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Abstract

Cluster Algebras and Integrable Systems
by
Harold Matthew Williams
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Nicolai Reshetikhin, Chair

We present a series of results at the interface of cluster algebras and integrable systems,
discussing various connections to the broader world of representation theory, geometry, and
mathematical physics.

In chapter 3 we develop a rigorous theory of Poisson-Lie structures on ind-algebraic groups
and treat the case of symmetrizable Kac-Moody groups within this framework. We use this as
a setting for the construction of integrable systems on Hamiltonian reductions of symplectic
leaves of affine Lie groups, providing generalizations of the relativistic periodic Toda chain to
all affine types.

In chapter 4 we formulate and prove a precise relationship between the Chamber Ansatz
of [FZ99] and the general phenomenon of duality between cluster varieties. We also extend
the construction of cluster structures on double Bruhat cells of algebraic groups to the setting
of symmetrizable Kac-Moody groups, in particular encompassing the examples considered in
chapter 3.

In chapter 5 we realize the cluster structures associated with ()-systems as amalgamations
of those on double Bruhat cells of simple algebraic groups. We use this to identify Q)-system
dynamics with those of a factorization mapping, thus deducing their integrability in a uniform
way for various Dynkin types, and relate them to the Fomin-Zelevinsky twist automorphism.
In the process we also provide cluster realizations of twisted ()-systems.

In chapter 6 we identify the Hamiltonians of the open quadratic Toda system (equivalently
the conserved quantities of the Q)-systems studied in chapter 5) as cluster characters, certain
generating functions of Euler characteristics of quiver Grassmannians. Heuristically this
means the Hamiltonians should be interpreted as generalized canonical basis elements, and
we explain how such an expression is predicted by the appearance of the relevant cluster
structures in supersymmetric gauge theory.
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Chapter 1

Introduction and Overview

The broad theme of this dissertation is the interplay between cluster algebras and integrable
systems within the larger context of representation theory, geometry, and mathematical
physics.

Cluster algebras emerged around the turn of the century as abstractions of combinatorics
arising in the theory of canonical bases [FZ02]. They were quickly discovered both to possess
a deep theory of their own and to arise in many unanticipated mathematical and physical
contexts, from representation theory [Lecl0] and total positivity [Fom10] to the geometry of
moduli spaces [FGO6b] and quantum field theory [CNV10].

Integrable systems on the other hand have a long history in mathematics and physics,
dating back to the 19th century. An integrable system is essentially a Hamiltonian system
with maximal symmetry, or more precisely a Poisson manifold with a maximal collection of
Poisson-commuting functions. The position of integrable systems in modern mathematics is
largely characterized by the fact that their symmetry is often an expression of some deeper
underlying structure, typically geometric, representation-theoretic, or combinatorial in nature.
It is from this point of view that the connection between integrable systems and cluster
algebras seems most natural, since cluster algebras themselves usually reflect some larger
geometric or combinatorial structure.

In chapter 2 we collect some necessary background material, mostly on Kac-Moody groups
and cluster algebras. Informally, a cluster structure on a variety is an infinite family of toric
charts with distinguished coordinates, and transition functions of a specific form [FZ02]. To
each coordinatized chart (called a cluster) is associated a skew-symmetrizable “exchange’
matrix, which encodes the transition functions (called cluster transformations) to another
cluster (which we say is obtained by mutation). An explicit rule produces the new exchange
matrix from the original one, so the mutation process can be iterated indefinitely, recovering
the entire infinite family of clusters. The special coordinate functions on each chart are
called cluster variables; the set of all cluster variables is a linearly independent subset of the
coordinate ring of the variety, endowing it with an abstraction of (a subset of) a canonical
basis.

Chapter 3 is concerned with the development of a rigorous theory of Poisson-Lie structures
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CHAPTER 1. INTRODUCTION AND OVERVIEW 2

on ind-algebraic groups. In particular we treat the standard Poisson structure on a symmetriz-
able Kac-Moody group. We use this as a setting for the construction of integrable systems
on Hamiltonian reductions of symplectic leaves of affine Lie groups, providing generalizations
of the relativistic periodic Toda chain to all affine types.

The symplectic leaves of a symmetrizable Kac-Moody group are classified by its double
Bruhat cells. In Chapter 4 we extend the construction of cluster structures on double Bruhat
cells of algebraic groups to this setting. We also formulate and prove a precise relationship
between the Chamber Ansatz of [FZ99] and the general phenomenon of duality between
cluster varieties. Roughly speaking, we explain how the formula for the Chamber Ansatz is
a consequence of the presence of two dual cluster structures on the simply-connected and
adjoint forms of a double Bruhat cell, explaining the relationship between the approaches of
[FGO6a] and [BFZ05].

In chapter 5 we turn to )-systems, certain recurrence relations arising in the representation
theory of quantum loop algebras. In [Ked08; DKO09] these were discovered to be expressible
as sequences of cluster transformations. We prove that the relevant cluster structures are
in fact amalgamations of those on Coxeter double Bruhat cells of simple algebraic groups.
We use this to identify @)-system dynamics with those of factorization mappings, deducing
their integrability in a uniform way for various Dynkin types, and relate them to the Fomin-
Zelevinsky twist automorphism. In the process we also provide cluster realizations of twisted
@Q-systems.

Finally, in chapter 6 we identify the conserved quantities of the A,, Q-systems (equivalently
the Hamiltonians of the open quadratic Toda system) as cluster characters, certain generating
functions of Euler characteristics of quiver Grassmannians. Heuristically this means the
Hamiltonians should be interpreted as generalized canonical basis elements, and we explain
how such an expression is predicted by the appearance of the relevant cluster structures in
supersymmetric gauge theory. In particular, these cluster structures also coincide with that
those on the moduli spaces of irregular local systems associated with the Seiberg-Witten
geometry of pure N/ = 2 SU(N) Yang-Mills theory.

The results of chapters 3 and 4 are based on [Will3b; Will3al, respectively.



Chapter 2

Background on Lie Theory and
Cluster Algebras

In this chapter we collect the essential background material on Lie theory (especially Kac-
Moody groups) and cluster algebras that will be required later. The material is mostly
standard, and references are given throughout. The only minor exceptions are some statements
such as Proposition 2.1.21 which are straightforward generalizations to the Kac-Moody case
of known statements about simple algebraic groups.

2.1 Lie Theory and Kac-Moody Groups

Kac-Moody Algebras

We briefly recall the theory of Kac-Moody algebras [Kac94]. A generalized Cartan matrix C'
is an r X r integer matrix such that

1. Cy=2foralll <i<r
3. C;; =0 if and only if C}; = 0.

We will assume throughout that C' is symmetrizable; that is, there exist positive integers
di,...,d, such that d;C;; = d;C}; for all 1 <4, j <r. To the matrix C is associated a Lie
algebra g := g(C'). The Cartan subalgebra h C g contains simple coroots {ay,...,a, }, its
dual contains simple roots {ay, ..., .}, and these satisfy (a;|;’) = C;;. The dimension of b,
which we denote throughout by 7, is equal to 2r — rank(C').

The algebra g is generated by b and the Chevalley generators {es, fi,..., e, fr}, subject
to the relations

1. [h, 1] =0 for all h,h' € b
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[\

. [h, 61‘] = <Oéz|h>€Z

- [h, fi] = —{ailh) fi
4. lei, fi] = o

w

5. [67;, fJ] = ad(ei)l_cijej = ad(f,-)l_ciﬂ'fj =0 for all ¢ 7é j
The roots of g are the elements o € h* such that
0o ={X €g|[h,X]=(a|h)X forall hebh}

is nonzero. Any nonzero root is a sum of simple roots with either all positive or all negative
integer coefficients, and we say it is a positive or negative root accordingly. We then have

subalgebras
n+.::€£)ga, n_ ::E£)ga-

a>0 a<0

If g’ denotes the derived subalgebra of g and ' = @;_, Ca/, then we have vector space
decompositions
g=n_ohon,, ¢g=n_Oben,.

The Weyl group W is the subgroup of Aut(h*) generated by the simple reflections
si i B B—{(Bla)) .

A nonzero root is said to be real if it is conjugate to a simple root under W, and imaginary
otherwise. A reduced word for an element of W is an expression w = s;, - - - 5;, such that n is
as small as possible; the length ¢(w) is then defined as the length of such a reduced word.

We fix a complex algebraic torus H with Lie algebra b, which in the following section
will be the Cartan subgroup of the group associated with g. The integral weight lattice
P := Hom(H,C*) can be regarded as a sublattice of h*, with

(wla)) € Z

for all w € P and all simple coroots . We fix once and for all a basis {w;,...,wr} of P,
the fundamental weights, such that

(wila) =6;5, 1<i<r, 1<j<T
The choice of fundamental weights lets us uniquely define C;; for » < i <7 by the requirement

that

Given a € H, we will denote the value of the character A € P at a as a*. Conversely,
given t € C* and a cocharacter A\ € Hom(C*, H), we write t* for the corresponding element
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of H. Having fixed the basis wy,...,wr of P, we have a corresponding dual basis of the
cocharacter lattice Hom(C*, H). We denote its elements by af, ..., a¥, since for i < r these
are just the coroots of G.

The set of dominant weights is Py := {\ € P : (M) > 0 for all 1 <i <r}. For each
A € P, there is an irreducible g-representation L(\) with highest weight A\, unique up to
isomorphism. The representation L(\) is the direct sum of finite-dimensional h-weight spaces,
and its graded dual L(\)Y is an irreducible lowest-weight representation.

Let o be the involution of g determined by

o(h)=—hforall he H, o(e)=—fi, o(fi)=—e, (2.1.2)

and let p) : g — End L(\) be the map defining the action of g on L(A). Then there is
a g-module isomorphism between L()\)Y and the representation whose underlying vector
space is L(A) and whose g-action is given by p, o o. In particular this isomorphism yields a
nondegenerate symmetric bilinear form

L\ ® L(\) 2 LAY @ L(\) — C.

We say g(C) is of finite type if C' is positive definite, and affine type if C' is positive
semidefinite. In the former case it is a finite-dimensional semisimple Lie algebra, while in the
latter it admits an alternative description in terms of loop algebras.

More precisely, let g(C) be a semisimple Lie algebra with Cartan matrix C. Its loop

algebra Lg := g(C) ® C[z*!] has a universal central extension Lg := Cc & Lg with bracket

(X2 + Ac, Y2 + Be] = [ X, Y]z + dmpno(X, Y)e.

The action of < on Lg by derivations extends to an action on Lg, so we have the semidirect
product Lg = Ci X Lg There is an extended Cartan matrix C' such that Lg =~ g(C) and

Lg™~g (C’) To form C we adjoin an extra row and column to C by setting
C(),() = 2, Ck,O = —9(0&;;), and CO,i = —ozi(ozg).

Here 6 = 3", 0;c; is the highest root of g(C), and we will always normalize the form on
g(C) so that (6,0) = 2 (to simplify later formulas we will also use the convention 6, = 1).
Note that we index the simple roots of a general Kac-Moody algebra by {1,...,r}, while we
index affine simple roots by {0,...,r}. Every affine Kac-Moody algebra is either of the form
I/JB or a twisted version thereof; for simplicity we will always take “affine” to mean “untwisted
affine” unless explicitly stated.

Kac-Moody Groups and Double Bruhat Cells

To a generalized Cartan matrix C' we may also associate a group G, which is a simply-
connected complex algebraic group when C' is positive-definite [KP83a; Kum02]. In general
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(G is an ind-algebraic group, and shares many important properties with the simple algebraic
groups, in particular a Bruhat decomposition and generalized Gaussian factorization.

For each real root o, G contains a one-parameter subgroup z,(t), and G is generated by
these together with the Cartan subgroup H (for simple roots, we will write z4;(t) 1= 214, (t)).
We denote the subgroups generated by the positive and negative real root subgroups by
Ny and N_, respectively, and we also have the positive and negative Borel subgroups
By :=H x Ni.

For each 1 < ¢ < r there is a unique embedding ¢; : SLy — G such that

t 0 o AN (1 0y _
907: (O t_l) _t 9 901 (O 1) - Qjl(t)7 SO’L (t 1) - :U*Z(t)'

The Weyl group W is isomorphic with Ng(H)/H, where Ng(H) is the normalizer of H in G.
The simple reflections s; have representatives in GG of the form

5 = 2 (D (Dri(—1) = g, (2 ‘01) (2.1.3)
= 0 1
In particular, for any w € W we have well-defined representatives

=35, 5

in )

gl
!
C”|
&
il
&l

where s;, - - - s;, is any reduced word for w.
Recall that an ind-variety X is the union of an increasing sequence of finite-dimensional
varieties X,, whose inclusions X,, < X, ;1 are closed embeddings [Sha81]. We say a map

X %Y of ind-varieties is regular if for all ¢ € N there exists an n(i) such that ¢(X;) C Y,

and the restrictions X; # Y, are regular. If the X,, are affine, the coordinate ring of X is

= im C[X,]

topologized as an inverse limit of discrete vector spaces; regular maps of affine ind-varieties
induce continuous homomorphisms between their coordinate rings. We can also form products
of ind-varieties in the obvious way.

Definition 2.1.5. An ind-algebraic group (or ind-group) X is an ind-variety with a regular
group operation X x X — X. O

To define the ind-group structure on G, consider the integrable g-representation

V= EB (w;) & L(w;)).
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The group G acts on integrable highest weight representations of g and their restricted duals,
hence on V. If v; and v, are the highest and lowest weight vectors of L(w;) and L(w;)Y,
respectively, the map g — ¢ - ZL(U,- +v) embeds G injectively into V. We may filter V'
by finite direct sums of its weight spaces, and the intersections of G with these are closed
subvarieties that define an ind-group structure on G [Kum02, p. 7.4.14]. The subgroups H,
N4, and B4 are then closed subgroups.

Proposition 2.1.6. ([Kum02, pp. 6.5.8, 7.4.11]) The multiplication map N_ x H x Ny — G
1s a bireqular isomorphism onto an open subvariety Go. Thus for any g € Gy we may write

9 = lgl-lglolgl+
for some unique |9+ € Ny and [glo € H. Moreover, the maps
Go — Ny (resp. H), g+ [g]« (resp. [g]o)
are reqular.
Proposition 2.1.7. ([GLS11, p. 7.2]) We have
Go={z € G|A*(x) #0 for all 1 < j <77},
where the A“i are the principal minors of Definition 2.1.19.

Proposition 2.1.8. ([Kum02, p. 7.4.2]) The group G has positive and negative Bruhat
decompositions

G=|]| BB, = || BB,

weW weWw
where w is any representative of w in G.

In particular, G is a disjoint union of the double Bruhat cells
G'u,,v = B+1:LB+ N B_vB_.

To obtain a more explicit description of the double Bruhat cells, we introduce the
¢(w)-dimensional unipotent subgroups

Ny(w):= N, NwN_ ™", N_(w):=N_Nw "Ny
associated to any w € W. These have complementary infinite-dimensional subgroups
N (w):= Ny NN~ N (w):=N_Nw "N_.
Proposition 2.1.9. ([Kum02, p. 6.1.3)) For any w € W, the multiplication maps
Ni(w) x Ni(w) — Ny

are bireqular isomorphisms.
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The Bruhat decomposition then admits the following refinement:
Corollary 2.1.10. The natural maps
Ny(w) = Ny(w)wBy /By, N_(w)— B_\B_wN_(w)
are bireqular isomorphisms. In particular, the Bruhat cells can be written as
BywB, = N, (w)wBy, B_wB_ = B_wN_(w).
Corollary 2.1.11. For any z € BywB,, we have w™'x € Gy. Then
Ty (x) = wh ] Tt € Ny (w)
and x = 7, (x)wb, for some b, € B,. Similarly, if v € B_wB_, then zw ™' € Gy,
7_(2) = w zw ) € N_(w),
and x = b_wn_(z) for some b_ € B_.
Proposition 2.1.12. The map
G"" — Ny(u) x N_(v) x H, x> (7 (z),7_(2), [@ '2]o)
provides an isomorphism of G with the open set
{(ny,n_,h)|[on_ni'u"' € Go} C Ny(u) x N_(v) x H.
In particular, G*" is a rational affine variety of dimension (u) + ¢(v) + 7.
Proof. By an elementary calculation one checks that
(ny,n_,h) = nyuhfon_n'u 'y

provides the inverse map. By Proposition 2.1.7 the given open set is the nonvanishing locus
of the pullback of [[,;.~A* € C[G] along the regular map

(ny,n_,h) —vn_n 'u .

The last statement then follows since N, (u) x N_(v) x H is an open subvariety of A{W+()+7,
[

For each simple root o, G’ has a corresponding SLs, subgroup G, generated by x.(t).
In Theorem 3.2.10 we will use the following observation:

Proposition 2.1.13. G’ is generated by the simple root SLy subgroups G.!

'Since G is infinite-dimensional it does not suffice to observe that the Lie algebras of the G, together
generate g. For example, the Lie algebra of Ny C LSLs is generated by the two simple positive root spaces,
yet Ny is not generated by any proper subcollection of the 1-parameter positive root subgroups [KP83a.
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Proof. 1t suffices to show that the real root 1-parameter subgroups lie in the subgroup
generated by the G, since these generate G'. By definition a real root (3 is one of the form
w(a) for some simple root v and w € W. Then we can write the subgroup zs(t) as wz,(t)w ™
for any representative w of w in G’. But by eq. (2.1.3) this can be written in terms of simple
root 1-parameter subgroups. O

Remark 2.1.14. We could also consider a completed version of the Kac-Moody group G,
as in [Kum02, p. 6.1.16]. In the affine case, this corresponds to using the formal loop group
rather than the polynomial loop group. However, only the smaller group G has a double
Bruhat decomposition, since the completed group does not have a Bruhat decomposition with
respect to B_. Furthermore, the formal loop group does not admit evaluation representations,
so it is not the right object to consider in the context of the integrable systems constructed
in Section 3.4. ]

Affine Kac-Moody Groups

In affine type, Kac-Moody groups admit an alternative description as central extensions of
loop groups. Let C be a finite type Cartan matrix and G the corresponding simply connected
complex algebraic group with Lie algebra g. To avoid conflating this group with the associated
infinite-dimensional group, we will generally use G rather than G' to denote the Kac-Moody
group of the extended matrix C' (likewise Uy and By will denote the unipotent and Borel
subgroups of G). If LG := G(C[z*!]) is the group of regular maps from C* to G, there is a
universal central extension

] —C*"— LG — LG — 1

and an isomorphism G’ = LG. The rotation action of C* on LG extends to Ijé', and G is
isomorphic with the semidirect product C* x LG [Kum02, p. 13.2.9].

The central extension splits canonically over the subgroups G(C|z]) and G(C[z7}]) of LG,
so we have C* x G(C|z]),C* x G(C[z"']) C LG. Evaluation at z = 0 gives a homomorphism
C* x G(Clz]) — G, and B, is the preimage of the positive Borel subgroup of G. Similarly
B_ C C* x G(C[z7]) is the preimage of the negative Borel subgroup of G under evaluation at

= oo [Kum02, p. 13.2.2]. The Cartan subgroup H of LG splits as the product of the center
of LG and the Cartan subgroup H of G, embedded as constant maps (we write the Cartan
subgroup of an affine Kac-Moody group as H to distinguish it from the Cartan subgroup of
G).

) A faithful n-dimensional G-representation yields a closed embedding G < Mat,,«,, hence
an inclusion LG < Mat,,»,, ® C[z*!]. The subsets

LG,, = { Z Al A(z) € LG} C Mat,x, ® C[z*!]

k=—m
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are affine varieties, and the natural maps LG, — LG,,1 are closed embeddings. This
defines an ind-variety structure on LG, which is independent of the choice of representation.

It is clear that under this ind-variety structure the evaluation maps LG — G are regular;
the same cannot be said of the ind-variety structure LG inherits as a Kac-Moody group.
Our discussion of double Bruhat cells is based on the latter structure, but for integrable
systems we will consider functions pulled back along evaluation maps. Thus to ensure these
yield regular functions on double Bruhat cells we must verify the compatibility of the two
ind-variety structures. This is essentially well-known, but for convenience we include a proof.
We use LG,y to refer to LG with the ind-variety structure described in this section, and
LG s to refer to the ind-variety structure described in Section 2.1.

Proposition 2.1.15. The ind-variety structures LG,y and LG gy are equivalent. That is,
the identity map is a bireqular isomorphism between them.

Proof. We first show that the induced structures (Usy)yo and (Us )k are equivalent (note
that Uy is manifestly a closed subgroup of LG,y ). If w, is the longest element of the Weyl
group of G, U’ (w,) and U_(w,) are closed subgroups of LG, and Proposition 2.1.9 is clearly
true for (Us),e. Thus showing the claim for Uy reduces to showing it for U (ws).

We now invoke the corresponding theorem about the affine Grassmannian X := LG/G(C|z]) =
LG /P, where P C LG is the parabolic subgroup corresponding to the subset {ag,...,q,} C
{ag, ...,a,} of simple affine roots. Like LG, X has two equivalent but a priori distinct
ind-variety structures [Kum02, p. 13.2.18]. First, it is a disjoint union of Schubert cells
Xy = B wP/P, and is filtered by finite-dimensional projective varieties

X, = U X,.

L(w)<n

Alternatively, X can be written as an increasing union of closed subvarieties of finite-
dimensional Grassmannians. We refer the reader to [Kum02, p. 13.2.15] for the precise
construction, noting only that it is clear that LG\, acts regularly on X. In particular,
U’ (ws)pa acts faithfully on the dense open subset of ITGO/P, and U (wo)pa = Go/P =
U' (wo)kar- The claim for U, follows similarly.

In particular, the two ind-variety structures on U x H XU, coincide. By Proposition 2.1.6
this is isomorphic with an open subset LGy C LG k. But it is clear that LGg is open in
LG\, and that Proposition 2.1.6 holds for LG,y. Thus the two ind-variety structures on
EEJO are equivalent, and since the translates of Iijo form an open cover of LG the proposition
follows.

0

Remark 2.1.16. All but finitely many of the varieties used in either definition of the ind-
variety structure are singular, and unavoidably so: in [FGTO08] it was shown that X and LG
cannot be written locally as an increasing union of smooth subvarieties. Thus LG is not a
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complex manifold, even though we have the following property: for any g € LG the canonical
map

@ Sym*(mi(g)/mi(9)*) — @ @ mi(g)" /mi(g)"

is an isomorphism, where m;(g) C C[LG,] is the vanishing ideal of g [Kum02, p. 4.3.7]. O

Strongly Regular Functions and Generalized Minors

When G is infinite-dimensional, there are several natural algebras of functions one may
consider on it. Being an ind-variety, GG is the increasing union of finite-dimensional varieties,
and the inverse limit of their coordinate rings is a complete topological algebra of functions
on GG. For our purposes it is more practical to consider a proper subalgebra of this, the ring
of strongly regular functions.

Given a dominant integral weight A € P, we have an irreducible highest-weight g-module
L(X) and its graded dual L(A)Y, both of which integrate to representations of G. Recall from
Section 2.1 that L(\) is equipped with a nondegenerate bilinear form. For each vy, vy € L()),
we use this to define a function on G by taking

g = (vilg - va).
We regard this as a matrix coefficient of the image of g in End L(\).

Definition 2.1.17. ([KP83b]) The algebra of strongly regular functions, which we will
denote simply by C[G], is the algebra generated by all such matrix coefficients of irreducible
highest-weight representations. O

Proposition 2.1.18. ([KP83b, Theorem 1]) The algebra C[G] is closed under the G x G
action

((91,92) - F)(9) = f(g1 " 992).

Furthermore, as G x G-modules there is an isomorphism

ClG) = @ (L(N)Y @ L(N).

AePy

Definition 2.1.19. Given a fundamental weight w; and a pair w,w’ € W, the generalized

minor Ay’ is the matrix coefficient
g — (wv,,|gw'v,,),
where v, is a highest-weight vector of L(w;). The principal minor A% := A% is characterized

by the fact that on the dense open set Gy,

A% g = [g]-[glolgl+ = gl



CHAPTER 2. BACKGROUND ON LIE THEORY AND CLUSTER ALGEBRAS 12

The other minors can then be expressed in terms of A% by
Ay (g) = A% (@ gu).
[

Proposition 2.1.20. The algebra C[G| is a unique factorization domain in which the gener-
alized minors are prime. Two minors Ay’ and Az}"v, are relatively prime unless uw; = v'w;
and vw; = v'w;.

Proof. That C[G] is a unique factorization domain is Theorem 3 in [KP83b], and the fact
that the principal minors are prime is contained in the proof thereof. Since an arbitrary
generalized minor only differs from a principal minor by an automorphism of C[G], it is also
prime.

If uw; = v'w; and vw; = v'w;, it is clear from Definition 2.1.19 that the generalized minors
A, and Ay differ by a scalar multiple. On the other hand, if uw; # v'w; or vw; # v'w,
it is clear from the decomposition in Proposition 3.2.12 that A’ and A‘:}'m, are linearly
independent. But the only units of C[G] are the constant functions [KP83b, p. 2.1c], so the
proposition follows. []

The identity established in the next proposition plays a key role in the cluster algebras
constructed on double Bruhat cells, providing the prototypical example of an exchange
relation. It is a direct generalization of [FZ99, p. 1.17], which in turn generalizes several
classical determinantal identities. The proof below follows that in [FZ99, p. 1.17], though
when the Cartan matrix does not have full rank and r <7 = dim(H) it is important to use
eq. (2.1.1) in interpreting the right-hand side of the identity.

Proposition 2.1.21. Suppose u,v € W satisfy {(us;) > {(u) and £(vs;) > £(v) for some
1<i<r. Then
As Ao = A A+ T (As) Ok

US;,US; US;, v UL,US;
1<k<F
ki
Proof. 1t suffices to consider u = v = e. In the case of arbitrary u, v, showing both sides are

equal when evaluated at some x € GG is then equivalent to showing both sides take the same
value at w2 in the identity case.

Let
_ AW AW Wi AWi _ | | wi \—Cki
fl - Ae,eAsi,si - Asi,eAe,sﬂ f2 - (Ae,e) :
1<k<F
s

We claim that f; and fy satisfy the following conditions, where we consider C[G] as a G x G
representation as in Proposition 3.2.12:

1. They are invariant under N_ x N,.

2. They have weight (a; — 2w;, 2w; — ;).
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3. They both evaluate to 1 at the identity.

These conditions uniquely determine a function on the dense subset Gy, hence on all of G, so
together imply the proposition.

The fact that fo satisfies the given conditions is essentially immediate; for (2) we must
recall the definition of Cj; for r < j <7 in eq. (2.1.1). Likewise conditions (2) and (3) hold
straightforwardly for f;.

We claim then that f; is invariant under right translations by N,. Clearly it is invariant
under right translation by x;(t) for j # i and t € C, so we need only show that it is invariant
under right translations by x;(t).

