
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A Technique for Managing Mirrored Disks

Permalink
https://escholarship.org/uc/item/34v2d772

Author
Long, Darrell DE

Publication Date
2001

DOI
10.1109/ipccc.2001.918663

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/34v2d772
https://escholarship.org
http://www.cdlib.org/

A Technique for Managing Mirrored Disks

Darrell D. E. Long+
Computer Science Department

Jack Baskin School of Engineering
University of California, Santa Cruz

Abstract
Disk mirroring is a highly effective technique for im-

proving the fault tolerance andperformance of storage sys-
tems. Mirroring requires that those disks holding the cur-
rent data must be determined when recovering from total
system failure. In a two disk system, this is only a mi-
nor problem since the operator can indicate which disk
is current. The complexity increases when more disks are
introduced, and requiring human intervention is impracti-
cal when the target environment is the consumer market.
In these situations, automatic recovery must be used when
possible.

We describe an eficient algorithm for managing the
consistency of mirrored storage. Our algorithm requires
only n f log n bits of state per disk and does not require
logging or quorum collection.

1 Introduction
Mirrored storage provides several advantages, includ-

ing better fault tolerance and increased read performance.
The use of this technology has normally been confined to
high-end systems, since it was considered to be expensive
both in terms of the extra storage required, and in terms of
the processing necessary to implement it. Trends in tech-
nology have mitigated both of these concerns; in particular
the cost of storage has dropped dramatically, and it is now
practical to provide mirroring in small systems as well as
large.

When disks fail in a mirrored system, writes are al-
lowed to continue on the surviving disks. This is one of
the fundamental reasons for employing mirroring. Tempo-
rary failures of the system are common (such as the loss
of power), and these events make it necessary to determine
which disks are current and which are out of date in a reli-
able and automatic manner.

Consider the scenario in which a disk suffers a tempo-
rary failure, such as a loose connection. The system will
continue operation, but will eventually be shut down so the
connection can be repaired. When the system recovers, all
disks will be again on-line, but the system must determine
which disks are current.

tThe author is a Visiting Scientist at IBM Almaden Research Center.
He is grateful for the input of his colleagues, in particular R. Fagin, N.
Hanami, S. Edelman, A. Lam, J.-E PMs and J. Wyllie.

W i l e this may seem to be an uncomplicated task, it is
easy to show that simple schemes, such as using version
numbers, are insufficient, since there are sequences of fail-
ures that make an out of date disk indistinguishable from
the current disk. For example, suppose there are two disks,
both of which have failed. When one of the disks recov-
ers, and has version number k, is it the current disk? There
is no way to tell until the second disk has been repaired
and the version numbers can be compared. The problem is
equivalent to determining the last process to fail [8].

We have developed a technique for disk mirroring that
has very small metadata requirements. It provides better
reliability than most other methods that are employed in
practice. It can be implemented efficiently for as few as
two disks and scales to an arbitrary number of disks.

Maintaining correct metadata is critical to the opera-
tion of the system. It should also be noted that failures
are rare events. The only time metadata is modified using
our scheme is when a failure is noticed, so most of the time
the system will simply apply each write to every disk. As
a result, the amortized cost of maintaining the metadata is
nearly zero.

In the following sections, we describe our method, and
using standard Markov analysis show that it provides ex-
cellent availability. In particular, it is shown to be signifi-
cantly better than quorum consensus.

2 Related Research
The amount of published research on how to implement

mirrored storage is surprisingly small. In contrast to log-
ging, which has been carefully described [5,2], most refer-
ences discuss mirroring in a general context, and leave the
details of implementation to be resolved later.

There are several methods in use for managing mirrored
storage. Perhaps the simplest technique is to designate one
disk as the primary. Its advantage is in its simplicity; its
primay disadvantage is that it limits availability and ne-
cessitates manual intervention if the primary copy fails to
recover following a total failure.

