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A Novel Energy Layer Optimization Framework for Spot-
Scanning Proton Arc Therapy

Wenbo Gu1, Dan Ruan1, Qihui Lyu1, Wei Zou2, Lei Dong2, Ke Sheng1

1Department of Radiation Oncology, University of California—Los Angeles, Los Angeles, CA, 
90095, USA

2Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Purpose: Spot-scanning proton arc therapy (SPAT) is an emerging modality to improve plan 

conformality and delivery efficiency. A greedy and heuristic method is proposed in the existing 

SPAT algorithm to select energy layers and sequence energy switching with gantry rotation, which 

does not promise optimality in either dosimetry or efficiency. We aim to develop a method to solve 

the energy layer switching and dosimetry optimization problems in an integrated framework for 

SPAT.

Methods: In an integrated approach, Energy Layer Optimization for Spot-scanning Proton Arc 

Therapy (ELO-SPAT) is formulated with a dose fidelity term, a group sparsity regularization, a log 

barrier regularization, and an energy-sequencing (ES) penalty. The combination of L2,1/2-norm 

group sparsity regularization and log barrier function allows one energy layer being selected per 

control point. The ES regularization term sorts the delivery sequence from high energy to low 

energy to reduce the total energy layer switching time (ELST) and subsequently the total delivery 

time. Within the ES penalty, the gradient of layer weights between adjacent beams is first 

calculated along beam direction and then along energy direction. The gradients indicate energy 

switch patterns between two adjacent beams. The time-wise costly energy switch-up is more 

heavily penalized in the ES term. This ELO-SPAT method was tested on one frontal base-of-skull 

(BOS) patient, one chordoma (CHDM) patient with a simultaneous integrated boost, one bilateral 

head-and-neck (H&N) patient and one lung (LNG) patient. We compared ELO-SPAT with 

Intensity Modulated Proton Therapy (IMPT) using discrete beams and SPArc by Ding et al. For 

the two arc algorithms, both the plans with and without energy sequencing were created and 

compared.

Results: ELO-SPAT reduced the runtime of optimization by 84% on average compared with the 

greedy SPArc method. In both the ELO-SPAT plans with and without ES, one energy layer per 

control point was selected. Without ES regularization, the energy sequence was arbitrary, with 

around 40 to 60 switch-up for the tested cases. After adding ES regularization, the number of 

energy switch-up was reduced to less than 20. Compared with the energy sequenced SPArc plans, 
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the ELO-SPAT plans with ES led to 24% less total energy layer switching time for synchrotron 

plans and 14% less for cyclotron plans. Both the ELO-SPAT and SPArc plans achieved better 

sparing compared with the IMPT plans for most OARs, with or without ES. Without ES, the ELO-

SPAT plans achieved further improvement of the OARs compared with the SPArc plans, with an 

averaged reduction of OAR [Dmean, Dmax] by [1.57, 3.34] GyRBE. Adding the ES regularization 

degraded the plan quality, but the ELO-SPAT plans still had comparable or slightly better sparing 

than the SPArc plans with ES, with an averaged reduction of OAR [Dmean, Dmax] by [1.42, 2.34] 

GyRBE

Conclusion: We developed a computationally efficient spot-scanning proton arc optimization 

method, which solved energy layer selection and sequencing in an integrated framework, 

generating plans with good dosimetry and high delivery efficiency.

1. Introduction

To further reduce healthy tissue irradiation, the concept of proton arc therapy (PAT) has been 

proposed since 19971–3, to combine the unique dose deposition curve of protons and the 

benefit of rotating beams. Passive-scattering based proton arc therapy is not practical for 

clinical application mainly due to the difficulty of changing beam-specific compensator and 

range modulation wheel during gantry rotation. But with the recent development and 

increasing adoption of the spot-scanning technique4–6, the modulation is integrated into the 

gantry, making PAT technically viable.

Using the modern scanning nozzle, the proton treatments are delivered spot-by-spot and 

layer-by-layer7–9. The time of spot scanning within the same energy layer is on the order of 

milliseconds, but it requires seconds to change energy to another layer10,11, particularly from 

low to high energies. The slow energy layer switch is mainly due to magnetic hysteresis 

accompanying changing magnetic field strengths in the energy selection system. The energy 

layer switching time (ELST) cannot be easily reduced. Therefore, for practical proton arc 

delivery, reduction of the energy switching steps is an essential consideration besides the 

dosimetric quality.