It is immediate that AL (zz;(t)) = A% (x) and A (va;(t)) = AYL(x). We claim further
that

A (i (t)) = A, (2) + tAL(2), (2.1.22)
AY L (ai(t) = A () + A (). (2.1.23)

To see this, first note that for a highest-weight vector v, of L(w;) we have
Zi(t)S; - Uy, = S5+ U, + U, (2.1.24)

This is a simple computation in SLs representation theory; when we decompose L(w;) as a
©i(SLsy)-representation, v,, generates a copy of the standard S Lo-representation. But now
egs. (2.1.22) and (2.1.23) follow immediately in light of Definition 2.1.19, and we conclude
that

filzai(t)) = AZe(2)(AS (1) + AT () = AT (2) (AL, (1) + 1AL (7))
= fi(z).
One easily checks that fi(z) = fi(o(x™!)), where o is the automorphism of G induced

from eq. (2.1.2). From this the right N, -invariance of f; implies its left N_-invariance, hence
condition (1) indeed holds for f;. O

2.2 Cluster Algebras

In this section we fix some basic definitions and facts concerning cluster algebras and X'-
coordinates. More extensive references include [FZ07; FG09; GHK13]. The only nonstandard
item is our discussion of amalgamation: while this is usually understood as a gluing operation
between seeds [FG06al, we will require self-amalgamations of individual indecomposable
seeds.

Definition 2.2.1. (Seeds) A seed ¥ consists of:

1. An index set I = Iy U I, with a decomposition into frozen and unfrozen indices.
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2. An I x I exchange matrix B with B;; € Z unless i, j € I.
3. Skew-symmetrizers d; € Z( such that B;;d; = Bj;d,. O

Definition 2.2.2. (Mutation) For any unfrozen index k the mutation of ¥ at k is the
seed g (X) defined as follows. It has the same index set, frozen and unfrozen subsets, and
skew-symmetrizers as . Its exchange matrix ug(B) is given by

—Bij i:kOI‘j:/ﬂ

1 . (2.2.3)
Bij + 5(|Bix|Brj + Bix| Brj|) 1,75 # k. ]

pk(B)ij = {

Two seeds X and ¥’ are said to be mutation equivalent if they are related by a finite
sequence of mutations. Note that the term seed is often taken to include the additional data
of an identification of the corresponding cluster variables with a transcendence basis of a
fixed function field.

Definition 2.2.4. (Cluster Variables and X'-coordinates) To a seed ¥ we associate two
Laurent polynomial rings C[AF'] and C[X;*!], whose generators are indexed by I and referred
to as cluster variables and X'-coordinates, respectively. These are the coordinate rings of two
algebraic tori, denoted by Aysx, and Xs. There is a canonical map py, : As — X% defined by
e X =1] el Af“ . The torus A%, has a canonical Poisson structure given by

While working over the complex numbers is sufficient for our purposes, it is not essential.
Also, what we refer to as X'-coordinates are often called Y-variables elsewhere in the literature.

Remark 2.2.5. The tori Ay and Xy are dual in following sense: the ring C[X '] should be
identified with the group ring of the free abelian group ZI generated by I, and (when B is
skew-symmetric) C[A:!] should be identified with the group ring of its dual lattice (ZI)*. In
particular, the exchange matrix endows ZI with a skew-symmetric form, which is the origin
of the map pys; and the Poisson structure on Xs.. n

Definition 2.2.6. (Cluster Transformations) To each mutation s, of seeds is associated
a pair of rational maps between the corresponding tori, called cluster transformations and
also denoted by px. These satisfy
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where ¥/ = (X)), and are defined explicitly by?
A 1#k

* N ) _ )
pi(A]) = Ak1< T A%+ I] A B;W) I (2.2.7)
Bkj>0 Bkj<0
and
X‘X[Bik]wL(l + X)) Bk itk

P =9 " 2.2.8

i (X) {X;_ - 2.23)

where [Bix]+ == max(0, Byy). O

The new cluster variables A} could also be defined directly as elements of the function
field C(Ay), omitting specific mention of the torus Af,.

Definition 2.2.9. (Cluster Algebras and X-varieties) The A- and X-spaces Ay and
Ay are the schemes obtained from gluing together along cluster transformations all such
tori of seeds mutation equivalent to an initial seed ¥. The map py extends to a map
pisi: Az — &jg|, and the Poisson structure on Ay, extends to one on &jy. The upper cluster
algebra A(X) is the algebra of regular functions on Ajs, or equivalently

A(Z) = ClAg)] = (] ClAs] C C(Ap).

Sn
The cluster algebra A(Y) is the subalgebra of the function field C(A}x|) generated by the
collection of all cluster variables of seeds mutation equivalent to . O

Although in general the A- and X-spaces associated with a seed can be defined over Z,
we will only consider the associated complex schemes in the remainder of the paper. In fact,
since the expressions in eqs. (2.2.7) and (2.2.8) are subtraction-free, one can consider the
associated P-points of these spaces for any semifield P. This leads in particular to the notion
of the positive real part of these spaces, but this will not play a direct role in the present
work.

A key property of cluster algebras is the Laurent phenomenon, summarized in the following
proposition.

Proposition 2.2.10. ([FZ02, p. 3.1]) For any seed ¥ the cluster algebra A(X) is contained in
the upper cluster algebra A(X). In other words, the cluster variables of any seed are Laurent
polynomials in the cluster variables of any seed mutation equivalent to it.

A generic seed is mutation equivalent to infinitely many other seeds. However, the
following proposition guarantees that in favorable circumstances an upper cluster algebra is
already determined by a finite number of them.

2Note that our exchange matrix conventions are transpose to those of, for example, [FZ07].
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Proposition 2.2.11. ([BFZ05, p. 1.9]) Let ¥ be a seed such that the submatriz of B formed
by its unfrozen rows has full rank. Then

A(L) = ClAs] N ) ClAum)-

kel

In other words, the upper cluster algebra A(X) only depends on ¥ and the seeds obtained
from it by a single mutation.

For seeds with frozen variables, the map ps: Az — &js| admits a family of modifications
depending on an Iy x Iy matrix. This fact is crucial for the quantization of cluster algebras,
and in the present context we will it is also essential for understanding the cluster structures
associated with double Bruhat cells as in Proposition 4.2.28.

Proposition 2.2.12. Let M be an I x I matriz such that M;; = 0 unless both i and j are
frozen. Let ¥ be any seed such that B = B + M is an integer matrixz, and let pyr : Ay — X,
be the reqular map defined by ~
* Bi;
P (X)) =] 4,7
jEI

Then py; extends to a reqular map pys @ Az — /Y|Z|.3

Proof. First observe that if ¥’ is any seed mutation equivalent to X, its exchange matrix
B’ again has the property that B’ + M has integer entries. This follows from the fact
that the mutation rules eq. (2.2.3) can only change the exchange matrix entries by integer
values. In particular, the formula in the statement of the proposition yields a regular map
Py Ay — Xsy when we replace B by B'.

To check that these descend to a map Ay — Ajx|, we must verify that they commute
with the cluster transformations. That is, if ¥ is obtained from ¥ by mutation at k, we want
to show that that there is a commutative diagram

o

As -5 Ay
lpM lp?w

PYREISNGYS

3A special case of this is proved in [GSV03, Lemma 1.3].
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Note that p3,(X;) = p*(X;) nglf A; Mid 1f i + k, we have

(e 0 o))" (X)) = pay, (p(XD H (ADM”)

jGIf

(e 0 p)* (X)) [T A7

]fo

and

(pM © Mk?)*(Xz/) = p?\/] (XiX,[CBik]+(1 + Xk)_Bik)
* Mij
= (po )" (X7) H A,

Jj€lo

and the equality of these follows from their equality in the M = 0 case. On the other hand,
since p*(Xy) = p};(Xg), it follows trivially that (o par)*(X}) = (par o p)*(X}), and the
proposition follows. O

Definition 2.2.13. (o-periods) Let i = p;, o--- o p;, be a sequence of mutations of a seed
Y} and ¢ a permutation of I such that

1(B)ij = Bo(iyo(j)-

In other words, 71(X) and X are isomorphic after relabeling by o. Then we say 11 is a o-period
of ¥, or that i is a mutation-periodic sequence when ¢ and ¥ are understood. To such a
mutation-periodic sequence is associated a pair of rational automorphisms of the tori Ay, and
X, denoted by fi,, which we refer to as cluster automorphisms and which are intertwined by
the map ps. More formally, these are defined by

Ho (Ai) = (piy 0 - o g ) (Ao—1()),  Hg(Xi) = (i, 0+ 0 g, ) (Xo—13))- O

Definition 2.2.14. (Amalgamation) If ¥ 3 are seeds and 7: I —» I a surjection of their
index sets, we say % is the amalgamation of 3 along 7 if

1. For all distinct ¢,j € I, (i) = w(j) implies ¢, j € I and B;; = 0.

2. For all k.0 € 7,

Ek[ Z Bzg

i,j:m (1) =k,
W(J)=€

3. w(1,) C L.
4. di = dg) for all v € I.
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To such an amalgamation of seeds is associated an amalgamation map m: Xy, — A%, which is
Poisson and defined by
(X;) =[x O

wm(i)=j

In particular, an amalgamation 3 of ¥ can be associated with any bijection ¢ : I} = I,
between disjoint subsets of Iy such that B; ;) = 0 and d; = dy;) for all 7 € I;. We set

I'=1I\1,1I, =1, I = Iy \ I, defining the map 7 : I — I as the identity on I \ [
and ¢ on I;. The exchange matrix B is then uniquely determined by the hypotheses of
Definition 2.2.14.

Remark 2.2.15. In the spirit of Remark 2.2.5, amalgamation should be understood as
deriving from an inclusion of lattices ZI C ZI, where for each 7 € I we identify the generator
e; of ZI with the element > \_; e; of ZI. O

Definition 2.2.14 is somewhat flexible about the relation between frozen and unfrozen
subsets of I and I, and in typical situations we may have 7 (i) be unfrozen though 7 is frozen.
It is also typically the case that ¥ is a direct sum of two other seeds ¥; and ¥, (for the
obvious notion of direct sum), and the map ¢ identifies some frozen indices of ¥; with frozen
indices of 5. However, our examples require the more general notion given here.

A crucial feature of amalgamations is that under certain mild conditions they commute
with cluster transformations:

Proposition 2.2.16. Suppose S is the amalgamation of ¥ along ™ : I — T,de that m
also satisfies the hypotheses of Definition 2.2.14 with respect to pup(X) and (%) for some
unfrozen index k. Then uk(i) is also the amalgamation of pug(X) along w, and the respective
amalgamation maps and cluster transformations commute:

XE --ﬁf-—> XZ}’
‘Xf] ——5”3—% Xf)’

Proof. For each i € I, we must check that (m o yu,)* X} = (yu, o 7)* X!. This is clear for i = k,
while for ¢ # k we have

(mo ) X! = [T X7 (1 + Xp)~Bov)

m(j)=i
(Nk o 7T)*XZ, — (H Xj)X,[gBik]+(1 + Xk)_B““.

w(§)=i
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Since By = >

Bjj; by assumption, the result follows if

> Birl+ =1 B+
()=

m(§)=i

m(j)=i

This in turn holds if Bj; and By, are of the same sign whenever 7(j) = w(k) = i. But if By
and By, were of opposite signs for some such j, ¢, B;'e would be nonzero, contradicting our
hypothesis about 7. O]

When frozen variables of two distinct seeds are glued together by an amalgamation, the
assumption that 7 satisfies the needed hypotheses with respect to the mutated seeds always
holds. However, when Y is not a direct sum this need not be the case. For example, if B is
the adjacency matrix of the quiver

. 3 :

then we can form an amalgamation by gluing the vertices 1 and 3 together. However, after
mutating the original quiver at vertex 2, we will have B{; # 0, hence this is no longer an
admissible amalgamation.
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Chapter 3

Infinite-dimensional Poisson-Lie
Theory and Affine Integrable Systems

3.1 Introduction

The goals of this chapter are to set up a rigorous, working theory of Poisson-Lie structures
on ind-algebraic groups, treat the case of symmetrizable Kac-Moody groups within this
framework, and use this as a setting for the construction of integrable systems on symplectic
leaves of affine Lie groups.

The development of Poisson-Lie theory, that is, of Poisson structures compatible with a
group operation, accompanied the discovery of quantum groups in the context of quantum
integrable systems [Dri88]. The resulting subject witnessed a rich interplay between Poisson
geometry, the representation theory of quantum algebras, and exact solvability of statistical
and quantum systems. Though Poisson brackets on loop groups are often related to more
interesting physical models than those on finite-dimensional Lie groups, in practice they
are dealt with less rigorously as well. The literature on Poisson-Lie theory contains many
treatments of the foundations of the finite-dimensional case [KS96; CP94; RSTS94], generally
referred to without comment when infinite-dimensional examples are treated in applications.
While this is satisfactory for performing computations relevant to any given model, it is not
from the perspective of setting up a complete mathematical theory.

The sort of infinite-dimensional groups for which we aim to fill this gap are ind-algebraic
groups, geometrically the increasing unions of finite-dimensional algebraic varieties. These
include in particular the groups associated with Kac-Moody algebras of arbitrary type and
groups of algebraic loops into a simple Lie group. For these Kac-Moody groups we also
generalize the classification of their symplectic leaves by double Bruhat cells, well-known in
finite type.

Theorem. (3.2.7, 3.2.10, 3.2.13, 3.3.3) The completed coordinate ring of a symmetrizable
Kac-Moody group G is a topological Poisson algebra. Its symplectic leaves are classified by
the double Bruhat cells of G, which are smooth, finite-dimensional Poisson subvarieties.
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We note that although the essential features of the finite-type case carry over completely
to the general case, there are fundamental geometric differences that demand careful consid-
eration. In particular, vector fields on ind-varieties can not in general be integrated, making
even the existence of symplectic leaves a nontrivial fact. Moreover, affine Kac-Moody groups,
our main examples, are known to be everywhere singular [FGT08], a pathology obviously
quite foreign to the finite-dimensional case and which indicates the care needed when passing
to infinite dimensions.

After developing these foundations, we describe a class of completely integrable Hamilto-
nian systems generalizing the relativistic periodic Toda lattice, introduced in [Rui90]. We
identify the phase space of this particular system with a double Bruhat cell of the AV affine
Kac-Moody group, and its Hamiltonians with restrictions of invariant functions. This refines
the well-known observation that it admits a Lax form which is Hamiltonian with respect
to the Poisson-Lie bracket induced by the trigonometric r-matrix [Sur91]. A larger family
of systems can then be obtained by transporting the construction to other double Bruhat
cells and other groups. On a general double Bruhat cell the invariant functions will not
necessarily restrict to a maximal set of Poisson-commuting functions, but we show that a
sufficient condition for this is that the cell correspond to a pair of Coxeter elements in the
affine Weyl group. This construction generalizes that of [Hof+00], which treated semisimple
algebraic groups and where the term Coxeter-Toda lattice was introduced for the resulting
systems.

Theorem. (3.4.6) For an affine Kac-Moody group G and a Cozxeter element ¢ of the affine
Weyl group, the conjugation quotient G/ H 1is equipped with a canonical integrable system, a
generalized relativistic periodic Toda lattice.

3.2 Ind-Groups and Poisson-Lie Theory

This section is devoted to foundational results on the Poisson-Lie theory of ind-algebraic
groups, and Kac-Moody groups in particular. Recall that a Poisson-Lie group is a Lie group
equipped with a Poisson structure such that the group operation G x G — G is a Poisson
map; we refer to [KS96; CP94; RSTS94] for a detailed exposition in the finite-dimensional
case.

Standard Poisson-Lie Structure on SL,

We briefly review the standard Poisson structure on SLs; this is both a model for the general
case, and essential for the explicit computations we will perform in Section 3.4. The Lie
algebra sl has generators

0 1 0 0 10
o) (o) 7= 4)
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and an invariant form unique up to fixing the scalar d := HLH) If Qy € g® g is the
corresponding Casimir, we write 23 = Q4 + Qo+ Q_,, where Qo € h®h,Q,_en, @n_,

and Q_, € n_ ®n,.. We have the standard quasitriangular r-matrix is
1
r=Q)+20,_ = d(ﬁH QH+2XR®Y). (3.2.1)
That is, r is a solution of the classical Yang-Baxter equation

[T12, r13] + [r12, T23] + [r13, 23] = 0,

and its symmetric part is adjoint invariant [CP94, p. 2.1.11].

Trivializing the tangent bundle by right translations, we define a Poisson bivector whose
value at g € SLsis Ad,(r)—r. The resulting tensor is skew-symmetric since the symmetric part
of r is invariant, and its compatibility with the group structure is immediate by construction.
Moreover, the Yang-Baxter equation implies the Jacobi identity for the corresponding Poisson
bracket [KS96, p. 4.2].

Given the parametrization

s (& B)oap-no-1),

the Poisson brackets of the coordinate functions are

{B,A} =dAB, {B,D}=—dBD, {B,C}=0,
{C,A} =dAC, {C,D}=—dCD, {D,A}=2dBC.

To notate the dependence of the bracket on d, we denote the corresponding Poisson algebraic
group by S Léd).

Poisson Ind-Varieties

Our treatment of infinite-dimensional Poisson-Lie theory is based on the following definition;
for simplicity all ind-varieties are tacitly taken to be affine unless stated otherwise.

Definition 3.2.2. A Poisson ind-variety is an ind-variety X with a Poisson bracket on C[X],
continuous as a map C[X] ® C[X] — C[X]. A Poisson map is a regular map of ind-varieties
which intertwines the Poisson brackets on their coordinate rings. O

Whenever V' = lgﬂ/} and W = @m are inverse limits of (discrete) vector spaces, we
have the complete(i tensor product VW = l&lVi ® W;. For example, if X arid Y are
ind-varieties, C[X]|®C[Y] is just the coordinate ring of X x Y. V ® W sits in VRW as a
dense subspace with respect to its inverse limit topology, and whenever we refer to a topology
on V@ W (as in the preceding definition) we mean its subspace topology.
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Remark 3.2.3. The role of the inverse limit topology on V' is to restrict our attention to
operations that can be defined through the V;. A linear map ¢ : V' — W is continuous if and
only if for each i and all £ > 0 there are linear maps ¢y; : Vi — W,; which commute with
each other, the maps defining the inverse systems, and ¢ in the obvious ways (note that for
each i, ¢y; is defined for k sufficiently large, but how large & must be depends on 7). In other
words, taking the inverse limit is a full and faithful functor from the category of pro-vector
spaces indexed by N to the category of topological vector spaces. This allows us to go back
and forth between topological statements about V' and purely algebraic statements about
the V;. In particular, we have the following useful observation:

Lemma 3.2.4. Let ¢ : V — A and v : W — B be continuous linear maps between inverse
limits of discrete vector spaces (indexed by N). Then ¢ ® ¢ extends continuously to a map
o : VW — ARB of completed tensor products.

Proof. Since ¢ and 1) are continuous, they are determined by collections of maps {¢x; : Vi, —
A; | k> 0} and {¢y; : Wi, — B; | k> 0} as above. But then for each ¢ we have linear maps
Ori @ Ui = Vie @ Wy, = A; ® B; for k sufficiently large. These readily satisfy the necessary
compatibility requirements, hence yield a continuous linear map ¢@v¢ : VW — ARB. O

[]

Proposition 3.2.5. For any Poisson ind-varieties X and Y, X XY has a canonical Poisson
structure.

Proof. The bracket on C[X] ® C[Y] C C[X x Y] may be given by the usual formula {f ®
6,9 UVxxy ={f,9}x @Y+ fg@{p,¥}y. The fact that this extends to all of C[X X Y]
follows from Lemma 3.2.4 and the continuity of the brackets on X and Y. O]

Definition 3.2.6. A Poisson Ind-Group is an ind-algebraic group G which is a Poisson
ind-variety and whose group operation G x G — G is Poisson. O]

As in the case of SLs, it will be convenient to define Poisson brackets implicitly by
providing a bivector field. However, the groups we are interested in need not be inductive
limits of smooth varieties (see Remark 2.1.16), so we must be careful in discussing their
tangent bundles. The following proposition guarantees that nonetheless the trivialized tangent
bundle behaves as expected.

Proposition 3.2.7. Let G be an ind-group and g its Lie algebra. There is a bijection between
continuous n-derivations of C[G| and regular maps G — N\" g (by n-derivation we mean a
skew-symmetric map C[G]® ... RC[G] — C[G] which is a derivation in each position). Given
amap K : G — N\"g, the corresponding n-derivation K takes the functions fi, ..., f. € C[G]
to the function

K(fiooofa) 1 g (E(@delyfy Ao Aol ).
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Proof. We prove the case n = 1, the higher rank case not being substantively different. We
first show that the regularity of K ensures that the stated formula takes regular functions to
regular functions, and that this assignment is continuous. Note that g is an ind-variety via its
filtration by the T.G;, and that there is a correspondence between regular maps K : G — g
and continuous linear maps K* : g* — C[G]. Thus given K we have a continuous linear
endomorphism of C[G] given by

K :=mo (18K*) o (1&d.) o A.

Here A : C[G] — C[G]®C[G] is the coproduct on C[G] and m is the extension of the
multiplication map to C[G]®C[G]. We have implicitly used Lemma 3.2.4 and the fact that d,
is continuous. This composition recovers the formula stated in the proposition when evaluated
on a function f € C[G], and in particular expresses it as a manifestly continuous map from
C[G] to itself.

Conversely, given a continuous derivation K of C[G], we consider the map K* : C[G] —
C[G] given by

K*:=mo (S®K)oA,

where S is the antipode of C[G]. If m. C C[G] is the maximal ideal of the identity, we
let the reader check that K* annihilates m?, hence descends to a continuous linear map
K* : g* = m./m? — C[G]. As observed earlier, this data is equivalent to a regular map
K : G — g. Furthermore, from the defining property of the antipode it follows that this
construction and the one above are inverse to each other. O

In particular, a Poisson structure on an ind-group G is determined by a Poisson bivecter
TG — /\2 g. Restating the compatibility of the bracket on G with the group operation in
terms of m we obtain the following definition.

Definition 3.2.8. A polyvector field K : G — A" g is multiplicative if K(gh) = Ad,-1K(g)+
K(h). O

Remark 3.2.9. The derivative d. K : g — A" g of a multiplicative polyvector field is a
1-cocycle of g with values in A" g. If 7 is a Poisson bivector, then d.7 is a Lie cobracket
which makes g a Lie bialgebra. The dual of d.7m is a continuous Lie bracket on g*, which
is the essentially the Poisson bracket on C[G]. That is, the maximal ideal of the identity
m. C C[g] is a Lie subalgebra and m? C m,. an ideal, hence there is an induced Lie bracket
on g*. We will not need this observation, except in Section 3.3 where we describe an explicit
alternative description of the bracket on g* in the Kac-Moody case. O]

The Standard Poisson-Lie Structure of a Kac-Moody Group

We now define the standard Poisson-Lie structure on a symmetrizable Kac-Moody group G.
The construction follows the same lines as for SLy (or any semisimple Lie group), but the
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general case presents certain technical problems absent when considering finite-dimensional
groups.

The invariant form on g lets us identify it G-equivariantly with a dense subspace of
g*, hence g*®g* may be viewed as a completion of g ® g. We denote this by g&g, and
in particular there is an element ) of g®g associated with the invariant form on g. We
write Q as Q4 + Qo+ Q_y, where Qo e b @b, Q,_ € n,.®n_, and Q_, € n_®n,. Then
r = Qg+ 2Q,_ is a pseudoquasitriangular r-matrix [Dri88, Section 4]; that is, r satisfies
the classical Yang-Baxter equation and has adjoint-invariant symmetric part, but cannot be
written as a sum of finitely many simple tensors.

As in the finite-dimensional case, we want to define a Poisson bivector 7 : G — /\2 g by
m(g) = Ad,(r) —r. Now, however, r is not an element of g ® g but rather a completion
thereof, so we must specifically prove that m(g) is actually an element of /\2 g.

Theorem 3.2.10. The map g — Ady(r) —r defines a bivector field m : G — /\2 g.

Proof. First we check that Ad,(r) —r € g® g for all g € G. We begin with the case where g
lies in the S L, subgroup G, for some simple root a.. First decompose g as a direct sum of
(GG ,-subrepresentations corresponding to a-root strings. That is, let

@gﬂ-mm g_ @ 9(3]s

ne”L Bl€Q/Za

where Q is the root lattice of G. Since « is simple, for any [3] we have either gig C ny,
g3) C n_, or f € Za. Furthermore, the invariant form on g restricts to a nondegenerate
Go-invariant pairing between gig and gi_g.

Now we can rewrite the r-matrix as

r—ra+ Z

Bl€Q/Za
B8>0

Here r(g is the element of g5 ®g[_g) representing their G,-invariant pairing and r, € gjo]®gq)-
In particular, since rig is G-invariant, Adg(rg) = (5 and

Ady(r) —r = Ady (7)) — 7(a-

The right hand side is manifestly finite-rank, hence Ady(r) —r € g® g for g € G,.

It is then straightforward to see that Ady(r) —r € g ® g whenever g is a product of
elements from simple root subgroups, and by Proposition 2.1.13 any g € G’ is of this form.
Moreover, since 7 lies in the zero weight space of g®g it is fixed by the Cartan subgroup H.
Since G is generated by H and @', it follows that Ad,(r) —r € g® g for any g € G. We have
Ady(r) —r € /\ g C g ® g because the symmetric part of r is adjoint invariant. Finally, the
fact that 7 is regular follows from the fact that the adjoint action of G on /\ g is regular. [
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By Proposition 3.2.7, 7 defines a continuous skew-symmetric bracket on C[G] satisfying
the Leibniz rule. That this bracket satisfies the Jacobi identity is a consequence of the fact
that r is a solution of the classical Yang-Baxter equation. To make this precise for a general
Kac-Moody group we must first introduce a certain dense subalgebra of C[G].

Recall the embedding

dim(H)

G V=P (Lw)®Lw)")

i=1

used to define the ind-variety structure on G. The weight grading of V' expresses it as a direct
sum V = P, o Vo of finite-dimensional subspaces.

Definition 3.2.11. The algebra of strongly regular functions on V' is the symmetric algebra
of its graded dual,
C[Vl]sr. = Sym" (@ V).
acQ
The algebra C[G]s,. of strongly regular functions on G is the image of C[V],. in C[G] under
the restriction map.! O

Proposition 3.2.12. C[G]s, is a dense subalgebra of C[G]. For any f € C[Gls, and
g € G, l;(f) is again strongly regular, and the differential d.f lies in the graded dual

g" = Daco8a C 9"

Proof. The first and last statements are immediate. That £}(f) is strongly regular follows
from the fact that the coadjoint action of G on the algebraic dual g* preserves the graded
dual of g. O

Proposition 3.2.13. The bracket on C[G] defined by the bivector m(g) = Ady(r) —r satisfies
the Jacobi identity.

Proof. We recall the proof when G is a semisimple algebraic group [KS96], and then explain
the necessary adjustments in the general case. First, we write the bracket as a difference of
the two brackets {, }; and {, }» defined by the bivectors m(g) = Ad,(r) and m2(g) = r. Now
consider separately the expressions

{0, {v, ¢hiki +{v, {& okidi + {6 {0, ¥}

for i € {1,2} and ¢, € C[G]. On writing these out explicitly in terms of r one sees that half
of the terms vanish by the Yang-Baxter equation, while the remaining terms are the same for
both {, }; and {, }2. Thus they cancel when we take the difference of {, }; and {, },, yielding
the Jacobi identity for the original bracket.

1Our use of the term “strongly regular” differs from that in section 2 of [KP83b], but is consistent with
Section 4 of loc. cited.
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When G is infinite-dimensional, this argument fails since m; and 7y are not finite-rank
bivectors in the sense of Proposition 3.2.7. However, in light of Proposition 3.2.12; they
do define biderivations {, }; and {, }» on the algebra of strongly regular functions on G.
Moreover, the Yang-Baxter equation implies the Jacobi identity for the bracket on C[G]s,. by
an identical computation as in the finite-dimensional case. But since C[G]s,. is dense in C[G]
and the bracket is continuous, the proposition follows. O

We call the resulting Poisson structure on G the standard Poisson structure. It is essentially
characterized by the following proposition.

