1 y

− 1
2

2 (1 + y2 + y1y2)

= x1x
−1
2 (1 + y2 + y1y2),

where y1 = x22, y2 = x−2
1 .

Example 6.4.3. Below are the network and corresponding family of matrices for SL3:

y
− 1

3
1 y

− 1
3

2 y
− 2

3
3 y

− 2
3

4




y1 y2

y3 y4




= y
− 1

3
1 y

− 1
3

2 y
− 2

3
3 y

− 2
3

4



y2y3y4 + y1y2y3y4 y4 + y3y4 1

y2y3y4 y4 + y3y4 1
0 y4 1


 .

There are two HamiltoniansH1 andH2 corresponding to the fundamental and anti-fundamental
representations, respectively. The former is a weighted sum of the five cyclic paths, while the
latter is a weighted sum of the five nonintersecting pairs of cyclic paths:

H1 = y
− 1

3
1 y

− 1
3

2 y
− 2

3
3 y

− 2
3

4 (1 + y4 + y3y4 + y2y3y4 + y1y2y3y4)

= x3x
−1
4 (1 + y4 + y3y4 + y2y3y4 + y1y2y3y4)

H2 = y
− 2

3
1 y

− 2
3

2 y
− 1

3
3 y

− 1
3

4 (1 + y2 + y1y2 + y1y2y4 + y1y2y3y4)

= x1x
−1
2 (1 + y2 + y1y2 + y1y2y4 + y1y2y3y4).

Here we have y1 = x22x
−1
4 , y2 = x−2

1 x3, y3 = x−1
2 x24, and y4 = x1x

−2
3 .

6.5 Hamiltonians and Cluster Characters

In this section we prove our main result, realizing the Hamiltonians of the quadratic An Toda
system as cluster characters of the quiver Qn. Recall that by νn : {1, . . . , n} → {1, . . . , n} we
denote the Nakayama involution νn(i) = n+ 1− i.

Theorem 6.5.1. For each i ∈ {1, . . . , n} we have Hi = CC(Mλ
νn(i)

).

Proof. There are two components to the proof. First, we prove that the index ofMλ
νn(i)

agrees
with the corresponding quantity appearing in Hi. Second, we construct a bijection between
nonintersecting i-tuples of cyclic paths in Ni and admissible subgraphs of Gνn(i), and show
that this takes weights of paths to dimension vectors of quotient modules.

Let xindHi be the Laurent monomial in x1, . . . , x2n defined by the property that Hi =
xindHip(y1, . . . , y2n), where p(y1, . . . , y2n) ∈ C[y1, . . . , y2n] has constant term 1; we must show
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that xindHi = x
ind

Mλ
νn(i) . From the network representation of Hi it is clear that x

indHi is the
weight of the lowest i-tuple of cyclic paths. Equivalently, it is the contribution to the trace of
the action of

y
ω∨
1

1 y
ω∨
1

2 · · · y
ω∨
n

2n−1y
ω∨
n

2n

on the lowest weight space of
∧i

Cn+1 (which has weight −ωνn(i)).

Since y2i−1 =
∏

j x
Cij

2j and y2i =
∏

j x
−Cij

2j−1, where C is the An Cartan matrix, we have

y
ω∨
1

1 y
ω∨
1

2 · · · y
ω∨
n

2n−1y
ω∨
n

2n =
∏

i

(y2i−1y2i)
ω∨
i

=
∏

i,j

(x−1
2j−1x2j)

Cijω
∨
i

=
∏

j

(x−1
2j−1x2j)

α∨
j .

But on the lowest weight space this acts by the scalar

∏

j

(x−1
2j−1x2j)

〈α∨
j |−ωνn(i)〉 = x2νn(i)−1x

−1
2νn(i)

,

which is equal to x
ind

Mλ
νn(i) since Mλ

νn(i)
is defined by a projective resolution of the form

0→ P2νn(i)−1 → P2νn(i) →Mλ
νn(i) → 0.

Now we turn to the bijection between i-tuples of nonintersecting paths inNi and admissible
subgraphs of Gνn(i). Recall that the vertices of Gνn(i) are the elements {b(x,y,v)} of a basis of
Mλ

νn(i)
indexed by tuples

{(x, y, v)|x, y ∈ N, v ∈ {2(νn(i) + y − x), 2(νn(i) + y − x)− 1}, x < νn(i), y < i}.