A possible solution is to use quorum consensus to de-
termine which copies of the data are current. This has the
advantage of making automatic recovery possible, but has
the disadvantage of requiring at least three disks to improve
availability.

0-7803-7001 -5/01/$10.00 0 2001 IEEE 272

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 12,2020 at 06:01:06 UTC from IEEE Xplore. Restrictions apply.

A third common technique for determining which disk
is current is to use a log. This has the advantage of pro-
viding excellent availability, but has the disadvantage of
the added complexity of maintaining the log. In particular,
the issue of providing a reliable log becomes an interest-
ing one. Hardening of the log is done through redundancy,
such as mirroring. While the semantics of logs allow them
to be implemented reliably, we believe that a technique that
does not require this added complexity has many benefits.

Another advantage of mirrored storage is its perfor-
mance benefits. Mirroring has been shown to have better
read performance than RAID [lo], and that it can improve
read performance over that of a single disk. While in prac-
tice, a read operation is usually issued on only one disk,
if the read were issued in parallel on all disks then its ex-
pected performance would improve. The analysis is sim-
ple: since there are several readwrite heads available, and
if we assume that the disks are not synchronized, then the
read request can return as soon as the first disk has com-
pleted the read operation.

Conversely, a mirrored storage system requires that all
disks be written before the write operation can complete
(this may be relaxed with the addition of a stable cache, for
example using non-volatile memory). It can be shown that
the seek time will tend toward the maximum seek time for
a single disk as the number of disks increases. In practice,
though, a small number of disks will be used. In the case
of three disks, the expected divergence from the mean seek
time is only 50% [9].
Our method is related to research into efficient methods

for implementing the available copy protocol [l]. Our ear-
lier research [7] led to an efficient method for finding the
last site to fail using a data structure called was-available
sets. The contents of these sets change only when a failure
or a recovery operation occurs, and then only at those sites
that participated in the operation. As a result, the compu-
tation of a closure operation on those sets was required.
Version numbers were then used to determine which sites
in the closure were current.

Our new method replaces this closure operation with
a simple test for equality, which results in a significantly
simplified algorithm and a slight increase in the availabil-
ity provided. The need for version numbers has also been
removed, with-the result that the metadata storage require-
ment is reduced.

3 Mirroring Algorithm
The central issue for managing mirrored storage is de-

termining the current state of the system following a fail-
ure. Since partitions are not a concern in disk mirroring,
we were able to exploit this fact to develop an algorithm
that can tolerate k - 1 failures among k mirrored disks.

Our algorithm works by tracking the current version of

the data using a simple data structure we call cohorr sets.
These sets, a copy of which is stored on each disk, indicate
which disks participated in a given write operation. Using
only this information, we can determine which disks hold
the current version of the data.

3.1 Cohort Sets
The goal of the recovery algorithm is to determine

which disks are current. A current disk is, by definition,
the one that participated in the most recent write operation.

A cohort set for a given disk is the set of all mirrored
disks which last participated with that disk in a write oper-
ation. Cohort sets require n bits per disk, where n is the
number of disks. If there is no explicit numbering on the
disks, then an additional log n bits per disk are required to
provide that numbering.

Cohort sets are similar to the was-available sets used
for the available copy protocol, except that the condition
for finding the last copy to fail is much simpler. In fact, our
method has been extended to the available copies proto-
col, resulting in a significant simplification in the recovery
procedure [4].

Our approach is to record membership information in
these cohort sets. For example, if there are three disks, A,
B and C, and CA, CB and C c are the corresponding co-
hort sets, Table l can be used to illustrate what happens
when disks fail and recover. Suppose that the system starts
with a full complement of disks. At some time in the fu-
ture, disk C fails and a write operation occurs. The state
of the system is reflected in the second row of the table,
where CA = CB = {A, B}, which indicates that disks A
and B were the only participants in the last write operation.
At some point further on, disk B also fails, followed by a
write operation. This is reflected in the third row, where
only disk A is current. Suppose now that the other two
disks recover, then the state of the system is reflected in
the fourth row. Which disks are current? Only disk A,
since CA = {A}.