Different delivery methods have been proposed for spot-scanning proton arc therapy (SPAT), 

like multiple static fields12,13, distal edge tracking14,15, and single energy modulation16–18. 

However, these delivering methods either cannot perform continuous rotation-delivery, or 

fail to fully utilize the freedoms in spot-scanning techniques, and the delivery efficiency is 

not optimized.

Ding et al19 proposed a delivery-efficient and practical algorithm called SPArc. Similar to 

volumetric modulated arc therapy (VMAT)20, this greedy algorithm starts with a coarse 

sampling of beams, also known as control points, and iteratively increases the sampling 

frequency while redistributing the energy layers, until reaching the desired sampling 

frequency. By this method, 1–3 energy layers remain active at each control point, ensuring 

acceptable delivery time. Later this algorithm was updated to optimize the energy delivery 

sequence from high to low instead of arbitrary switching to further shorten the delivery 

time21. Retrospective studies show the potential of SPArc plans that improve plan dosimetry 

compared with intensity-modulated proton therapy (IMPT) to lung cancer19,22, prostate 
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cancer23, and whole-brain radiotherapy24. Recently, the first prototype of SPArc delivery 

was performed on a clinical IBA Proteus One proton machine, with a Proton Dynamic Arc 

Delivery (PDAD) module. It demonstrated the feasibility of SPArc treatment within the 

clinical requirements25.

However, in the current SPArc algorithm, the energy layer selection and optimization are 

greedy and heuristic. Due to the separate sequencing and plan optimization steps21, the 

optimality of the plan delivery efficiency and the dosimetric quality cannot be promised. The 

alternating back-and-forth operation between the fluence map optimization and energy layer 

processing required for final plan creation is computationally inefficient.

To further improve SPAT, in this work, we present a novel optimization method to integrate 

energy layer selection and sequencing with scanning-spot optimization in a single 

framework, which affords a global search of all feasible energy layers and then 

simultaneously optimizes the energy sequence. The energy layer selection is achieved by the 

group sparsity regularization previously developed in our group, which were shown effective 

in beam orientation optimization26,27. An energy-sequencing regularization is developed to 

improve the SPAT delivery efficiency.

2. Materials and Methods

The proposed Energy Layer Optimization incorporated Spot-scanning Proton Arc Therapy 

(ELO-SPAT) optimization framework aims to select as few as possible energy layers from 

the available candidate layers and then encourage energy switch from high to low, for a 

predefined control point. Considering the continuity in gantry rotating, the optimization goal 

is exactly one active energy layer at each control point.

Motivated by this consideration, the ELO-SPAT framework is formulated with a dose 

fidelity, a group sparsity regularization, a log barrier regularization, and an energy-

sequencing (ES) penalty term. The details are described in the following sections.

2.1. Notations

Before presenting the optimization framework, we establish the following notations.

• B is the number of static beams used as sampled control points. The fixed 

spacing of 2.5° or 2° is used in this study.

• E is the number of candidate energy layers in each beam. To simplify the 

notation, it is assumed that each beam has the same candidate energy layers. The 

infeasible layers can be eliminated during optimization. So the number of all 

candidate energy layers is B × E.

• The vector xbe is the spot intensities of eth energy layer in bth beam. The length 

of xbe, denoted as Nbe, which is the number of scanning-spots in the specific 

layer, varies with beams and layers.
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• The vector xb is the concatenation of xbe (for e = 1, …, E) with increasing energy, 

representing the spot intensities of bth beam. And the vector x is the 

concatenation of xb (for b = 1, …, B), following the sequence of gantry rotation.

x =

x1
x2
⋮
xb
⋮

xB

and xb =

xb1
xb2
⋮

xbe
⋮

xbE

. (1)

• The vectors y and yb are compact representations of x and xbe to eliminate the 

dimension of scanning-spot, with the element ybe being the sum of all elements 

in xbe. Therefore, all the yb (for b = 1, …, B) are in the same length of E.

y =

y1
y2
⋮
yb
⋮

yB

, yb =

yb1
yb2
⋮

ybe
⋮

ybE

and ybe = ∑
i = 1

Nbe
xbei . (2)

Equation (2) can also be written as matrix-vector multiplication:

y = W x, (3)

where W is a summation matrix, to sum up x along the spot dimension.

