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A Technique for Managing Mirrored Disks 

Darrell D. E. Long+ 
Computer Science Department 

Jack Baskin School of Engineering 
University of California, Santa Cruz 

Abstract 
Disk mirroring is a highly effective technique for  im- 

proving the fault tolerance andperformance of storage sys- 
tems. Mirroring requires that those disks holding the cur- 
rent data must be determined when recovering from total 
system failure. In a two disk system, this is only a mi- 
nor problem since the operator can indicate which disk 
is  current. The complexity increases when more disks are 
introduced, and requiring human intervention is impracti- 
cal when the target environment is the consumer market. 
In these situations, automatic recovery must be used when 
possible. 

We describe an eficient algorithm for managing the 
consistency of mirrored storage. Our algorithm requires 
only n f log n bits of state per disk and does not require 
logging or quorum collection. 

1 Introduction 
Mirrored storage provides several advantages, includ- 

ing better fault tolerance and increased read performance. 
The use of this technology has normally been confined to 
high-end systems, since it was considered to be expensive 
both in terms of the extra storage required, and in terms of 
the processing necessary to implement it. Trends in tech- 
nology have mitigated both of these concerns; in particular 
the cost of storage has dropped dramatically, and it is now 
practical to provide mirroring in small systems as well as 
large. 

When disks fail in a mirrored system, writes are al- 
lowed to continue on the surviving disks. This is one of 
the fundamental reasons for employing mirroring. Tempo- 
rary failures of the system are common (such as the loss 
of power), and these events make it necessary to determine 
which disks are current and which are out of date in a reli- 
able and automatic manner. 

Consider the scenario in which a disk suffers a tempo- 
rary failure, such as a loose connection. The system will 
continue operation, but will eventually be shut down so the 
connection can be repaired. When the system recovers, all 
disks will be again on-line, but the system must determine 
which disks are current. 

tThe author is a Visiting Scientist at IBM Almaden Research Center. 
He is grateful for the input of his colleagues, in particular R. Fagin, N. 
Hanami, S. Edelman, A. Lam, J.-E PMs and J. Wyllie. 

W i l e  this may seem to be an uncomplicated task, it is 
easy to show that simple schemes, such as using version 
numbers, are insufficient, since there are sequences of fail- 
ures that make an out of date disk indistinguishable from 
the current disk. For example, suppose there are two disks, 
both of which have failed. When one of the disks recov- 
ers, and has version number k, is it the current disk? There 
is no way to tell until the second disk has been repaired 
and the version numbers can be compared. The problem is 
equivalent to determining the last process to fail [8]. 

We have developed a technique for disk mirroring that 
has very small metadata requirements. It provides better 
reliability than most other methods that are employed in 
practice. It can be implemented efficiently for as few as 
two disks and scales to an arbitrary number of disks. 

Maintaining correct metadata is critical to the opera- 
tion of the system. It should also be noted that failures 
are rare events. The only time metadata is modified using 
our scheme is when a failure is noticed, so most of the time 
the system will simply apply each write to every disk. As 
a result, the amortized cost of maintaining the metadata is 
nearly zero. 

In the following sections, we describe our method, and 
using standard Markov analysis show that it provides ex- 
cellent availability. In particular, it is shown to be signifi- 
cantly better than quorum consensus. 

2 Related Research 
The amount of published research on how to implement 

mirrored storage is surprisingly small. In contrast to log- 
ging, which has been carefully described [5,2], most refer- 
ences discuss mirroring in a general context, and leave the 
details of implementation to be resolved later. 

There are several methods in use for managing mirrored 
storage. Perhaps the simplest technique is to designate one 
disk as the primary. Its advantage is in its simplicity; its 
primay disadvantage is that it limits availability and ne- 
cessitates manual intervention if the primary copy fails to 
recover following a total failure. 

A possible solution is to use quorum consensus to de- 
termine which copies of the data are current. This has the 
advantage of making automatic recovery possible, but has 
the disadvantage of requiring at least three disks to improve 
availability. 
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A third common technique for determining which disk 
is current is to use a log. This has the advantage of pro- 
viding excellent availability, but has the disadvantage of 
the added complexity of maintaining the log. In particular, 
the issue of providing a reliable log becomes an interest- 
ing one. Hardening of the log is done through redundancy, 
such as mirroring. While the semantics of logs allow them 
to be implemented reliably, we believe that a technique that 
does not require this added complexity has many benefits. 