Table 1 : An Example of Failure and Recovery

CA CB cc

We observe that the set of current disks must have co-
hort sets that are both equal and complete. By equal, we
mean that the cohort sets of all disks in this set must agree.

273

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 12,2020 at 06:01:06 UTC from IEEE Xplore. Restrictions apply.

By complete we mean that all disks listed in the cohort sets
must be accessible.

For example, suppose that we have three disks, and let
CA = {A, B}, C g = {A, B} and CC = {B, C}. In this case
CA and CB are both equal and complete, and so the disks
are current, while CC indicates a disk that is out of date.

Definition 3.1 The current set is the set of all disks G such
that for each disk i E G , its cohort set Ci C G meets the
condition:

Vj E Ci,Cj = Ci.

That is, for any disk in the current set, its cohort set must
contain exactly those disks in the current set. Since the
cohort sets contain exactly the current set, it is necessary
and sufficient to verify that these cohorts sets are equal.
Our algorithm operates by recording changes in the sys-

tem configuration as they are detected, through write oper-
ations. The write operation records in the cohort sets of the
participating disks the identity of all disks involved in that
operation.

When a disk has been repaired, it must perform a re-
covery procedure to ensure that it holds the most. current
data. There are two ways for a disk to become current: it
may find that it is already a member of the current set, or
it may find that it has been excluded from the current set.
In the latter case it must copy the current state of the data
from one of the members of the current set and then join
the current set.

The algorithm is correct - the data is guaranteed to be
consistent if there is always exactly one current set. Its
correctness is established by the following theorem.

Theorem 3.1 There is at any time exactly one current set.

Proof. Initially there is only one current set consisting all
disks. There are only two ways for the current set to be
modified. The first is for a failure to occur and to be noticed
by a failure detection mechanism such as a write operation.
The second is for a disk to be repaired and go through the
recovery procedure.

Case I. Suppose some disk d which is a member of
the current set fails. The algorithm will remove d from the
current set. The removal of d cannot introduce a second
current set since d would had to have been the only shared
element among several intersecting sets. Since all cohort
sets in the current set are equal, this is impossible. Disk d
does not introduce a new current set since it unchanged by
the failure, and lists all other members of the current set of
which it was a member.

Case 2. Suppose that some disk d is repaired. The re-
covery procedure designates d as current if it is a member
of the current set, or it copies the state from the current set

and then joins it. If d is a member of the current set, then
there is no change in the single current set. If d joins the
existing current set, it cannot introduce a new current set
since joining the existing current set only modifies that set.
Q. E. D.
3.2 Reading and Writing

Cohort sets are the critical metadata items for mirrored
operation and must be correct for the recovery algorithm
to operate correctly. As discussed above, it was assumed
that cohort sets were completely written to stable storage
following the detection of a failure. While extremely rare,
it is possible that a second failure could occur while the
cohort sets were being written.

In order to mitigate the effects of this unlikely failure
scenario, two phases are used to write the cohort sets to
stable storage. In the first phase, the so-called tentative co-
hort sets are written. If this fails, the system can fall back
to the original committed cohort sets. In the second phase,
the tentative cohort sets are cleared and the committed co-
hort sets are written. Should this fail, the tentative cohort
sets that remain can be used in conjunction with the newly
committed cohort sets.

Cohort sets are modified when a write operation occurs
following a failure. As long as cohort sets are written every
time a failure is detected, the data is assured to be correct.

Frequent writes have the effect of speeding recovery. If
writes are too infrequent to provide sufficiently fine grained
failure detection, then cohort sets can be modified when
read operations occur. If an asynchronous failure notifica-
tion mechanism is available, then it can be used to modify
cohort sets as well.
3.3 Recovery

The recovery from total failure is the most intricate op-
eration in the system. Since failures may occur at any time,
cohort sets must be carefully maintained. We write cohort
sets using the two-phase write described in the previous
section. In this case, the following recovery procedure can
be applied.
3.3.1 Recovery Procedure

In order to declare a set of disks current, the cohort sets
for each disk are checked for equality and completeness in
the following order:

1. All cohort sets are tentative. This will succeed if there
was a failure after the tentative cohort sets were writ-
ten, but before the committed cohort sets were writ-
ten.