For each fixed value y ∈ {0, . . . , i− 1}, Gνn(i) has 2νn(i) vertices of the form b(x,y,v), for
which the possible values of v are {2y + 1, 2y + 2, . . . , 2y + 2νn(i) − 1, 2y + 2νn(i)} (note
that the value of x is determined by those of y and v). Recall that b(x,y,v) is the image of an
element of CQn corresponding to a path that has ending vertex v, and x and y the number
of times it traverses an ℓ or r edge, respectively. For fixed y, it follows that there is an arrow
from b(x,y,v) to b(x′,y,v′) in Gνn(i) if and only if v′ = v − 1 (since such an arrow corresponds
to either a vertical or leftward arrow of Qn). In particular, given an admissible graph Γ,
for each y ∈ {0, . . . , i− 1} there is at most one “maximal” value of v for which b(x,y,v) is a
vertex of Γ; that is, such that b(x,y,v) is a vertex of Γ but b(x′,y,v+1) is not (including the case
v = 2(y + νn(i)) when there is no such vertex of Gνn(i)). Let us call maximal value v(Γ, y); if
there are no vertices of Γ with the given value of y we set v(Γ, y) = 2y, so by a slight abuse
of notation we may have v(Γ, 0) = 0 even though 0 does not label an actual vertex of Qn.
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The set {v(Γ, y)}i−1
y=0 completely determines the graph Γ, though an arbitrary collection of

vertices of Qn need not correspond to an actual admissible graph.
We use the data {v(Γ, y)}i−1

y=0 to assign an i-tuple of nonintersecting cyclic paths in Ni to
the graph Γ. First note the following bijection between {0, 1, . . . , 2n} and the set of cyclic
paths in Ni. We associate a cyclic path with the largest value of v such that the face labeled
by yv lies above it. To the top cyclic path, which lies above all such faces, we associate
the index 0. To an admissible graph Γ we now assign the i-tuple of cyclic paths associated
with the set {v(Γ, y)}i−1

y=0. We must show that these paths do not intersect, and that any
nonintersecting i-tuple of cyclic paths arises this way.

We have already described all arrows between vertices b(x,y,v), b(x′,y′,v′) of Gνn(i) for which
y = y′. From the path description of this basis, it also follows that if Gνn(i) contains an arrow
from b(x,y,v) to b(x′,y′,v′) and y

′ 6= y, we must have v = 2(y − x)− 1 and b(x′,y′,v′) = b(x,y+1,v+3).
From this we arrive at a necessary and sufficient condition for a set of vertices to be
of the form {v(Γ, y)}i−1

y=0 for an admissible graph Γ: for each y < i − 1 we should have
v(Γ, y+1) ≥ v(Γ, y)+3 if v(Γ, y) is odd and v(Γ, y+1) ≥ v(Γ, y)+2 if v(Γ, y) is even. Under
our bijection between cyclic paths in Ni and elements of {0, 1, . . . , 2n}, it follows easily that
this corresponds exactly to the condition that an i-tuple of cyclic paths be nonintersecting.

All that remains to be shown is that if NΓ is the submodule associated with an admissible
graph Γ, the dimension vector of Mλ

νn(i)
/NΓ agrees with the weight of the i-tuple of paths

associated with {v(Γ, y)}i−1
y=0. More precisely, we must verify that the following two monomials

coincide. First is y[M
λ
νn(i)

/NΓ], where we write y[L] =
∏

i y
ai
i for a class [L] =

∑
i ai[Si] ∈

K0(J-mod). Second is the ratio of the weight of the i-tuple associated to Γ and that of the
lowest i-tuple, that is the i-tuple associated with {2νn(i), . . . , 2n− 2, 2n}. This normalization
arises because while Hi is a weighted sum of i-tuples of cyclic paths, to compare Hi with
CC(Mλ

nun(i)
) we must pull out a factor of xindHi , which is the weight of the lowest i-tuple.

Explicitly, for each 1 ≤ j ≤ i let mj(y1, . . . , y2n) be the product of all yv whose associated
face lies between the jth path from the top of our given i-tuple and the jth path from the
top of the lowest i-tuple; the ratio of the weights of the two i-tuples is the product of the mj .

Now it is clear that
y[M

λ
νn(i)

/NΓ] =
∏

b(x,y,v)∈Gνn(i)\Γ

yv,

the product being taken over all vertices of Gνn(i) which are not vertices of Γ. But it is easy
to check that ∏

b(x,j−1,v)∈Gνn(i)\Γ

yv = mj(y1, . . . , y2n),

concluding the proof.

Example 6.5.2. Below we have the graph G3 associated to the 18-dimensional representation
Mλ

3 of the quiver Q5. There are 61 submodules corresponding to 61 admissible subgraphs. For
example, the zero submodule contributes a term y1y2y

2
3y

2
4y

3
5y

3
6y

2
7y

2
8y9y10 to CC(Mλ

3 ). There
are three “chains” along which y is constant between the bottom-left and top-right of the
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graph. Given an admissible subgraph Γ, the highest vertex it contains in each of the three
chains indicates the position of one of a triple of nonintersecting cyclic paths in the network
Ni.