• A new variable yb is defined by replacing each element in yb with 0 except the 

maximal element.

y =

y1
⋮
yb
⋮

yB

, yb =

yb1
⋮

ybe
⋮

ybB

and ybe =
ybe, if ybe = max yb

0, otherwise
. (4)

• The matrix Db
B is a discrete gradient operator for bth beam along the beam 

direction. For example, Db
Byb is a vector of the intensity difference between yb + 1

and yb,

Db
Byb = yb + 1 − yb . (5)
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• Db
B is a specially designed gradient operator to make

Db
Byb = Db

Byb . (6)

• The matrix Db
E is a discrete gradient operator for bth beam along energy 

direction, while ignoring all zero elements. For example,

Db
E

0
⋮

ybe1
0

ybe2
⋮
0

ybe3

=
ybe2 − ybe1
ybe3 − ybe2

, and ybe1, ybe2, ybe3 ≠ 0 . (7)

• The matrix A is the dose-calculation matrix. Each column of A is the vectorized 

dose to each voxel from a unit intensity spot, and A contains all the spots from 

the entire B × E candidate layers. Therefore, the product A and x gives the actual 

dose delivered to the patient.

• The vector d0 stores the ideal dose to each voxel, which is the prescription dose 

to the target volumes and zero to the OARs.

• A sigmoid operator S on a vector u of length K, is defined as

S u =

s u1
⋮

s uk
⋮

s uK

and s t = 2
1 + e−ηt − 1, (8)

where s t  is a modified sigmoid function, as a smooth approximation of sign 

function, and η controls the level of smoothness. The function of S is to 

normalize each element in u to −1, 0 or +1.

2.2. Formulation of ELO-SPAT

The ELO-SPAT is formulated as follows:
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argmin
x

‖Ax − d0‖2
2 + ∑

b = 1

B
∑

e = 1

E
αbe‖xbe‖2

1/2

−β ∑
b = 1

B
log ∑

e = 1

E
ybe + γ ∑

b = 1

B − 1
ℎ(Db

ES(Db
Byb))

subject to x ≥ 0,
y = W x .

(9)

The first term is the dose fidelity term, penalizing the actual dose, calculated by Ax, from the 

prescription dose d0. A quadratic function is used in this study, but the choice of dose 

fidelity cost is flexible. The second term is an L2,1/2-norm group sparsity term. With proper 

tuning of the weighting hyperparameter αbe, the non-convex 1/2 norm effectively turns off 

most candidate layers. But the term alone can result in aggregated layers in some beam 

blocks and leaving some control points with no layers active, which does not fully utilize the 

rotating beams. In the third term, a log barrier regularization function is used to distribute 

the selected layers to the whole gantry rotating range. The term sums up the intensity of each 

beam and penalizes the zero intensities, therefore forcing each beam to keep at least one 

layer selected. β is the regularization parameter for the log barrier function. By picking a 

proper value of β and setting αbe large enough, one energy layer per beam can be ensured.

The fourth term regularizes energy-sequencing (ES) with a weighting parameter γ. ES 

regularization asymmetrically penalizes energy switching low-to-high harder than high-to-

low. The details of ES regularization can be found in Section 2.3.

2.3. Energy-sequencing regularization

The method using the group sparsity to select a few layers out of the candidates is by 

gradually reducing the xbe of the layer with a lower weight to zero during the iterations. As a 

result, in each beam, the layer with the maximal intensity is most likely kept in each 

iteration. Therefore, in the energy-sequencing term, instead of yb, we control yb, which only 

keeps the maximal element in yb and sets all others to zero, as defined in Section 2.1.

To better understand how energy sequencing works, we consider two adjacent beams during 

gantry rotation, beam b, and beam b + 1. Assume the only nonzero elements of yb and yb + 1
are ybe1 and ybe2, respectively, at the position of e1 and e2. As shown in Figure 1, if e2 > e1, 

meaning energy going up from beam b to beam b + 1, the vector yb + 1 − yb, or Db
Byb, shows 

a pattern of transitioning from a negative value to a positive value, with possible zeros 

before, between and after. A sigmoid operator S is suited to normalize each nonzero element 

in Db
Byb to −1 or +1.