Proposition 3.2.14. G’ and H are Poisson subgroups of G, the latter with the trivial Poisson
structure. For any simple root o, G, is a Poisson subgroup isomorphic with SLéd“).

Proof. We know that only the skew-symmetric part of 7, which lies in n, ®n_®n_&n, C ¢Qg’,
contributes to the Poisson bivector, proving the claim for G’. The statement about H follows
from the observation that  lies in the zero weight space of g®g, hence Ady,(r) —r = 0 for
any h € H.

In the proof of Theorem 3.2.10 we found that for g € G, m(g) = Ady(7)) — 7[a), Where

T[] is the component of r in the Lie algebra of G,. But from the definition of r and eq. (3.2.1),

)

it is clear that 7, is precisely the r-matrix of S Léd“ , and the proposition follows. n

Proposition 3.2.15. ([RSTS94, p. 12.24]) If ¢, € C[G] are invariant under conjugation,
then

{0, 0} =0.
Proof. At any g € G we check that

{0, ¥} (g) = (Ady(r) — r|do A dip)
= (r| Ad;(do A dyp) — do A dip)
=0,

since Ady(do A dy) = d¢ A dip by assumption. O

3.3 Symplectic Leaves of Kac-Moody Groups and the
Double Bruhat Decomposition

In this section we show that the double Bruhat cells of a symmetrizable Kac-Moody group G
are Poisson subvarieties, and in particular obtain a decomposition of G into symplectic leaves.
Recall that the symplectic leaves of a finite-dimensional Poisson manifold are the orbits of its
piecewise Hamiltonian flows, have canonical symplectic structures, and define a generalized
foliation of G. The existence of symplectic leaves in G is nontrivial, since a vector field on a
general ind-variety need not have integral curves even if the ind-variety is smooth.
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We will obtain an explicit characterization of the symplectic leaves of G in Theorem 3.3.3,
but first we offer an elementary proof of their existence. We will use Propositions 2.1.12
and 3.3.12 from Section 4.2, but their proofs do not rely on the results of this section.

Proposition 3.3.1. The double Bruhat cells G are Poisson subvarieties of G.

Proof. In Proposition 3.3.12 we construct dominant Poisson map ¢; from a Poisson variety
to G*". It follows that the closure of G“" in G is a Poisson subvariety: the kernel of ¢; in
C[G] is an open Poisson ideal, hence the closure of G** is the (maximal) spectrum of the
Poisson algebra C[G]/ker¢;. The closure of G*" is can be explicitly written as

gu’,v'
)

u! <u,v’'<v

and in particular G*" is the complement of a divisor in its closure. But such an open subset
of an affine Poisson variety inherits a canonical Poisson structure [Van01, p. 2.35]. [

Corollary 3.3.2. The group G is the disjoint union of finite-dimensional symplectic leaves.

Proof. Follows from Proposition 3.3.1 and the fact that double Bruhat cells are smooth and
finite-dimensional (Proposition 2.1.12). O

We can get a more precise description of the symplectic leaves of G by introducing the
dual group G¥ and the double group D. These are ind-groups defined by

G i={(b-,by) € B-x B |[b-]o=[b:]5'}, D:=Gxg.

The dual group GV sits inside D in the obvious way, and we view G as a subgroup of D via
its diagonal embedding.

Theorem 3.3.3. The symplectic leaves of a symmetrizable Kac-Moody group G are the
connected components of its intersections with the double cosets of GV in D.

The proof of this theorem proceeds in several steps, closely following [LW90] in the
finite-dimensional case. The idea of the proof remains the same, but we indicate how some
arguments must be rephrased or altered to remain valid in the current setting. In particular,
one does not expect a priori to have such a theorem for arbitrary Poisson ind-groups, as
at several points we must appeal to particular properties of Kac-Moody groups and their
standard Poisson structure.

First note that the Lie algebra of G is

9" ={(X_,Xy) €b_ @by [[X o= —[X.]o},

where [X1]g denotes the component of X in . The Lie algebra 0 = g @ g of D is then the
direct sum of g¥ and g, the latter embedded diagonally. Moreover, g¥ and g are maximal
isotropic subalgebras under the nondegenerate invariant form

<<X17Y1)7 <X27}/2)> - <X17X2> - <Y17Yé>'
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In particular, this form identifies g¥ with the graded dual of g, justifying its notation.?
Given this identification, the bracket on 0 can be rewritten in terms of the coadjoint
actions of g and g¥ on each other. That is, if X1, X, € g and Y7,Y5 € gV, then

[(Xl, Yi), (Xg, Y'Q)] = ([Xl,XQ] + ad;‘/lXQ — ad;QXl, D/l, }/2] + Cld*Xl}/Q — ad}z}/l) (334)

Definition 3.3.5. Let 7 be the standard Poisson bivector on G. For any pu € g* we define
the (left) dressing vector field as
X, = v,(m).

]

Taken together these yield a continuous map X : g*®C[G] — C[G] which is a derivation in
the right component. Furthermore, one can recover the Poisson bivector 7 from X. Explicitly,
the map

mo (X1388:) o (184) : g*®C[F] — C[F]

factors through g*®g* as in the proof of Proposition 3.2.7, and is dual to the map 7 : G — /\2 g.
Here A is the coproduct on C[G], S is the antipode, m is multiplication in C[G], and the
notation X;3 means we apply X to the first and third terms of g*®C[G]®C[G].

Lemma 3.3.6. Let K be a multiplicative polyvector field. (1) If X is a left-invariant vector
field, Lx K 1is also left-invariant. Here Lx K is the Lie deriwvative of K with respect to X.
(2) If d.(K) =0, then K is identically zero.

Proof. We take K to be a vector field, the higher rank case being similar.

(1) Left-invariance of X is equivalent to Ao X = (1®X) o A, and multiplicativity of K is
equivalent to Ao K = (1&K) o A4 (K®1) o A. Then Lx K is left-invariant by the following
equality of maps from C[G] to C[G]®CIG]:

AoLxK=Ao(XoK—-KoX)
= (18X) o (K®1 + 1K) o A — (K®1 4+ 18&K) o (1®X) o A
= (10LxK)o A

(2) Since d.(K) =0, Lx K|, = 0 for any left-invariant X. But Lx K is itself left-invariant
by (1), hence is identically zero. In particular, since we can integrate the left-invariant
vector fields corresponding to the real root spaces, K is invariant under left translation by
the corresponding 1-parameter subgroups. Since G is generated by these subgroups and
H = exp(h), K is invariant under all left-translations. But K is multiplicative, hence K|, =0
and K must then be identically zero. O]

2Though one can intrinsically define the Lie algebra structure on g* for an arbitrary Poisson ind-group
(Remark 3.2.9), one cannot expect the existence of a corresponding dual group in general, since Lie’s third
theorem fails in this generality.
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Proposition 3.3.7. The dressing fields X,, satisfy the twisted multiplicativity condition
XM(Qh) = X/J«(h’> + Adh_l [XAdh—l(H) (g)]7

and the derivative d.X,, : g — g is the coadjoint action ad;,. Moreover, X : g*®C[G] — C[G]
15 the only continuous derivation satisfying these properties.

Proof. Twisted multiplicativity of the dressing fields follows readily from the definition of
multiplicativity. Likewise, the fact that X, = ad;, follows from unwinding the definition
of the bracket on g*. We omit the calculations, which resemble those of Proposition 3.2.7
and Lemma 3.3.6.

Suppose Y : g*®C[G] — C[G] is a continuous derivation and satisfies the given properties.
In the same way that we can recover m from X, we recover a bivector field Y from Y. The
twisted multiplicativity of Y is again equivalent to the multiplicativity of Y, and d .Y = dcm
since the derivatives of X and Y coincide at the identity. The difference # — Y is then
multiplicative bivector field whose derivative at the identity is zero. Then by Lemma 3.3.6
m — Y is identically zero, hence X =Y. O]

Consider the left action of G¥ on D/GY, and the induced action of g¥ by vector fields. Note
that the quotient of D/GY exists as an ind-variety; D/(B_ x B, ) is a product of opposite affine
Grassmannians, and D/G" is a torus bundle over it (compare with [Kum02, p. 7.2]). The
fibers of the projection from G to D/G" are the orbits of right multiplication by I' := GNG".
This intersection is a finite group, specifically the group of square roots of the identity in H.
The image of G in D/G" is open by the following proposition and the fact that the quotient
map G — G/B. is open [Kum02, p. 7.4.10].

Proposition 3.3.8. The image of the multiplication map G X G¥ — D, which is the same as
the image of G X (B_ x B,) — D, is the open set {(g,9') | g~ 'g' € Go}. Here Gy is the image
of U_ x H x U, in G as in Proposition 2.1.6. Similarly, the image of G¥ X G — D is the
open set {(g,9") | g(¢")~' € Go}.

Proof. If (9,¢') = (kb_,kby) for some k € G, (b_,b,) € GV, then g~'¢’ = b-'b, € G.
Conversely, if g7'¢' € Gy choose us+ € Uy and h € H such that ¢g7'¢’ = u_h?u,. Then in D
we have the factorization

(9,9") = (gu_h, gu_h) - (" u", huy),

proving the first claim. The second then follows by taking the inverses of the two subsets
considered in the first statement. O]

In particular the map G — D/G" induces isomorphisms on the tangent spaces at every
point. Thus we can pull back vector fields on D/GY to vector fields on G.

Proposition 3.3.9. Pulling back the vector fields on D/G" corresponding to the infinitesimal
left action of g¥, we obtain exactly the dressing vector fields on G.
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Proof. We apply the uniqueness statement of Proposition 3.3.7. That these vector fields lin-
earize to the coadjoint action at the identity follows from eq. (3.3.4). Twisted multiplicativity
follows from differentiating the following version at the group level.

Consider the open set Dy = {(g,9") | g7¢',9(¢')~' € Go}. By Proposition 3.3.8, any
element of Dy can be written as d - g for some (d,g) € G¥ x G. We can also factor it as
g - d? for some (g4, d9) € G x GV, where g¢ and d? are uniquely defined up to right and left
multiplication by T, respectively. In particular, the (local) left action of G¥ on the image of
G in D/GY can be written £; : gGY > ¢?G¥. But now by considering an element of the form
ghd, where g, h € G, we obtain the identity (g - h)¢ = g% - h(¥) . This equality must be taken
modulo the action of I'. However, since I' is finite it is strictly true in a neighborhood of
e € GY in the analytic topology, and this is sufficient to obtain the corresponding statement
about the infinitesimal action of g¥ as in [LW90]. O

Proof of Theorem 3.3.3. The orbits of the action of BL on G/By are Schubert cells, which in
particular are smooth finite-dimensional subvarieties. It follows straightforwardly that the
orbits of the action of G¥ on D/GY are also smooth finite-dimensional subvarieties, and since
G — D/GY is étale the same is true of the preimages of these orbits in G.

By Proposition 3.3.9, the tangent space to such a preimage at any g € G is exactly the span
of the dressing vector fields at that point. Note that the span of the X, |, in T,G for u € g¥
is the same as the span of the X,|;, with p arbitrary, since this subspace is finite-dimensional
and gV is dense in g*. Thus the connected components of the preimages of the GV-orbits in
D/GY are symplectic leaves of G. But these are exactly the intersections of G with the double
cosets of G in D. O

The intersections of G with the double cosets of GV are characterized by the following
theorem. This was proved in the finite-dimensional case in [KZ02] and [Hof+00], and with
Theorem 3.3.3; the proofs given there apply verbatim in the general case.

Theorem 3.3.10. Given u,v € W, let H*" C H be the subgroup of elements of the form
(0 'h 1) (0 ho), and let S = {g € G“*|[u oo [go|ov € H“}. Then the intersections
of GV with the double cosets of GV in D are the subsets S“V - h for h € H. In particular,
the symplectic leaves of a fized double Bruhat cell are isomorphic with one another.

Explicit Poisson Brackets on Double Bruhat Cells

Recall from Section 3.3 that the double Bruhat cell G*" is a Poisson subvariety of G. By
modifying the map z; of Definition 4.2.1, we now realize the symplectic leaves of G*¥ (more
precisely, their intersections with G;) as reductions of a Hamiltonian torus action. In particular,
we obtain modified factorization coordinates along with explicit formulas for their Poisson
brackets. This analysis will be revisited from the point of view of cluster X-coordinates in
Section 4.3.
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First observe that SLgd) has two distinguished symplectic leaves

si:{(’g ABl):A,B#O}, Si:{(Dc:l g):C,D;&O}.

The Poisson brackets on S¢ and S? are given by {B,A} = dAB and {D,C} = dCD,
respectively. Now define a symplectic variety

=S o Glim]
e(i1)

€(im)?

where €(i;) is the sign of ;.
If Hj, is the Cartan subgroup of G, , we also define two tori

Hy=(H/H)x [[ He. H:= [ 87"

ni(k)=0 n;(k)#£0

Here n;(k) is the total number of times the simple reflection s, appears in our reduced
expressions for v and v, that is,

ni(k) =#{j : li;| =k, 1 <j<m}.
As before, H' = H N G’ is the subgroup of H generated by the coroots.
Definition 3.3.11. Let ¢; be the map given by

¢i : Hi X Si — gu,v’ (aagin s 7gim) =a- ¢z1(gz1) o Cblm(g@m)

We can define a similar map for the derived subgroup G’ by omitting the H/H' factor in the
definition of Hj. ]

Proposition 3.3.12. The map ¢; is Poisson, with H; being given the trivial Poisson structure.
Its image is G; and its fibers are the orbits of a simply transitive action of H;.

Proof. The first assertion follows from Proposition 3.2.14. That the image of ¢; is G; follows
from a straightforward Comparlson of the definitions of ¢; and z;. We describe the action of
H by considering each of the H ! factors individually. For each k let j; < -+ < jn )
be the indices such that |i;,| = k Then for any element t"* of the nth H, factor, where
1<n<n(k)—1,let

h h —h h
tnk '(aagim"'agim) = (a’agil)"'agijn 'tnka"'7tn * " Giy tnk7

—h
--:tn g 'gijn+17"'agim)‘

Here the . g, -t refers to the conjugation action of ¢y (Hy) on ¢;,(S<). O

n

In particular, ¢; induces an isomorphism between the invariant ring C[H; x Sj ] i and the
coordinate ring C[G;]. Since we know the Poisson brackets of the coordinate functions on
H; x S;, we obtain an explicit description of the Poisson structure of G;.
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3.4 Integrable Systems via Affine Double Bruhat
Cells

We now turn to our motivating application of the abstract theory of the previous sections,
the construction of integrable systems on the reduced Coxeter double Bruhat cells of LG.

Affine Coxeter Double Bruhat Cells

In this section we specialize the discussion of Section 3.3 to the affine case G’ = EEJ, and
explicitly calculate the factorization coordinates and their Poisson brackets for a distinguished
class of double Bruhat cells. We moreover consider the quotient of LG"" by the conjugation
action of H, laying the ground for our analysis of the Hamiltonians of the integrable systems
constructed in the next section.

Definition 3.4.1. If v and v are Coxeter elements of the affine Weyl group we say that
LG " is a Cozeter double Bruhat cell. Recall that w € W is a Coxeter element if in some
(hence any) reduced expression for w each simple reflection appears exactly once. O

We may write any reduced word for v as s,(g) . . . S¢(,) for some permutation o € 5,1, and
likewise any reduced word for u as s;(g) . .. 5-() for some permutation 7. Given reduced words
for v and v, we will only explicitly write out the factorization coordinates for the unshuffied
double reduced word i = (S4(g) - - - So(r)57(0) - - - Sr(r)). This will simplify our notation but still
let us perform the calculations needed in Section 3.4.

The map ¢; of Definition 3.3.11 now takes the form

(bi : (90(0)7 <o >g0(7“)7g;'(0)7 <. 7g;-(r)) =
Do0) (o (0)) - - Por) (Go(r))Dr0) (Gr(0)) - - - Pr(r) (Grir))»

where
dy do(r dr dr(r
(Go(0): - -+ Gor)s Gr(oys - - > Go(ry) € S = S37 @ X oo X ST 5 ST s ST

We will let A;, B; and C;, D; denote the standard coordinates on Si" and S% | respectively.
Since u and v are Coxeter elements, the torus Hj is equal to [[,_, Hx, and its action on

Si is given by
thk ’ (90(0)7 B ’g;—(r)> = (90(0)7 v Gkt thk7 s at_hk *Go(r) - thk7t_hk : g;—(O) ’ thka R
...,t_hk g],W?g;'(T'))

To write this in coordinates we introduce the notation ¢ <, k to mean o~ '(i) < o' (k), or
simply that ¢ appears to the left of k£ in the reduced word for v; likewise we define i <, k.
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Then we have

(Ai, Bl) 1<, k ( tC’” ) 1<, k
e (A By) = & (LAt B i=k , (Cy, D) = L (tCi tD;)  i=k
(Ai,tic’“‘Bi) 1>,k (Cu D; ) 1>k

where CY; is the corresponding entry in the Cartan matrix of LG. If we let

T,=AD;', Vi=BD(]] D{*), Wi=(]] A “)AC,

k<51t k>ri

then
C[LG;) = C[S))" = C[T3, Vi, Wi, .. TE v .

In Section 3.4 we will consider the quotient of LG by the adjoint action of H. This
is again a Poisson variety, since H acts by Poisson automorphisms. This is similar to the
reduced double Bruhat cells considered in [Zel00; YZ08], though they consider the quotient

by left multiplication rather than conjugation. We now derive coordinates on LG"" /H along
with their Poisson brackets.
If h* € b satisfies a;(h*) = d;, then for k # 0 we have

(T, t O Vi, t%W;) i =0
"L VW) = { (T W) =k
(T3, Vi, Wi) i #0,k.
Now setting S; = V;W; and Q = V([ ], V%), a straightforward calculation yields

C[LGy/H] = C[T{, ¢, ... T, sF Q. (3.4.2)

) r o

The Poisson structure is determined by the pairwise brackets of these generators; the nonzero
ones are exactly

{8, T} = 2d;S;Ti6i e, {Q, Tk} = di0pQTx,

{SZ', Sk;} = 2d/€01ﬁ([2 >s k >r Z] — [Z >, k >4 Z])SZSk, (343)
{Q, Sk} = (Z 0;diCri([i >5 k > 0] = [i >+ k >, z’]))QSk.
ik

Here [i >, k >, i] is equal to 1 if both ¢ >, k and k >, i, and is equal to 0 otherwise (also
recall that 6y = 1 by convention).

In particular, though the dimensions of the symplectic leaves of LG"" depend on the
specific choice of u and v, our computations of the bracket on LG;/H imply the following:

Proposition 3.4.4. The symplectic leaves ofljéi/H are of dimension 2r+2, and Q*([, Sk_e’“)
s a Casimir.
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Complete Integrability
We first recall the following definition:

Definition 3.4.5. A completely integrable Hamiltonian system on an affine Poisson variety
is a collection of Poisson-commuting functions Hy,..., H, whose associated Hamiltonian
vector fields are generically independent, and whose number is half the dimension of a
generic symplectic leaf (this is the maximum possible number given the independence
requirement). O

Invariant functions on LG Poisson commute with each other by Proposition 3.2.15, and
we will construct such functions as follows. Any regular function on G can be pulled back
along the evaluation map LG x C* — G to a regular function on LG x C*. Choosing a
coordinate z on C* identifies the coordinate ring of LG x C* with the set of regular maps
LG — C[z*!]. If our original function on G is the character of a representation V', we refer
to the resulting map LG — C[z*!] as the evaluation character of V. The coefficient of any
power of z in an evaluation character is then an invariant scalar function on LG.

Together, all such coefficients of evaluation characters provide an infinite collection of
pairwise Poisson-commuting functions on LG. Thus a natural strategy for constructing
integrable systems is to restrict these functions to the double Bruhat cells of LG. On a
general cell, however, it may be that too few of these functions remain independent to form
a maximal set of Poisson-commuting functions. Our main theorem provides a sufficient
condition for obtaining an integrable system this way, or more precisely after reducing by the
conjugation action of H.

Theorem 3.4.6. The reduced Coxeter double Bruhat cell [Y?U’U/H 1s the phase space of an
integrable system whose Hamiltonians Hy, ..., H..1 are coefficients of evaluation characters.
We take Hy, ..., H, to be the constant coefficients of the evaluation characters of the r funda-
mental representations of G, and H,,1 to be the z-linear coefficient of the evaluation character
of a certain representation V. This is the wrreducible representation whose highest weight
is in the W-orbit of p := — Zk;&o(ak + Zj>ok 0,;Cr;)wi, where the wy are the fundamental
dominant weights of G and 6y = 1.

Note that in the statement of the theorem we could have taken V' to be any sufficiently
large representation. The given choice is essentially the minimal possible choice to ensure
—~ u,v
that H,, restricts nontrivially to LG = /H.

Proof. By Proposition 3.4.4 the symplectic leaves of LG /H are (2r + 2)-dimensional, so
the stated functions will form an integrable system once we show that their Hamiltonian
vector fields remain independent when restricted to LG /H. Since LG; is dense in LG it
suffices to consider their restrictions to Ijéi /H, where we can use the explicit coordinates
given by eq. (3.4.2).
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First we show that H,; is nonzero when restricted to LG /H. We can compute the
evaluation character of V' by decomposing the action of g with respect to a weight basis.
Specifically, let V) be the A-weight space of V| m, the projection of V onto V) given by the
weight space decomposition, and H) the regular function defined by Hy(g) := try, (7 o g).
Then H,.1 =Y H), where the sum runs over the nonzero weight spaces of V.

Recall that for any g € [Téi we have the factorization

g = ¢U(0) (go(0)> cee ¢0’(7‘) (ga(r))(b’r(o) (g;(0)> s Qbr(r) (gfr(r))v (347>

(A B , (D' 0
gi = 0 Az_l ) 9; = Cz Di .

From Lemma 3.4.8 we conclude that the weight spaces in V' of weight u + Zkz j Oor (1) Qo ()
are nonzero for all j. From this and eq. (3.4.7) we see that for any v € V,,, the component
of ¢ojy(gj) ... ... bo(r)(gr) - v of weight p + Zkzj 0o (k) o (k) 18 monzero for all j. Since
S6(0) - - - So(r)(1t) = p, it follows that the z-linear term of H,, contains a monomial whose B;
components are exactly Bo(] [, £0 Bf ). One can compute from the weight spaces involved

where

that this monomial does not depend on the A;. By inspecting the generators of C[LG;/H]
from eq. (3.4.2) we conclude that this monomial must be a scalar multiple of Q. In particular
H,, can be written as a sum of scalar multiple of ()2 and other terms not of this form. The
reader may check using eq. (3.4.7) that H, cannot contain any scalar multiple of )z unless
A = p. In particular, the z-linear term of the evaluation character is nonzero, since we have
ruled out any cancellation of the Qz.

The independence of H,,; and the remaining Hamiltonians follows from the fact that the
restriction of H, . to Eéi /H is linear in ), while the other Hamiltonians do not depend
on (). Indeed, suppose M is any monomial in the restriction of an evaluation character to
LG;/H. 1t is straightforward to see that the power of z accompanying M is the difference of
the exponents of By and Cy in M. Since @ is the only generator of C[LG;/H] whose powers
of By and Cj are distinct, it follows that the z*-term of an evaluation character has degree k
with respect to Q.

Finally, we claim that the Hamiltonians Hy, ..., H, are algebraically independent. De-
compose each H; as J; + K;, where J; has degree zero with respect to the S;, and K is a
sum of monomials of nonzero degree in the S;. Since H; is the restriction of a function on
LG, limp; ¢, 0 H; exists for all j, so these monomials are in fact of positive degree in the S;.

We claim that the J; are independent. The projection H — H induces an inclusion ClH] C
C[H], and we identify C[H] with C[T;", ..., T#!] in the obvious way. Then restricting the
characters of the i fundamental representations to H and including them in C[T3", ..., T,
we obtain exactly the functions J;; it is a standard result that the restrictions of the
fundamental characters to H are independent.

Now suppose there is some polynomial relation among the H;. That is, for some polynomial
p in r variables we have p(Hi,...,H,) = 0. For any polynomial p we can consider the
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decomposition of p(Hy, ..., H,) into a component of degree zero in the S; and a component
which depends nontrivially on the S;. But the K; are all of strictly positive degree in the .S;,
hence the degree zero part of p(Hy, ..., H,) is exactly p(J,..., ;). Thus p(Hy,...,H,) =0
implies p(J1, ..., J.) = 0, so p must be identically zero. Finally, one can check using eq. (3.4.3)
and Proposition 3.4.4 that for the Hamiltonians Hy, ..., H, 1, their algebraic independence
implies the generic independence of their Hamiltonian vector fields. O

Lemma 3.4.8. We have Sy(j) ... o) (1) = pt + Zkzj O (k) oy for all j. Here sq, o are
understood as sg, —0 rather than affine simple roots. In particular, sy () . .. Se(r) (1) = i, since
900[0 = — Zz#o 01061

Proof of Lemma 3.4.8. We induct on j: assuming the statement for j + 1 we compute that

So(j) -+ - So(r) (1) = Sa(j) (1 + Z 9a(k)aa(k))

k>3

= (1 D 0oy 00) = 1+ Y Ooty @ty | ary) oy
k>j k>j

=+ Z 0o (1) o (k)

k>j

For o(j) # 0 the last equality follows from the definition of p, while for o(j) = 0 it follows
from calculating that:

(4 Okowlho) = (+ > Oren| =Y dibihy)

k>50 k>50 k#0
= bk (O + Y 0;Chy) — > dibi0;Cy
k0 J>ok k#0
j>o0
= dibr(Ox + Y 0;C;) + > dibiCro — Y diit;Ch;
k#0 j#0 k<0 k#0
i>ok j>50
1
=5 > b0k Chj — Y dib;0iCrj — > dbu0;Ch;
3,k#0 Jj#0 k0
k<s0 j>0
——1.

