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Abstract 

Providing personalized energy-use information to individual occupants enables the adoption of 

energy-aware behaviors in commercial buildings. However, the implementation of individualized 

feedback still remains challenging due to the difficulties in collecting personalized data, tracking 

personal behaviors, and delivering personalized tailored information to individual occupants. 

Nowadays, the Internet of Things (IoT) technologies are used in a variety of applications including 

real-time monitoring, control, and decision-making due to the flexibility of these technologies for 

fusing different data streams. In this paper, we propose a novel IoT-based smartphone energy 

assistant (iSEA) framework which prompts energy-aware behaviors in commercial buildings. 

iSEA tracks individual occupants through tracking their smartphones, uses a deep learning 

approach to identify their energy usage, and delivers personalized tailored feedback to impact their 

usage. iSEA particularly uses an energy-use efficiency index (EEI) to understand behaviors and 

categorize them into efficient and inefficient behaviors. The iSEA architecture includes four layers: 

physical, cloud, service, and communication. The results of implementing iSEA in a commercial 

building with ten occupants over a twelve-week duration demonstrate the validity of this approach 

in enhancing individualized energy-use behaviors. An average of 34% energy savings was 

measured by tracking occupants’ EEI by the end of the experimental period. In addition, the results 

demonstrate that commercial building occupants often ignore controlling over lighting systems at 

their departure events that leads to wasting energy during non-working hours. By utilizing the 

existing IoT devices in commercial buildings, iSEA significantly contributes to support research 

efforts into sensing and enhancing energy-aware behaviors at minimal costs.    
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1. Introduction 

Even when compared to other major characteristics of energy consumption in commercial 

buildings (such as building physical characteristics and appliance/system characteristics), 

occupant energy behavior characteristics have predominantly been considered as a more cost-

effective approach toward reducing building energy consumption [1–7]. Commercial buildings are 

responsible for more than 30% of United States energy-use [8] and up to 30% of this amount could 

be saved through adopting energy-aware behaviors among building occupants [9]. In fact, a large 

body of research [10–18] demonstrates a strong promise in utilizing various feedback-based 

techniques/systems to enhance energy-use behaviors. In particular, it has been shown that 

compared to group-level feedback, individualized feedback (i.e., providing individual occupants 

with personalized energy-use information) offers better opportunities to adopt energy-saving 

behaviors [19–21]. 

However, the implementation of individualized feedback remains limited in commercial 

settings. This is largely because of difficulties associated with (1) collecting personalized data, (2) 

identifying anomalous behaviors, (3) delivering personal tailored information to individual 

occupants, and (4) tracking individual’s energy-use behaviors over time [9,22–25]. In particular, 

a feedback mechanism not only should properly perform each of the mentioned steps but also 

needs to appropriately link these steps to enhance energy-use behaviors. This linkage cannot be 

provided by conventional feedback mechanisms available in commercial buildings. Currently, 

functional structured feedback mechanisms are often tailored to residential settings and are not 

suitable for implantation in commercial settings [26,27]. Therefore, there is still a dearth of 

applicable approaches for commercial buildings. 

Recently, the Internet of Things (IoT) as a prominent technology is transferring 

conventional building energy management systems (BEMS) into smart, scalable, efficient, secure, 

flexible, and real-time systems for easier and greater energy-savings in both residential [28–32] 

and commercial buildings [33–38]. In particular, IoT-based approaches more accurately estimate 

thermal and scheduling models to minimize energy used by HVAC systems [39–44]; these systems 

currently consume about 50% of building energy consumption in developed countries [45–47]. 

IoT also enables manipulating the energy-use of a fleet of buildings [48] and facilitates the 

development of demand-response energy management platforms [49]. In addition, IoT benefits in 

controlling and automating building lighting systems [50,51]. With regards to building occupants, 
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IoT benefits into occupancy detection and activity recognition [52–54] and has been used for 

monitoring energy usage of commercial building occupants [55] and increasing their energy-

saving awareness [56–59].  