With normalization, S(Db
Byb) is a vector with only two non-zero elements −1, and +1, 

respectively. When the energy goes up, taking the difference of the non-zero elements along 

e direction (the Db
E operator defined in Section 2.1) results in +2.
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Similarly, if the energy goes from high to low, the result of Db
E operation on S(Db

Byb) is −2. 

Maintaining the same energy would result in zero values.

The above process can be written as Db
ES(Db

Byb) or equivalently Db
ES Db

Byb , as defined in 

Section 2.1. In summary, the value of Db
ES Db

Byb  indicates the energy changing pattern 

between adjacent beams in the following relationship:

Db
ES Db

Byb =
+2, energy switch − up,
−2, energy switch − down,
0, energy unchanged .

(10)

For delivery efficiency, fewer energy switch-ups during gantry rotating are encouraged. 

Therefore, positive Db
ES(Db

Byb) is more heavily penalized. In this work, the energy switch-

down is less penalized than staying unchanged for two reasons. First, energy switching down 

has a small impact on the total delivery time. For example, the switching-down time is 0.6 s 

according to the IBA Proton Dynamic Arc Delivery module, which is considered a 

negligible increase compared with staying unchanged in this study. Second, doing so 

encourages more layers to be used for better dosimetry. Mathematically, a one-sided 

quadratic cost function is used to penalize energy switching. The cost function, ℎ t , is 

defined as:

ℎ t =
1
4 t + 2 2 − 1, if t ≥ − 2,

−1, otherwise .
(11)

The quadratic term makes the function ℎ t  convex, smooth and differentiable, and the 

function definition is designed to give a value of 0 at 0 for simplicity.

Problem (9) is non-differentiable due to L2,1/2-norm. Alternatively, (9) can be solved by the 

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) 28, an accelerated proximal 

gradient method. The details of solving the problem (9) using FISTA are shown in Appendix 

A.

2.4. Evaluation

ELO-SPAT was tested on one frontal base-of-skull (BOS) patient, one chordoma (CHDM) 

patient with the simultaneous integrated boost, one bilateral head-and-neck (H&N) patient, 

and one lung (LNG) patient. A full arc was used for the H&N case, and a partial arc was 

used for the rest of the cases. Gantry rotation was assumed clockwise. The control points for 

individual beams were spaced 2° in the LNG case and 2.5° otherwise. Dose calculation for 

the scanning spots covering the PTV and a 5 mm margin was performed using matRad29,30, 

a MATLAB-based 3D treatment planning toolkit. The spot spacing was 3 mm in the beam 

direction, and 5 mm in the lateral direction. The dose calculation resolution was 2.5×2.5×2.5 

mm3. We assumed a constant RBE of 1.1. IMPT plans with 2~4 manually selected beams 
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were created for these tested patients for comparison. The prescription dose, target volume, 

arc range and IMPT beam angles for each patient are shown in Table I.

To investigate the effectiveness of ES regularization, we created two proton arc plans for 

each patient with or without ES regularization in (9). In the latter plan, the energy layers 

were selected by group sparsity and log barrier regularization, but not sequenced.

We compared the ELO-SPAT plans against the arc plans created using the SPArc method 

proposed by Ding et al19. Because robustness is not considered yet in our work, the robust 

optimization used in SPArc is replaced with a conventional PTV-based fluence map 

optimization for a fair comparison. We created the SPArc plans using arc setting and dose 

calculation identical to ELO-SPAT. To match the two plans, in SPArc optimization, we 

pushed the number of layers per beam to be 1 for as many beams as possible, leaving only a 

few beams to have two energy layers. Similarly, we created SPArc plans with21 or without 

energy sequencing to compare with ELO-SPAT. The SPArc method with or without ES is 

denoted as SPArc-ES or SPArc-noES, and the ELO-SPAT method with or without ES is 

denoted as ELO-ES or ELO-noES

All plans were normalized to deliver prescription dose to 95% of volume. PTV homogeneity 

and D98% were evaluated for each plan. PTV homogeneity is defined as D95%/D5%. The 

mean and maximum doses for OARs were also evaluated.