Here we use the fact that ijk#o di0;0xCr; = (0lhg) = 2, Cyo = — Z#O 0;Ck;, and Cyy, =
2. ]

Remark 3.4.9. Even for double Bruhat cells on which there are too few independent
coefficient functions to obtain an integrable system, it was shown in [Res03] that in the
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finite-dimensional case one obtains superintegrable systems. This is a stronger statement
than simply having a collection of Poisson-commuting functions. In particular, the dynamics
are restricted to isotropic analogues of Liouville tori. One expects this to hold in the affine
case as well, but we do not pursue this here. O

The Relativistic Periodic Toda System

We now show that the relativistic periodic Toda system of [Rui90] can be realized (up to

symplectic reduction) as an affine Coxeter-Toda system of type A for a natural choice of
Coxeter elements. In canonical coordinates pg, gi this system corresponds to the Hamiltonian

Z " (1 4+ RPexp(qryr — qr)), (3.4.10)
k=0
where h is a nonzero parameter and we impose the periodic boundary conditions pgi i1 = Pk,
Qk+m+1 = qx [Sur9l]. For now we consider the complex form where p; and g take values in C.
Consider the double Bruhat cell of fﬁn with v and v both equal to the element
5081 * + + Sp, where the simple roots of SL,, are numbered in the usual way. We note that from
the computations in Section 3.4 it follows that the symplectic leaves of this cell are already
(2r 4 2)-dimensional, so the corresponding Coxeter-Toda system is integrable before reduction
by H. o
If H, € C[(LSL,);] is the Hamiltonian obtained from the constant term of the character
of the defining representation of SL,, a simple calculation yields that

Hy =) TT7\(1+S), (3.4.11)
=0

where T_; and S_; are read as T,, and .9,,.
To connect this with the relativistic Toda system, we introduce auxiliary variables
€0y - -+ Cnydg, ..., d,, on which we define a Poisson structure by setting

{ck,di} = 2cpdy,  {cp,dip1} = —2cpdiy1,  {Cks Crp1} = —2CkChi1,

with all other brackets among the generators equal to zero (here d,, 1 and ¢,y are understood
as dy and cg). The algebra C[cg', di', ..., ¢ d*'] is then the coordinate ring of a (2n 4 2)-
dimensional Poisson torus with 2n-dimensional symplectic leaves. -
Now observe that this Poisson variety can be obtained as a reduction of both (LSLy,);
and the phase space of the relativistic Toda system (for m = n and h = 2). That is, we have

surjective Poisson maps given by
-1 -1 2pi—qi+Gqi+1 2p;
Ci — Siirijji—lv dz — ﬂj}_l and c; — 4de s d; — e’

Moreover, the following proposition is clear from egs. (3.4.10) and (3.4.11):
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Proposition 3.4.12. The Hamiltonian

Hy, = zn:CH-di
i=0

pulls back to the Hamiltonians of the relativistic Toda and Coxeter-Toda systems under the
maps given above, hence defines a Hamiltonian system which is a common reduction of these
two integrable systems.

Finally, we recall that the relativistic Toda system is usually defined on the real phase
space with canonical coordinates pg, ¢i. Because of the exponentials in the EI\aEﬂtonian, the
corresponding real slice of the Coxeter-Toda phase space is the subset of (LSL,); on which
the factorization coordinates take positive real values. This totally positive part of the double
Bruhat cell has many interesting combinatorial properties and was the principal motivation
for [FZ99]. Thus in the present context we find that total positivity arises naturally when we
compare our construction with the usual real form of the relativistic Toda system.
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Chapter 4

Cluster Duality and Kac-Moody
Groups

4.1 Introduction

The goals of this chapter are to exhibit the Chamber Ansatz of [FZ99] as an example of
duality between cluster varieties, and to extend the construction of cluster structures on
double Bruhat cells of algebraic groups to the setting of symmetrizable Kac-Moody groups.

The dsicovery of cluster algebras by Fomin and Zelevinsky was precipitated in part by their
analysis of the identities satisfied by generalized minors encountered in the study of double
Bruhat cells [FZ99]. These minors were used to write explicit formulas for the inverses of
certain birational parametrizations of these cells, generalizing the Chamber Ansatz previously
introduced in the context of unipotent cells [BFZ96; BZ97]. After the axiomatization of
cluster algebras in [FZ02], these generalized minors were reinterpreted as cluster variables in
an upper cluster algebra structure on the coordinate ring of the double Bruhat cell [BFZ05].

Soon after [FZ02] it was discovered that the combinatorial data encoding a cluster
algebra encodes a second, dual type of algebraic structure, variously called coefficients or
Y-variables [FZ07], 7-coordinates [GSV03], and X-coordinates [FG09]. The two structures
may be regarded as a dual pair of varieties covered by toric charts and connected by a regular
map, which in a precise sense is a geometrization of the natural map from a lattice with a
skew-symmetric form to its dual. Concrete instances of this map include the projection from
decorated Teichmiiller space to Teichmiiller space [FGO7] and the transformation of T-system
solutions to corresponding Y-system solutions [KNS11]. In [FGO06a] a class of X-coordinates
were constructed on the double Bruhat cells of the adjoint form of a semisimple algebraic
group. These are given by another family of birational parametrizations of the cell, related to
those studied in [FZ99] but defined in terms of coweight subgroups rather than one-parameter
unipotent subgroups. However, the relationship between these X'-coordinates and the cluster
variables of [BFZ05] was not studied explicitly.

Our first main result is to demonstrate that the generalized Chamber Ansatz of [FZ99],
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when expressed in terms of the coweight parametrization of a double Bruhat cell, is in fact
an instance of the map between dual cluster varieties. In particular, this change of variables
turns the initially opaque formulas of [FZ99] into ones whose form is completely intuitive from
the perspective of the general theory. Moreover, we prove this in the setting of an arbitrary
symmetrizable Kac-Moody group, generalizing along the way many previous results of [FZ99;
BFZ05; FGO6a] on the double Bruhat cells of semisimple algebraic groups. In particular, we
show that the coordinate rings of all such double Bruhat cells are upper cluster algebras,
verifying a conjecture of [BFZ05].

Theorem. (4.3.2) The double Bruhat cells G*V, G¥Y of a symmetrizable Kac-Moody group
and its adjoint form have the structure of a dual pair of cluster varieties. This identifies the
twist map of [FZ99] and its infinite-dimensional generalization with the natural map between
dual cluster varieties, up to the addition of nondegenerate terms intertwining frozen variables.
The Poisson structure on GYY inherited from the standard r-matriz Poisson structure of
Section 3.2 coincides with the canonical cluster Poisson structure.

Whereas cluster variables are motivated by the theory of canonical bases, X'-coordinates
are more natural from the perspective of Poisson geometry. In particular, an exchange matrix
endows the corresponding X-coordinates with a canonical Poisson bracket, which in the
case of double Bruhat cells coincides with that induced by the standard Poisson structure
on the group. The characters of the group restrict to Poisson-commuting functions on the
double Bruhat cell, and in some cases form a completely integrable system [Hof+00; Res03].
Many interesting examples come from non-unipotent cells in affine Kac-Moody groups (as
in Section 3.4), and this is one of our main motivations for studying double Bruhat cells
in this generality. Moreover, this context calls specific attention to role of the coweight
parametrization, in that the resulting X'-coordinates provide the link between these systems
and those constructed from the dimer partition function of a bipartite torus graph [FM13;
GK11].

4.2 Coordinates on Double Bruhat Cells

When G is a semisimple algebraic group, each double Bruhat cell G*" is endowed with several
natural families of coordinate systems. To any double reduced word for (u,v) is associated
a parametrization of G*" by one-parameter simple root subgroups, the definition of which
is motivated by the theory of total positivity [FZ99]. In [FGO06a], a modified version of this
parametrization was introduced on the adjoint form of G using coweight subgroups; the
resulting coordinates are convenient for working with the standard Poisson bracket, and
transform as cluster X'-coordinates as the double reduced word is varied.

Explicitly describing the inverse maps to these parametrizations amounts to solving certain
factorization problems in the group. In the case of one-parameter simple root subgroups the
solution was found in terms of twisted generalized minors in [FZ99]. In Section 4.2 we extend
this result to the setting of symmetrizable Kac-Moody groups, after generalizing the various
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coordinates as necessary in Section 4.2. In Section 4.2 we use this to solve the corresponding
factorization problem for the coweight parametrization. In the process we will directly recover
the entries of the exchange matrix defined in [BFZ05].

Double Reduced Words and Parametrizations

Let G be a symmetrizable Kac-Moody group and G™" a fixed double Bruhat cell. A double
reduced word i = (iy,...,4,) for (u,v) is a shuffle of a reduced word for u written in the
alphabet {—1,..., —r} and a reduced word for v written in the alphabet {1,...,r}.

Definition 4.2.1. Let i be a double reduced word for (u,v), and set m = £(u) + £(v). Let
T; denote the complex torus (C*)™*" with coordinates ti,...,t, 7 Then we have a map
xi : Ty — G given by

Vv Vv
aq Oé;,;

Ty (b ooy tnar) = @i () - i, (b))t - AN

Here x;(t) and x_;(t) denote the one-parameter subgroups corresponding to «; and —a,
respectively. When G is an algebraic group this was defined in [FZ99], where the following
result was also proved. O

Proposition 4.2.2. The map x; is an open immersion from T; to G*""°.

Proof. First we show that the image of x; is contained in G"". For each 1 <7 < r, we have
z;(t) € By and w_(t) € Bys;By. Thusif ky < --- < kg C {1,...,m} are the indices of the
negative entries in i,

in(tl, Ce ,tm+?) S B+ te B+Sik18+ cee B+Sik[(u) B+ s B+.
Recall that for w,w’ € W,
B+'U)B+ . B+w/8+ = B+ww/6+

whenever ((ww') = f(w) + ((w') [Kum02, p. 5.1.3]. Thus in particular z;(ty, ..., tme7) €
B, uB., and by the same argument x;(ti, ..., tn7) € B_vB_.
Suppose that

Ti(tr, o tmgr) = Tty .ot s)
but (t1,...,tmew) # (t1,..., 1, ,5), and let k be the smallest index such that #, # ¢}. If

k > m this is a contradiction, since an element of H factors uniquely as a product of coroot
subgroups.

On the other hand, if & < m, then i’ := (iy,...,4,) is a double reduced word for some
(u',v"), and zy (ty, . . . tmys) = Ty (L), - - ., 1, =). Multiplying both sides on the left by z;, (—t;),
we obtain

afi’(tk - t;w S 7tm+77) = mi”(t;c—i—lﬂ s ’t;n—i-F)a
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where i” := (ig11,...,1y). But by the first part of the proposition the left and right sides lie
in different double Bruhat cells, hence by contradiction x; must be injective. But an injective
regular map between smooth complex varieties of the same dimension is an open immersion,
and the proposition follows. O

A closely related family of parametrizations was introduced in [FGO06a] for semisimple
algebraic groups. Whereas so far we have taken G to be simply-connected, to describe these
X-coordinates we must consider its adjoint version. When the Cartan matrix is not of full
rank and the center of GG is positive-dimensional, we will abuse terminology and use Gaq to
denote a variant of the adjoint group.

Recall from Section 2.1 that the fundamental weight basis of P induces a dual basis of
the cocharacter lattice Hom(C*, H). We denote it by oy, ..., oy since the first r are exactly
the coroots of GG. In parallel with this we define elements a1, ..., o of P by

oy = D Z d;lCZ-jwj,

j=1

where D is the least common integer multiple of dy,...,d,. Then ®1<;,<;Zq; is a full rank
sublattice of P, and its kernel {h € H|h* = 1,1 < ¢ <7} is a discrete subgroup of the center
of G. We let Gaq denote the quotient of G by this discrete subgroup. Of course, if C' has full
rank this is exactly the adjoint form of G.

If Hpq is the image of H in Gaq, the character lattice of Huq is canonically isomorphic
with @1 <;<7Z«;. In particular, the cocharacter lattice of Haq inherits a dual basis wy', ..., wY
of fundamental coweights such that (o;|w)) = d;; for 1 <i,5 <7. We will denote elements
of the corresponding one-parameter subgroups of Hag by i, where t € C*; in other words,
t*i is defined so that

(tw;/)oaj _ téij.

We can now define Cj; := (aj|oy) for all 1 < 4,j < 7. The definitions of «; for i > r are
chosen exactly to obtain the following proposition, which the reader may easily verify.

Proposition 4.2.3. The 7 x 1 integer matriz with entries C;; is nondegenerate and sym-
metrizable (with d; = D for i > r). Moreover, the coweights and coroots are related by

T
Vo Y
o = E Cijwy -
i=1

Example 4.2.4. Let G be the untwisted affine Kac-Moody group corresponding to a simply-
connected simple algebraic group G. That is, G is the semidirect product of C* and the
universal central extension of the group of regular maps from C* to G. Then the center Z(G)
of G sits inside G as constant maps, and we may choose the fundamental coweights so that
Gra = G/Z(G). O
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Definition 4.2.5. Let i = (i,...,%,) be a double reduced word for (u,v), and let I denote
the index set I = {—7,...,—1}U{1,...,m}. Let &; denote the torus (C*)! with coordinates
{Xi}ier. We will write E; := z;(1) for i € {£1,...,£r}. Then we have a map z; : &; — G}
given by

wY

Tt (X g, Xo) o X X B, X g X B, X,
O

Though we have also used z; to denote the map of Definition 4.2.1, it will always be clear
from the context which we mean. The following proposition may be deduced straightforwardly
from Theorem 5.2.8.

Proposition 4.2.6. The map x; : X; — G is an open immersion. Moreover, the restriction
of the quotient map mg : G** — G5 to T; is a finite covering of X;.

In particular, the ¢; and X; may be regarded as implicitly defined rational coordinates on
G™? and Gyy. In [FZ99], the former coordinates were explicitly described in the semisimple
case in terms of a certain family of generalized minors whose definition we now recall.

Given an index 1 < k < m and a double reduced word i, we define two Weyl group
elements

$(1—e1) o $(1—€k—1)) 3 (en+1) (s 1)

Uk = S’il i(k—l) y VUsk = Sin s Sik+1 5

where €, is equal to 1 if i, > 0 and —1 if 7, < 0. In short, u.y is the part of the reduced word
for u whose indices in i are less than k, and v, is the inverse of the part of the reduced word
for v whose indices in i are greater than k. For purposes of the following definition, we will
also set vs, = vl if kK < 0.

Definition 4.2.7. If i = (iy,...,4,,) is a double reduced word for (u,v), let I denote the
index set {—7,...,—1}U{1,...,m} and let i), = k for £ < 0. Then to each k € I we associate
a generalized minor

Ak,i = A:j‘;’,ﬁ',v%-
When the choice of double reduced word is clear we will abbreviate this to Aj. O

Remark 4.2.8. One may define the postive part G of G** as the image of R”;" C T; in
G™"; when G is a semisimple algebraic group this is an important object in the theory of
total positivity, the study of which motivated the work [FZ99]. Though total positivity will
not play a direct role in the present article, we note in passing that the above definition of
G, agrees with the analogous definition in terms of the coweight parametrization. That is,

if g € G¥3 it follows straightforwardly that 7¢(g) € Gy is in the image of R™S™ C &, [



CHAPTER 4. CLUSTER DUALITY AND KAC-MOODY GROUPS 45

The Twist Isomorphism

To precisely describe the relationships among the various coordinates introduced in Section 4.2,
we will require a certain isomorphism of inverse double Bruhat cells, called the twist map
in [FZ99]. In this section we recall its key properties, which extend readily to the setting of
Kac-Moody groups.

Definition 4.2.9. We write 2 +— 2 for the automorphism of G' which acts as follows on the
Cartan subgroup and Chevalley generators:

a=a' (a€H), )=z, (1<i<r).
[l

Definition 4.2.10. For any u,v € W, the twist map ¢* : G** — G* " is defined by
N
¢ ix ([ﬂ’lx]:lﬂ’lxv—l[a:v—l];l) : (4.2.11)
O

v

Proposition 4.2.12. The twist map " is an isomorphism of G** and G* '~ whose

. . -1 ,,—1
wmverse is C* Y

Proof. That (*“" is well-defined on G*" follows from Corollary 2.1.11. To see that =’ =
¢“(x) € B_o~'B_, we simplify eq. (4.2.11) as

o' = ([ o[ ] y=!) v € Gov
where y_ = 7_(z) as in Corollary 2.1.11. In particular,
[27]y = (y=')" € N-(v)’ = Ny (v™), (4.2.13)
hence 2’ € B_9~'B_. Similarly one can see that
) = (7)€ N-(u™), (42.14)

hence 2/ € B, 'B,. But now the fact that ¢ and ¢* " are inverse to each other
follows from plugging our expressions for [z'7], and [u2’]_ into the definition of ¢+ ' and

simplifying. O

Proposition 4.2.15. The twist map (*° restricts to an isomorphism of the open sets Gy
-1 ,-1
and Gy . Moreover, if x € Gy*, 2’ = (""(x), we have

[2']o = [ 2]y o [zv—15 . (4.2.16)
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Proof. We can rewrite eq. (4.2.11) as

v = ([ alofn el e o T)_fav o)

and the proposition follows from taking the Cartan part of each side. m
If w=s; s, is areduced word for w € W, we define Weyl group elements
Wep 1= Siy *** Sig_yy  Wsk 7= Sy, " S
and similarly w<g, wsy.
Proposition 4.2.17. Ifz € Gy, ' = (*"(x), and 1 < j < T,
A, (2! A (o
A7) = S (g = D)

>k A&JU(:L./) YUk Auil e(xl)

Proof. First we claim that if y» = 71 (x) and ¢/, = 71 (2’), then

—1 _ — ., _ _
v, =a (y:H)%, . =vy-")v

This follows straightforwardly from eq. (4.2.13) and eq. (4.2.14).
We can use these identities to write

1

Ty ) = A% (05 (YY),

One can check that A% ((g71)%) = A%i(g) for all g € G, hence

AV ely-) = A% (zk
A% (D (y=1)'0) = A% (@ y vgp).
By Corollary 2.1.11, ' = b_5'y/_for some b_ € B_. Then
A @ty o) = ATtz = ]y A (@' T)
Now since 71y’ v € N,
A () = A% (b_v 'y ) = [b_]37.

But then
G

Ach(a’)

proving the first part of the proposition. The remaining statement then follows by essentially
the same argument. O]

[b-]o ™ A% (2'v<k) =
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Factorization in Unipotent Groups

In Theorem 4.2.24 we derive expressions for the ¢; as Laurent monomials in the twists of the
A;, generalizing the main result of [FZ99] to the Kac-Moody setting. The strategy of the
proof is the same as in the finite-dimensional case. We build up to the main theorem by
solving a series of more elementary factorization problems, starting with the factorization of
the unipotent subgroup N_(w) as a product of one-parameter subgroups. This in turn lets
us solve the factorization problem for the unipotent cell N := N, N B_wB_. From here
we can extract the solution for a general double Bruhat cell by reducing to the case of an
“unmixed” double reduced word.

For w € W, recall the unipotent group N_(w) = N_ N ' N, and fix a reduced word
w =S, -5, . For short we will write

Now define one-parameter subgroups
Yk (Pk) = W1 @i, (Dk) g1
where we take w, 1 = e.

Lemma 4.2.18. For any p, € C we have

N_ m >k

Wy Wy, €
(e N, m<k

Proof. Follows straightforwardly from the standard fact that if £(ws;) > ¢(w) for some w € W,
then w(q;) is again a positive root. ]

Proposition 4.2.19. The map y; : C — N_(w) given by

(P1,-- - 00) =y =y1(P1) -+ Yn(Dn)

s an isomorphism. Its inverse is given explicitly by

Pk = Azlk,wkﬂ (y)

Proof. That y; is an isomorphism is well-known [GLS11, p. 5.2]. Let yx, = yr(px) be as in
Lemma 4.2.18, and

Y<k = Y1 Yk—1, Ysk = Yk+1 """ Yn-
In particular,
Y= Y<k " Yk Y>k-
It follows from Lemma 4.2.18 that

1 —_ 1
Wy Y<kWr € N, W1 YsrWre1 € Ny
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But we then have

Aﬁiwkﬂ(y) =AY (W Y WR) Wk YW1 (Whi1 Yk Wii1))
= A (W Y1)
= A% (55, o, (pr)
= Pk-

The first two lines follow from the definitions of the generalized minors, while the last is a
simple computation in SLs representation theory (similar to eq. (2.1.24)). O

Factorization in Unipotent Cells

We can now solve the factorization problem for the unipotent cell NY := N, N B_wB_.
Given a reduced word w = s;, - -+ s;,, N{ has a birational parametrization

The inverse map is described in Proposition 4.2.23, which relies on the following two lemmas.

Lemma 4.2.20. Let 1 <i <7r. Then any v € N_ can be written as 5;2'5; ‘x_;(t) for some
' € N_ and t € C. Morevover, t is given by

t =AY (x).

Proof. That g admits such an expression is an immediate consequence of Proposition 2.1.9.
To verify that ¢ is given by the stated formula, we check that
ALl e(x) = A% (2's2 (1))
= A% (siz-4(t))
=1t.
The last line is another simple SL, computation. O

Lemma 4.2.21. Let v = z;,(t1) - 23, (t,) € N¥ and 2’ = 24, (ts) -+~ 3:,(t,) € N¥'. Here
w = syw, and i’ = (ig,...,1,) s a reduced word for w'. Let ps,...,p, be complex numbers
such that y' = m_(2') = yu(pa2,...,pn). Then

y=n_(x)=vp1,...,Pn),

where

pri= AL (oo (W) ).
Moreover, t; can be recovered as

t = [wylo" " [@yle "
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Proof. We denote v;(p1, . ..,pn) by y during the proof. To show y = y it suffices to show that
wy € Gy and [wy], = z, or equivalently that wyz—! € B_. Now one can calculate that

wyr "t =55, ta_g, (p) Wy [wy Jow (—ty). (4.2.22)

Applying Lemma 4.2.20 to z_g, ([w'y'], “"t7 ) [w'y/]=", we know that

o ([wylo ™ w1 = 55y"si e ()

for some y” € N_. Combining this with eq. (4.2.22) lets us write

wyr ' = (y//)_la_lx—u([Wy/]aailtfl)[w?//]oﬁm(_t1)
= (y") "5 Hw'y low—s, (17 )@, (—t1)

= (") "5y W'y losit, tay (—t1') € B_.

The last line can be checked directly in ¢;, (SLs).
If we take the H-components of each side, we see further that

_ — —aY
[wylo =55, ' [wy'losity -

The last assertion then follows by applying the character w;, to each side. O]
Proposition 4.2.23. Letty,...,t, be nonzero complex numbers and let x = x;, (t1) -+ x5, (t,) €
NY. Then
1
th =~ = (A% (),
Awkk,e (y)Awk’“+1,e(y) 1§Jr£$ k+1)
J#ik

where y = _(z) € N_(w) and wg = s;, - - S, -
Proof. Let
o = Ty () @i, (), Yor = Welrsn@el s W', 2o = W Yone

Then applying Lemma 4.2.21 to x>, we obtain

th=[rogenlo ™ “lesklo

We claim then that [z>x]o = [Wr, y]o. This follows from

1 —1 —\7—1
Wy ZJ:(wk y<kwk)wk Y>k

= (wg 1y<kw_k)zzk7
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and the observation that
(W 'y<xy) € N-

which follows from Lemma 4.2.18. But then

te = [Wer1 o _aik)[w_k_ly]awik
_ (Wi *Z ; FC‘,i .w~) o —wj
— [wk+1 ly]o k 1<G<F Y™ [wk 1y]0 k
1w =30, Chagwi) 1w
= [t Myl © T eyl

1
T AT (A (A%, )™,
Avle(y) Auwisre(y) 1£['§F o
J#ik

completing the proof. O

Factorization in Double Bruhat Cells

We now turn to the factorization problem in an arbitrary double Bruhat cell G**.
Let i = (i1,...,%5) be a double reduced word for (u,v). For 1 < j <mand k € [ =
{—7,...,—=1}U{1,...,m}, we define!

By = —eu(( = 1+ 1 = 1) + 9 (e @i <] = (14 el < < 7]

let us explain the notation. For an index k € I, we let
Et:=min{l € I : 0> k,|ig| = |ix|},

setting k™ = m + 1 if there are no such ¢ (recall that we set i, = k for £ < 0). Also recall
that € is equal to 1 if ¢ > 0 and —1 if 44, < 0, with ¢,,.1 = 1 for purposes of the above
formula. Note that W, can only take the values 0, 1, and +C};, | js;|-

For k € I, recall the generalized minors

- _ AYligl
Ak T Ak,i - Augk,v>k

from Definition 4.2.7. We let x — z* denote the involutive antiautomorphism of GG determined
by
a'=a ' fora€ H, x;(t) =xt)for1<i<r.

v v!

It is clear that ¢ restricts to an isomorphism of G*¥ and G* *"', hence in particular ¢* ¥ o,
is an automorphism of G**.
'Recall that if P(xq,...) is a boolean function of some variables {z1,...}, [P(z1,...)] denotes the

integer-valued function of the z; whose value is 1 when P is true and 0 when P is false.
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Theorem 4.2.24. Let G be a symmetrizable Kac-Moody group, u,v € W, and i = (i1, ..., in)

1,-1

a double reduced word for (u,v). Then if x = z;i(t1,. .., tmir) and ' = (" ¥ o)(z), we
have
t; = [ An(@)*5 (4.2.25)
kel
for1 <753 <m, and
tugg = [ Arla’)zer =), (4.2.26)
kel
lik|=7
for1<j<r?
Proof. The double reduced word i = (i1, . .., %y) for (u,v) induces an opposite double reduced

word i = (ji,..., ) for (u=t v™1), by setting jx = 4my1r. Let k°° := m + 1 — k and

t). = tyop, so that
2=t b, () g (8,
We first consider the case Where i iS “unmixed”' that is, k& < ¢ whenever ¢, > 0 and ¢, < 0.
Then z* € Gy and [2]y = tm+r -+ +t,°%. By Propositions 4.2.12 and 4.2.15 we have

tmes = (2™ = [@'2]” [+ [0 o

One can then check that this agrees with eq. (4.2.26) in this case.
Next observe that since i is unmixed, y_ := 7_(z*) is equal to 7_([z'];), and

L vt
['CE ]+ = Ljy(yyop (té(v)op) © L (t:n) € N+
For 1 < k < {(v), we can use Proposition 4.2.23 to obtain

1 .
te = thop = —— _ A )Gkl .
= toe = g (T 607

(U71)>(k+1)0r>76 (v=1)spop,e 1<5<r

J#ik

Applying Proposition 4.2.17 to each term and using the observation that (v™')<gor = v, We
can rewrite this as

1
by = — — A;’JU Cj i AYI 1 G ligl
CAT (Jf’)Aeﬁﬁék(ﬂf’)( H~ (P ) (1£I< o k>

eV (k1) 1<
JFk
2Though equivalent to [FZ99, Theorem 1.9] in finite type, the formulation here differs slightly to better
match the conventions of [BFZ05]. The statement in [FZ99] does not involve ¢, and correspondingly the ¢; are

expressed in terms of cluster variables on the inverse double Bruhat cell Ge T Also, our definition of

U, i, differs from the corresponding definition in [FZ99] in order to facilitate the proof of Proposition 4.2.28.
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Using the fact that i is unmixed, one checks that this is equivalent to

ty = Ap(a’) " A (2 ( [T A= wm)( IT A= w)

lel 1<5<7
L<k<tt

Here k= € [ is defined by (k~)* = k. Again, the reader may check that this expression agrees
with eq. (4.2.25) in this case.

For ¢(v) < k < m, we note that 7 (") = 7, ([*]-) and if a = t:} o

m+r

[xb]— =Tj (aaljl‘t/ﬁ o 'xje(u) (aaljg(uﬂtlé(u))'

From here eq. (4.2.25) follows by a similar argument as above, again invoking Proposi-
tions 4.2.17 and 4.2.23. One arrives at

tk:Ak( ) 1Ak ( H AZ Z[|%)( H AZ Clzllk)
00t >m

Lel
L<k<tt

CZ i1 (€ €
(HAZ lighligl(€+— e)j

el

which agrees with eq. (4.2.25) given that i is unmixed.

Now suppose two double reduced words i and i’ differ only by the exchange of two
consecutive positive and negative indices. That is, for some 1 < k <m and 1 <i,5 <r we
have

. -/ . . -/ .
U = Uy = Jy g1 = I = —1.

We claim that if the theorem holds for i it also holds for i’. Specifically, suppose that

& =xi(t, ... bgr) = @ (th, .t 5),

and that the ¢, satisfy eqgs. (4.2.25) and (4.2.26). Then we claim the ¢} also satisfy eqs. (4.2.25)
and (4.2.26) with respect to the Agy.