(0,0,6)

(0,0,5)

(1,1,6)

(1,1,5)

(2,2,6)

(2,2,5)

(0,1,8)

(0,1,7)

(1,2,8)

(1,2,7)

(0,2,10)

(0,2,9)

(1,0,4)

(1,0,3)

(2,1,4)

(2,1,3)

(2,0,2)

(2,0,1)

6.6 Irregular Flat Connections and N = 2 Field

Theory

In this section we discuss the results of this chapter from the point of view of nonabelian Hodge
theory. We interpret the double Bruhat cell SLc,c

n+1/H as a moduli space of flat connections
with irregular singularities, and the network N i used to compute the Hamiltonians as the 1-
skeleton of the spectral curve of the associated Hitchin system. The Hamiltonians themselves
become traces of holonomies around closed loops, providing a geometric reason for their
interpretation as canonical basis elements (hence their realization as cluster characters). We
also explain how this viewpoint is intimately tied to that of 4d N = 2 field theory, wherein
this particular irregular Hitchin system plays a fundamental role, the Seiberg-Witten system
of N = 2 Yang-Mills theory.

Recall that the nonabelian Hodge correspondence identifies the moduli spaceMGLn
(C)

of flat rank-n vector bundles on a Riemann surface C with a corresponding moduli space
MHiggs(C) of Higgs bundles, certain gln-valued 1-forms on C. The latter is the phase
space of the Hitchin system, a Lagrangian fibrationMHiggs(C) ։ B where B is a space of
polydifferentials on C. The fiber over a point u ∈ B is the Jacobian of a spectral curve Σu,
which is naturally embedded in T ∗C as a branched cover of C. BothMGLn

(C) andMHiggs(C)
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have holomorphic Poisson structures but are not complex-analytically equivalent; rather, they
can be regarded as two different complex structures on a single hyperkahler space.

One of the insights of [GMN13] is that for a generic u ∈ B there is a class of open
holomorphic Poisson embeddingsMGL1(Σu) →֒ MGLn

(C) depending on a phase θ ∈ R/2πZ.
Varying u ∈ B and θ one (conjecturally, in general) obtains the toric charts comprising a
cluster atlas onMGLn

(C). This recovers and extends many constructions of [FG06b] from a
complementary point of view. In particular, although the cluster structure lives naturally on
the spaceMGLn

(C) of flat connections, the cluster charts themselves originate on the other
side of the nonabelian Hodge correspondence, being most naturally defined in terms of the
spectral curves Σu.

An embeddingMGL1(Σu) →֒ MGLn
(C) is more or less equivalent to a rule for expressing

the GLn-holonomy around a closed loop in C in terms of GL1-holonomies around closed
loops in Σu. This rule may be described in terms of a combinatorial object called a spectral
network. This consists of a special a family of paths, or walls, drawn on C and labeled locally
by ordered pairs ij of sheets of the spectral curve. To a closed loop γ in C is associated family
of loops in Σu, determined by the pattern of how γ crosses the walls of the network, and
the matrix entries of the GLn-holonomy around γ are sums of GL1-holonomies around these
loops in Σu.

The essential detail for us is that the holonomy around γ is produced along with an
explicit factorization as a product of diagonal matrices and elementary matrices Eij for each
ij-wall crossed by γ, multiplied in the order in which they are crossed. In this way the formal
features of the mapMGL1(Σu) →֒ MGLn

(C) coincide with those of the network description
of the cluster coordinates on SLc,c

n+1/H, where elements of SLc,c
n+1/H were described via a

factorization into diagonal and elementary matrices. Moreover, the matrix entries of both an
element of SLc,c

n+1/H and a holonomy around a loop in C are expressed as weighted sums of
1-cycles, either of the closed network N i or the spectral curve Σu, respectively.

In fact, the cluster structure we have studied on SLc,c
n+1/H can be seen as a particular

instance of one arising from a moduli space of flat connections, once irregular singularities
are allowed. These moduli spaces (and their cluster structures) play an important role in 4d
N = 2 quantum field theory, the following aspects of which are relevant to our discussion.
Associated to an N = 2 theory is an algebraic integrable system, its Seiberg-Witten system,
which we write as a Lagrangian fibrationM։ B and whose spectral curves are also called
the Seiberg-Witten curves of the theory. Physically, B is a space of vacua, the Coulomb
branch of the theory. To theories satisfying certain finiteness conditions there is associated
a quiver, its BPS quiver Q. More precisely, one has a quiver for each generic u ∈ B and
phase θ ∈ R/2πZ, but all are mutation equivalent. The vertices of Q are in bijection with
a distinguished homology basis of the Seiberg-Witten curve Σu, its edges encoding their
intersection numbers.