2. There is a mixture of tentative and committed cohort
sets that form a current set. This will succeed if there
was a failure while the committed cohort sets were
being written.

274

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 12,2020 at 06:01:06 UTC from IEEE Xplore. Restrictions apply.

3. There are only the committed cohort sets. This is the
most common case and will succeed if the two phase
write completed successfully.

There is one further case - when a failure occurs dur-
ing the initial writing of the tentative cohort sets. In this
case, the tentative cohort sets can be safely ignored since
the committed cohort sets represent a consistent view of
the system.

The system considers each on-line disk in turn as it be-
comes active. Each disk will have its cohort set compared
to the cohort set of all on-line disks. When the system is
able to contact all disks in a cohort set, and the cohort sets
of each of these disks agree (the equal and complete prop-
erty), then this disk and all disks in its cohort set can be
declared to be current.

Disks which are unable to complete this procedure are
out-of-date and must be repaired from one of the current
disks.
3.4 Single-copy semantics

There is a possibility that a write operation may fail, or
be interrupted, before all of the disks can, b,e written. As
a result, only a subset of the disks hold the latest version
of the data. Subsequent read operations may get different
results, depending on which disk satisfies the request.

Instead, it is desirable to have single-copy semanrics,
where the mirrored storage behaves like a single disk. In
order to do this, a dirty bit' is used. This bit is replicated
on each disk and is set before a write operation first oc-
curs to some portion of the disk. This bit is reset (cleaned)
when the disk is quiescent. To speed recovery, a dirty bit
is assigned to each region of the disk that is mirrored. In
this way, recovery is more rapid since only a subset of the
disk sectors are likely to be accessed before the dirty bits
are again cleaned.

When the system recovers, the dirty bit is used to pro-
vide single-copy semantics in this way: if the dirty bit is
set, then a valid (usually the first) disk is copied to the oth-
ers that make up the mirrored set. A valid disk is any disk
that satisfies the currency requirements of the recovery pro-
cedure. Since a write may have failed before it could com-
plete on all disks, a small number of writes may be lost.
While it may be desirable to never lose a write, the perfor-
mance cost is prohibitive. This method provides semantics
equivalent to those of a single disk and at a very low cost.

The amount of storage represented by each dirty bit
is an engineering decision. Finer granularity yields more
rapid recovery, but increases the cost of writing since the
dirty bit much be set more often. The costs can be signif-
icant, since the dirty bit must be forced to disk before the
write can proceed.

'Based on research by J. Menon on RAID controllers,

4 Dependability Analysis
Availability is the most common measure of depend-

ability for reparable systems that are expected to remain
operational over an extended period. It is traditionally de-
fined as the fraction of time that the system is expected
to be available. In the case of mirrored storage, it is the
fraction of time that the system will allow read and write
operations to occur.

The system model consists of a set of storage devices
(disks and the associated controller) with independent fail-
ure modes. A non-independent failure, such as the loss of
power, can be modeled separately as a simple multiplica-
tive factor.

When a device fails, a repair process is immediately
initiated. Should several devices fail, the repair process
will be performed in parallel on the devices. Device fail-
ures rates are assumed to be exponentially distributed with
mean A, and repair rates are assumed to be exponentially
distributed with mean p. The rate at which all write
requests occur, and which serve as the failure detection
mechanism, are assumed to be characterized by a Poisson
process with mean K.

The analysis of the mirrored disk system is similar to
the analysis of the available copy protocol for distributed
data base systems [3]. Here we present a model for two
disks, larger systems are similar but have a much larger
state space.