This is trivial unless ¢ = j. In that case, a straightforward computation in ¢;(SLs) yields
that

i = b1+ trtrsr),  th,yp = tmge for £ #4,
ty =ty for £ <k, t,=tp(1+ tptpyr) el for k+1 <€ <m,
th =trr1(L+tatern) ™" thor = te(1 + tatiyr)-
Using the expression for (1 + txtx,1) provided by Lemma 4.2.27 and simplifying the result,
one can then check directly that egs. (4.2.25) and (4.2.26) hold for the t,. But then since the

image of x; intersects the image of zy along a dense subset, we conclude that egs. (4.2.25)
and (4.2.26) hold for all points in the image of zy. ]
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Lemma 4.2.27. Suppose Theorem 4.2.24 holds for a double reduced word i with i, = —ix1 =
i for some 1 <i <r. Leti be the double reduced word obtained by exchanging i, and iy, 1.
Then for x = x;(t1, ..., tmer) and 2’ = ¢ oy we have

Ak7i(I/)Ak7i/<£L’l)
Ap- (@) A (@)

Proof. Letting v’ = uy, v = vs k1), we first calculate that

1+ tptpp =

A]ﬁi - A‘S;,v’? Ak i — sz

u'sq,v's;?
_ Wy I Wi
AkJFlvi - Au’si,v” A Au v's;

Using eq. (4.2.25) and the fact that e, = —ep1 = 1, we also have

1+tktk+1:1+Ak+1l( ) 1Ak 1 ( H Ag CI%\ )

I<k<tt
A, o (@)AY g (@) + ngig?Azf,Uf(ﬂfl)*Cji
_ J7
Aizs v’( )A;)}vs ( )

But then by Proposition 2.1.21 this yields
A% ()AL, (@)

1+ttt = - uf, o L
+ AUZS 'U ( >AU’L 'U Si ( )
and the lemma follows. O

X-coordinates and Generalized Minors

Recall that the coweight parametrization z; : X; — G'y§ of Definition 4.2.5 yields a set { X }ier
of rational coordinates on Gyj. Since the image of T; in G*" is a finite cover of &; in G**,
the pullbacks of the X; to G** are Laurent monomials in the t;, and, by Theorem 4.2.24, in
the twisted generalized minors. In this section we derive explicit formulas for this, rewriting
the generalized Chamber Ansatz of [FZ99] in terms of the X;. We will see that the resulting
formula recovers the exchange matrix defined in [BFZ05].

Proposition 4.2.28. Fiz a double reduced word i for (u,v), let {X;}icr be the corresponding
rational coordinates on G, and let {A;}icr be the corresponding generalized minors on
G"™". Then if pg : G — Gaq is the composition of the automorphism v o (*" of G*" with the
quotient map G — Gaq, we have

Xj) = H Akéj'k'

kel
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Here B =B + M, where B and M are the I x I matrices given by’

By = %(w = k= alit = K+ glk <j <k > 0] =gk < 7 < KI[T < m

— i <k <tk >0 +esli <kt <jTET < m])
and
1 ) '
My, = §C|ik\,|ij| ([j+, Kt >m]+[j,k < O])

Proof. Recall from Proposition 4.2.6 that the image of 7} in G*" is a finite cover of A; in
G4y under the quotient map. Thus it follows from Theorem 4.2.24 that there exists some
integer matrix /N such that

* N;
pe(X;) = HAk: g

kel
To compute N, define new variables #},...,t .- by
=[] X+
j<k

|25]=lik|

Here if & > m we set |ix] = k —m and ¢, = +1. The ¢} are uniquely determined by the
requirement that

r
4

X x p X g xS g (t0) - i, (10,) T [ (Ei)
_F —1 i1 7 m 11\"1 tm \“m m+k .

k=1

3

Moreover, inverting this change of variables one finds that

X = I @ (4.2.29)

1<k<mA7
where D is the integer matrix with rows labelled by I, columns labelled by 1,...,m + 7, and
Djy = (5" =K = [j = K])ex.
We now compare the t;, with the coordinates ¢, on G** induced from

\

(tm-I—k)ak .

—1~

T - (tl, R 7tm+77) = X4y (tl) s xlm(tm)
k

1

3We keep the notation introduced at the beginning of Section 4.2.
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If 7o : G — G is the quotient map, then we can check that

m+r
mats =[]t (4.2.30)
k=1
where FE is the (m +7) X (m + r) matrix given by
B = 6jklj < m|+ Ciyp iy g, k> m.

By Theorem 4.2.24 we have

(vo oyt = [T Ar, (4.2.31)
kel
where F} . is the integer matrix with rows labelled by 1,...,m 4 7, columns labelled by I,

and 1
Fi =[] <m]V;, + 5[] > ml[|ij| = [ig|](ex+ — €x).

Here W, is as in Section 4.2, and if £y > m for some k € I, we set e+ = +1.

We can now compute N by multiplying the matrices D, E, and F', and simplifying the
resulting conditional expression. Before doing any serious simplification, a straightforward
initial calculation yields

. . Clil lis! ¢ .
Nj = [ < mlegs e = [ > Oe U+ =SB > m](egs — ). (4.2.32)
Unwinding the definition of ¥ we see that

Cz‘k,z‘j . . . .
q%kzJg—(—%u:m—%u:kﬂ—&fwww<3<kﬂ+@w—%mﬁ<ﬂ)

Plugging this and the corresponding expression for €;+ W+ into eq. (4.2.32), we obtain

Ny, = —O'i;"if' (ek[j =K|([j > 0] = [j* <m]) — alj* = k] + el = k]
g+ ealk <G <K >0 = (e + ek <j* <kt <m]  (4.2.33)

e = ) (K <G <l = 6% < 10> 0]+ [ > ) ).
The reader may verify that for any 7,k € I,

(B <5T5T <m] = [k <jllj > 0]+ [j" >m]
= <k" <JUkT <m]+[j =K+ [T ET > m].
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This identity lets us rewrite eq. (4.2.33) as

N = —C'@;"”' <[j =K([j < 0]+ [t >m]) + ¢l = k] —alit =K

+ (1 —e)li kT >mlj £kl +elk <j<kT][j > 0]
— ek <gt <kNit <4 easli <kt <jT)ET <m] (4.2.34)
+ ek <j < K[> 0] = [k < j* < K[ <m)

Sl k< <) ).
By another boolean computation the reader may check that

[k <j<kTi>0]—[k<j"<k["<m]-[j <k® <jT[k" <m]
= _[] < k<j+][k:>0]+[]7ék]([]+ak+ >m] - []7k<0])

for any j, k € I. But now we can use this to rewrite eq. (4.2.34) as

Ny = %([fr,kfr >m|+ 5,k <0 +el =kT]—eljt =k +¢lk<j< k][>0
—eirlk<iT <kt <] —eli <k <jYk>01+elj <kT < kT < m])
= Nj,ka
completing the proof. n

4.3 Double Bruhat Cells as Dual Cluster Varieties

Corresponding to a double reduced word for (u,v) we associated in Section 4.2 a collection of
generalized minors. In [FZ99] it was discovered that as the double reduced word is varied,
these collections vary by certain subtraction-free relations, which served as prototypes for the
cluster algebra exchange relations introduced in [FZ02]. In [BFZ05] it was shown that the
generalized minors are organized into an upper cluster algebra structure on the coordinate
ring of a double Bruhat cell in a semisimple algebraic group; in this section we extend this
result to the double Bruhat cells of any symmetrizable Kac-Moody group.

In fact, the cluster algebra associated with a double Bruhat cell is encoded by an exchange
matrix we have already seen, when we computed the inverse of the coweight parametrization
in Section 4.2. This is an instance of a general phenomenon, that one can define X'-coordinates
from cluster variables via the monomial transformation defined by the exchange matrix. In
the present situation, however, this is reversed: we start with independently defined cluster
variables and X-coordinates, and derive this monomial transformation directly from the
Chamber Ansatz. We summarize our main results in Theorem 4.3.2, which relates the
simply-connected and adjoint forms of the double Bruhat cell and the twist map as a pair of
dual cluster varieties and the natural map between them [FG09].
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Seeds Associated with Double Reduced Words

Before reinterpreting the results of Section 4.2 in terms of cluster algebras, let us explain
how to associate a seed ¥; with any double reduced word i for (u,v). This allows us to state
the main result, Theorem 4.3.2, which incorporates the generalized minors and twist map
into a modified cluster ensemble in the sense of Proposition 2.2.12.

Definition 4.3.1. Let i be a double reduced word for (u,v), and let m = £(u) + ¢(v). We
define a seed ¥; as follows. The index set is I = {—7,...,—1} U{l,...,m}, and an index
k € I is frozen if either k¥ < 0 or kT > m. To each index k > 0 is associated a weight
1 < |ig| <7, which we extend to k < 0 by setting |ix| = |k|. The exchange matrix B := B is
defined by

Clilli; . .
b= L (= ] — i =

+elk <j<kT)i >0 —eu[k<it <kT][iT <m]

—elj <k <jTk>01+ej <k™ < )kt < m]).

We let di = dj;,|, where the right-hand side refers to the symmetrizing factors of the
Cartan matrix. One easily checks that the skew-symmetrizability of B follows from the
symmetrizability of the Cartan matrix. O]

Note that the exchange matrix defined in [BFZ05] is equal to the transpose of the matrix
formed by the unfrozen rows of B. Our main results are summarized in the following theorem.

Theorem 4.3.2. Let G be a symmetrizable Kac-Moody group, uw,v € W elements of its Weyl
group, and i a double reduced word for (u,v). Consider the seed 3; defined in Definition 4.3.1
and let Ajs,|, Xjs, be the associated complex A- and X-spaces. Let M be the I x I matriz
with entries

1 : .
My, = §C|ik\,|ij| ([j+, kYt >m]+[j,k < 0]),

and let pg : G"" — Gy be the composition of the automorphism v o (" of G*" from
Theorem 4.2.2/ and the quotient map from G to Gaq.

1. There is a reqular map ajs; : Ay — G which identifies the generalized minors
of Definition 4.2.7 with the corresponding cluster variables on As,. It induces an
isomorphism of C[G*""| and the upper cluster algebra C[A}s)].

2. There is a regular map xs, : X, — Gyy which extends the map Xs, — Gy of
Definition 4.2.5. It is Poisson with respect to the standard Poisson-Lie structure on
Gaq and the Poisson structure on Xjx,| defined by the exchange matriz B.
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3. The matrit B = B+ M has integer entries, hence there is an associated reqular map
puv  Apsy| — Xz These maps together form a commutative diagram:

|z
A|2i| > G

b

T4 URY
XIEiI — GAd'

The proof will occupy the rest of the chapter. We treat each statement separately, as
Theorems 4.3.11, 4.3.16 and 4.3.17.

Remark 4.3.3. In general the map py between dual cluster varieties has positive-dimensional
fibers, and its image is a symplectic leaf of the X'-space. However, it is clear from Proposi-
tion 4.2.28 that pys is a finite covering map. Thus it is natural to summarize Theorem 4.3.2
as saying that the double Bruhat cells G**, G are dual cluster varieties and the map
pe is a nondegenerate version of the natural map, differing only in how the frozen A- and
X-variables are related.

This statement should be understood with the caveat that the maps a;x;|, s, are typically
not biregular; rather, the complement of their images will have codimension at least 2. In
addition, the scheme X}y, is not separated in general. Thus while the restriction of x5 to
any individual torus Xy is injective, this is not obviously the case for the entire map z|x;. [

Example 4.3.4. The exact form of the modified exchange matrix B is clarified by considering
the degenerate example where u and v are the identity. The relevant double Bruhat cells
are then the Cartan subgroups H and Hag, and the cluster variables and X'-coordinates are
their respective coroot and coweight coordinates. The change of variables between these is
the Cartan matrix, and this is exactly what the definition of B reduces to in this case (note
that the twist map is trivial when u and v are).

The theorem then says that in general to get the twisted change of variables matrix,
we add to the exchange matrix a copy of the Cartan matrix split in half between the “left”
and “right” frozen variables. As a typical example, let © and v be Coxeter elements of the
affine group of type Agl). For the natural choice of fundamental weights the extended Cartan
matrix is

C=|-2
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Example 4.3.5. If we take i = (—1,—2,1,2), then from the definitions one checks that

0 0 -2 1 0 -5 0 00 5 00 2 0
o 0 1 -2 1 0 0 01 =100 0 0
5 -1.0 1 0 0 0 5 -1.1.00 0 0
B=|-1 2 -1 0 0 -1 0], M=[f0 0 0 00 0 0|,

o -1 0 0 0 2 -1 00 0 00 0 0
0 0 1 -2 0 1 0 0 00 1 -1
0O 0 0 0 1 -1 0 00 0 00 -1 1

0o 0 0 1 0 0 0

0 1 0 -2 1 0 0

B 1 =2 1 1 0 0 0

B=|-1 2 -1 0 0 -1 0

0 -1 0 0 0 2 -1

1 0 0 1 =2 1 0

0o 0 0 0 1 -2 1

Note in particular that while B is degenerate, reflecting the fact that the symplectic leaves
of Gy have positive codimension, |det B| = 2, reflecting the fact that pg is a double cover.
Furthermore, B has integral entries, while B may in general have half-integral entries where
both the row and column correspond to frozen variables. ]

Remark 4.3.6. When G is not of finite type, it is sometimes convenient to distinguish
between two different versions of its adjoint form. What we have so far called Gaq we will

sometimes refer to as the maximal adjoint form G%3* (so {w;}I_, is a basis of its Cartan

subgroup’s cocharacter lattice), while by the minimal adjoint form G we will mean the
quotient of G' by Z(G) (so {w;}i_; is a basis of its Cartan subgroup’s cocharacter lattice). For
example, if C'is of untwisted affine type, G" is a central extension of the group LG of regular

max

maps from C* to a simple Lie group G, and G is the semidirect product G' x C*. G¥§
is then quotient of G by Z (G), embedded as constant maps, while GFi" is the semidirect
product(LG/Z(G)) x C* .

If i is a double reduced word for u,v, we have minimal and maximal seeds X, Yimax

with respective index sets
Lpin ={—r,...,=1}U{L,...om}, ILpax={-7,...,—(r+ 1)} U Lpnn,

and exchange matrices as in Definition 4.3.1. Definition 4.2.5 now yields charts Xymin <
(GR)™” and Xgmex — (GRF*)™", while Definition 4.2.7 yields charts Agmin < (G')"" and
Asmax — G* (where G' is the derived subgroup of ). Theorem 4.3.2 can be extended to
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assert commutativity of the following diagram:

pg{nax
Azmin O AE{“ax %—}l ngnax _— szin
i i i i

] [ [

(G/)u,v ¢ y U bG (Gfﬁx)u,v ( E(iﬂn)u,v.

Here the top left and top right maps are induced by the inclusion of lattices ZI i, < Z1max
following Remark 2.2.5. [

Cluster Transformations of X-coordinates

Recall that in Definition 4.2.5 we constructed an explicit regular map zy, : Xy, — Gy (from
now on we identify the tori &; and Xy, in the obvious way). If 3’ is obtained from ¥; by a
single mutation, we now show that this extends to a regular map Xs» — GJ, compatible
with the cluster transformation between Xy, and Ass. This generalizes a closely related
statement in [Zel0O, p. 4.4].

Proposition 4.3.7. Let Y5 be the seed associated with a double reduced word i, and X}, =
Xz Jor some index k € I,,. There is a unique reqular map xy : Xy — \q such that the

following diagram commutes:

U,v

Ad

Proof. First note that since u; and zy, are birational, there is a unique rational map xy
making the diagram commute; the claim is that this is in fact regular.

We will let Y; := X! denote the X'-coordinates on &j. The cluster transformation eq. (2.2.8)
lets us express the X, as rational functions of the Y;, and with this in mind we write the
rational map x; as

(Y_?, . ,Ym) — XU:;\Z T XU_JillEilX;}lill e X:;‘im‘ (438)

Note that if ¢« > k™ or i* < k, we have Y; = X; by eq. (2.2.8) and Definition 4.3.1. In
particular, the corresponding terms in eq. (4.3.8) do not affect whether or not the overall
expression defines a regular map. Thus it suffices to consider the case where £ = 1 and
k™ = m, to which we will now restrict our attention (given this, we will write i in place of

x| = liml).
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Define rational maps g; : X1 — G by

w‘vijl —c —€1 —€ ;
(Hjel X; )%(Xl X )T, (X ) g =1

95 = e
i, (=X 2, (nge<m X, ])ﬂfim (X, ) 1<j<m,

lij]=liel

again interpreting the X; as rational functions of the Y; on the right-hand side. Then
w%/ wi/ w‘\gl‘ w|\§m|
Xt XU B X X =gy g,

so it suffices to prove that each g; is regular (and that their product lands in Gy). The
details of the argument depend on the signs of ¢; and 4,,, so we consider the distinct cases
separately.
Case 1, iy = %, = i: First consider g;. By Definition 4.3.1 we have b_;; = —1 and
b1 =1, hence
X,=Y i1+ X,=Y,(1+Y).

Thus

(H Xff) - (Ymu +Y1)-1) Y, (Ym(l +Y1>)
i
i5]=1

= (YY),

which is a regular function of the Y;.

In fact, for any 1 < j <7 such that ¢ # j, there are as many indices k € I with |ix| = j
and b1 > 0 as there are with |ix| = j and bx; < 0. One has b, ; > 0 exactly either when
l<k<kt<mande, =—€+ =—1,or when k = —j, 1 <kt <m, and €+ = 1. Similarly
br1 < 0 exactly either when 1 < k < k™ <m and ¢, = —¢;+ = 1, or when 1 < k <m < k*
and €, = 1. One can check that the latter situations are in bijection with the former.

If |ig| = j for some index k € I, we have

Yi(1+Yy) " b1 >0
X =S VY 1+ v)% by <0
Y, by = 0.

But then by the above remark the positive and negative powers of (1 4+ Y7) in

I

kel
lik|=7
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cancel each another out, leaving a total expression which depends regularly on the Yj. Since

this holds for all 1 < j < 7, it follows that []
Furthermore, we have

jer X i is a regular function of the Y.

2y (X7 X, (— X ) = 2 (VY (L4 V) ) (Y, (L4 7))
= l’l(Yw:l s

and it follows that g, is regular.
Now consider g; for j > 1. If ¢, = —1, then by following a similar analysis as above one

sees that [[j<e<m X, 7 is actually a regular function of the Yy, since all (14 Y;) terms cancel
li5|=lel
out. Since in this case the F; terms commute with EZ , it follows that g; is regular.

If €, = 1, then []j<e<m X, 7 is equal to (1+Y3)~ “ilijl times some Laurent monomial ¢ in

lij]1=lel
the Y,,. But then Z
(= Y (U4 V) e, (g1 + Y1) ) (Y, (14 7))

is regular by Lemma 4.3.9.
Case 2, i; = 1,4, = —i: Again, first consider g;. Now b_;; and b,, 1 are both equal to
—1, so
X, =Y. Yi(1+Y) and X,, = Y, Yi(1+Y))!

Thus

Vv

Vv
b A

ITx" = (Yin(l + Yl)_l) Y (YmYl(l + Yl)_l)
i
ij]=1

_ (Y_iYm(l + Yl)‘z)% .

This time for any 1 < j <7 with j # 4, there is exactly one more index k € I with |ig| = j
and by, > 0 than there is with |ix| = j and by ; < 0. One has b, > 0 exactly when either
1 <k<mande =—1,or k=—j with either k¥ >m or 1 < kT <m and ¢+ = 1. On the
other hand b;; < 0 if and only if 1 < k < k™ < m and ¢, = —€x+ = 1. Thus

I

kel
lik|=3

is the product of (14 ¥;)~%“/ and a term which is regular in the Yj.

It follows that [ X; Iy is the product of a regular term and

[T a+y) o =y

1<j<F

J€l
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Finally g; itself is then the product of a regular term and

(L Y1), (X7 X0 ), (X™) = (14 Y2 (Y (L V1)) (VaYa(1 4 Y) )
o Y
_(702 )/lym 1+Y'1 )

hence is regular.

Now consider g; for j > 1. This time if €; = 1, [[j<t<m X[Ej is a Laurent monomial in
li51=liel
the Y}, the (14 Y7) terms cancelling. If e; = —1, the relevant expression becomes

x_i( - Y, Yi(1+ Yl)_l)xij (q(l + Yl)_cz‘,\z‘j\)x_i (mel(l + Yl)_l)

for some Laurent monomial ¢ in the Y. Again, this is regular by Lemma 4.3.9.

The remaining cases of i; = i, = —¢ and i, = —i,, = —i do not differ substantively from
the above two; the details are left to the reader.

It is clear that the image of X} in Gaq lands in the closure of GYj. Consider the
extension of the regular map pg : G** — G to a rational map between their closures. By
Propositions 2.2.12 and 4.2.28 we can write the rational functions pj(Y;) on G as Laurent
monomials in A} and the A; with ¢ # 1, where A] is the rational function on G** obtained
by eq. (2.2.7). Since pg is a finite covering map, by Proposition 4.2.28 the determinant D of
the matrix B is a nonzero integer. In particular, we can write each (A; ) with ¢ # 1 as a
Laurent monomial in the pg,(Y;). But the generalized minors Ay, and AY" _, are frozen cluster
variables, hence their Dth powers can be expressed as Laurent monomlals in the p%(Y;). Thus
these powers, hence the minors themselves, are nonvanishing on p, 1(Xy). Since pg is the
composition of a biregular automorphism of G** and the quotient map ng : G — Gy, it
follows that these minors do not vanish on 7;'(X;). The fact that the image of X lies in
G"" then follows by Lemma 4.3.10. O

The following result was proved in finite type in [Zel00, Lemma 4.4]. However, the proof
in loc. cited does not extend to the general case, as it involves exponentiating Lie algebra
elements which in general have components in imaginary root spaces.

Lemma 4.3.9. For distinct 1 < 1,7 <r the map C* x C — Ny given by
(p.q) = 21:(p” Naej(p~“q)zai(—p~")
extends to a reqular map C* — N..

Proof. We prove the statement for N,; the N_ version then follows after applying the
involution #. Recall from [Kum02, p. 7.4] that the map

N, — @ L(w)Y, ne=n-(vy,...,05)
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is a closed embedding of ind-varieties, where v; is the lowest-weight vector of L(w;)¥. Thus it
suffices to show that

(p,q) = zi(p~ (P~ q)xi(—p~") - n
extends regularly to p = 0 for all 1 < k < 7. This is immediate unless k is equal to i or j.
If £ = j, then

zi(p (0w (—ph) vy = 2(p7h) - (v + 0 gejuy),

where e; is jth the positive Chevalley generator. Since e;v; is a lowest-weight vector for the
©; (S Lg)-subrepresentation it generates and (—w; + «j|ay) = Cj;, we have

o0 n

_ _C. _n6 —Ci;
zi(p™!) - (v +p “igeju) =D p G “igejuy)
n=0 '
—Cyj N
=V; + Z P Cij TJ’U]'.
n=0 ’

Since this last expression depends only on nonnegative powers of p, the claim follows.
If £ =i, a similar calculation yields

zi(p i ()i (—p7) v = 2i(p N (p %) - (v — ple;)
*Cij n, n
_ 4 qrese;
_ l‘z‘(p 1) . (Ui i Zp 1 nngn—ﬂlvz)'
n=0 ’

If n >0, ele; is a lowest-weight vector for the ¢;(SLs)-subrepresentation it generates.
Otherwise, —w; + na; would have a nonzero weight space in L(w;)", which would generate a
nontrivial ¢;(SLy)-representation containing v;, a contradiction.
Since (—w; + a; + nojlay) = 1+ nCyj,
-y q”e?eiv‘ B 12710” - q"e"eje; ‘
L p min!

zi(p™') - p o

m=0
But since —1 — nCj; —m > 0 for all m < —1 — nCj;, the right hand side depends only on
nonnegative powers of p. But z;(p~")x;(p~“iq)zi(—p~') - v; is a sum of such terms with
n > 0 and
zi(p™) - (v — p~ew;) = i,
hence extends to a regular map at p = 0. O

Lemma 4.3.10. The closure of G*" in G 1is

g= | o

u' <u
v'<v
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where we use the Bruhat order on W. If x € G*v, then v € G*" if and only if A (x) # 0
and A¥ () #0 for all1 <i < r.A

Proof. The decomposition of Gv follows easily from the corresponding statement about
Schubert varieties [Kum02, p. 7.1]. It is also clear from their definitions that the stated
generalized minors do not vanish on G™*. Thus we must show that if z € G» \ G™?, one of
the stated minors vanishes on it.

Suppose that ©' < u in the Bruhat order. By definition, there exist positive real roots
B, ..., Bk such that w = u'ry - - - r, where r; € W is the reflection

i A A= (AB)) B

Here f3;' is the positive coroot associated with 3;. Moreover, these satisfy £(u'ry) < £(u'riry) <
-+ < {L(u), which in particular implies that w'ry - --7;_1(5;) > 0 for all j [Kum02, p. 1.3.13].
If v < u, we claim that for each w;,

U (w;) — u(w;) € @ Na;.

For any 1 < j < r we have
UIT1 v Tj,1<wi) — u/7’1 ce rj(wi) = <wi\ﬂj\/>u'7’1 e ijl(ﬁj).

But then

' (wg) = ulw;) = Z (u'ry - rjma(wi) = a'ry - ory(wi)

= D B i (8),

1<j<r

which is indeed a sum of positive roots with nonnegative coefficients. Furthermore, if u’ is
strictly less than w in the Bruhat order, u/(w;) — u(w;) must be nonzero for some 1 < i < r.
But then for any x € B, u'B,, we have A% (r) = 0. A straightforward adaptation of this
argument implies that for any x € B_v'B_ with v' < v, Agfqu(x) =0 for some 1 < i <7,
and the lemma follows. O

Cluster Transformations of Generalized Minors

Recall that to a double reduced word i we associated in Definition 4.2.7 a collection {A; };cr of
generalized minors. In this section we identify these with the cluster variables corresponding
to the seed ¥; and study their cluster transformations.

4In finite type a stronger version of this is stated in [BFZ05, Proposition 2.8], following from the proof of
[FZ00, Proposition 3.3].
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Theorem 4.3.11. There is a reqular map ajs;) : Az, — G which identifies the generalized
minors of Definition 4.2.7 with the corresponding cluster variables on As,. This map induces
an isomorphism of C[G"™"] and the upper cluster algebra C|As,].

When G is a semisimple algebraic group, this is the content of [BFZ05, p. 2.10]. As in loc.
cited, the proof we give is modelled on that of a closely related result in [Zel00], which treats
the case of reduced double Bruhat cells. Most of the work is delegated to a series of lemmas
that take up the bulk of the section; first we show how these lemmas assemble into the proof
of Theorem 4.3.11.

Proof of Theorem /4.3.11. By Lemma 4.3.12, Proposition 2.2.11 applies to ¥J;, hence
ClAjsy] = ClAs,] N () CLALL

kel,
On the other hand, by Lemma 4.3.15, the maps ay, : Ay, = G*", a), : Ay — G"™" induce an
isomorphism

C[G™"] = C[Ag,] N (] ClAX.

kel
Then since G* is an affine variety (Proposition 2.1.12), we have G** = Spec C[Ay,|]. But
then ajy,| is just the canonical map A, — Spec C[Ax,|]. O

Lemma 4.3.12. The submatriz of B formed by its unfrozen rows has full rank.