Another advantage of mirrored storage is its perfor- 
mance benefits. Mirroring has been shown to have better 
read performance than RAID [lo], and that it can improve 
read performance over that of a single disk. While in prac- 
tice, a read operation is usually issued on only one disk, 
if the read were issued in parallel on all disks then its ex- 
pected performance would improve. The analysis is sim- 
ple: since there are several readwrite heads available, and 
if we assume that the disks are not synchronized, then the 
read request can return as soon as the first disk has com- 
pleted the read operation. 

Conversely, a mirrored storage system requires that all 
disks be written before the write operation can complete 
(this may be relaxed with the addition of a stable cache, for 
example using non-volatile memory). It can be shown that 
the seek time will tend toward the maximum seek time for 
a single disk as the number of disks increases. In practice, 
though, a small number of disks will be used. In the case 
of three disks, the expected divergence from the mean seek 
time is only 50% [9]. 
Our method is related to research into efficient methods 

for implementing the available copy protocol [l]. Our ear- 
lier research [7] led to an efficient method for finding the 
last site to fail using a data structure called was-available 
sets. The contents of these sets change only when a failure 
or a recovery operation occurs, and then only at those sites 
that participated in the operation. As a result, the compu- 
tation of a closure operation on those sets was required. 
Version numbers were then used to determine which sites 
in the closure were current. 

Our new method replaces this closure operation with 
a simple test for equality, which results in a significantly 
simplified algorithm and a slight increase in the availabil- 
ity provided. The need for version numbers has also been 
removed, with-the result that the metadata storage require- 
ment is reduced. 

3 Mirroring Algorithm 
The central issue for managing mirrored storage is de- 

termining the current state of the system following a fail- 
ure. Since partitions are not a concern in disk mirroring, 
we were able to exploit this fact to develop an algorithm 
that can tolerate k - 1 failures among k mirrored disks. 

Our algorithm works by tracking the current version of 

the data using a simple data structure we call cohorr sets. 
These sets, a copy of which is stored on each disk, indicate 
which disks participated in a given write operation. Using 
only this information, we can determine which disks hold 
the current version of the data. 

3.1 Cohort Sets 
The goal of the recovery algorithm is to determine 

which disks are current. A current disk is, by definition, 
the one that participated in the most recent write operation. 

A cohort set for a given disk is the set of all mirrored 
disks which last participated with that disk in a write oper- 
ation. Cohort sets require n bits per disk, where n is the 
number of disks. If there is no explicit numbering on the 
disks, then an additional log n bits per disk are required to 
provide that numbering. 

Cohort sets are similar to the was-available sets used 
for the available copy protocol, except that the condition 
for finding the last copy to fail is much simpler. In fact, our 
method has been extended to the available copies proto- 
col, resulting in a significant simplification in the recovery 
procedure [4]. 

Our approach is to record membership information in 
these cohort sets. For example, if there are three disks, A, 
B and C, and CA, CB and C c  are the corresponding co- 
hort sets, Table l can be used to illustrate what happens 
when disks fail and recover. Suppose that the system starts 
with a full complement of disks. At some time in the fu- 
ture, disk C fails and a write operation occurs. The state 
of the system is reflected in the second row of the table, 
where CA = CB = {A, B}, which indicates that disks A 
and B were the only participants in the last write operation. 
At some point further on, disk B also fails, followed by a 
write operation. This is reflected in the third row, where 
only disk A is current. Suppose now that the other two 
disks recover, then the state of the system is reflected in 
the fourth row. Which disks are current? Only disk A, 
since CA = {A}. 

Table 1 : An Example of Failure and Recovery 

CA CB cc 

We observe that the set of current disks must have co- 
hort sets that are both equal and complete. By equal, we 
mean that the cohort sets of all disks in this set must agree. 
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By complete we mean that all disks listed in the cohort sets 
must be accessible. 

For example, suppose that we have three disks, and let 
CA = {A, B}, C g  = {A, B} and CC = {B, C}. In this case 
CA and CB are both equal and complete, and so the disks 
are current, while CC indicates a disk that is out of date. 

Definition 3.1 The current set is the set of all disks G such 
that for each disk i E G ,  its cohort set Ci C G meets the 
condition: 

Vj E Ci,Cj = Ci. 