When the Seiberg-Witten system is a Hitchin system with singularities the framework
of [GMN13] described above produces a cluster chart on M with coordinates labeled by
vertices of Q. Many fundamental N = 2 theories are of this type, but generally require the
consideration of irregular singularities. Since the BPS quiver Q can often be determined by
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y1 y2

y3y4

Figure 6.1: A Seiberg-Witten curve of N = 2 SU(3) Yang-Mills, projected onto an unwrapped
cylinder. The Coulomb branch is the space {u = u1(

dz
z
)2 + (1

z
+ u0 + z)(dz

z
)3} of cubic

differentials on CP1, parametrized by (u0, u1) ∈ C2 [GMN13]. The spectral curve Σu ⊂ T ∗CP1

is the solution set of λ3 + λu1(
dz
z
)2 + (1

z
+ u0 + z)(dz

z
)3 = 0, where λ is a coordinate on

the cotangent fibers of CP1. These are genus two curves realized as three-sheeted branched
covers of CP1, with two punctures over 0 and ∞ (Σu has cyclic monodromy around these
points). In the picture, the punctures are blown up to boundary components. The homology
cycles labeled by the yi have intersection numbers given by the BPS quiver Q3. The planar
realization identifies 1-skeleton of Σu with the corresponding closed network N i of Section 6.4
(it only defined up to the action of the Torelli group).

physical considerations unrelated to the associated Seiberg-Witten geometry, this essentially
leads to specific predictions about cluster structures on irregular moduli spaces more general
than those considered in the mathematics literature.

The quiver Qn relevant to SLc,c
n+1/H in fact arises as a basic example of a BPS quiver, that

of pure N = 2 SU(n+ 1) Yang-Mills theory. We can use this to identify the cluster charts
on SLc,c

n+1/H with those on the relevant moduli space, which is a space of flat connections
on CP1 with irregular singularities at two points. Such a flat connection is essentially just
the data of the holonomy around the unique nontrivial closed cycle in C (neglecting Stokes
data, which in principle is encoded in the fact that the holonomy produced is well-defined
up to conjugation by H rather than merely by G). The network N i is thus identified with
the 1-skeleton of a spectral curve of the associated Hitchin system. The Hamiltonians Hi

are then the traces of the unique nontrivial holonomy in the fundamental representations,
producing a geometric reason for their interpretation as canonical basis elements.
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transformations for Coxeter-Toda flows from a cluster algebra perspective”.
In: Acta Math. 206.2 (2011), pp. 245–310. arXiv:arXiv:0906.1364v4. url:
http://www.springerlink.com/index/E701800L35151798.pdfhttp://link.

springer.com/article/10.1007/s11511-011-0063-1.

http://arxiv.org/abs/9807079v2
http://www.springerlink.com/index/P76688345582VL06.pdf
http://www.springerlink.com/index/P76688345582VL06.pdf
http://arxiv.org/abs/0104151
http://arxiv.org/abs/math/0104151
http://arxiv.org/abs/math/0104151
http://arxiv.org/abs/0602259
http://arxiv.org/abs/math/0602259
http://arxiv.org/abs/math/0602259
http://arxiv.org/abs/9802056v1
http://www.ams.org/journals/jams/1999-12-02/S0894-0347-99-00295-7/S0894-0347-99-00295-7.pdf
http://www.ams.org/journals/jams/1999-12-02/S0894-0347-99-00295-7/S0894-0347-99-00295-7.pdf
http://arxiv.org/abs/arXiv:1309.2573v1
http://arxiv.org/abs/1309.2573
http://arxiv.org/abs/arXiv:1107.5588v1
http://arxiv.org/abs/1107.5588
http://arxiv.org/abs/1107.5588
http://arxiv.org/abs/arXiv:1001.3545v3
http://arxiv.org/abs/1001.3545
http://arxiv.org/abs/arXiv:1004.2781v3
http://arxiv.org/abs/arXiv:1004.2781v3
http://www.ams.org/jams/2012-25-01/S0894-0347-2011-00715-7/S0894-0347-2011-00715-7.pdf
http://www.ams.org/jams/2012-25-01/S0894-0347-2011-00715-7/S0894-0347-2011-00715-7.pdf
http://arxiv.org/abs/arXiv:1204.4824v1
http://link.springer.com/article/10.1007/s00023-013-0239-7
http://link.springer.com/article/10.1007/s00023-013-0239-7
http://arxiv.org/abs/0208033v2
http://arxiv.org/abs/0208033v2
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://arxiv.org/abs/math/0208033
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://arxiv.org/abs/math/0208033
http://arxiv.org/abs/arXiv:0906.1364v4
http://www.springerlink.com/index/E701800L35151798.pdf http://link.springer.com/article/10.1007/s11511-011-0063-1
http://www.springerlink.com/index/E701800L35151798.pdf http://link.springer.com/article/10.1007/s11511-011-0063-1


BIBLIOGRAPHY 108

[Hat+02] G. Hatayama et al. “Paths, crystals and fermionic formulae”. In: MathPhys
Odyssey. Vol. 23. Prog. Math. Phys. Boston, MA: Birkhauser Boston, 2002,
pp. 205–272. arXiv:0102113v1 [arXiv:math]. url: http://link.springer.
com/chapter/10.1007/978-1-4612-0087-1_9.

[Her06] D. Hernandez. “The Kirillov-Reshetikhin conjecture and solutions of T-systems”.
In: J. Reine Angew. Math. 596 (2006), pp. 63–87. arXiv:0501202v3 [arXiv:math].
url: http://www.degruyter.com/view/j/crll.2006.2006.issue-596/
crelle.2006.052/crelle.2006.052.xml.