Proof. First let
I.={kel:k €l,}.

We claim the submatrix of B whose rows are those indexed by I, and whose columns are
indexed by I, is lower triangular with nonzero diagonal entries. The diagonal entries are
of the form by .+, hence equal to £1 by Definition 4.3.1. On the other hand if an entry by ¢
of this submatrix lies above the diagonal then ¢ > k. Again, from the definition of B we
must have by, = 0. Thus this square submatrix has full rank, and it follows that the matrix
formed by the unfrozen rows has full rank. O]

Lemma 4.3.13. For each unfrozen index k € I, let A}, be the rational function on G™
obtained from the exchange relation

A?@ _ A;l( H A;’k] + H Ajbkj)‘
by >0 by <0
Then A}, is in fact reqular.

Proof. Tt suffices to consider the case k = 1, kT = m, where we will in fact show that A} is
the restriction to G*" of a strongly regular function on GG. In the general case, consider the
double reduced word i’ = (i, ..., ix+). Then one has

Aps(x) = Ay (U< '2tzgr),
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hence Aj ; is the restriction of a strongly regular function if A’ is.
We obtain the following formulas for A} depending on the signs of i and i,,. We will let
EL={l<j<mle==x1}, Jy ={|i;||1 <j<m,j_ <0}, and @ := [iy]| = [in,].

Case 1, iy =i, =1
/ w; wj W|zk\ —C; . ws w‘1k| _C. .
AlAefsi - Ae,zz;*l H (Au§k7”>k) et + Aefe H (A“<k7v2k) liglt
k’EE+ k€E+
WTEE: k=¢E,
Case 2, i1 =1, = —1
/ wi; wj w\z’k| —C; Wi w\ikl _C. ,
AIASZ’e o A“fle H (A“<kﬂ)>k) kbt Ae,le H (AUSk,v>k) il
kekb_ keE_

k—¢E_ kt¢E_

Case 3, 11 =i, i,, = —1

. . . Wi, _ . )
AN = A A T (Al )G

R
kEE+
kteE_
Wi —Clii wj —Cj
+ ( H (Augkw>k) lkh ) ( H (Ae,vfl) !
keE_ JE[L,T\I-
k—¢E_
Case 4, 11 = —i, ,, =1
I AW AW AWi Wligl —Cli, 1
AlAsi,si - Ae,siAsi,e H (Augkﬂ)>k) Pkl
keE_
kteEy

()L )

keEy VISERGAVAS
kT¢E,

We now impose the further assumption that j < k for all j € F,, k € E_, before returning
to the general case. Letting Sy = {|ix| : k € EL} C [1,7], we can then simplify the above
formulas as:

Case 1, 11 =i, =1

AllA::iSi - A:,iqu H (AZ@_C& + AYL H (A‘:ﬁfl)—ch

€€S+ £€S+



CHAPTER 4. CLUSTER DUALITY AND KAC-MOODY GROUPS 68

Case 2, 11 =i, = —1i

AN, = Ay [T (ae) =%+ oz T (as) =

tes_ tes_
Case 3, 11 =i, i,, = —1
Mmag = Az Ay, 1T @)%+ <H (Aife)_@’) ( 11 (A:y)‘%)
LeSyns_ lesS_ Le([1,7\S-)uS+
Case 4, 11 = —i, 1,, =1

AN :Azi;.A;:ae+( II <A:fe>—%>
le[

L\ {a}

In each case, one can apply Proposition 2.1.21 to deduce that A} is indeed regular. For
example, in case 1, multiplying both sides of the above equation by

I @@= ]I @)™
JeLFN\({i}usy) Je[LFN\({i}usy)
we obtain

AaAzi;i( 11 <Azfe>cﬂ)

JeLN{}US )
=av s [ @) ran I )

Le[1,r\{i} Le[L\{i}
- Ae,lvfl(AefeAS;Si B AefsiASizye) + Aefe(AefsiAS;U,I - Asz,siAe;ﬁl)
- Aefsi<A€,Z€AsZ,v—1 - ASZ,eAe;J—l)'

By Proposition 2.1.20, A% is a prime element of C[G] distinct from the A% for j # i, hence
Hje[lﬂ\({i}US”(Agf;)’cji must divide (AL AY ) — AL AY ) in C[G]. But then

sj,v—1 e,v—1

AL = (ACAY 1 — AYAY )/ ( 11 (AZ%)_C”)

Je[LrN({i}uSy)

is indeed an element of C[G]. We omit the remaining cases, which may be dealt with using
the same strategy.

Now suppose i and i’ are two double reduced word differing only in that iy =4, = j
and igyy =iy = —j' for some 1 <k <m and 1 < j,j" <r. We claim that if A ; is regular,
so is A ;. This is straightforward unless j = j* and Cj; # 0, so we restrict our attention to
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this case. The argument in each of the above cases is essentially the same, so we will only
consider Case 1 in detail.

Let P, and P, (P] and Pj) be the two monomials appearing in the right-hand side of the
exchange relation defining A’ ; (A7 ;). We must show that A% divides P} + P; in C[G""]
given that it divides P, + Ps.

If v = u<g, v = vy, one can check that
(PUAT g A )™+ Pa DA L))

/ ;-
R (VS P L A e TNt

’M’US

Here, e.g., [k~ € E.] is the function which is 1 if k= € E,, and 0 otherwise. By Proposi-
tion 2.1.20, Ay, and the denominator of the right-hand side are relatively prime, so it suffices
to show that Ag% divides the numerator. This in turn is equivalent to showing that Ag
divides
(A o, A, )™ = (A A )
) 7 7o J

or simply that it divides

Wi w w
Auf,v’sj Au 55,0 - Au] U’Au]s W's;e
But since AY% = Ay, this follows from Proposition 2.1.21. ]

Lemma 4.3.14. There is an open immersion as, : As, — G™" such that the generalized
minors A; from Definition 4.2.7 pull back to the corresponding cluster variables on Asy,.
If k € I, is any unfrozen index and Ay := A, (s,), then there is also an open immersion
ay : A — G™? forming a commutative diagram

In particular, the reqular functions {A;li € I,i # k} U {A}} C C[G™"] pull back to the
corresponding cluster variables on Ay.

Proof. The existence of the stated map ay, follows readily from Theorems 5.2.8 and 4.2.24.
Moreover, asy, is birational, hence there is a unique rational map a; making the given diagram
commute; we claim it is in fact regular.

There is a commutative square

Ak __:]/E__> Guvv

lps\/[ :LPG

U,V

T ,
Xk 7 Ad>»



CHAPTER 4. CLUSTER DUALITY AND KAC-MOODY GROUPS 70

where xj, is the regular map defined in Proposition 4.3.7. Since ay, is birational and the remain-
ing maps are regular and dominant, the diagram embeds C[X}] and C[G]] as subalgebras of
the function field C(.Ay). Moreover, we have C[G]] C C[X}] inside C(Ay).

Since p), is finite and Ay, is normal, C[Ag] is the integral closure of C[X}] in C(Ay). For
the same reason, C[G"™"] is the integral closure of C[G'y;] in C(Ay). But then the containment
C[GYy3] C C[X,] inside C(A) implies a containment C[G**] C C[Ay] of their integral closures,
and it follows that a; is regular.

It is clear from the construction that aj pulls back the regular functions {A;|i € I, #
k} U{A;} on G*Y to the corresponding cluster variables on Aj. It follows in particular that
ay is injective. But an injective birational morphism of smooth varieties is an open immersion,

and the proposition follows. O

Lemma 4.3.15. Let U C G*" be the open subset

U .= AEiU U Ak;

kel

where we identify As,, Ax = Ay, (s, with their images in G*" following Lemma 4.3.14.
Then the complement of U in G** has complex codimension greater than 1.

Proof. We first claim that the unfrozen generalized minors Ay are distinct irreducible elements
of C[G""], while the frozen ones are units. If k is frozen, either k£ < 0 or k™ = m + 1. In the
former case, A = AZZ’“_‘M while in the latter A; = AZ‘;’” But in either case the fact that Ay
is nonvanishing on G follows easily from the definition of the generalized minors.

Observe then that a Laurent monomial M =[], ; Az* in the initial cluster variables is
regular on G"" if and only if ny > 0 for all unfrozen k. This follows from the definition of
Al since M is regular on Ay and hence expressible as a Laurent polynomial in A} and the
A; with ¢ # k. Suppose then that for some unfrozen index k we can write A, as a product of
two regular functions P, Q) € C[G*"]. Clearly P and @) are themselves Laurent monomials in
the A;. But since PQ) = A, one of them must only involve frozen variables, hence is a unit
in C[G""]. The fact that they are distinct is clear since their restrictions to Ay, are distinct.

We now claim that each Aj is the product of some irreducible element A} € C[G""] and
a Laurent monomial in the A; with ¢ # k. For suppose P is an irreducible factor of Aj. Then
P must be expressible as a Laurent monomial in Aj and the A; with i # k, since it divides
Aj. On the other hand, since P is regular on Ay,, it follows from the definition of Aj that
A} appears with a nonnegative exponent in this monomial expression. But then in the prime
factorization of Aj, there is exactly one irreducible factor such that this exponent is 1, and
the statement follows. Again, it is clear that this irreducible element A} is distinct from the
A; since their restrictions to A; are distinct.

Finally, we observe that the complement G*" \ U is the locus where either A; and Ay
vanish for two distinct j, k € I, or A} and Ay vanish for some k € [,,. Let z € G*" be any
element in the complement of U. Since = ¢ Asy,, Ax(z) must equal zero for some k € I,,.
But x ¢ Ay, so either A}(x) =0 or A;(xz) = 0 for some j # k. Thus G*¥ \ U is the union
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of finitely many subvarieties cut out by two distinct irreducible equations, and the lemma
follows. O

Theorem 4.3.16. There is a reqular map xs,| : Xz, = G5 eatending the map Xs, — G\
of Definition 4.2.5. We have a commutative diagram

a

=
Ay —— G

lp M lp G
X

=] U,

Ay — Gaas
where py; and pg are as defined in Theorem 4.3.2

Proof. 1t follows from Proposition 4.2.28 that pj; is well-defined and that there is a rational
map |y, making the diagram commute. Let ¥’ be any seed mutation equivalent to X; and
let 2" be the restriction of this rational map to Xy; it will follow that xx,| is regular if we
show that each such 2’ is regular.

We have a commutative diagram

/
AE/ % Gu,v

lp?u :LPG
2

where a’ is the restriction of ajs,| to Asy. If we pull back C[GY]] along 2’ o py; to the function
field C(Ayy), we see that its image is contained in C(&Xsy). On the other hand, if we perform
the same pullback along pg o @/, we see that the image of C[G]] is contained in C[Ay/].
Since p), is surjective, any rational function on Xy, which pulls back to a regular function on
Ay must have been regular on Xy,. Thus the intersection of C(Xs) and C[Ay/] in C(Ayy) is

exactly C[Xs/]. Thus 2’ pulls back C[Gy]] to C[Xs/], hence is regular. O

Poisson Brackets of X-coordinates

We now complete the proof of Theorem 4.3.2, demonstrating that the map |5, : Xz, — G35
is Poisson. First we recall some rudiments of Poisson-Lie theory [CP94].

Any symmetrizable Kac-Moody group G is a Poisson ind-algebraic group in a canonical
way (see Section 3.2). That is, its coordinate ring is equipped with a continuous Poisson
bracket such that the multiplication map G x G — G is Poisson. The double Bruhat cells of
G are Poisson subvarieties, and on any given double Bruhat cell H acts transitively on the set
of symplectic leaves by left multiplication. This standard Poisson structure is characterized
by the fact that the maps



CHAPTER 4. CLUSTER DUALITY AND KAC-MOODY GROUPS 72

are Poisson. Here SLY refers to the following Poisson-Lie structure on SLy: if we write

st (2 £)-an-pe ),

then the brackets of the coordinate functions on S Lg" are given by

d d

{BaA}:ElABa {BvD}:_EZBD> {370}207
{QA}:%AQ {QD}:—%CD (D, A} = d;BC.

The Cartan subgroup of G is a Poisson-Lie subgroup endowed with the trivial Poisson
structure. Then since the kernel of G — Gaq is a discrete subgroup of H, GGpq in turn inherits
the standard Poisson structure from G.

Theorem 4.3.17. The reqular map s, : Xjs,) — G5y defined in Theorem 4.5.16 is Poisson.”

Proof. Since Ay, is dense in Xy, it suffices to check that the original map Xy, — Gy is
Poisson. Thus if {, }¢ denotes the restriction of the standard Poisson bracket on GYj, we
must check that

{X;, Xi}a = bjpdi X; X,

for all j,k € I. We recall that the upper and lower Borel subgroups of SLZ are Poisson

di | .
subgroups. For 1 < k£ < m let B;, denote the positive Borel subgroup of SL, """ if ¢ = 1,
and its negative Borel subgroup if €, = —1. There is then a Poisson map

mi: H X By X+ X B, — GYY

given by the maps ¢y;,| and multiplication in Gsq, and whose image coincides with Xy,. We
define coordinates Py, (); on each B;, by

B%:{<%’§?):G%QQEC*XC}

B, = {(g; PS—1> (P, Qr) € C % C}

for €, = —1. In either case the Poisson bracket on H x B;; X --- X B, is given by

for ¢, = +1 and

djs),
(P Qu} = S PeQid.

°In finite type this is the result of [FG06a, Proposition 3.11].
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Since m; is dominant and Poisson, the brackets among the X; are determined by the
brackets of their pullbacks along m;. Moreover, since the coordinate functions on H are
Casimirs, it suffices to consider the restrictions of these pullbacks to B;, x --- x B;, .

Note that

Pl (Biy) = B, ™ (B Q) By (@) e
Ci 1ol UJ;/ € wY —€ wY
— ( H Pk\k\|g| >(Pkak)) Itk\Eik(Pka k) ligl
J#lik|
1<5<r
Then writing out m; explicitly and comparing with Definition 4.2.5 one obtains
¥ A E+H\[jT<m Cliglli1
i X; = (P p Q= (T B,
j<k<jt
k>0

But now one can check directly that

X, X Ci
B Xide _ el = k) — enduli = K+ e, 0 < < K75 > )
X, X, 2

.. Chj

— €j+dj%[k' <j+ < k—i_H.]—F < m] _Ekdk’%b <k <]+][k > 0]
C’,

+ e,ﬁdk%[j <kt <Yk < m]

= bjpdy.
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Chapter 5

Q-Systems, Factorization Dynamics,
and the Twist Automorphism

5.1 Introduction

The goals of this chapter are to realize the cluster structures associated with )-systems
as amalgamations of those on double Bruhat cells, use this to identify ()-system dynamics
with those of a factorization mapping (hence deduce their integrability), relate these to the
Fomin-Zelevinsky twist automorphism, and provide cluster realizations of twisted ()-systems.

(Q-systems are nonlinear recurrence relations associated with affine Dynkin diagrams,
arising in the Bethe ansatz and the representation theory of Yangians and quantum loop
algebras [KR87; Nak03; Her06; Her10]. There is by now a large literature related to them and
their relatives (see [KNS11, Section 13] for a survey), and in particular it was discovered in
[Ked08; DK09] that they may be realized as sequences of cluster transformations in certain
cluster algebras. In this chapter we provide concrete realizations of these cluster algebras
in terms of double Bruhat cells and their amalgamations. The relevant sequences of cluster
transformations are then identified with factorization mappings on quotients of double Bruhat
cells, leading to their discrete integrability. Moreover, these sequences provide an alternate
description of the Fomin-Zelevinsky twist automorphism in terms of cluster transformations,
yielding explicit formulas relating twisted and untwisted cluster variables.

Theorem. (5.2.4, 5.3.6) The conjugation quotient G°°/H has a natural cluster structure
obtained from that of G“° by amalgamation. Its exchange matrix is of the form

0o !
Be =
)
where C' is the Cartan matrixz of G. Up to normalization, there is a (Q-system which can be
realized by exchange relations in the corresponding cluster algebra, its type is the affinization

of that of G when this is simply-laced, otherwise it is of a twisted type related to that of G by
folding.
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When G is of type A,, this reformulates a result of [GSV11], and our use of amalgamation
to construct cluster structures on adjoint quotients derives from the construction of [FM13].
When G is not simply-laced, this provides a novel cluster algebraic realization of the Q-
systems of twisted type, though the cluster structures associated in [DK09] to @-systems of
nonsimply-laced untwisted type do not fit into our framework. We note that in the context
of double Bruhat cells, what arises more naturally are the Y-system analogues of ()-systems,
which differ by a standard change of variables. In different language, we work directly with
X-coordinates rather than cluster variables; this is essential in using amalgamation to form
the quotient cluster structures we need.

Given the above result, the sequence of mutations underlying the Q-system gives rise to a
corresponding sequence of cluster transformations on G/ H.

Theorem. (5.2.8, 5.3.7) Under the identification of their associated cluster structures, the
dynamics of the Q-system correspond to those of a certain factorization mapping on the
quotient G“°/H . In particular, these Q-systems are discrete integrable in the Liouville sense.

Factorization mappings play an important role in discrete integrable systems, analogous to
that of Lax forms in continuous-time integrable systems [DLT89; MV91; Ves91]. Given a rule
for factoring a group element g as a product g = hk, one defines a corresponding factorization
mapping by g — kh, typically restricted to some subvariety of GG. The factorization relevant
for our purposes is defined via the decomposition of an element into opposite Borel subgroups,
which is unambiguously defined up to conjugation by H. In addition to making contact
with @Q-systems, the requirement that ¢ be a Coxeter element guarantees that the invariant
functions on G descend to form an integrable system on G/ H, which has a natural symplectic
structure [Hof4-00]. The factorization mapping manifestly preserves these invariant functions,
hence as observed in [Hof+00] is discrete integrable in the Liouville sense. The discrete
integrability of the corresponding ()-system then follows as a corollary of our setup; in type
A,, this integrability is well-known from a number of different perspectives [GSV11; DK10].
In fact, G/ H is also equipped with an integrable system (a generalization of the relativistic
periodic Toda lattice) when G is an affine Kac-Moody group [Will3b], and inherits a quotient
cluster structure as well.

Theorem. (5.2.8) If G is an affine Kac-Moody group, the factorization mapping on G¢/H
1s again equivalent to an integrable mutation sequence in a quotient cluster structure.

In type AYY a generalization of this is treated in [FM13], and is related to the Hirota
bilinear difference equation (or octahedron recurrence). In other simply-laced affine types it
is related to the analogues of Q-systems for quantum toroidal algebras [Her(7].

Since amalgamation commutes with mutation in a suitable sense, our setup also gives
rise to a distinguished sequence of cluster transformations on G*° itself. This turns out to
be closely related to the Fomin-Zelevinsky twist automorphism, which relates the cluster
variables and factorization parametrization associated with a double reduced word.
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Theorem. (5.4.1) The twist automorphism of G maps the toric chart associated with
any seed to the chart obtained from the mutation sequence associated with the factorization
mapping on G /H. This holds when G is any symmetrizable Kac-Moody group, and yields
explicit formulas expressing twisted cluster variables as Laurent monomials in the untwisted
cluster variables of a different cluster.

Versions of the twist map exist on many varieties of Lie-theoretic origin with natural cluster
structures. This result parallels similar ones for unipotent cells [GLS12] and Grassmannians
[MS13], which show that certain twisted cluster variables differ by a change of coefficients
from the untwisted cluster variables obtained from a distinguished sequence of mutations.

Our interest in understanding properties of the exchange matrices B¢ also comes from
their appearance (in the simply-laced case) as BPS quivers of pure N' = 2 gauge theories
[Ali+11; CD12]. In this setting the BPS spectrum of an N = 2 theory is encoded as a rational
torus automorphism, the monodromy operator or spectrum generator, which in the presence
of certain finiteness properties is a mutation-periodic sequence of cluster transformations
(often called a maximal green sequence in the cluster algebra literature). For pure N' = 2
gauge theories, this mutation sequence is in fact an iteration of the @-system sequence
[Ali+11], hence in particular is itself discrete integrable.

5.2 Factorization Dynamics as Cluster
Transformations

In this section we discuss factorization mappings from the perspective of cluster transforma-
tions. To any Cartan matrix C' we associate a seed ¥ with a canonical mutation-periodic
sequence. We realize this seed as an amalgamation of a Coxeter double Bruhat cell, which
can be identified with its quotient under conjugation by the Cartan subgroup. We show
that the mutation-periodic sequence corresponds to a factorization mapping on this quotient.
In finite type this mapping is known to be discrete integrable [Hof4-00], and we show it is
also integrable in affine type. We will freely use the notation and concepts introduced in
Section 4.2 and Remark 4.3.6.

Definition 5.2.1. For any symmetrizable r-by-r Cartan matrix C, let ¥~ be the seed with
Ie = (Io)u = {1,...,2r}, exchange matrix

0o
Be = (—Ct o) ’
and d; derived from the symmetrizers of C' in the obvious way. We let 11 be the mutation

sequence i1 o - -- o p, of ¥, and o the permutation of I interchanging ¢ and ¢ 4 r. O]

Proposition 5.2.2. The mutation sequence i is a o-period of ¢, that is

1(Bc)ij = (Bo)o(iyo()-
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Proof. Since (B¢ )o(i)o(j) = —(Bc)ij, we must check that fi(Bc) = —Be. This is immediate
for the top-left and off-diagonal r-by-r blocks of ji(B¢). We then calculate that

=R 1
H(BC)itrjer =5 D (Cril Cikl = 1CksICjx)

1<k<r

1
=3 D (CrilCikl = |Ckil Cip)

k=i,j

=0. [l

Fix a Coxeter element ¢ = s; - - - 5, in the Weyl group associated with C', and a double
reduced word i = (=1,...,—r,1,...,7) for u = v = ¢. In fact the essential content of
this section and the next hold when v and v are possibly distinct Coxeter elements, see
Remark 5.2.5. When (' is not of finite type, Gaq will refer to the minimal form of the
adjoint group associated with C, and ¥; to the corresponding minimal seed. Note that
Ii:{—l,...,—T}UIC.

Lemma 5.2.3. Let C};, C% be the upper- and lower-triangular v X r matrices with 1’s on
the diagonal such that C}; + C = C*. That is,

(Ch)is = di + [8 < 4]Chi,  (CL)ij = by + [i > j]Cji.
Then the exchange matriz of ¥; has the form
C} — %Ct ct 0
0 Cct Ot — %Ct
where we have ordered the indices as —1,...,—r 1,...,2r.

Proof. Can be checked directly from Definition 4.3.1. [

For any u,v € W, we denote by Gyj/Haa the quotient of Gy under conjugation by
Haq, with the following caveat. If j is any double reduced word for u, v, then since Hagq is
generated by coweight subgroups and X:'i’“‘ commutes with E; for |j| # |ix], it follows from
the definition of z; that the conjugation action of Haq preserves the image of Xx;, and that
a good geometric quotient Xy, /Haq exists. In fact, from eq. (2.2.8) it is clear that for any
seed ¥’ mutation-equivalent to 3, the corresponding chart Xy C Gyj has a good quotient
by Haq. These charts cover an open subset of G'y{ whose complement is of codimension at
least 2, hence this open subset also has a good quotient by Haq. The question of whether or
not the whole cell G admits a good quotient will not be relevant for our purposes, so we
will simply write Gy /Haq with the understanding that we may need to restrict to an open
subset.



CHAPTER 5. Q-SYSTEMS, FACTORIZATION DYNAMICS, AND THE TWIST

AUTOMORPHISM 78
-1 1 3 1 3
. . ‘o DR —
| ' amalgamation /
; ° t ° §/: .
-2 2 4 2 4

Figure 5.1: The quivers of ¥; and ¥ when C'is of type As. The dashed arrows correspond to
entries of Bj equal to :I:%; since they connect frozen vertices they do not affect the structure
of cluster transformations, but record the Poisson brackets among frozen variables. The
amalgamation itself “glues together” some of the frozen variables: -1 to 3 and -2 to 4.

Theorem 5.2.4. The seed ¢ is the amalgamation of ¥; along the map w : I; — Io given by

(k) k k>0
i g
k| +r k<O.

The map x; : Xy, — G3y descends to an open immersion X, — G3q/Haa intertwining the
quotient and amalgamation maps:

T c,c
Ay, —— Gy

Lok

Ti c,c

Proof. Using Lemma 5.2.3, one can immediately verify that the hypothesis of Definition 2.2.14
are satisfied by ¥¢, Y, and . The conjugation-invariant subalgebra C[Xy,|*A¢ is manifestly
generated by the X;, X_;X;,,, and their inverses for 1 < ¢ < r. But this is equal to 7*C[Xy,.],
hence we obtain the map Xy, < G35/ Haa. O

Remark 5.2.5. If j is any double reduced word for u,v € W, the conjugation action of Hagq
on G will always have a comparably simple expression in the associated X-coordinates.
However, it is not always the case that quotient map Xy, — Xy, /Haq is an amalgamation
map. For example, if u = ¢ but v = e, the hypotheses of Definition 2.2.14 will not be satisfied
by the quotient map. However, if u and v are (possibly distinct) Coxeter elements, there
will be a unique amalgamation 5 of >; and isomorphism X% 5 Xy, /Haq intertwining the
quotient and amalgamation maps from Xs,. In fact, when u and v are Coxeter elements

conjugate to ¢, the reader can check that the resulting seed 3 s mutation-equivalent to Y¢.
For GL,, this was previously observed (from a different point of view) in [GSV11]. O]
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Recall that an integrable system on a (smooth) symplectic variety is a Poisson-commutative
subalgebra of its coordinate ring whose differentials generically span Lagrangian subspaces of
its cotangent spaces, inducing a Lagrangian foliation of an open subset. By an integrable
system on a Poisson variety we will mean an algebra of functions which restricts to an
integrable system on a generic symplectic leaf.

Proposition 5.2.6. ([Hof+00],[Will3a]) If C is of finite or affine type, the restrictions of
the conjugation-invariant functions on Gaa form an integrable system on G35/Haq.

Proof. We only comment that the affine case treated in [Will3a] and Section 3.4 is slightly
different from the present one, though the proof there extends straightforwardly. In loc.
cited it was shown that the invariants restrict to form an integrable system on (G')*¢/H,
where GG’ is the central extension of the algebraic loop group LG. This is actually more
delicate, as its symplectic leaves are of dimension 2r + 2, rather than 2r (where r is the
rank of G) For the present case the needed Hamiltonians are derived from the invariant
ring C[é’]é: we pull back this subalgebra along the evaluation map LG x C* — G and take
the component invariant under the C* action (in particular they extend to functions on the
semidirect product LG C*). The Hamiltonians for groups of twisted affine type may be
produced similarly by embedding them into algebraic loop groups as subgroups invariant
under a diagram automorphism. O]

We recall the following basic result about cluster structures of double Bruhat cells; we
omit its extension to the Kac-Moody case, which is straightforward.
Proposition 5.2.7. ([FG06a]) Suppose that i = (i1,...,im), i’ = (¢,...,1,) differ by
swapping two adjacent indices differing only by a sign. That is, for some 1 < k < m,
iy = —lpt1, and
ig = 3. .
i, otherwise.

, {—iz C=kk+1

Then the corresponding sets of X-coordinates on G5y differ by the cluster transformation at
k:

Theorem 5.2.8. The cluster automorphism i, of X coincides with the restriction of the
following rational automorphism of G35/Haa. Given g € G35/ Haa, there will generically be
unique elements hyi, ho € Hpq such that, up to conjugation by Hag,

g ((ﬁE»m) ((f[ E)h2>-

1<i<r 1<i<r
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The rational automorphism of G35/Haa is then the factorization mapping

- (1) (a1) - () (o).