In particular, IoT uses internet to connect internet-enabled objects of a system (such as 

sensors and processors of BEMS) to each other for real-time communications and interactions 

which leads to achieving a high–level of intelligence and efficiency for the system. With the rapid 

development of sensor technology which provides commercial off-the-shelf (COTS) low-cost 

internet-enabled sensors (that allow to sense, store, transfer, and display high-temporal resolution 

data of a system in real-time), IoT-based approaches could be implemented in any web-based 

environment including residential and commercial buildings (while these approaches might have 

privacy issues of unwanted public data/profiles and eavesdropping). Accordingly, IoT along with 

COTS internet-enabled sensors could be utilized to develop a feedback mechanism which is able 

to monitor individual occupants’ energy usage in real-time, to analyze the data for identifying 

efficient and inefficient behaviors, and to deliver tailored feedback to each occupant. 

Leveraging the described opportunities, we propose an IoT-based smartphone energy 

assistant (iSEA) framework which acts as a personal feedback mechanism to prompt energy-aware 

behaviors in commercial buildings. iSEA tracks individual occupants based on their smartphones’ 

Wi-Fi disconnection events and uses a supervised deep learning approach to identify their energy-

use actions. In particular, iSEA utilizes an energy-use efficiency index (EEI) to understand 

individual’s behaviors and categorizes the occupants to efficient and inefficient groups. Then, 

iSEA delivers personalized tailored feedback to enhance individualized energy-use behaviors. To 

assess the iSEA validity, we conducted a pilot experiment in a commercial building (with ten 

occupants) over a twelve-week duration. The findings demonstrate the iSEA ability to address the 

current limitations of literature in collecting personalized data, tracking personalized behavior, and 

delivering personal tailored information to individual occupants in a holistic fashion. 

 

2. Related Work 

2.1. Energy feedback in commercial buildings 

Researchers [10–19] have utilized various feedback-based techniques to influence energy 

consumption in commercial buildings. For example, Staats et al. [60] provided feedback to 

occupants in a commercial building and their results showed that 80% of occupants considered 
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energy-saving behaviors. In particular, it has been indicated that there are certain characteristics 

that allow feedback to be more effective. A key characteristic is the resolution of occupant-specific 

energy-consumption data [17,61,62], considering that low-temporal-resolution data may lead to 

misunderstanding about energy-use behaviors [55]. Another characteristic is to ascertain the 

appropriate frequency of feedback [10,11]. Feedback provided too frequently may positively 

influence energy-use behaviors in a short period but may also lead to information overload which 

discourages occupants from positively reacting to the feedback [26,63]. The next characteristic is 

improving engagement between building occupants and relevant feedback [13,14].  Jain et al. [15] 

found a significant correlation between feedback/occupant engagement and energy savings over 

time, and thereby insufficient engagement to feedback systems leads to decay of energy-saving 

behaviors.  

Researchers have also examined other non-critical feedback characteristics such as the role 

of goal setting [64] and normative aspects of feedback [65]; however, the fundamental challenge 

that prevent large-scale implementation of feedback-based methods is the lack of methodologies 

for understanding the proper (1) resolution of personalized consuming data, (2) flow of feedback 

information (without creating an overload situation), and (3) occupant/feedback engagements. 

While functional methodologies have been developed in residential buildings [66–73], there is still 

a need for a methodology to provide a relevant and context-aware individualized feedback that 

effectively engages with the diverse array of commercial building occupants. 

 

2.2. Occupant energy-use monitoring in commercial buildings  

In order to monitor personal energy-use data which are required for individualized feedback, there 

are generally two categories of methods in commercial buildings. The first category which have 

been widely employed and observed in feedback studies, is intrusive load monitoring [74]. In this 

method, a power meter is installed at the cubicle/workstation assigned to a single occupant and 

tracks energy-consuming data of the occupant. Yun et al. [62], Coleman et al. [17], Rafsanjani et 

al. [75], and Gulbinas et al. [61] are examples used intrusive-load approaches to collect individual 

occupants’ usage data in commercial buildings. The second category is non-intrusive load 

monitoring. In this category, without installing additional meters, data provided in building 

operation (e.g., data provided by building-level meters) are utilized to monitor individual 

occupants’ usage. Rafsanjani and Ghahramani [55], Kavulya and Becerik-Gerber [76], Moayedi 
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et al. [77,78], Jazizadeh and Becerik-Gerber [79], and Rafsanjani et al. [80,81] developed non-

intrusive approaches to track occupant-specific usage in commercial buildings.   