[Her07] D. Hernandez. “Drinfeld coproduct, quantum fusion tensor category and applica-
tions”. In: Proc. Lond. Math. Soc. (3) 95.3 (2007), pp. 567–608. arXiv:0504269v3
[arXiv:math]. url: http://plms.oxfordjournals.org/content/95/3/567.
short.

[Her10] D. Hernandez. “Kirillov-Reshetikhin conjecture: the general case”. In: Int. Math.
Res. Not. 1 (2010), pp. 149–193. arXiv:arXiv:0704.2838v3. url: http://imrn.
oxfordjournals.org/content/2010/1/149.short.

[Hof+00] Tim Hoffmann et al. “Factorization Dynamics and CoxeterToda Lattices”. In:
Communications in Mathematical Physics 212.2 (2000), pp. 297–321. arXiv:9906013v2
[arXiv:solv-int]. url: http://www.springerlink.com/index/3NR2V0VP934LWFAE.
pdf.

[Kac94] V. Kac. Infinite-Dimensional Lie Algebras. 3rd. Cambridge: Cambridge University
Press, 1994, p. 400. isbn: 0521466938. url: http://books.google.com/books?
id=kuEjSb9teJwC&pgis=1.

[Ked08] R. Kedem. “Q -systems as cluster algebras”. In: J. Phys. A 41.19 (2008), 14 pp.
arXiv:arXiv:0712.2695v3.

[KNS11] A. Kuniba, T. Nakanishi, and J. Suzuki. “T-systems and Y-systems in integrable
systems”. In: J. Phys. A 44.10 (2011), 146 pp. arXiv:arXiv:1010.1344v3. url:
http://iopscience.iop.org/1751-8121/44/10/103001.

[KP83a] V. Kac and D. Peterson. “Infinite Flag Varieties and Conjugacy Theorems”.
In: Proc. Nat. Acad. Sci. U.S.A. 80.6 (Mar. 1983), pp. 1778–1782. issn: 0027-
8424. url: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=393689&tool=pmcentrez&rendertype=abstracthttp://www.pnas.

org/content/80/6/1778.short.

[KP83b] V. Kac and D. Peterson. “Regular Functions on Certain Infinite-Dimensional
Groups”. In: Arithmetic and Geometry. Vol. II. Progr. Math. Boston: Birkhauser,
1983, pp. 141–166.

http://arxiv.org/abs/0102113v1
http://link.springer.com/chapter/10.1007/978-1-4612-0087-1_9
http://link.springer.com/chapter/10.1007/978-1-4612-0087-1_9
http://arxiv.org/abs/0501202v3
http://www.degruyter.com/view/j/crll.2006.2006.issue-596/crelle.2006.052/crelle.2006.052.xml
http://www.degruyter.com/view/j/crll.2006.2006.issue-596/crelle.2006.052/crelle.2006.052.xml
http://arxiv.org/abs/0504269v3
http://arxiv.org/abs/0504269v3
http://plms.oxfordjournals.org/content/95/3/567.short
http://plms.oxfordjournals.org/content/95/3/567.short
http://arxiv.org/abs/arXiv:0704.2838v3
http://imrn.oxfordjournals.org/content/2010/1/149.short
http://imrn.oxfordjournals.org/content/2010/1/149.short
http://arxiv.org/abs/9906013v2
http://arxiv.org/abs/9906013v2
http://www.springerlink.com/index/3NR2V0VP934LWFAE.pdf
http://www.springerlink.com/index/3NR2V0VP934LWFAE.pdf
http://books.google.com/books?id=kuEjSb9teJwC&pgis=1
http://books.google.com/books?id=kuEjSb9teJwC&pgis=1
http://arxiv.org/abs/arXiv:0712.2695v3
http://arxiv.org/abs/arXiv:1010.1344v3
http://iopscience.iop.org/1751-8121/44/10/103001
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=393689&tool=pmcentrez&rendertype=abstract http://www.pnas.org/content/80/6/1778.short
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=393689&tool=pmcentrez&rendertype=abstract http://www.pnas.org/content/80/6/1778.short
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=393689&tool=pmcentrez&rendertype=abstract http://www.pnas.org/content/80/6/1778.short


BIBLIOGRAPHY 109

[KR87] A.N. Kirillov and N. Reshetikhin. “Representations of Yangians and multiplicities
of occurrence of the irreducible components of the tensor product of represen-
tations of simple Lie algebras”. In: Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI) 160 (1987), pp. 211–221. url: http://www.ams.org/
journals/ert/2003-007-12/S1088-4165-03-00164-X/S1088-4165-03-

00164-X.pdfhttp://www.springerlink.com/index/3X849473W32M56T5.pdf.