1<i<r 1<i<r 1<i<r 1<i<r

taken up to conjugation by Hpq. Here the product notation indicates we order the terms from
left to right by increasing i. In particular, i, preserves the restrictions of any conjugation-
mvariant functions on Gaq, and in finite or affine type is discrete integrable in the Liouville
sense.

Proof. By Proposition 5.2.7, the X-coordinates on Xy, and Xy, (where 3} = 1i(%;)) are
related by

(1) (1) (105

1<i<r 1<i<r 1<i<r
( 1T (X’_z-)”iv> ( II Ei(Xé)“’iv> ( 1T Fi(X£+r)“iv) :
1<i<r 1<i<r 1<i<r

It is straightforward to see that each of the seeds p o - - o p,.(X;) satisfy the hypotheses of
Definition 2.2.14 with respect to m : I; = I, hence we can apply Proposition 2.2.16 to obtain

Xy, Loy Xy
Ko, 1oy Xy

In particular, the X-coordinates on Xy and Xy, are related by

( [T mx ) ( I1 EX) - (H EAX;)%V) (H m(x;»mf) ,
1<i<r 1<i<r 1<i<r 1<i<r
up to conjugation by Hagq.

The isomorphism Xy, = Xy, given by o then induces a rational automorphism of
G35/ Haa through

(ﬁ EAX;W) (ﬁ E(X;mf) = (f[ ﬂ(X;M)%V) (ﬁ EAX{)%V).
1<i<r 1<i<r 1<i<r 1<i<r

4

But this is just the map described in the theorem, with Ay = [J(X})* and hy = [[(XL,, ).
That i, preserves invariant functions is clear, hence we obtain discrete integrability in finite
and affine types by Proposition 5.2.6. Note that in affine type even though the symplectic
leaves of A%, are of positive codimension, ji, preserves the distinguished symplectic leaf
hence restricts to an integrable symplectomorphism of it. O
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5.3 Q-Systems and Discrete Integrability

@-systems are nonlinear recurrence relations associated with affine Dynkin diagrams X](\'f). We
review their normalized versions and cluster-algebraic realizations following [Ked08; DK09],
which we extend to include twisted types. In twisted and simply-laced untwisted types these
systems are encoded by the seeds ¥ studied in the previous section. The Q-system itself is
realized by a sequence of cluster transformations coinciding with that of the corresponding
factorization mapping, though realized by cluster variables rather than X-coordinates. Since
the relevant exchange matrix is nondegenerate, the two sets of variables differ by a finite
map, leading to the discrete integrability of these ()-systems.

Recall that affine Dynkin diagrams are classified by pairs of a finite-type diagram Xy
and an automorphism of order x. This induces an automorphism of the simple Lie algebra of
type Xy, whose invariant subalgebra is also simple and whose type we denote by Y},. Clearly
for untwisted types (k = 1) we have Xy = Y}, while for twisted types the correspondence is
given below. It is summarized by the fact that the Langlands dual of X](\';) is the affinization
of the Langlands dual of Y),.

Definition 5.3.1. The Q-system of type X](\';) is the following recurrence relation in the
commuting variables {Qq(f)}, where n € Z is a discrete “time” variable and a is an index

labeled by the roots of Yj,. If X](\';) is of untwisted simply-laced type and C' the Cartan matrix
of type Xy, the corresponding ()-system is

Q) = @ity + [J(@) .
b#a
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0
AP o=<£—0— —o==0 DY,
. —O0=<0 0 1 T
1 2 r—1 r
E® o—0—0c=0—0 o—0=%=0 DY
o 1 2 3 4 o 1 2

Figure 5.2: Affine Dynkin diagrams of twisted type and enumerations of their vertices. The
diagram Y}, is the subdiagram whose nodes have nonzero labels.

For X](\';) of twisted type, the corresponding @-systems are as follows [Hat-+02; Her10]:

A(Q) (lea)) Qna 1@ +1 + Q(a b 7(1a+1) 1<a<r
2r—1 r
Q) = Q%) + QY )
((QW)? = Q0% + QY Qi+ 1<a<r—1
2 r— r r r—
D, QY V) = Q& f @a; + QU Q)
r r— 1
\ (Q% )2 Q Qn+1 + Qn
((QW)? =Q,Q4, + QY
2 1
E(Z) (le ))2 = Qn)lQn—i-l le ) 7(13)
6 3 2 4
Q)2 =@n)1@n+1+< Dy2QLy
4 3
L@ = Q. + QY
2
D3 (lel))2 Qn IQTL+1 + Q( )
4 (2)y2 (1\3
(Qn ) - Qn 1Qn+1 + ( )
Here we set Q%o) = 1 and enumerate the roots of Y, as in fig. 5.2. [

We omit the definition of the ()-systems of nonsimply-laced untwisted type, as they lie
outside the scope of our main result. Also absent from the above discussion is the twisted
type Agi); its relationship with the corresponding finite type is more subtle, and it does not
admit an interpretation in terms of cluster transformations.* Thus when referring to a generic
twisted type X](V) we will tacitly assume it is not of type AQn

The correspondence between X N ) and Y allows us to write the above ()-systems uniformly
as follows:

Proposition 5.3.2. Let X](\';) be of twisted type or simply-laced untwisted type, and C the

Cartan matriz of the associated finite type Y. Then the Q-system of type X](\';”) may be

'Tt contains the relation (ng))2 = QS}IQE:L + Q%T_I)ng), whose terms cannot be rearranged into an

exchange relation since ng) appears on both sides.
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written as

(Q@)? = Q. Q) + T[(Qw)=Cre.
b#a

Proof. Follows by inspection of the above list and the definition of Y},. m

To realize ()-systems in terms of cluster transformations, it is convenient to replace them
with certain normalized, but equivalent, )-systems. These normalized variables differ from
those of the usual Q)-system via rescaling by certain roots of unity.

Proposition 5.3.3. ([Ked08; DK09]) The normalized Q-system

QWL QY] = (@) + TT(QY)= (5.3.4)
b#a

18 equivalent to the ordinary QQ-system under the rescaling éjﬁ{" = EQQ%Q), where the ¢, € C
are defined by [[<,<, Car = —1 forall1 <b<r.

Proof. Note that the existence of such ¢, follows from the nondegeneracy of C. The derivation
of eq. (5.3.4) is then straightforward. O

Remark 5.3.5. The normalized ()-systems also have a direct interpretation in terms of T-
systems. These are relations among g-characters of Kirillov-Reshetikhin modules, in variables
{TTE“) (u)} where n and a are as before and u € C is a spectral parameter. In the simply-laced
case, the relations are

T (u+ DT (u — 1) = T, ()T, () + T (@ ()=
b#a

By forgetting the spectral parameter u, we obtain the usual @)-system, but by forgetting
instead the parameter n we obtain the normalized ()-system. A similar statement holds
for the twisted case, with some subtlety in that we must only consider © modulo a certain
additive constant. O]

Given a finite-type Cartan matrix C, we let A,(:), e ,A,(fr) denote the cluster variables
associated with the seed 1i¥ (3¢) for k € Z. Recall from Definition 5.2.1 that the exchange

matrix of Y is
0o Ct
BC — (_Ct O> )

the mutation sequence ji is g o -+ - o u,, and o interchanges i and i +r. As elements of
the (upper) cluster algebra C[A|gc|] the relations among the Ak are in fact equivalent to

normalized @Q-systems under the identification A,(C — Qk . Note that Ak””“ A,(;H for

1 <14 <r, so we lose no information by restricting our attention to AS), e ,Ag).
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Theorem 5.3.6. Let C' be a finite-type Cartan matriz, and A,(:), e ,A,(:) cluster variables
associated with 1% (X¢).

1. ([Ked08; DKO09]) If C is of simply-laced type Xy, the relations among the cluster
variables A,(;) coincide with those of the normalized QQ-system of type XJ(\}).

2. If C' is of nonsimply-laced type Yy, the relations among the cluster variables A,(f)
coincide with those of the normalized QQ-system of the associated twisted type X](\?).
Proof. Given the definition of the normalized Q-systems in eq. (5.3.4), this is a straightforward
check involving the definition of the exchange matrix Bs and the cluster automorphism
o O

Theorem 5.3.7. For X](\';) of twisted type or simply-laced untwisted type, the corresponding
Q-system is discrete integrable in the Liouville sense.

Proof. The statement should be understood in light of Theorem 5.3.6, which says that
incrementing the discrete time variable n of the (normalized) Q-system is equivalent to
expanding the rational symplectomorphism /i, of Ay, in terms of cluster variables. Since
the matrix B¢ is nondegenerate, the canonical map py, : As, — Ay, is a finite cover.
In particular, Ay, inherits from Xy, a symplectic structure and the integrable system of
Proposition 5.2.6. Since py,, : Ag, — Xy, intertwines the associated automorphisms ji, of
Ay and Xy, and the latter preserves the integrable system on &y, by Theorem 5.2.8, the
former is also discrete integrable. Since the normalized and unnormalized Q-systems differ
by an invertible rescaling, the integrability of the normalized Q)-system implies that of the
unnormalized version. O

5.4 The Twist Automorphism

Since amalgamation commutes with mutation, the mutation sequence of ¥ studied in the
previous sections lifts to a mutation sequence on the double Bruhat cell G¢ itself. We
now show that this sequence is intimately connected with the twist automorphism of G“°.
Specifically, any two clusters related by the corresponding sequence of cluster transformations
are also mapped to each other by the twist automorphism. Equivalently, the twist pulls back
cluster variables to cluster monomials of the seed obtained by this mutation sequence. While
these pullbacks are generally not cluster variables, the unfrozen cluster variables are taken
to monomials with only a single unfrozen factor, so in this sense the twist acts by a change
of coefficients. From the perspective of Poisson geometry this is quite natural; it is known
that the twist automorphism is Poisson [GSV03], hence both twisted and untwisted cluster
variables have quadratic brackets with respect to the standard Poisson-Lie structure.

Theorem 5.4.1. Let G be a symmetrizable Kac-Moody group, T the twist automorphism
of G¢, and As, C G°¢ the toric chart associated with a seed . Then T restricts to an
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isomorphism of As onto Apsy, where [t = iy o - - i, is the mutation sequence consisting
of a single mutation at each unfrozen index. In particular, if {A;} and {AL} are the cluster
variables associated with ¥ and [(X), respectively, then the {A.} and the twisted cluster
variables {T*(A;)} are Laurent monomials in each another. If ¥ is the seed associated with
the double reduced word i = (—1,...,—r,1,...,r), this transformation is explicitly given by

A =TT A,
jel
where M is the I x I matriz with entries

(wiylat,) (=dx) 1<jk<r

(cwy; lag, ) j>randk <0
Mjk == ! b
’ (c*1w|ij||oz‘\gk‘) j<0,andk>rork<—r
0 otherwise.

Proof. From Lemma 5.4.6 and Theorem 4.3.2 it follows immediately that
A = T A,
jel
where N is the matrix of Lemma 5.4.6 and BE°d is the modified exchange matrix associated
with ¥ as in Theorem 4.3.2. Most of the difficulty in verifying that the product of N and

B2od is the given matrix M is encapsulated in Lemma 5.4.7. For example, for 1 <i,k <r,
we may use it to compute

(NBgl()d)i—&-r,—k = ((cw;) — wilwy + Z ijwﬁ

j<k
= ((cws) — wilay — (wy + chjwjv»
>k
= ((cw;) — wilay) + dir

= (cwilay).

Given that M = NB%°4 the theorem follows by verifying that M satisfies the hypotheses
of Lemma 5.4.3 with respect to the exchange matrices By, and Bj(xy. Note that By = — By,
as (X)) is associated with the double reduced word (1,...,r,—1,...,—r). This computation
then parallels that of M itself, again with Lemma 5.4.7 being the core of the calculation. [J

Remark 5.4.2. If C' is of finite type, the decomposition of M into r-by-r blocks is

0 0 ¢t
M=10Id 0
c 0 O

Here we express ¢ as a matrix via its action on the fundamental weight basis, and order the
indices by (—1,...,—r1,...,2r). ]
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Lemma 5.4.3. Let 3, S be two seeds with the same index set I and unfrozen subset I,,. For
an invertible I x I matriz M, let @y 2 As = Ays be the isomorphism defined by

oA =] 4" (5.4.4)

jEI
Suppose that M satisfies the following conditions:
1. Eij = (BM);; when i is unfrozen.
2. M;; = 6;; when j is unfrozen.

In particular B;; = Eij when i and j are both unfrozen, hence ¥ and S are of the same cluster
type. Then we have:

1. The map py; extends to an isomorphism between AM@) and A, sy for any unfrozen
index k. Specifically, if M' is the I x I matriz defined by
, {M ik

ij , (5.4.5)
20k — Mij + > s ([BreMyj| - — [Bre)-My;) i =k,

then the corresponding isomorphism @y : Auk(i) = A, (x) satisfies

M
A —2 s Ay,
! |
Lk | Bk
U

V- Ongr v
M
Ai/ —_— AE/ .

2. If B;; =0 when i and j are both unfrozen (so X, S are of cluster type A}), then oy
extends to an isomorphism of A-spaces and upper cluster algebras.

Proof. To prove the first claim one must check that for any cluster variable A; on Ay, we
have ¢}, A, = (puk © o pg)*A;. The condition that M;; = 6;; when j is unfrozen ensures
this holds for ¢ # k. The condition that Ekj = (BM)y; ensures (puy, © o 0 p)* Ay, is a Laurent
monomial in the cluster variables on Ag,, and the given formula for M’ follows from explicitly
calculating this composition using eqs. (2.2.7) and (5.4.4).

The second claim follows inductively once we establish that M’ satisfies the same hy-
potheses as M, but with respect to the seeds X', 3. That M;; = d;; when j is unfrozen can
be checked generally without any assumptions on the cluster type of 3. On the other hand,
a direct computation reveals that B;; vanishing when 7 and j are unfrozen is a sufficient
condition to ensure E;j = (B'M');; when i is unfrozen. O

When (' is not of finite type, we take Gxq to be the maximal form of the adjoint group
in the following statement.
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Lemma 5.4.6. Let X; C G be the toric chart associated with the double reduced word
i=(-1,....,—n1,...,7), and Ay C G°° the chart associated withi' = (1,...,r,—1,..., —7).
Then the quotient map m: G — G4 restricts to a finite cover of Ay onto X;. Equivalently,
the (pullbacks to G of the) X -coordinates associated with i are Laurent monomials in the
untwisted cluster variables associated with i'. In fact,

Ai - H(’]T*Xj>Nij,

jer
where
(cwyis|wyi, ) j>r, k<0
Nj = (¢ lwjiy)lwy ) 7 <0, k>r
(wiis lwpi, ) otherwise.

Proof. By Definition 4.2.7 the cluster variables associated with i’ are generalized minors of
the form AY _,, A% and A¥:. Calculating the matrix IV consists of evaluating such minors
on an element of the form

_ (ﬁ X“’) (ﬁ FX“’) (ﬁ EXi)
1<i<F 1<i<r 1<i<r

This involves fractional powers of the X;, since the coweight subgroups themselves do not act
on the fundamental representations, but only covering groups of them.

By definition A7 1(g) = (vilgs; - --51v;), where v; is a highest weight vector of the
fundamental representation of highest weight w;. The key point is that while the action of FE;
or F; on a vector of weight w is in general a sum of components with weights of the form
w + na;, many of these can be discarded in the computation of a given generalized minor.
For example, one can check inductively that for 1 < k < r,

Ace1(9)

~ ~ ~ |
wY wY wY \ 8] -S1W; w
= (vl H X H FX H B X7, | Sk st H j4r )
1<i<F 1<i<r 1<i<k j=k+1

and from this that

AL (g) = (vil ( H~Xfi-v> (
()

<c_1wi|w}/> = (55 s1wilw)) = (sp - s1008] Wy ),

—-
-
IN
QX/\ \7\ : %
§ =
E >
= >f<
/7 : N v
<
il o
T :1
ﬁ’
oS
R
— i
K3
\_/

Since



CHAPTER 5. Q-SYSTEMS, FACTORIZATION DYNAMICS, AND THE TWIST
AUTOMORPHISM 88

we obtain the stated values of N;;, when j < 0. Note that up to a scalar factor this expression
depends on choosing s; as the representative of s; in G. The remaining entries of N can be
computed following the same logic. O

Lemma 5.4.7. For 1 < i,k <r, the Coxeter element ¢ = s1--- s, satisfies
((ews) = wilwy + > Crjw)') = =i,
>k

(7 wi) — wilwy + Z Crjwy) = — ik

j<k
Proof. The two statements are equivalent by reversing the labeling of the simple roots, so it
suffices to prove the first. The claim is immediate if £ > i. For k£ < 7, note that

((cw;) — wilwy + Z Crjwy) = (k- - - siw;) — wiwy + Z Crywy).
>k >k

A simple induction yields

i -1
Sk Siwi = wi + < Z (—1)f H Camvaerl) %>
j=k

a1=73<--<ap=t m=1

where the sum is taken over increasing sequences of any length from j to ¢, and the product is
taken to equal 1 when ¢ = 1. From this we compute that ((sy - - - siw;) — wilwy +3 -, Cryw))
is equal to

-1 i —1

( Z (_1>£ H C(lm»am+l> + Z ( Z (_1)2 H Cam,am+1> ij7
a1=k<--<ap=t m=1 j=k+1 \a1=j<--<ap=t m=1

which vanishes since the two sums cancel. O

Example 5.4.8. The simplest example is SLs, where ¢ is the nonidentity element of W and
i=(-1,1),i = (1,—1) are the only double reduced words for (c,c). Their respective cluster
variables are just matrix entries:

(A—17A1,A2) = (A127 A227A21), (AL17A,17A,2) - (A12,A11,A21)'

The parametrization associated with i is

) _% X,leXQ X,1X1
Ty (X—laXlaXQ) = (X—leXQ) ( X1X2 1+ Xl) ’

From this we can directly evaluate the matrix N of Lemma 5.4.6, and along with the matrix
B2od we have

, o Bred=|-10 -1
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From this we compute the matrix M of Theorem 5.4.1, and the matrix M’ of eq. (5.4.5):

0 0 —1 0 0 —1
M={o0 1 0|, M=[-11 -1
10 0 10 0

Theorem 5.4.1 then says that the twisted cluster variables are determined from these by

Al = H(T*Aj)Mij, Ay = H(T*A;)Mi,j' (5.4.9)

jeI jer
On the other hand, by expanding ?? we compute the following explicit formula for the
twist:
AN T
“\c d c ! d )’
From this we can compute the twisted cluster variables directly:

Of course, this agrees with eq. (5.4.9), noting that M and M’ are each their own inverses. []
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Chapter 6

Integrable Systems, Canonical Bases,
and N = 2 Field Theory

6.1 Introduction

The goals of this chapter are to identify the Hamiltonians of the open quadratic Toda system
as generating functions of Euler characteristics of quiver Grassmannians, hence heuristically
as generalized canonical basis elements, and explain how such an expression is predicted by
the appearance of the relevant cluster structures in supersymmetric gauge theory.

Given a quiver (), there is a close relationship between its representation theory and
the associated cluster algebra. In particular, there is a natural bijection between the set of
non-initial cluster variables and the set of rigid indecomposable representations (with suitable
relations imposed in the presence of oriented cycles). The expansion of a cluster variable
in terms of the initial cluster is completely determined by the structure of the associated
representation, being expressible as a generating function of Euler characteristics of its quiver
Grassmannians called the cluster character.

A primary motivation for the axiomatization of cluster algebras is to codify and abstract
part of the combinatorial structure of various examples of canonical bases. However, while
the cluster variables of a cluster algebra are to be regarded as prototypes of canonical basis
elements, in general they do not span it as a vector space and so do not encapsulate the
complete structure of a canonical basis. Nonetheless, in some cases where an interesting a
priori definition of a complete canonical basis of a cluster algebra is known, such as the dual
semicanonical basis of a unipotent cell, the basis elements which are not cluster variables are
still cluster characters (necessarily of nonrigid modules). Thus cluster characters provide a
flexible heuristic notion of a generalized canonical basis element, encompassing but extending
nontrivially the notion of a cluster variable. The main theorem of this chapter asserts that
the Hamiltonians of the quadratic open Toda systems studied in [GSV11; Hof400] and
chapter 5 are in fact cluster characters, hence should be regarded as generalized canonical
basis elements.
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Theorem. (6.5.1) The Hamiltonians of the quadratic A, open Toda systems are cluster
characters of nonrigid modules of the associated Jacobian algebra.

Recall that a potential W on a quiver () is a formal sum of oriented cycles, and the
Jacobian algebra of a quiver with potential is the quotient of the path algebra C(Q by the
cyclic derivatives of W. The proof of the above theorem relates the internal structure of the
relevant Jacobian algebra to a combinatorial model for computing the Hamiltonians of the
quadratic Toda system. This model realizes the Hamiltonians as weighted sums of paths in
an associated planar network, a point of view emphasized by [GSV11].

Though not needed directly in its proof, we argue in the last section that the most
compelling conceptual point of view on this result is that of nonabelian Hodge theory. In
particular, we argue that the double Bruhat cell SL;},/H should be interpreted as a moduli
space of flat connections with irregular singularities, while the network used to compute
the Hamiltonians is the 1-skeleton of the spectral curve of the associated Hitchin system.
As functions on a space of flat connections, the Hamiltonians themselves become traces of
holonomies around closed loops. Such functions are the most basic geometric examples of
canonical basis elements, yielding an intuitive explanation for why these Hamiltonians should
be expressible as cluster characters. Crucial to this point of view is the appearance of the
relevant cluster structure in 4d A/ = 2 field theory. It is only by noticing that the relevant
quiver coincides with the BPS quiver of pure N/ = 2 Yang-Mills theory that we are able to
connect our double Bruhat cell to an irregular moduli space; the mathematics literature does
not contain a sufficiently general treatment of cluster structures in the presence of irregular
singularities to encompass this example.

6.2 Jacobian Algebras and Cluster Characters

In this section we recall the Jacobian algebra of a quiver with potential, the proper general-
ization of the path algebra of an acyclic quiver to the case of quivers with oriented cycles
[DWZ08]. We also recall the cluster character of a module, a generating function of the Euler
characteristics of its quiver Grassmannians [Pal08].

Given a quiver (), a representation of () is the assignment of a vector space M, to every
vertex v of ), and a linear map My, — My to every arrow a with source s(a) and target
t(a). The path algebra CQ is the space of linear combinations of (possibly length zero) paths
in ), with multiplication given by composition. That is, the product pq of two paths is
zero if t(q) # s(p) and is their composition otherwise. There is an equivalence between left
CQ-modules and representations of Q.

The completed path algebra C() is the completion of CQ with respect to the ideal
generated by the arrows. A potential W is an element of Pot(CQ), the closure in CQ of
the ideal generated by all nontrivial cyclic paths in CQ). Given an arrow a of (), the cyclic
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derivative 0, : Pot(CQ) — @ is the unique continuous linear map such that

) = Y ap,

c=paq

for any cycle ¢, where the sum is taken over all decompositions of ¢ with p, ¢ being possibly
lazy paths. We call a pair (Q, W) a quiver with potential, and always assume W contains no
2-cycles. The Jacobian algebra J(Q, W) is the quotient of @ by the closure of the ideal
generated by all cyclic derivatives of W (we often write J when @) and W are understood).
We say the quiver with potential (Q), W) is Jacobi finite if .J is finite-dimensional, and always
assume this is the case.

We write J-mod for the category of finite-dimensional left J-modules; equivalently this is
the category of finite-dimensional representations of () satisfying the relations imposed by
the cyclic derivatives of W. Given a labeling of the vertices of @ by {1,...,n}, we write S;
for the simple J-module supported at the ith vertex of () and P; for its projective cover.

In this section, to be more in line with the standard conventions on cluster characters,
we notate cluster variables by lower-case letters x; and X-coordinates by lower case letters
y;. That is, if @);; is the number of edges from ¢ to j minus the number from j to 7, and we
define a seed by B;; = @;; (note the transposition of the indices), we now denote the cluster
variables A; by x;, and the X'-coordinates X; by y;. We will also abuse our notation slightly

and conflate y; with its pullback []7_, {L’?J to C[z7!, ..., '] when this meaning is clear.

Definition 6.2.1. Let M be a left J-module and
Py — Py —M—=0

the first two terms of a minimal projective resolution. The index ind}, is the class [P] —[PM]
in Ky(projJ), the Grothendieck group of the category of projective left J-modules. If
indy = >0, a;[Pi], we write o = [T xf O

The Grothendieck group Ky(J-mod) has a basis given by the classes of the simple modules
S;, and using this we identify Ky(J-mod) with Z™ and the class of a module with its dimension
vector. Given a dimension vector e € Z" and a J-module M, the quiver Grassmannian Gr, M
is the variety of e-dimensional subrepresentations of M. It is a projective variety naturally
embedded in the usual vector space Grassmannian of M.

Definition 6.2.2. The cluster character CC(M) of a J-module M is the Laurent polynomial

CC(M) = g~ mdu Z x(Cr, M)yM=e e Clzf, ... 2.

n
e€Ko(J-mod)

Here y is the topological Euler characteristic, and for a class e = > " b;[S;] we write

y¢ =[], 42 Note that if N is an e-dimensional submodule of M, [M] — e is the class of
M/N. O
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This definition is simpler but more limited in scope than that of [Pal08]. A richer picture
is provided by the cluster category C, a triangulated 2-Calabi-Yau category which unlike
J-mod is in a suitable sense independent of the choice of a particular initial seed. The choice
of initial seed given by @) determines a so-called cluster-tilting object T" of C, and we have
an equivalence J-mod = C/(XT"), where ¥ is the suspension functor of C and (X7T) the ideal
of all morphisms factoring through the additive subcategory generated by 7. As we will
only be concerned with cluster characters relative to a particular initial cluster, the category
J-mod is rich enough for our purposes. Note that we also work with left rather than right
modules and dualize the conventions of [Pal08] as needed.

The notion of a cluster character originates in [CCO06] for Dynkin quivers, and is treated
in increasing generality in [CKO06; Pal08; Plal1]. The definition is motivated by the following
fundamental property:

Theorem 6.2.3. For a suitable potential, the cluster character defines a bijection between
rigid indecomposables J(Q, W)-modules and non-initial cluster variables of the cluster algebra
associated with ), extending to a bijection between rigid modules and the cluster monomials
of non-initial clusters.

For Dynkin quivers, the cluster monomials form a basis of their cluster algebra. However,
in general cluster monomials do not span their cluster algebra as a vector space, and the issue
of extending them to a complete basis is a fundamental one. One approach is to describe a
class of modules containing the rigid ones such that their cluster characters extend the set of
cluster monomials to a basis. In particular, the dual semicanonical basis of the coordinate
ring of a unipotent cell of a Kac-Moody group is of this form [GLS12].