While intrusive methods provide data with high precision and resolution and non-intrusive 

methods benefit in economically providing occupant data, these two categories of methods have 

rarely been adopted to be utilized in practice. Expensive implementation is the largest obstacle for 

intrusive methods while complexity of implementation and uncertainty in results are considered 

as the major obstacles for non-intrusive methods. Accordingly, it is often impossible to 

economically estimate the accurate energy usage for each occupant and provide each with 

meaningful feedback in practice. Thus, a simple and inexpensive system which can provide 

occupant-specific usage is needed for enhancement of the current practice of individualized 

feedback techniques.  

 

2.3. Occupancy sensing in commercial buildings 

Occupancy information could be used to significantly increase the accuracy of tracking occupant 

energy usage [27,82–84]. Currently, conventional sensing solutions (such as CO2 sensors [85], 

infrared sensors [86], motion sensors [87], sound sensors [88], and temperature sensors [89])  are 

available for occupancy detection in commercial buildings. However, low degree of occupancy 

resolution, intrusiveness, and cost of execution are considered as the disadvantages of such 

methods [26]. To address these limitations, researchers [90–100] have leveraged Wi-Fi 

information for occupancy sensing (such as detection [101] and localization [102]) in commercial 

buildings. Wi-Fi networks are able to create databases based on the MAC addresses of Wi-Fi 

enabled devices (such as laptops and smartphones) to easily differentiate between users (i.e., 

occupants) in a building [103,104]. In addition, since most of commercial buildings are currently 

equipped with Wi-Fi networks and since most of the building occupants routinely use Wi-Fi-

enabled devices (such as smartphones), no additional sensors are required to implement Wi-Fi 

based occupancy sensing approaches.  

It has particularly been indicated that Wi-Fi networks are able to provide occupancy 

information required to tracking energy-use behaviors. Martani et al. [105], Rafsanjani and 

Ghahramani [84], and Chen and Ahn [27] utilized the number of Wi-Fi connections as a building 

occupancy indicator and revealed how closely the energy flows correlate with occupancy flows in 

commercial buildings. In addition, Wi-Fi networks are a substantial part of IoT hardware systems 
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[106–109] and thereby, Wi-Fi based occupancy sensing could benefit in developing IoT-based 

occupancy-related approaches at minimal costs.    

 

2.4. IoT-based occupancy sensing and energy-use monitoring in commercial buildings 

IoT is considered as a network of physical things (such as sensors and devices) which are 

connected through internet and able to generate, extract, and record data as well as to communicate 

for processing and utilizing the data in real-time [49,110–112]. The advent of advanced electric 

hardware systems (such as power circuits) and internet-enabled sensors/devices provides a unique 

opportunity for implementing IoT in every web-equipped commercial building. For example, 

Ruano et al. [39] and Png et al. [40] proposed IoT platforms for intelligent HVAC control in 

commercial buildings. Ronen and Shamir [50] revealed how IoT provides smart lighting systems 

by modifying color and intensity of the lights of each room in a commercial building.  

With respect to occupancy sensing in commercial buildings, Zou et al. [53,54] proposed 

IoT-based approaches for occupancy detection, crowd counting, and activity recognition in 

commercial buildings. With regards to occupants’ energy-use monitoring, Rafsanjani and 

Ghahramani [84] revealed a dynamic relationship between IoT infrastructure information and 

occupants’ energy-use patterns in commercial buildings. Later, they [55] developed an approach 

which utilizes the information provided by IoT devices to monitor individual occupants’ energy-

use behaviors in commercial buildings. Mylonas et al. [56], Paganelli et al. [57], and Tziortzioti et 

al. [113] demonstrated how IoT along with gamification (i.e., interactive services, games, and web 

applications for occupants to increase their overall awareness) can be utilized to promote energy-

aware behaviors and getting occupants engaged into energy-efficient activities. In addition, 

research projects such as Green-Awareness-In-Action (gaia-project.eu), Personal-Energy-

Administration-Kiosk-App (peakapp.eu), Entropy (entropy-project.eu), and Tribe (tribe-

h2020.eu) have designed IoT-based systems including web applications and deployed those to 

increase energy awareness and modify behaviors. While there is a limited number of empirical 