That is, for any disk in the current set, its cohort set must 
contain exactly those disks in the current set. Since the 
cohort sets contain exactly the current set, it is necessary 
and sufficient to verify that these cohorts sets are equal. 
Our algorithm operates by recording changes in the sys- 

tem configuration as they are detected, through write oper- 
ations. The write operation records in the cohort sets of the 
participating disks the identity of all disks involved in that 
operation. 

When a disk has been repaired, it must perform a re- 
covery procedure to ensure that it holds the most. current 
data. There are two ways for a disk to become current: it 
may find that it is already a member of the current set, or 
it may find that it has been excluded from the current set. 
In the latter case it must copy the current state of the data 
from one of the members of the current set and then join 
the current set. 

The algorithm is correct - the data is guaranteed to be 
consistent if there is always exactly one current set. Its 
correctness is established by the following theorem. 

Theorem 3.1 There is at  any time exactly one current set. 

Proof. Initially there is only one current set consisting all 
disks. There are only two ways for the current set to be 
modified. The first is for a failure to occur and to be noticed 
by a failure detection mechanism such as a write operation. 
The second is for a disk to be repaired and go through the 
recovery procedure. 

Case I. Suppose some disk d which is a member of 
the current set fails. The algorithm will remove d from the 
current set. The removal of d cannot introduce a second 
current set since d would had to have been the only shared 
element among several intersecting sets. Since all cohort 
sets in the current set are equal, this is impossible. Disk d 
does not introduce a new current set since it unchanged by 
the failure, and lists all other members of the current set of 
which it was a member. 

Case 2. Suppose that some disk d is repaired. The re- 
covery procedure designates d as current if it is a member 
of the current set, or it copies the state from the current set 

and then joins it. If d is a member of the current set, then 
there is no change in the single current set. If d joins the 
existing current set, it cannot introduce a new current set 
since joining the existing current set only modifies that set. 
Q. E. D. 
3.2 Reading and Writing 

Cohort sets are the critical metadata items for mirrored 
operation and must be correct for the recovery algorithm 
to operate correctly. As discussed above, it was assumed 
that cohort sets were completely written to stable storage 
following the detection of a failure. While extremely rare, 
it is possible that a second failure could occur while the 
cohort sets were being written. 

In order to mitigate the effects of this unlikely failure 
scenario, two phases are used to write the cohort sets to 
stable storage. In the first phase, the so-called tentative co- 
hort sets are written. If this fails, the system can fall back 
to the original committed cohort sets. In the second phase, 
the tentative cohort sets are cleared and the committed co- 
hort sets are written. Should this fail, the tentative cohort 
sets that remain can be used in conjunction with the newly 
committed cohort sets. 

Cohort sets are modified when a write operation occurs 
following a failure. As long as cohort sets are written every 
time a failure is detected, the data is assured to be correct. 

Frequent writes have the effect of speeding recovery. If 
writes are too infrequent to provide sufficiently fine grained 
failure detection, then cohort sets can be modified when 
read operations occur. If an asynchronous failure notifica- 
tion mechanism is available, then it can be used to modify 
cohort sets as well. 
3.3 Recovery 

The recovery from total failure is the most intricate op- 
eration in the system. Since failures may occur at any time, 
cohort sets must be carefully maintained. We write cohort 
sets using the two-phase write described in the previous 
section. In this case, the following recovery procedure can 
be applied. 
3.3.1 Recovery Procedure 

In order to declare a set of disks current, the cohort sets 
for each disk are checked for equality and completeness in 
the following order: 

1. All cohort sets are tentative. This will succeed if there 
was a failure after the tentative cohort sets were writ- 
ten, but before the committed cohort sets were writ- 
ten. 

2. There is a mixture of tentative and committed cohort 
sets that form a current set. This will succeed if there 
was a failure while the committed cohort sets were 
being written. 
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3. There are only the committed cohort sets. This is the 
most common case and will succeed if the two phase 
write completed successfully. 

There is one further case - when a failure occurs dur- 
ing the initial writing of the tentative cohort sets. In this 
case, the tentative cohort sets can be safely ignored since 
the committed cohort sets represent a consistent view of 
the system. 

The system considers each on-line disk in turn as it be- 
comes active. Each disk will have its cohort set compared 
to the cohort set of all on-line disks. When the system is 
able to contact all disks in a cohort set, and the cohort sets 
of each of these disks agree (the equal and complete prop- 
erty), then this disk and all disks in its cohort set can be 
declared to be current. 