[KS96] Y. Kosmann-Schwarzbach. “Lie Bialgebras, Poisson Lie Groups and Dressing
Transformations”. In: Integrability of Nonlinear Systems. Lecture Notes in Phys.
Berlin: Springer, 1996, pp. 104–170. url: http://www.springerlink.com/
index/3h880058821k22v7.pdf.

[Kum02] S. Kumar. Kac-Moody Groups, Their Flag Varieties, and Representation Theory.
Vol. 204. Progr. Math. Boston, MA: Birkhauser, 2002, 606 pp. isbn: 0817642277.
url: http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&
amp;oi=fnd&amp;pg=PR11&amp;dq=Kac- Moody+groups, +their+flag+

varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=

iOPOro-ID_XFxYCfIfJJzRL70oQhttp://books.google.com/books?hl=en&

amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-

Moody+groups,+their+flag+varieties,+and+representation+theory&amp;

ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg.

[KZ02] M. Kogan and A. Zelevinsky. “On Symplectic Leaves and Integrable Systems
in Standard Complex Semisimple Poisson-Lie Groups”. In: Int. Math. Res. Not.
2002.32 (2002), pp. 1685–1702. arXiv:0203069v1 [arXiv:math]. url: http :
//imrn.oxfordjournals.org/content/2002/32/1685.short.

[Lec10] B. Leclerc. “Cluster algebras and representation theory”. In: Proceedings of the
International Congress of Mathematicians. Volume IV. New Delhi: Hindustan
Book Agency, 2010, pp. 2471–2488. arXiv:arXiv:1009.4552v1. url: http:
//arxiv.org/abs/1009.4552.

[LW90] J. Lu and A. Weinstein. “Poisson Lie Groups, Dressing Transformations, and
Bruhat Decompositions”. In: J. Differential Geom. 31.2 (1990), pp. 501–526. issn:
0022040X.

[MS13] R. Marsh and J. Scott. “Twists of Plücker coordinates as dimer partition func-
tions”. In: Preprint (arXiv:1309.6630v1) (2013), pp. 1–39. arXiv:arXiv:1309.
6630v1. url: http://www1.maths.leeds.ac.uk/$\sim$marsh/research_
articles/pp43.pdf.

[MV91] J. Moser and A. Veselov. “Discrete versions of some classical integrable systems
and factorization of matrix polynomials”. In: Comm. Math. Phys. 139.2 (1991),
pp. 217–243. url: http://link.springer.com/article/10.1007/BF02352494.

http://www.ams.org/journals/ert/2003-007-12/S1088-4165-03-00164-X/S1088-4165-03-00164-X.pdf http://www.springerlink.com/index/3X849473W32M56T5.pdf
http://www.ams.org/journals/ert/2003-007-12/S1088-4165-03-00164-X/S1088-4165-03-00164-X.pdf http://www.springerlink.com/index/3X849473W32M56T5.pdf
http://www.ams.org/journals/ert/2003-007-12/S1088-4165-03-00164-X/S1088-4165-03-00164-X.pdf http://www.springerlink.com/index/3X849473W32M56T5.pdf
http://www.springerlink.com/index/3h880058821k22v7.pdf
http://www.springerlink.com/index/3h880058821k22v7.pdf
http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=iOPOro-ID_XFxYCfIfJJzRL70oQ http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg
http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=iOPOro-ID_XFxYCfIfJJzRL70oQ http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg
http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=iOPOro-ID_XFxYCfIfJJzRL70oQ http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg
http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=iOPOro-ID_XFxYCfIfJJzRL70oQ http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg
http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=iOPOro-ID_XFxYCfIfJJzRL70oQ http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg
http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=iOPOro-ID_XFxYCfIfJJzRL70oQ http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg
http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9hM6voG&amp;sig=iOPOro-ID_XFxYCfIfJJzRL70oQ http://books.google.com/books?hl=en&amp;lr=&amp;id=DigiIbYhFhMC&amp;oi=fnd&amp;pg=PR11&amp;dq=Kac-Moody+groups,+their+flag+varieties,+and+representation+theory&amp;ots=56w9mQ5ysA&amp;sig=cohN5iecOSsPfo864tZ7eaQ5MLg
http://arxiv.org/abs/0203069v1
http://imrn.oxfordjournals.org/content/2002/32/1685.short
http://imrn.oxfordjournals.org/content/2002/32/1685.short
http://arxiv.org/abs/arXiv:1009.4552v1
http://arxiv.org/abs/1009.4552
http://arxiv.org/abs/1009.4552
http://arxiv.org/abs/arXiv:1309.6630v1
http://arxiv.org/abs/arXiv:1309.6630v1
http://www1.maths.leeds.ac.uk/$\\sim$marsh/research_articles/pp43.pdf
http://www1.maths.leeds.ac.uk/$\\sim$marsh/research_articles/pp43.pdf
http://link.springer.com/article/10.1007/BF02352494


BIBLIOGRAPHY 110

[Nak03] H. Nakajima. “t-analogs of q-characters of Kirillov-Reshetikhin modules of quan-
tum affine algebras”. In: Represent. Theory 7 (2003), pp. 259–274. arXiv:0204185v2
[arXiv:math]. url: http://www.ams.org/journals/ert/2003- 007- 12/
S1088-4165-03-00164-X/S1088-4165-03-00164-X.pdf.