The time spent on treatment planning and delivery of ELO-SPAT and SPArc were compared. 

For delivery, because energy layer switching time (ELST) is the major factor affecting the 

total delivery time, we use the total time spent on energy layer switching as the surrogate. 

The times required for switching energy up, down and keeping it unchanged were 5.5 s, 0.6 

s, and 0 s according to the IBA Proton Dynamic Arc Delivery (PDAD) module. A constant 

ELST of 2.1 s was also used for calculation according to the M.D. Anderson proton therapy 

system7 with a synchrotron accelerator.

Although robust optimization has not been incorporated into the current framework, the 

robustness of the arc plans were analyzed to investigate the influence of ELO to plan 

robustness compared against the conventional SPArc method. Nine scenarios were used, 

including one nominal case, two range uncertainty cases by scaling the CT number by 

±3.5%, and six setup uncertainty cases by shifting the patient along with anteroposterior, 

superior-inferior, and mediolateral directions (±5 mm for the LNG patient and ±3 mm for 

the rest). The DVH bands of the PTVs were plotted to compare the PTV coverage of 

different arc plans under uncertainties.

3. Results

3.1. Optimization and delivery efficiency

The dose calculation and optimization were performed on a Xeon 28-core CPU server 

operating at 2.40 GHz clock, with Matlab and its Parallel Computing Toolbox. The energy 

layer delivery sequence for each patient using SPArc or ELO-SPAT with and without energy 

sequencing is shown in Figure 2. The number of energy switches for different arc plans is 
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plotted in Figure 3. The optimization time and expected delivery time are also shown in 

Figure 3.

Without ES regularization, although single energy layer at each control point is achieved, the 

energies are not ordered, resulting in 40 to 60 switch-up for the tested cases, adding a non-

trivial amount of time to delivery. With ES regularization, the energy layer was sequenced to 

reduce the number of energy switch-up to fewer than 20, which are comparable to that of the 

SPArc plans with energy sequencing. Despite the similar number of energy up-switching, 

SPArc uses a regular sequencing pattern with the same number of down-switching between 

up-switchings. In comparison, ELO-SPAT sequencing patterns vary to meet dosimetric 

optimization needs. For the synchrotron plans, with a constant ELST of 2.1 s, the total ELST 

of ELO-ES plans was similar with the ELO-noES plans, with an averaged time reduction of 

9%. For cyclotron plans, with an ELST-up of 5.5 s and ELST-down of 0.6s, the total ELST 

was reduced to around 2 min in ELO-ES from the 4–7 min in ELO-noES, with an averaged 

reduction of 61%. Meanwhile, considering both the ELO-SPAT and SPArc plans with ES, 

the ELO plans had 10–30 more unchanged energies between adjacent control points 

compared with SPArc, therefore leading to an averaged reduction of total ELST time by 

24% for the synchrotron plans and by 14% for the cyclotron plans.

In addition to efficient delivery, the ELO-SPAT reduced the runtime of optimization by 84% 

on average, from the 0.5–2 hours in the SPArc plans to 5–30 min.

3.2. Dosimetry comparison

The DVH comparison of ELO-SPAT and SPArc without ES is shown in Figure 4, the DVH 

comparison of the two arc plans with ES is shown in Figure 5. The IMPT plan is plotted in 

both figures for comparison. The mean dose and max dose for several selected OARs were 

evaluated in the four arc plans and their differences from the IMPT plans are plotted in 

Figure 6.

All compared plans achieved similar PTV dose coverage. Qualitatively, both the ELO and 

SPArc plans achieved better sparing compared with the IMPT plans for most OARs, either 

with or without ES. But in the lung case, the low dose region of the right lung is larger in the 

arc plans compared with the IMPT plans.

Without ES, the ELO-SPAT plans achieved further improvement of the OARs compared 

with the SPArc plans. Lower DVH lines are observed in the ELO-SPAT plans. For example, 

in the CHDM case, the maximum dose to the left and right cochleas were reduced by 8.14 

GyRBE and 6.42 GyRBE, respectively. In the lung case, the maximum dose to the spinal 

cord was reduced by 5.63 GyRBE. On average, the ELO-SPAT plans without ES reduced the 

[Dmean, Dmax] of the OARs by [1.57, 3.34] GyRBE from the SPArc plans without ES.