2h

Figure 1 : State Transition Diagram

As shown in Figure 1, the states of the Markov model
are labeled by the ordered triple (i, j, k), where i represents
the number of current (or up-to-date) disks, j represents
the cardinality of the current cohort set and k represents
the number of disks that are out-of-date. When a state is

275

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 12,2020 at 06:01:06 UTC from IEEE Xplore. Restrictions apply.

marked with a bar, for example (1,2,0), this indicates that
the system is unavailable.

A system of equations can be derived from this state
transition diagram, and solved either algebraically or using
numerical methods. If we let p = h / p and 4 = ~ / p , then
the equations are significantly simplified.

The availability of the system using algorithm X with k
disks is denoted AX (k). AM (k) indicates the availability
of mirroring with k disks, and AV (k) indicates the avail-
ability using voting (quorum consensus).

The availability of the mirrored disk system with two
disks is the sum of the probabilities of being in an available
state and is given by the expression:

4 p 2 +3p2 +3p4 + 4 p + 4 + 1
AM(2) = (p + 1) 3 (p + 4 + 1) 8

If the writes occur with sufficient frequency that the cohort
sets can be assumed to be up-to-date, then the availability
is given by the expression:

, .

It should be noted that for conservative estimates of h and
p, the difference between these two expressions is leks than
0.000002.

The availability of the mirrored disk system with three
disks can be derived in a similar manner. In this case, the
state diagram has sixteen states. The resulting expression
is very large and has been omitted for the sake of brevity.
If we again make the assumption of frequent writes, then
the availability of a system with three disks is given by the
expression: 4 %

2p4+11p3+17p2+9p+2
(p + 1I3(2p2 + 3 p + 2)

lim AM(^) =
9 -) ~

This analysis can be done for any number of disks, al-
though the equations quickly become unmanageable. If
the frequent write assumption is made - writes occur much
more frequently than failures - then a closed form solution
has been derived [31.

It is instructive to compare the availability afforded by
our method with an ideal, but unrealizable, system where
reads and writes can occur as long as there is at least one
disk accessible. This scheme provides no consistency, but
its availability is an upper-bound on the performance of
method.

The availability of a single disk is given by
I . 1

From this, it is easy to see that the probability of finding
exactby k disks available is:

This means that an upper bound on the availability of it
mirrored system with n disks is given by [7]:

Pn
(1 + P P *

A(n) 5 1 -po = 1 - -

It is also instructive to compare the availability of our
method with that of quorum consensus. In quorum con-
sensus, the current disks of the data must be found among
a majority of accessible disks.

For an odd number of disks, the availability of quorum
consensus was derived by Piiris [6] (it has been shown that
an even number of disks k yields the same availability as
an odd number of disks k - 1):

In the following graphs, we will compare our algorithm
with a system that does not enforce consistency and with
quorum consensus. The ordinate axis is p, which ranges
from 0.0 to 0.01. These are conservative estimates based
on a maximum M'ITF of approximately five years (a com-
mon warranty period) and a MlTR of two weeks. The
coordinate axis indicates the availability provides by each
scheme.

0,99975 No Consistency (2) - t
0.9997' ' ' ' ' ' ' ' ' ' I

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 2: Compared Availability, 0 5 p 5 0.01

We now compare our algorithm using two disks, with
both a system that maintains no consistency, and one that
uses quorum consensus with three disks to determine the
current disk. We see from Figure 2, that while as is to be

276

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 12,2020 at 06:01:06 UTC from IEEE Xplore. Restrictions apply.

1

0.999999

0.999996

0.999997

0.999996

0.999995

0.999994

0.999993

0.999992 No Consistency (3) -
Mirror 3 ----.

Quorum [5{ ..--- 0.999991 I

I r - - . . - . F - ._____: I I 1 I

-. ---. - --. --_ -- -- -- --__ -- -..__ --__

-... ...
--.. -

-
-
-
-
- .
-

0.99999’ I ’ I ’ ’ ’ I I ’
0 0.001 0.0020.0030.004 0.0050.006 0.007 0.006 0.009 0.01

Figure 3: Compared Availability, 0 5 p 5 0.01

expected, our algorithm provides lower availability than a
system with no consistency, it provides better availability
than quorum consensus with an added disk.