[Pal08] Y. Palu. “Cluster characters for 2-Calabi-Yau triangulated categories”. In: Ann.
Inst. Fourier 58.6 (2008), pp. 2221–2248. arXiv:0703540v3 [arXiv:math].

[Pla11] P. Plamondon. “Cluster characters for cluster categories with infinite-dimensional
morphism spaces”. In: Adv. Math. 227.1 (2011), pp. 1–39. arXiv:arXiv:1002.
4956v2.

[Res03] N Reshetikhin. “Integrability of characteristic Hamiltonian systems on simple Lie
groups with standard Poisson Lie structure”. In: Communications in mathematical
physics 242.1 (2003), pp. 1–29. arXiv:0103147v1 [arXiv:math]. url: http:
//www.springerlink.com/index/FB6MVVH0VBJ8FXDK.pdf.

[RSTS94] A. Reyman and M. Semenov-Tian-Shansky. “Group-theoretical Methods in the
Theory of Finite-Dimensional Integrable Systems”. In: Dynamical Systems VII:
Integrable Systems, Nonholonomic Dynamical Systems. Vol. 1. Encyclopedia of
Mathematical Sciences. Springer, 1994, p. 341. isbn: 3540181768. url: http:
//books.google.com/books?hl=en&lr=&id=9MD-jTkkGdAC&pgis=1.

[Rui90] S. Ruijsenaars. “Relativistic Toda systems”. In: Comm. in Math. Phys. 133.2
(Oct. 1990), pp. 217–247. issn: 0010-3616. doi: 10.1007/BF02097366. url:
http://www.springerlink.com/index/10.1007/BF02097366.

[Sha81] I. Shafarevich. “On Some Infinite-Dimensional Groups II”. In: Izv. Akad. Nauk.
SSSR Ser. Mat. 45.1 (1981), pp. 214–226.

[Sur91] Y. Suris. “Algebraic Structure of Discrete-Time and Relativistic Toda Lattices”. In:
Phys. Lett. A 156.9 (July 1991), pp. 467–474. issn: 03759601. doi: 10.1016/0375-
9601(91)90181-7. url: http://linkinghub.elsevier.com/retrieve/pii/
0375960191901817http://www.sciencedirect.com/science/article/pii/

0375960191901817.

[Van01] P. Vanhaecke. Integrable Systems in the Realm of Algebraic Geometry. Lecture
Notes in Mathematics. Berlin: Springer-Verlag, 2001, p. 256. url: http://books.
google.com/books?hl=en&amp;lr=&amp;id=gOseWkOhgWwC&amp;oi=fnd&

amp;pg=PR5&amp;dq=Integrable+Systems+in+the+realm+of+Algebraic+

Geometry&amp;ots=VSY3RPq0zz&amp;sig=YBe2fy94-2wZEwiRlF83lanFO3A.

[Ves91] A. Veselov. “Integrable maps”. In: Russ. Math. Surv. 46.1 (1991), pp. 1–51. url:
http://www.turpion.org/php/reference.phtml?journal_id=rm&paper_id=

2856&volume=46&issue=5&type=xrf.

[Wil13a] H. Williams. “Cluster ensembles and Kac-Moody groups”. In: Adv. Math. 247
(2013), pp. 1–40. arXiv:arXiv:1210.2533. url: http://www.sciencedirect.
com/science/article/pii/S0001870813002557.