While adding ES regularization, the dosimetry of the quality of ELO-SPAT plans degraded 

but was still slightly better than the SPArc plans with ES. For example, in the CHDM case, 

the maximum dose to the left and right cochleas were reduced by 2.79 GyRBE and 4.39 

GyRBE, respectively. In the lung case, the maximum dose to the spinal cord was reduced by 
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2.59 GyRBE. On average, the ELO-SPAT plans with ES reduced the [Dmean, Dmax] of the 

OARs by [1.42, 2.34] GyRBE from the SPArc with ES.

3.3. Convergence and effect of γ

A convergence plot of the ELO-SPAT method, for the BOS patient, is shown in Figure 7. 

The cost of each component in (9) during the iterations is also plotted. Dose fidelity, group 

sparsity, and log barrier all converged. The group sparsity is the component with the highest 

value because the tuning parameter αbe need to be large enough to make only one layer 

selected per control point. Since the differential matrices Db
E and Db

B were updated after 

every iteration, the cost on ES fluctuated during the iterations. But in general, the ES cost 

started from a high value, meaning lower delivery efficiency, converged to a low value, 

presenting higher delivery efficiency.

Figure 8 shows how the ES weighting parameter γ affects the number of switch-up and the 

value of dose fidelity cost. Generally, when γ increases from zero, the number of energy 

switch-up decreases and the dose fidelity increases. When gamma reaches a certain value, 

such as 16 in this case, the number of switch-up plateaus, while the fidelity cost is still in the 

trend of increasing. In this study, γ = 16 is picked for a minimum number of energy switch-

up and the highest delivery efficiency.

3.4. Robustness analysis

Figure 9 shows the PTV DVH bands of the ELO and SPArc plans with and without ES 

under range and setup uncertainties. In these DVH band plots, the solid lines are the nominal 

DVHs without uncertainties, the bands bound the worst-case dose distributions, and the 

horizontal and vertical lines label the worst D95% of each method for each PTV. 

Qualitatively, the SPArc plans without ES have wider DVH bands and lower worst D95% for 

all PTVs, representing the worst PTV coverage under uncertainties. The PTV coverage of 

the rest three methods varies between different patients. The ELO without ES slightly 

outperforms the others. The averaged worst D95% is 83.5%, 84.6%, 83.5%, and 78.5% for 

the ELO-ES, ELO-noES, SPArc-ES, and SPArc-noES plans, respectively.

The DVH band width at D50% was also evaluated. It was observed that the ELO plans have 

narrower band width than the SPArc plans. The averaged band width is 6.7%, 6.4%, 8.9%, 

and 11.0% of the prescription dose for the ELO-ES, ELO-noES, SPArc-ES, and SPArc-noES 

plans, respectively.

4. Discussion

We present an integrated energy layer optimization method for scanning-spot proton arc 

therapy. The novel framework allows an integrated optimization of fluence map 

optimization, global search of candidate energy layers, and the delivery sequence. The 

energy-sequencing penalty is added as a soft regularization to dose fidelity term, therefore 

providing a flexible trade-off between dosimetry and delivery speed. In this work, the final 

ELO-SPAT plans were selected as the ones with the lowest achievable number of energy 

switch-up for best delivery efficiency, with slight scarification of dosimetry. In clinical 
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practice, the balance between dosimetry and delivery time can be tuned case-by-case. In the 

case of synchrotron where there is no difference between the time between energy layer 

switch up and down, the ES regularization can be removed for superior dosimetry.

The number of energy switch using the SPArc energy sequencing method is comparable to 

our optimization result, showing good performance with the heuristic method. On the other 

hand, energy switching patterns are distinctly different. Compared with the regular SPArc 

pattern, the energy sequencing pattern using ELO-SPAT is flexible to take advantage of the 

patient and arc geometry. For example, for the patient with a frontal BOS tumor, when the 

gantry rotates in clockwise from posterior to anterior in the first half arc, the overall energies 

of the candidate layers decrease because the tumor becomes shallower from the beam’s eye 

view. The ELO-SPAT algorithm exploits the geometry and makes more switch-down before 

energy going up. The flexibility can facilitate future arc trajectory optimization to further 

enhance efficiency and dosimetry.