Disks which are unable to complete this procedure are 
out-of-date and must be repaired from one of the current 
disks. 
3.4 Single-copy semantics 

There is a possibility that a write operation may fail, or 
be interrupted, before all of the disks can, b,e written. As 
a result, only a subset of the disks hold the latest version 
of the data. Subsequent read operations may get different 
results, depending on which disk satisfies the request. 

Instead, it is desirable to have single-copy semanrics, 
where the mirrored storage behaves like a single disk. In 
order to do this, a dirty bit' is used. This bit is replicated 
on each disk and is set before a write operation first oc- 
curs to some portion of the disk. This bit is reset (cleaned) 
when the disk is quiescent. To speed recovery, a dirty bit 
is assigned to each region of the disk that is mirrored. In 
this way, recovery is more rapid since only a subset of the 
disk sectors are likely to be accessed before the dirty bits 
are again cleaned. 

When the system recovers, the dirty bit is used to pro- 
vide single-copy semantics in this way: if the dirty bit is 
set, then a valid (usually the first) disk is copied to the oth- 
ers that make up the mirrored set. A valid disk is any disk 
that satisfies the currency requirements of the recovery pro- 
cedure. Since a write may have failed before it could com- 
plete on all disks, a small number of writes may be lost. 
While it may be desirable to never lose a write, the perfor- 
mance cost is prohibitive. This method provides semantics 
equivalent to those of a single disk and at a very low cost. 

The amount of storage represented by each dirty bit 
is an engineering decision. Finer granularity yields more 
rapid recovery, but increases the cost of writing since the 
dirty bit much be set more often. The costs can be signif- 
icant, since the dirty bit must be forced to disk before the 
write can proceed. 

'Based on research by J. Menon on RAID controllers, 

4 Dependability Analysis 
Availability is the most common measure of depend- 

ability for reparable systems that are expected to remain 
operational over an extended period. It is traditionally de- 
fined as the fraction of time that the system is expected 
to be available. In the case of mirrored storage, it is the 
fraction of time that the system will allow read and write 
operations to occur. 

The system model consists of a set of storage devices 
(disks and the associated controller) with independent fail- 
ure modes. A non-independent failure, such as the loss of 
power, can be modeled separately as a simple multiplica- 
tive factor. 

When a device fails, a repair process is immediately 
initiated. Should several devices fail, the repair process 
will be performed in parallel on the devices. Device fail- 
ures rates are assumed to be exponentially distributed with 
mean A, and repair rates are assumed to be exponentially 
distributed with mean p. The rate at which all write 
requests occur, and which serve as the failure detection 
mechanism, are assumed to be characterized by a Poisson 
process with mean K. 

The analysis of the mirrored disk system is similar to 
the analysis of the available copy protocol for distributed 
data base systems [3]. Here we present a model for two 
disks, larger systems are similar but have a much larger 
state space. 

2h 

Figure 1 : State Transition Diagram 

As shown in Figure 1, the states of the Markov model 
are labeled by the ordered triple (i, j, k), where i represents 
the number of current (or up-to-date) disks, j represents 
the cardinality of the current cohort set and k represents 
the number of disks that are out-of-date. When a state is 
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marked with a bar, for example (1,2,0), this indicates that 
the system is unavailable. 

A system of equations can be derived from this state 
transition diagram, and solved either algebraically or using 
numerical methods. If we let p = h / p  and 4 = ~ / p ,  then 
the equations are significantly simplified. 

The availability of the system using algorithm X with k 
disks is denoted AX (k). AM (k) indicates the availability 
of mirroring with k disks, and AV (k) indicates the avail- 
ability using voting (quorum consensus). 

The availability of the mirrored disk system with two 
disks is the sum of the probabilities of being in an available 
state and is given by the expression: 

4 p 2  +3p2 +3p4 + 4 p  + 4  + 1 
AM(2) = ( p  + 1 ) 3 ( p + 4  + 1) 8 

If the writes occur with sufficient frequency that the cohort 
sets can be assumed to be up-to-date, then the availability 
is given by the expression: 

, .  

It should be noted that for conservative estimates of h and 
p, the difference between these two expressions is leks than 
0.000002. 