IoT-based occupancy-related research into commercial settings, their findings along with IoT 

advantages (such as real-time monitoring) hold promise that IoT could be utilized in developing a 

feedback mechanism which is able (1) to sense high-resolution personalized data, (2) to provide a 

proper and adjustable flow of feedback information, and (3) to engage occupants to follow the 

feedback.    
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Motivated by this, we propose iSEA which is an IoT-based personalized feedback 

mechanism. iSEA leverages the occupancy data (received from Wi-Fi networks) with aggregate 

load data (received from internet-enabled meters) of a building to track occupants’ energy-use 

behaviors at their departure events and to learn each occupant’s behavior (through utilizing a 

supervised deep learning approach). Then, iSEA provides each occupant with a personalized 

comparative-historical feedback to enhance energy-use behaviors which ultimately decrease 

energy-consumption in commercial buildings. An experiment conducted in a commercial building 

demonstrates the feasibility of the approach to prompt energy-aware behaviors. The following 

sections provide the detailed descriptions of iSEA methodology and its IoT architecture as well as 

the experiment and results.  

 

3. IoT-based Smartphone Energy Assistant (iSEA) Framework 

This section first introduces the EEI index and explains the algorithm to calculate it. Then, iSEA 

methodology is described and finally, the iSEA IoT architecture is presented.  

 

3.1. Energy-use efficiency index (EEI) 

Commercial building occupants routinely work during a daily working schedule (e.g., 8:00 a.m. 

to 5:00 p.m.) and their energy-use behaviors are very closely related to this schedule [75,114]. In 

fact, each day, a commercial building occupant typically starts using her appliances when she 

arrives at her workstations (which is named her entry event) and ends using the appliances upon 

her departure from the building (which is named her departure event). Accordingly, research 

[22,23,75,76,115–117] has revealed that major energy-use actions of commercial building 

occupants typically occur at these entry and departure events, and accordingly, studying energy-

use behaviors at these events functionally provide information required to properly understand 

occupants’ energy-use behaviors in commercial buildings.  

While entry/departure events have been utilized for sensing energy-use information 

required to simulate and predict energy-use behaviors, several studies [55,75,118,119] have 

particularly indicated that departure events (compared to entry evens) are considered more critical 

in order to identify and understand efficient and inefficient behaviors (i.e., energy-saving and non-

energy-saving behaviors). Less than half of most buildings’ appliances/systems are turned off by 

occupants after operational hours which leads to more energy wasted during non-working hours 
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than energy used during working hours [120]. These facts shift the focus of behavior-modification 

studies of commercial settings to the departure events to understand energy-use efficiency of 

individual occupants. Accordingly, iSEA uses the energy-use information of individual occupants 

at their departure events.  

In particular, in a commercial building, the occupant who leaves the building as the last 

person (last departure event) not only should turn her personal appliances off but also is responsible 

to turn off most of the in-use shared appliances (such as ceiling lights and fans). The building 

electric meters record these energy-use actions and accordingly, aggregate energy-load data 

(building-level energy-load data provided by the meters) upon her departure event mainly reflects 

her energy-use actions (since there is no other occupant in the building) [55]. Therefore, when an 

occupant leaves the building as the last person, there is a possibility to understand her 

comprehensive energy-use behaviors of personal and shared appliances through aggregate load 

data (without installing additional energy sensors).  

With this in mind, we introduce an energy-use efficiency index (EEI) which allows to 

utilize aggregate load data to quantitatively estimate energy-efficiency of an occupant and compare 

her efficiency with her peers. This index is defined as a comparison between an occupant’s energy-

use actions at a departure event and her most efficient energy action at the event, as summarized 

by:  

 

𝐸𝐸𝐼 =
𝐴𝐿𝑡1−𝐴𝐿𝑡2

𝐴𝐿𝑡1−𝐵𝐿
                        (1) 

 

Where 0 ≤ EEI ≤ 1 and EEI=1 represents the most efficient behavior. 