Next, in Figure 3, we compare our algorithm using three
disks with a system that maintains no consistency and a
system using quorum consensus with five disks. Our algo-
rithm again provides availability that is superior to quorum
consensus with nearly twice as many disks.

We believe that this analysis shows that our algorithm
provides superior availability at a reduced cost in terms of
both metadata and complexity.

. 5 Discussion
While the reliability of disks has increased to the point

that a single disk can be expected not to fail for several
years, the integrity of data is still an important issue. In
the case of small systems, experience indicates that back-
ups are seldom performed. Losing data even once every
few years is a potential disaster. In the case of large instal-
lations, even though each disk is expected to last several
years, the expected time to have one of the disks fail is
measured in weeks and in some cases days,

By using mirroring, the likelihood of data loss is greatly
reduced. In the case of large installations, it will essen-
tially eliminate data loss provided that failed disks are re-
placed in a timely fashion. Given the cost trends of mag-
netic storage, mirroring may remove the need to perform
routine back-ups in most small installations.

6 Conclusions
We have developed a simple technique for efficiently

managing mirrored storage. Our technique requires a only
a small amount of metadata, and does not require logging
or quorum collection. It allows automatic recovery from
failure with an arbitrary number of disks, and its simplic-
ity and robustness makes it viable even in the consumer

market.
A significant advantage of this scheme is that its cost is

low, both in terms of storage required and in terms of over-
head. For n disks of the data, it requires n bits per disk to
represent the set, and log n bits to store the ordinal number
of each disk. While these bits are hardened metadata, they
need only be modified when a failure is detected (typically,
when a write fails to complete).

We have shown, using standard Markov analysis, that
our algorithm provides excellent availability. In particular,
it is very close to the upper-bound where no consistency is
enforced and is clearly superior to the availability provided
by quorum consensus, Its use can effectively eliminate the
risk of data loss.

References
[11 P. A. Bemstein, V. Hadzilacos, and N. Goodman, Concur-

rency control and recovery in database systems. Reading,
Massachusetts: Addison-Wesley, 1987.

[2] J. Gray and A. Reuter, Transaction processing: concepts
and techniques. Morgan Kaufmann, 1993.

[3] D. D. E. Long, The Management of Replication in a Dis-
tributed System. Ph.D. dissertation, University of California
at San Diego, 1988.

[4] D. D. E. Long and J.-E P&s, “A leaner, more efficient,
available copy protocol,” in Proceedings of the Symposium
on Parallel and Distributed Processing, (New Orleans),
IEEE, October 1996.

[5] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz, “ARIES: A transaction recovery method sup-
port fine-granularity locking and partial rollbacks using
write-ahead logging,” ACM Transaction on Database Sys-
tems, vol. 17, March 1992.

[6] J . - E P&s, “Voting with a variable number of copies,” in
Proceedings Sixteenth Fault-Tolerant Computing Sympo-
sium, (Vienna), pp. 50-55, IEEE, 1986.

[7] J.-E PiIris and D. D. E. Long, “The performance of avail-
able copy protocols for the management of replicated data,”
Pelformance Evaluation, vol. 11, pp. 9-30, 1990.

[SI D. Skeen, “Determining the last process to fail,” ACM
Transaction on Computer Systems, vol. 3, pp. 15-30, 1985.

[9] K. S. Trivedi, Probability & Statistics with Reliability,
Queuing and Computer Science Applications. Englewood
Cliffs, New Jersey: Prentice-Hall, 1982.

[lo] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP
AutoRAID hierarchical storage system,” in Proceedings of
the Fifeenth Symposium on Operating Systems Principles,
(Copper Mountain), ACM, 1995.

277

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 12,2020 at 06:01:06 UTC from IEEE Xplore. Restrictions apply.