The availability of the mirrored disk system with three 
disks can be derived in a similar manner. In this case, the 
state diagram has sixteen states. The resulting expression 
is very large and has been omitted for the sake of brevity. 
If we again make the assumption of frequent writes, then 
the availability of a system with three disks is given by the 
expression: 4 %  

2p4+11p3+17p2+9p+2 
( p  + 1I3(2p2 + 3 p  + 2 )  

lim  AM(^) = 
9 - ) ~  

This analysis can be done for any number of disks, al- 
though the equations quickly become unmanageable. If 
the frequent write assumption is made - writes occur much 
more frequently than failures - then a closed form solution 
has been derived [ 31. 

It is instructive to compare the availability afforded by 
our method with an ideal, but unrealizable, system where 
reads and writes can occur as long as there is at least one 
disk accessible. This scheme provides no consistency, but 
its availability is an upper-bound on the performance of 
method. 

The availability of a single disk is given by 
I .  1 

From this, it is easy to see that the probability of finding 
exactby k disks available is: 

This means that an upper bound on the availability of it 
mirrored system with n disks is given by [7]: 

Pn 
(1 + P P  * 

A(n) 5 1 -po = 1 - - 

It is also instructive to compare the availability of our 
method with that of quorum consensus. In quorum con- 
sensus, the current disks of the data must be found among 
a majority of accessible disks. 

For an odd number of disks, the availability of quorum 
consensus was derived by Piiris [6]  (it has been shown that 
an even number of disks k yields the same availability as 
an odd number of disks k - 1): 

In the following graphs, we will compare our algorithm 
with a system that does not enforce consistency and with 
quorum consensus. The ordinate axis is p, which ranges 
from 0.0 to 0.01. These are conservative estimates based 
on a maximum M'ITF of approximately five years (a com- 
mon warranty period) and a MlTR of two weeks. The 
coordinate axis indicates the availability provides by each 
scheme. 

0,99975 No Consistency (2) - t 
0.9997' ' ' ' ' ' ' ' ' ' I 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

Figure 2: Compared Availability, 0 5 p 5 0.01 

We now compare our algorithm using two disks, with 
both a system that maintains no consistency, and one that 
uses quorum consensus with three disks to determine the 
current disk. We see from Figure 2, that while as is to be 
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expected, our algorithm provides lower availability than a 
system with no consistency, it provides better availability 
than quorum consensus with an added disk. 

Next, in Figure 3, we compare our algorithm using three 
disks with a system that maintains no consistency and a 
system using quorum consensus with five disks. Our algo- 
rithm again provides availability that is superior to quorum 
consensus with nearly twice as many disks. 

We believe that this analysis shows that our algorithm 
provides superior availability at a reduced cost in terms of 
both metadata and complexity. 

. 5 Discussion 
While the reliability of disks has increased to the point 

that a single disk can be expected not to fail for several 
years, the integrity of data is still an important issue. In 
the case of small systems, experience indicates that back- 
ups are seldom performed. Losing data even once every 
few years is a potential disaster. In the case of large instal- 
lations, even though each disk is expected to last several 
years, the expected time to have one of the disks fail is 
measured in weeks and in some cases days, 

By using mirroring, the likelihood of data loss is greatly 
reduced. In the case of large installations, it will essen- 
tially eliminate data loss provided that failed disks are re- 
placed in a timely fashion. Given the cost trends of mag- 
netic storage, mirroring may remove the need to perform 
routine back-ups in most small installations. 

6 Conclusions 
We have developed a simple technique for efficiently 

managing mirrored storage. Our technique requires a only 
a small amount of metadata, and does not require logging 
or quorum collection. It allows automatic recovery from 
failure with an arbitrary number of disks, and its simplic- 
ity and robustness makes it viable even in the consumer 

market. 
A significant advantage of this scheme is that its cost is 

low, both in terms of storage required and in terms of over- 
head. For n disks of the data, it requires n bits per disk to 
represent the set, and log n bits to store the ordinal number 
of each disk. While these bits are hardened metadata, they 
need only be modified when a failure is detected (typically, 
when a write fails to complete). 

We have shown, using standard Markov analysis, that 
our algorithm provides excellent availability. In particular, 
it is very close to the upper-bound where no consistency is 
enforced and is clearly superior to the availability provided 
by quorum consensus, Its use can effectively eliminate the 
risk of data loss. 
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