6.3 The Jacobian Algebra of (),

We now study in detail the Jacobian algebra of the quiver @), associated with the cluster
structure on SL;¢, /H described in Section 5.2. We change our indexing slightly so that the
vertices of (),, are indexed as follows:

2 /il y o /211-2 /Q.H
AR

The signed adjacency matrix of @, is (up to reindexing) the skew-symmetric matrix Ba,
introduced in Section 5.2. We label the edges of @Q,, as follows: for i € {1,...,n} the two
vertical arrows from 2i to 2i — 1 are labeled a; and b;, for i € {2,...,n} the leftward diagonal
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arrows from 2i — 1 to 2i — 2 are labeled ¢;, and for i € {1,... ,n — 1} the rightward diagonal
arrows from 27 — 1 to 2¢ + 2 are labeled r;.
We will consider the potential
n—1
W= Z ailiy1bip1ms — bili1ai1rs,

i=1
so for each edge in the A,, Dynkin diagram there is a pair of cycles in W. The cyclic derivatives
of W are as follows:

aaiW = lig1bir — rimibi—1
W =ri_1a;10; — Liz10:417;
aeiW = biri—10i—1 — a;Ti—1bi—1
8“.W = ai£z‘+1bz‘+1 - bi€i+1az‘+1.

Here any terms involving nonexistent edges such as r,, or ay are understood to be zero.

We can understand the structure of the resulting Jacobian algebra J explicitly as follows.
Since the above relations are all either a difference of two paths or a single path, J inherits
from C() a basis indexed by certain equivalence classes of paths. Generally, suppose an ideal
I of a path algebra C(Q) is generated by a set of relations of this form, that is

I={(pr =P, Pm— Do 15 - - - Qo)

for some paths p;, ¢; such that each pair p;, p; has the same source and target. Then CQ/I
has a basis formed by the nonzero images of paths in CQ). An element of this basis is indexed
by the set of paths mapping to it, which is an equivalence class of the relation

a~ 3 < a=aphb, f = ap.b for some paths a, b and some index 1.

The equivalence classes corresponding to basis elements of CQ/I are those not intersecting I,
that is those with no representatives containing some ¢; as a subpath.

Let us describe these equivalence classes explicitly for the above potential on @),,. First,
note that any path in @, is a sequence of edges that are alternately vertical (an a; or b;) and
diagonal (an ¢; or r;). Ignoring the indices, this is a perfect shuffle of a word in the alphabet
{a,b} and a word in the alphabet {/,7}. Since the starting vertex of a path determines
both which indices appear and whether the shuffied word starts with a vertical or diagonal
edge, the data of a path is exactly the data of its starting vertex and a pair of words in the
alphabets {a, b} and {¢,r}. For example, the following path in @3 with starting vertex 2 is
associated to the words aba and frr:

€3a37“2627“1a1 = as

—e—— oD

. lbz//

le—— e



CHAPTER 6. INTEGRABLE SYSTEMS, CANONICAL BASES, AND N =2 FIELD
THEORY 95

Conversely, a pair of words and a starting vertex corresponds to an honest path in @, if
the lengths of the two words satisfy an obvious compatibility condition, and if the choice of
starting vertex does not force any of the edges to have an invalid index (such as a,1).

Viewing the data of a path in ), this way makes it easy to understand the relations
imposed by W. They assert that two paths are equivalent if their associated words differ by
a pair of permutations. The induced basis of J is labeled by the resulting equivalence classes,
which are determined by the data of a starting vertex and the total number of times each
letter appears in the words of any of its representative paths. Suppose a path has starting
vertex either 2i or 2i — 1 for some i € {1,...,n}, and that = and y are the number of times
it traverses an £ or r edge, respectively. Then its equivalence class is associated with a basis
element of J if and only if either x <7 and y <n + 1 — 4. Informally, if you change the path
so that it takes all its right steps before its left steps (or vice-versa), it shouldn’t fall off the
edge of @),,.

The projective module P; is the subspace of J spanned by paths with starting vertex . A
path starting at ¢ and ending at vertex j is an element of the subspace (F;); supported at j.

Definition 6.3.1. For each i € {1,...,n}, define a P!-family of modules M} as follows.
Given projective coordinates A = (A1 : A\g) we embed P»;_; < P»; by sending the generator
of Py;_; (the length zero path at vertex 2i — 1) to the element Aja; + Aob; € (Pa;)2;—1. The
module M} is then the cokernel of this map. ]

From now on we will denote by v, : {1,...,n} — {1,...,n} the Nakayama involution
V(i) =n+1—i.

Proposition 6.3.2. The module M} has a basis B; = {b(yy.)} indezed by
{(I,y,’l)”l’,y € N7U € {2<7’ +ty— l’), Q(Z +ty— x) - 1}756 < Zay < Vn(fl)}

We let b y.0) be any nonzero element which is the image in M} of a path with starting vertex
21, ending vertex v, and x and y the number of times it traverses an ¢ or r edge, respectively
(different paths of this form have images in M; differing by a scalar, and we choose one
arbitrarily). This basis has the property that the image of any element under the linear map
associated with an arrow of @, is a scalar multiple of another basis element.

Proof. The argument is essentially the same as that for why the quotient CQ/I inherited
a basis from CQ when I was generated by relations of the form p; — p,. Any two paths
associated with the data (z,y,v) as described differ only in the order of a and b edges they
traverse. The relations imposed by W asserted that two such paths give rise to the same
element of P; if they traverse an a edge the same number of times (hence a b edge the same
number of times, since they correspond to the same (x,y,v)). For A, Ay # 0, taking the
quotient by Py; 1 imposes the relation that in M? two such paths differ by (—i—;)k when one
traverses an a edge k more times than the other. For A\; = 0 (resp. Ay = 0), there is a unique
such path with nonzero image in M}, the one which only traverse a edges (resp. b edges).
The fact that the elements of B; are compatible with the arrow maps of M} in the stated
way is an immediate property of elements which are images of paths. O]
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The compatibility of B; with the arrow maps of M} lets us completely and explicitly
understand the submodule structure of M. To this end we associate the following graph
with the module M.

Definition 6.3.3. Let G; denote the directed graph with vertices the elements of B;, and an
arrow from by .) to bz oy if there exists an arrow e of @, such that e - by, . is a nonzero
scalar multiple of by, .. We say a subgraph of G; is admissible if it has the following
property: if b, . is a vertex of I" and there is an edge from b, ) to by ) in Gy, then
bz y oy is a vertex of I' and this edge is an edge of I'. O

Proposition 6.3.4. Submodules of M} are in bijection with admissible subgraphs T of G;.
The submodule Ny corresponding to an admissible subgraph I' is the subspace spanned by the
basis elements at its vertices.

Proof. 1t is immediate that the stated correspondence defines a bijection between admissible
subgraphs and the set of submodules which are spanned as vector spaces by a subset of B;;
what we must show is that every submodule of M} has this property. To do this we show that
for any submodule N and any vertex v of @),,, the subspace N, is preserved by a nilpotent
endomorphism E, of (M}?), which forces it to be spanned by a subset of B;.

If v =25 forsome j € {1,...,n}, welet £, = {;11a;417;a; if Ao # 0 and E, = £;1bj417;b;
otherwise. Here we identify arrows of Q,, with their corresponding endomorphisms of M};
the separate definition when Ay = 0 is needed since the a arrows act by zero in that case.
Similarly, if v =25 — 1 we let E, = a;{;11a;117; if Ao # 0 and E, = bjl;11b;417; otherwise.

The action of the E, on the basis B; is especially simple, namely E,b,, . is a nonzero
scalar multiple of b(y11y41,0) unless x = ¢ or y = 1,(i), in which case E,by,) = 0. In
particular, up to normalization and ordering of the b, ), E, is equivalent to the standard
shift matrix. Of course, if N is a submodule of M}, then N, must be invariant under the
action of F,, and it follows from the form of E, that N, is spanned by a subset of B;. ]

It is useful to visualize the graph G; as follows. Defining a map B; < Z? by by ..) —
(y—xz,—(y+2)+ (v—(i+y—x))) and drawing Z?* as a grid in the plane in the usual way,
we obtain a planar realization of G; where all arrows are directed downward. The admissible
subgraphs I' are then just subgraphs that are “downward closed”.

6.4 Hamiltonians and Nonintersecting Paths

In this section we discuss the quadratic A,, Toda Hamiltonians and their explicit expression in

terms of cluster coordinates. In particular, we explain a combinatorial model that allows us

to write these Hamiltonians as weighted sums of nonintersecting paths in a planar network.
Throughout this chapter we fix the double reduced word

i=(1,-1,2,-2,...,r,—1)
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for (¢, c), with ¢ the standard Coxeter element. This yields an indexing matching that used
in Section 6.3 for the vertices of the quiver @,; that is, we have (B;);; = (@Qy);; where B is
the exchange matrix of the seed associated with i and (Q,,);; is the signed number of arrows
from ¢ to j in the quiver @,. Associated to i is a map X; — PSL;,/H defined by

wyY wY e
(W, Yon) = Evy Pyt - Byn 1any22 g

Again, we use somewhat different notation in this chapter than previous ones: we write
y; instead of X;, so & = SpecClyi, ..., yi!]. Note that the maps defined by the double
reduced words (1,—1,2,—2,...,7,—r) and (1,...,r,—1,..., —r) are essentially the same,
differing only in the indexing of their coordinates.

~ The Hamiltonian H; is the pullback to Aj of the character of the fundamental representation
A" C™1. Since A; maps to the adjoint form of the group, the H; will necessarily involve
fractional powers of the ;. However the natural choice of positive real part of X- determines

nt1l

a canonlcal ch01ce of root y;"*'. More precisely, we define formal coordinates y"+ on a torus
1

= Spec C[(y "“)il (4377 )*1]. This has a covering map X; — A; defined implicitly via
the map X; — SLE il/H given by

(y1n+1 g 7y2nrjl) = E ( n+1 )(n—l—l)wlv e F2n(y2nr:rl >(n+1)w£/n_1'

We now explam a combinatorial description of the map &; — PSL;{,/H (or more

precisely, of X, — S Ly¢/H) in terms of a directed network ;. The network N; is a directed
graph embedded in a disk with n 4+ 1 “input” vertices and n + 1“output” vertices on the
boundary of the disk. The sets of inputs and outputs will each be labeled by {1,...,n+ 1}.
We draw the inputs along the right boundary of the disk with their indices increasing as
one moves downward along the boundary, then draw the outputs along the left side so that
inputs and outputs of the same index have the same vertical height. We draw a horizontal
directed edge from each input to the output of the same index.

For each index i) in i we draw an internal edge from the |i;|th horizontal edge to the
(lix| + 1)th horizontal edge if iy, > 0, and from the (|ix| + 1)th horizontal edge to the |iy|th
horizontal edge if i, < 0. We draw these so that the source of the jth internal edge is on the
left of the target kth internal edge for j < k. We draw these internal edges with a slant so
they are always directed to the left; with this convention we may omit drawing the directions
on edges, since they are always directed to the left. Each internal edge thus corresponds to
an index in {1,...,2n}, and we will label the region to the right of an internal edge by the
corresponding variable ;.

The network provides the following combinatorial description of the map X, — S Ly /H.

More precisely, this map factors through SL;,, and we describe the image of X in SL,.1
directly as a family of (n 4+ 1) x (n + 1) matrices. The (4,j) entry of a matrix will be a
weighted sum over all directed paths from the ith input to the jth output. The weight of the
bottom horizontal path (the unique path from the (n + 1)th input to the (n + 1)th output) is

—1 —1 —n_ —n_
nt+l . nt+1l nt+1 nt+1

Y1 Yo “Yon—1Yon -
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The weights of other paths are then determined by the following rule. Two paths p,p/
can be viewed as elements of H;(Nj, ON;), and if the difference p — p’ is a cycle oriented
counterclockwise around the region labeled y;, then the weight of p is y; times the weight of
p’. In other words, if p differs from p’ only in that it goes above the region y; rather than
below it, than its weight is y; times that of p'. R
That this network prescription is indeed consistent with the definition of the map A; —
SL;,/H follows from two observations. First, the internal edges describe the actions of the
E; and F} in the standard basis of C**!. Second, each coweight subgroup can be written as

y 0 0
0
Y = g ! :
1
.0
0 e 001

where the diagonal matrix on the right hand side has its first k entries equal to y and its last
n+1—k equal to 1. R

We also have a combinatorial description of how elements of SL,; in the image of &; act
on the other fundamental representions /' C""!. The standard basis of A" C"™! is indexed
by i-element subsets of {1,...,n + 1}, and the family X; C SL;y, acts on V,,, by matrices
whose entries are weighted sums of i-tuples of directed nonintersecting paths. The weight of
an i-tuple of paths is the product of the weights of each path.

We will say a directed path in Nj is cyclic if its input and output have the same index.
Such paths give rise to cycles on Nj, where Nj is the closed graph obtained by gluing the ith
input to the ¢th output. The following observation is immediate:

Proposition 6.4.1. The Hamiltonian H;, defined as the pullback to 2/(\1 of the character of
N C™"1 s the weighted sum of all i-tuples of nonintersecting cyclic paths in Nj.

Example 6.4.2. Let us illustrate the above discussion for SL,. On the left below we have
the relevant network and on the right the family of matrices it parametrizes. As all the edges
are directed leftward, we omit specifically notating the directions of the edges of the network.
It is convenient to pull out an overall scalar factor equal to the weight of the lowest horizontal
path, since with this normalization the weights of all paths become polynomials in the y;.

_1 _1 1 1
2 23/22 ( Y1 Y2 ) :y12y22 (y2+y1y2 1)‘
Y2

Computing the Hamiltonian H; requires taking the trace of the matrix on the right, which
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is the weighted sum of the three distinct cyclic paths on the left. We find that
11
Hi=y, %y, *(L+ y2 + y1y2)
= 2125 (L + 92 + 112),
where y; = 22, yp = 27> ]

Example 6.4.3. Below are the network and corresponding family of matrices for SLs:

1 1 2 _2 yl y2
Y1 2Ys PYs Py,
Y3 Y4
0 oo [Y2YsYs T ynYeYsys Yatysys 1
=Y *Ys *Y3 Pyy ’ Y2YY3Ya Yo+ ysys 1
0 Ya 1

There are two Hamiltonians H; and H, corresponding to the fundamental and anti-fundamental
representations, respectively. The former is a weighted sum of the five cyclic paths, while the
latter is a weighted sum of the five nonintersecting pairs of cyclic paths:

1 1 2 _2
Hi =y, %Yy 3ys Yy > (1 + Ya + Ysys + Y2Ysya + Y1Y2y3Ya)
= 232 (1 + Ya + Y3y + Yoysys + Y1Y2Y3Ys)

2 2 1 1
Hy =5y, %y, s Pyy * (L + y2 + y1y2 + y1Y2Ys + Y1Y2Y3Y4)
= 2125 (14 yo + Y1y + Y1Y2Ya + Y1Y2Y3Ya).

Here we have y; = 222, ", yo = 27 %23, y3 = 5 '22, and yy = 725> O

6.5 Hamiltonians and Cluster Characters

In this section we prove our main result, realizing the Hamiltonians of the quadratic A,, Toda
system as cluster characters of the quiver @),,. Recall that by v, : {1,...,n} = {1,...,n} we
denote the Nakayama involution v, (i) =n + 1 — 1.

Theorem 6.5.1. For each i € {1,...,n} we have H; = C’C(M;\n(l.)).

Proof. There are two components to the proof. First, we prove that the index of MV)‘n (i) agrees
with the corresponding quantity appearing in H;. Second, we construct a bijection between
nonintersecting i-tuples of cyclic paths in A; and admissible subgraphs of G, ;), and show
that this takes weights of paths to dimension vectors of quotient modules.

Let 2% be the Laurent monomial in 1, ..., Zs, defined by the property that H; =
™ ip(yy, ... yoan), where p(yi, ..., Y2n) € Clyi, ..., Y2q] has constant term 1; we must show
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that z4m =z ““u(). From the network representation of H; it is clear that z4#: is the

weight of the lowest i-tuple of cyclic paths. Equivalently, it is the contribution to the trace of

the action of
wy wy w,)!

w,y
Y1 Yo' o Yoy 1Yo

on the lowest weight space of A’ C™*! (which has weight —w,, ().
Since y9;-1 =[] i xQCjij and yo; =[] i :c;ﬁ{, where C' is the A, Cartan matrix, we have

VY, v v
Wi Wi

it yst ey von = [ [(waie)™

1

= [ (o) ey
ij

= [ (z2" 122

J

But on the lowest weight space this acts by the scalar

-1 (o [=wu 1)) — ) -1
H('er—lx?j) I O = L20m (1) =1L 9y, (1)
J

ind
which is equal to z M) since My)‘n(i) is defined by a projective resolution of the form
0— PQVn(i)—l — PQVn(i) — Mj\n(l) — 0.

Now we turn to the bijection between i-tuples of nonintersecting paths in A and admissible
subgraphs of G, ;). Recall that the vertices of G, ;) are the elements {b( ..} of a basis of
My)‘n @) indexed by tuples

{(z,y,v)|z,y € Nyu € {2(v, (i) + y — 2),2(1n(?) +y —x) — 1}, 2 < v, (i), y < i}.

For each fixed value y € {0,...,7 — 1}, G,, () has 2u,,(7) vertices of the form b, ., for
which the possible values of v are {2y + 1,2y + 2,...,2y + 2v,(i) — 1,2y + 21,(i)} (note
that the value of x is determined by those of y and v). Recall that b, ,) is the image of an
element of CQ),, corresponding to a path that has ending vertex v, and  and y the number
of times it traverses an ¢ or r edge, respectively. For fixed y, it follows that there is an arrow
from b(zy.) 10 b y.ry in Gy, () if and only if v = v — 1 (since such an arrow corresponds
to either a vertical or leftward arrow of @,,). In particular, given an admissible graph T,
for each y € {0,...,i — 1} there is at most one “maximal” value of v for which b, . is a
vertex of I'; that is, such that b, ) is a vertex of I' but b, ,11) is not (including the case
v = 2(y + (7)) when there is no such vertex of G, ;). Let us call maximal value v(T',y); if
there are no vertices of I" with the given value of y we set v(I',y) = 2y, so by a slight abuse
of notation we may have v(I',0) = 0 even though 0 does not label an actual vertex of @Q,,.
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The set {v(T, y)};_:lo completely determines the graph I', though an arbitrary collection of
vertices of @), need not correspond to an actual admissible graph.

We use the data {v(T, y)};_:lo to assign an i-tuple of nonintersecting cyclic paths in Nj to
the graph I'. First note the following bijection between {0, 1,...,2n} and the set of cyclic
paths in N;. We associate a cyclic path with the largest value of v such that the face labeled
by y, lies above it. To the top cyclic path, which lies above all such faces, we associate
the index 0. To an admissible graph [' we now assign the i-tuple of cyclic paths associated
with the set {v(I',y)};_f. We must show that these paths do not intersect, and that any
nonintersecting i-tuple of cyclic paths arises this way.

We have already described all arrows between vertices by ), by vy Of Gy, (s) for which
y =y'. From the path description of this basis, it also follows that if G, ;) contains an arrow
from b(zy) t0 brar 4y and ¥ # y, we must have v = 2(y — x) — 1 and by vy = bz yt1,0+3)-
From this we arrive at a necessary and sufficient condition for a set of vertices to be
of the form {v(T',y)};_y for an admissible graph I': for each y < i — 1 we should have
v y+1) > ol y)+3if v(I',y) is odd and v(I', y +1) > v(I', y) + 2 if (I, y) is even. Under
our bijection between cyclic paths in N; and elements of {0,1,...,2n}, it follows easily that
this corresponds exactly to the condition that an i-tuple of cyclic paths be nonintersecting.

All that remains to be shown is that if Nt is the submodule associated with an admissible
graph I', the dimension vector of len(i) /Nr agrees with the weight of the i-tuple of paths
associated with {v(T,y)};_{. More precisely, we must verify that the following two monomials
coincide. First is y[M3n<i>/ Nl where we write yltl = [L v for a class [L] = >, a;[S:] €
Ky(J-mod). Second is the ratio of the weight of the i-tuple associated to I' and that of the
lowest i-tuple, that is the i-tuple associated with {2v,(7),...,2n —2,2n}. This normalization
arises because while H; is a weighted sum of i-tuples of cyclic paths, to compare H; with
ccC (M,;\un(i)) we must pull out a factor of ™% which is the weight of the lowest i-tuple.
Explicitly, for each 1 < j < let m;(yi,...,y2,) be the product of all y, whose associated
face lies between the jth path from the top of our given i-tuple and the jth path from the
top of the lowest ¢-tuple; the ratio of the weights of the two i-tuples is the product of the m;.

Now it is clear that
AT | G

b(way,U)GGl’n(i)\F

the product being taken over all vertices of G,, ;) which are not vertices of I'. But it is easy

to check that
H yv:mj(yla---’y%z);
b(a,j—1,0) €EGuy () \I

concluding the proof. m

Example 6.5.2. Below we have the graph (G5 associated to the 18-dimensional representation
M3 of the quiver Q5. There are 61 submodules corresponding to 61 admissible subgraphs. For
example, the zero submodule contributes a term v 92422y yey2y2yoy10 to CC(M3). There
are three “chains” along which y is constant between the bottom-left and top-right of the
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graph. Given an admissible subgraph I, the highest vertex it contains in each of the three
chains indicates the position of one of a triple of nonintersecting cyclic paths in the network

M.

(0,0,6)
!
_(005)
(1,0,4) (0,1,8)
l 1
_(103) __(017) _

(2,0,2) (1,1,6) (0,2,10)
l l 1
(2,0,1) (1,1,5) (0,2,9)
TT(214) TT28)

l 1
(213) _ 226 — (1,2,7)

!

(2,2,5)

6.6 Irregular Flat Connections and N = 2 Field
Theory

In this section we discuss the results of this chapter from the point of view of nonabelian Hodge
theory. We interpret the double Bruhat cell SL;¢,/H as a moduli space of flat connections
with irregular singularities, and the network N; used to compute the Hamiltonians as the 1-
skeleton of the spectral curve of the associated Hitchin system. The Hamiltonians themselves
become traces of holonomies around closed loops, providing a geometric reason for their
interpretation as canonical basis elements (hence their realization as cluster characters). We
also explain how this viewpoint is intimately tied to that of 4d ' = 2 field theory, wherein
this particular irregular Hitchin system plays a fundamental role, the Seiberg-Witten system
of N'= 2 Yang-Mills theory.

Recall that the nonabelian Hodge correspondence identifies the moduli space My, (C)
of flat rank-n vector bundles on a Riemann surface C with a corresponding moduli space
Miiges(C) of Higgs bundles, certain gl,-valued 1-forms on C. The latter is the phase
space of the Hitchin system, a Lagrangian fibration Myjges(C) — B where B is a space of
polydifferentials on C. The fiber over a point u € B is the Jacobian of a spectral curve 3,
which is naturally embedded in 7*C as a branched cover of C. Both My, (C) and Myiggs(C)
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have holomorphic Poisson structures but are not complex-analytically equivalent; rather, they
can be regarded as two different complex structures on a single hyperkahler space.

One of the insights of [GMN13] is that for a generic u € B there is a class of open
holomorphic Poisson embeddings M¢r, (2,) = Mgr, (C) depending on a phase § € R/27Z.
Varying u € B and 6 one (conjecturally, in general) obtains the toric charts comprising a
cluster atlas on Mg, (C). This recovers and extends many constructions of [FGO6b] from a
complementary point of view. In particular, although the cluster structure lives naturally on
the space My, (C) of flat connections, the cluster charts themselves originate on the other
side of the nonabelian Hodge correspondence, being most naturally defined in terms of the
spectral curves X,,.

An embedding Mgy, (2,) = Mqgr, (C) is more or less equivalent to a rule for expressing
the GL,-holonomy around a closed loop in C in terms of G L;-holonomies around closed
loops in ¥,. This rule may be described in terms of a combinatorial object called a spectral
network. This consists of a special a family of paths, or walls, drawn on C and labeled locally
by ordered pairs ij of sheets of the spectral curve. To a closed loop 7 in C is associated family
of loops in ¥, determined by the pattern of how v crosses the walls of the network, and
the matrix entries of the G'L,-holonomy around 7 are sums of G L;-holonomies around these
loops in 3,,.

The essential detail for us is that the holonomy around ~ is produced along with an
explicit factorization as a product of diagonal matrices and elementary matrices £;; for each
17-wall crossed by -, multiplied in the order in which they are crossed. In this way the formal
features of the map Mgy, (X.) — Mgy, (C) coincide with those of the network description
of the cluster coordinates on SL;,/H, where elements of SL,¢,/H were described via a
factorization into diagonal and elementary matrices. Moreover, the matrix entries of both an
element of SL,¢,/H and a holonomy around a loop in C are expressed as weighted sums of
1-cycles, either of the closed network N or the spectral curve 3, respectively.

In fact, the cluster structure we have studied on SL;¢,/H can be seen as a particular
instance of one arising from a moduli space of flat connections, once irregular singularities
are allowed. These moduli spaces (and their cluster structures) play an important role in 4d
N = 2 quantum field theory, the following aspects of which are relevant to our discussion.
Associated to an NV = 2 theory is an algebraic integrable system, its Seiberg-Witten system,
which we write as a Lagrangian fibration M — B and whose spectral curves are also called
the Seiberg-Witten curves of the theory. Physically, B is a space of vacua, the Coulomb
branch of the theory. To theories satisfying certain finiteness conditions there is associated
a quiver, its BPS quiver (). More precisely, one has a quiver for each generic u € B and
phase 6 € R/277Z, but all are mutation equivalent. The vertices of ) are in bijection with
a distinguished homology basis of the Seiberg-Witten curve 3, its edges encoding their
intersection numbers.

When the Seiberg-Witten system is a Hitchin system with singularities the framework
of [GMN13] described above produces a cluster chart on M with coordinates labeled by
vertices of ). Many fundamental A/ = 2 theories are of this type, but generally require the
consideration of irregular singularities. Since the BPS quiver () can often be determined by
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Figure 6.1: A Seiberg-Witten curve of N' = 2 SU(3) Yang-Mills, projected onto an unwrapped
cylinder. The Coulomb branch is the space {u = ui(£)? + (2 + ug + 2)(%£)3} of cubic
differentials on CP!, parametrized by (ug,u1) € C* [GMN13]. The spectral curve %, C T*CP*
is the solution set of A* 4+ Aui(9£)? + (1 + ug + 2)(%£)3 = 0, where ) is a coordinate on
the cotangent fibers of CP!. These are genus two curves realized as three-sheeted branched
covers of CP!, with two punctures over 0 and oo (¥, has cyclic monodromy around these
points). In the picture, the punctures are blown up to boundary components. The homology
cycles labeled by the y; have intersection numbers given by the BPS quiver (3. The planar
realization identifies 1-skeleton of ¥, with the corresponding closed network N of Section 6.4

(it only defined up to the action of the Torelli group).

physical considerations unrelated to the associated Seiberg-Witten geometry, this essentially
leads to specific predictions about cluster structures on irregular moduli spaces more general
than those considered in the mathematics literature.

The quiver @, relevant to SL;¢,/H in fact arises as a basic example of a BPS quiver, that
of pure N' =2 SU(n + 1) Yang-Mills theory. We can use this to identify the cluster charts
on SL;¢,/H with those on the relevant moduli space, which is a space of flat connections
on CP! with irregular singularities at two points. Such a flat connection is essentially just
the data of the holonomy around the unique nontrivial closed cycle in C (neglecting Stokes
data, which in principle is encoded in the fact that the holonomy produced is well-defined
up to conjugation by H rather than merely by G). The network N; is thus identified with
the 1-skeleton of a spectral curve of the associated Hitchin system. The Hamiltonians H;
are then the traces of the unique nontrivial holonomy in the fundamental representations,
producing a geometric reason for their interpretation as canonical basis elements.
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