http://arxiv.org/abs/0204185v2
http://arxiv.org/abs/0204185v2
http://www.ams.org/journals/ert/2003-007-12/S1088-4165-03-00164-X/S1088-4165-03-00164-X.pdf
http://www.ams.org/journals/ert/2003-007-12/S1088-4165-03-00164-X/S1088-4165-03-00164-X.pdf
http://arxiv.org/abs/0703540v3
http://arxiv.org/abs/arXiv:1002.4956v2
http://arxiv.org/abs/arXiv:1002.4956v2
http://arxiv.org/abs/0103147v1
http://www.springerlink.com/index/FB6MVVH0VBJ8FXDK.pdf
http://www.springerlink.com/index/FB6MVVH0VBJ8FXDK.pdf
http://books.google.com/books?hl=en&lr=&id=9MD-jTkkGdAC&pgis=1
http://books.google.com/books?hl=en&lr=&id=9MD-jTkkGdAC&pgis=1
http://dx.doi.org/10.1007/BF02097366
http://www.springerlink.com/index/10.1007/BF02097366
http://dx.doi.org/10.1016/0375-9601\(91\)90181-7
http://dx.doi.org/10.1016/0375-9601\(91\)90181-7
http://linkinghub.elsevier.com/retrieve/pii/0375960191901817 http://www.sciencedirect.com/science/article/pii/0375960191901817
http://linkinghub.elsevier.com/retrieve/pii/0375960191901817 http://www.sciencedirect.com/science/article/pii/0375960191901817
http://linkinghub.elsevier.com/retrieve/pii/0375960191901817 http://www.sciencedirect.com/science/article/pii/0375960191901817
http://books.google.com/books?hl=en&amp;lr=&amp;id=gOseWkOhgWwC&amp;oi=fnd&amp;pg=PR5&amp;dq=Integrable+Systems+in+the+realm+of+Algebraic+Geometry&amp;ots=VSY3RPq0zz&amp;sig=YBe2fy94-2wZEwiRlF83lanFO3A
http://books.google.com/books?hl=en&amp;lr=&amp;id=gOseWkOhgWwC&amp;oi=fnd&amp;pg=PR5&amp;dq=Integrable+Systems+in+the+realm+of+Algebraic+Geometry&amp;ots=VSY3RPq0zz&amp;sig=YBe2fy94-2wZEwiRlF83lanFO3A
http://books.google.com/books?hl=en&amp;lr=&amp;id=gOseWkOhgWwC&amp;oi=fnd&amp;pg=PR5&amp;dq=Integrable+Systems+in+the+realm+of+Algebraic+Geometry&amp;ots=VSY3RPq0zz&amp;sig=YBe2fy94-2wZEwiRlF83lanFO3A
http://books.google.com/books?hl=en&amp;lr=&amp;id=gOseWkOhgWwC&amp;oi=fnd&amp;pg=PR5&amp;dq=Integrable+Systems+in+the+realm+of+Algebraic+Geometry&amp;ots=VSY3RPq0zz&amp;sig=YBe2fy94-2wZEwiRlF83lanFO3A
http://www.turpion.org/php/reference.phtml?journal_id=rm&paper_id=2856&volume=46&issue=5&type=xrf
http://www.turpion.org/php/reference.phtml?journal_id=rm&paper_id=2856&volume=46&issue=5&type=xrf
http://arxiv.org/abs/arXiv:1210.2533
http://www.sciencedirect.com/science/article/pii/S0001870813002557
http://www.sciencedirect.com/science/article/pii/S0001870813002557


BIBLIOGRAPHY 111

[Wil13b] H. Williams. “Double Bruhat cells in Kac-Moody groups and integrable systems”.
In: Lett. Math. Phys. 103.4 (2013), pp. 389–419. arXiv:arXiv:1204.0601v1. url:
http://link.springer.com/article/10.1007/s11005-012-0604-3.

[YZ08] S. Yang and A. Zelevinsky. “Cluster algebras of finite type via coxeter ele-
ments and principal minors”. In: Transform. Groups 13.3-4 (2008), pp. 855–
895. arXiv:arXiv:0804.3303v2. url: http://www.springerlink.com/index/
312114112X978772.pdf.

[Zel00] A. Zelevinsky. “Connected components of real double Bruhat cells”. In: In-
ternat. Math. Res. Notices 2000.21 (2000), pp. 1131–1154. arXiv:0003231v2
[arXiv:math]. url: http://imrn.oxfordjournals.org/content/2000/21/
1131.short.

http://arxiv.org/abs/arXiv:1204.0601v1
http://link.springer.com/article/10.1007/s11005-012-0604-3
http://arxiv.org/abs/arXiv:0804.3303v2
http://www.springerlink.com/index/312114112X978772.pdf
http://www.springerlink.com/index/312114112X978772.pdf
http://arxiv.org/abs/0003231v2
http://arxiv.org/abs/0003231v2
http://imrn.oxfordjournals.org/content/2000/21/1131.short
http://imrn.oxfordjournals.org/content/2000/21/1131.short

	Contents
	Introduction and Overview
	Background on Lie Theory and Cluster Algebras
	Lie Theory and Kac-Moody Groups
	Cluster Algebras

	Infinite-dimensional Poisson-Lie Theory and Affine Integrable Systems
	Introduction
	Ind-Groups and Poisson-Lie Theory
	Symplectic Leaves of Kac-Moody Groups and the Double Bruhat Decomposition
	Integrable Systems via Affine Double Bruhat Cells

	Cluster Duality and Kac-Moody Groups
	Introduction
	Coordinates on Double Bruhat Cells
	Double Bruhat Cells as Dual Cluster Varieties

	Q-Systems, Factorization Dynamics, and the Twist Automorphism
	Introduction
	Factorization Dynamics as Cluster Transformations
	Q-Systems and Discrete Integrability
	The Twist Automorphism

	Integrable Systems, Canonical Bases, and N=2 Field Theory
	Introduction
	Jacobian Algebras and Cluster Characters
	The Jacobian Algebra of Qn
	Hamiltonians and Nonintersecting Paths
	Hamiltonians and Cluster Characters
	Irregular Flat Connections and N=2 Field Theory

	Bibliography