With a similar number of energy switch-up between the ELO-SPAT and SPArc plans, we 

observed 15–20% less total energy layer switching time in the ELO-SPAT method. This is 

because SPArc does not allow the energy to stay at the same level between control points 

due to the progressive sampling scheme and the way energy layers are distributed. Using 

ELO-SPAT, energy switching-down, and unchanged are both encouraged, thereby shortening 

the total energy layer switching time.

Another major benefit of ELO-SPAT is the significantly shortened optimization time by 5–

10 fold from SPArc. In the progressive SPArc sampling scheme from coarse to fine control 

point resolution, repetitive fluence map optimization is required after either energy layer 

filtration or redistribution, resulting in long optimization runtime. In the ELO-SPAT 

optimization, although the algorithm starts with all candidate layers, the number of active 

layers is gradually reduced to the desired number, shrinking the size of the dose matrix 

needed for calculation during computation, shortening the time for each iteration. 

Furthermore, ELO needs only one run to obtain the final delivery sequence and fluence map. 

The optimization was further accelerated by FISTA, which converges at an optimal rate of 

O 1/k2  28. We expect additional acceleration using the graphics processing unit (GPU) 

platform and multi-resolution sampling of the dose matrix.

Due to the L2,1/2-norm for group sparsity and the sigmoid function for ES, problem (9) is 

highly non-convex. Originally, FISTA has been used to solve convex problems. However, 

recent FISTA work26,27 and the convergence results (Figure 5) in this study suggest that 

FISTA can be used to solve certain non-convex problems with stable convergence. The 

differential matrices Db
E and Db

B need to be updated after every iteration, but their changes 

are gradual. Regardless of the ES cost fluctuation, the optimization converges in a few 

hundred iterations. On the other hand, because of the high non-convexity and the need to 

update Db
E and Db

B, a high weighting parameter on the ES term does not necessarily promote 

high delivery efficiency. As shown in Figure 7, the number of switch-up plateaus after 

reaching 16 for the BOS case. The main reason is that the problem is trapped in local 

minima due to the high non-convexity of the problem formulation. Still, the overall trend of 
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decreasing the number of switch-up and increasing fidelity cost is observed can still be used 

to guide parameter tuning. While a random initialization is used in current work to assign 

the initial spots intensities during optimization, which is common but not necessarily 

optimal, other initialization schemes can be explored to improve the convergence of the 

optimization problem and overcome the local minima problem.

A limitation of the current ELO-SPAT algorithm is that only one energy layer allowed per 

control point for simplicity, while a few more layers could lead to better dosimetry with 

small scarification of delivery time. Without the energy-sequencing term, multiple layers are 

readily achievable by tuning the group sparsity term. However, allowing multiple energy 

layers complicates energy sequencing in the current framework that only regulates the layer 

with maximal weight at each control point. This is a point for future improvement.

In the current problem formulation, the energy switching pattern is used as the surrogate of 

delivery time and the order of energy switching is penalized by a simple one-sided quadratic 

function (11). In future work, the function (11) can be designed to directly correlate the cost 

with machine-specific energy switching time, thereby allowing intuitive control of actual 

delivery time. Furthermore, the delivery time penalty can be incorporated as a hard 

constraint instead of the soft regularization in the current framework for the planner to 

specify the maximal permissible delivery time directly.

We compared the robustness of the ELO-SPAT method and the SPArc method in the 

presence of simple systematic range and setup uncertainties. The results show non-inferior 

PTV robustness using the proposed ELO-SPAT algorithm compared with the SPArc method 

(Figure 9). Because robust optimization is not explicitly incorporated in either framework, it 

is an area for future research. We recently developed a sensitivity regularization method to 

improve the robustness of IMPT plans against range and setup uncertainties27,31. This 

sensitivity-regularized robust optimization method is computationally efficient and resilient 

to worse-than-expected errors. The sensitivity regularization can be readily integrated into 

ELO-SPAT for increased plan robustness. Nevertheless, there is no consensus on how to 

evaluate the robustness of proton arc plans, which is more complicated than IMPT. For 

example, when the patient receives irradiation in a continuous arc, it becomes possible that 

the proton range is underestimated from one direction and overestimated from another 

direction, which can lead to more severe tumor underdosage or OARs overdosage than that 

from uniform range over- or under-estimation. There is also no established guideline or 

evidence-based clinical outcome to indicate a failure criterion of arc plan robustness. 

Therefore, important steps in proton arc therapy research are to investigate the difference of 

robustness between SPAT and IMPT and to develop tools to evaluate the robustness of arc 

plans in a clinically relevant way.

5. Conclusions

We developed a computationally efficient spot-scanning proton arc method, which solved 

energy layer selection and sequencing in an integrated optimization framework, generating 

plans with good dosimetry and high delivery efficiency.
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Figure 1. 
Schematic workflow of energy-sequencing regularization. Two adjacent beams, beam b and 

beam b + 1, are shown, with the situation of energy switch-up in the middle column and 

energy switch-down in the right column. (a) yb and yb + 1 are shown as row vectors, while 

energy increases from left to right. ybe1 and ybe2 are the sole nonzero element of yb and 

yb + 1, respectively. (b) Db
Byb = yb + 1 − yb. (c) Db

Byb is normalized to −1 or +1. (d) Take the 

gradient of S(Db
Byb) along e direction, which is the difference of the element at high e index 

and that at low e index. It yields a positive gradient when energy switches up and a negative 

gradient when energy switches down. (e) The positive gradient is penalized harder to 

encourage less energy switch-up.
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Figure 2. 
Energy layer delivery trajectory comparison between SPArc (blue) and ELO-SPAT (red). 

The gantry rotates in clockwise following the angle of x-axis from left to right. The delivery 

sequences without ES are shown in the left column and with ES in the right column.
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Figure 3. 
(a) Optimization runtime of the four arc plans. (b) The total ELST time of the four arc plans 

when the ELST time is 2.1s (left) and the ELST-up is 5.5 s and ELST-down is 0.6s (right). 

(c) The number of energy switch up, down, and staying the same. The total number of 

energy switches is also plotted.
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Figure 4. 
DVH comparison of plans without ES. The ELO-SPAT plan is in solid line, the SPArc plan 

is in dashed line, and the IMPT plan is in the dotted line.
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Figure 5. 
DVH comparison of plans with ES. The ELO-SPAT plan is in solid line, the SPArc plan is in 

the dashed line, and the IMPT plan is in the dotted line.
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Figure 6. 
The difference of OAR Dmax (top) and Dmean (bottom) in the four arc plans from IMPT. A 

negative value represents a reduction from the IMPT plan, and a positive value represents an 

increase.
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Figure 7. 
Convergence plot of the ELO-SPAT method, for the BOS patient. The total cost and the cost 

components of dose fidelity, group sparsity, and log barrier are shown in the logarithm scale 

following the y-axis on the left. The ES cost is shown on a linear scale following the axis on 

the right.
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Figure 8. 
The number of energy switch-up and the value of final dose fidelity versus γ, for the BOS 

patient.
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Figure 9. 
PTV DVH band indicating the plan robustness. The four arc plans of the same PTV are 

shown in the same plot with different colors. ELOES is in magenta, ELO without ES in blue, 

SPArc with ES is in green and SPArc without ES is in khaki. The solid line is the DVH 

under the nominal situation and the band bounds the worst-case distribution. The worst 

D95% of each method is labeled by reference lines in the x-y plane. The two PTVs of the 
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CHDM patient are plotted in the third row, and the two PTVs of the H&N patient are plotted 

in the fourth row.
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Table I.

Prescription doses, PTV volumes, arc range and IMPT beam angles for each patient.

Case Prescription Dose 
(GyRBE)

PTV Volume 
(cc)

Arc angle (degree) IMPT (gantry, couch) angle 
(degree)Start angle Stop angle Spacing

BOS 56 66.8 225 135 2.5 (60, 273), (270, 0), (90, 0), (180, 0).

CHDM
PTV63 63 128.86

225 135 2.5 (60, 273), (270, 0), (90, 0), (180, 0).
PTV74 74 26.6

H&N
PTV54 54 179.1

180 180 2.5 (0, 0), (160, 0), (200, 0).
PTV60 60 204.4

LNG 42 297.8 160 0 2 (180, 0), (315, 0).
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