In Equation 1, 𝐴𝐿𝑡1
 represents the average of aggregate-energy load data within time frame 

t1 right before the departure event of the last occupant in a working schedule. 𝐴𝐿𝑡2
 represents the 

average of aggregate-energy load data within time frame t2 right after the departure event of the 

occupant. BL is the base line of aggregate energy load data and is generally estimated based on the 

building background load during non-working hours (e.g., 10:00 p.m. to 5:00 a.m.). In addition, t1 

and t2 are empirically determined for a building.  

Accordingly, for a dataset including D days of aggregate load data of a building with n 

occupants, 𝑀𝑎𝑡𝐸𝐸𝐼 is defined as a matrix including n rows and D columns where each element of 
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𝑀𝑎𝑡𝐸𝐸𝐼 represents the EEI of occupant i on day d; 𝑖 ∈ {1,2, … , 𝑛} and 𝑑 ∈ {1,2, … , 𝐷}. If occupant 

i does not leave the building as the last occupant on day d, 𝑀𝑎𝑡𝐸𝐸𝐼(𝑖, 𝑑) = 0.  

Finally, the average (arithmetic mean) of non-zero elements of row i of 𝑀𝑎𝑡𝐸𝐸𝐼 is 

calculated and assigned to occupant i as her EEIavg, as follows: 

 

𝐸𝐸𝐼𝑎𝑣𝑔.𝑖 =
∑ 𝑀𝑎𝑡𝐸𝐸𝐼(𝑖,1:𝐷)

𝑚𝑖
                      (2) 

 

 Where 0 ≤ EEIavg ≤ 1 and  mi (≤ D) represents the number of days that occupant i left the 

building as the last occupant.  

Using this method, the EEIavg of all the occupants of a building are estimated; Figure 1 

shows the algorithm of this process. This allows to rank occupants based on their energy-use 

efficiency, where a larger EEIavg for an occupant compared to her peers indicates more efficient 

behaviors. Ideally, the EEIavg for an occupant with the most efficient behavior could reach 1 while 

this index for the worst situation could be 0 which indicates inefficient behaviors; the difference 

between efficient and inefficient behaviors should empirically be determined in a building  

[22,24,121–126]. Accordingly, seeking to assess personalized energy-use behaviors at departure 

events, iSEA uses EEIavg to quantitatively categorize occupants and identify those who should be 

targeted for behavior modifications.  

 

1: 𝐢𝐧𝐩𝐮𝐭: 𝐴𝐿 ← Aggregate energy load data of a building with 𝑛 occupants 

2: 𝑀𝑎𝑡𝐸𝐸𝐼 ← ∅,     𝐵𝐿 ← Baseline of 𝐴𝐿,    𝑚 ← 0         

3: 𝐢𝐟 occupant 𝑖, 𝑖 ∈ {1,2, … , 𝑛}, left the building as the last occupant on day 𝑑, 𝑑 ∈ {1,2, … , 𝐷} 𝐝𝐨  

4:     𝐴𝐿𝑡1 ← Avergae 𝐴𝐿 during 𝑡1  

5:     𝐴𝐿𝑡2 ← Avergae 𝐴𝐿 during 𝑡2 

6:     𝑀𝑎𝑡𝐸𝐸𝐼(𝑖, 𝑑) ← [(𝐴𝐿𝑡1 − 𝐴𝐿𝑡2) ÷ (𝐴𝐿𝑡1 − 𝐵𝐿)] 

7:     𝑚𝑖 ←  𝑚𝑖 + 1 

8: 𝐞𝐧𝐝 𝐢𝐟 

9: 𝐸𝐸𝐼𝑎𝑣𝑔.𝑖 ← [sum (𝑀𝑎𝑡𝐸𝐸𝐼(𝑖, 1: 𝐷)) ÷ 𝑚𝑖] 

10: 𝐨𝐮𝐩𝐮𝐭: 𝐸𝐸𝐼𝑎𝑣𝑒.𝑖 

 

Figure 1. EEIavg algorithm  
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3.2. iSEA Methodology 

iSEA uses a seven-step methodology to estimate EEIavg of individual occupants of a building, 

identify inefficient behaviors, and deliver feedback to modify these behaviors. Figure 2 presents 

the iSEA framework.  

 

 

Figure 2. iSEA framework  

 

 

Step 1: collect aggregate load data from building internet-enabled meters 

In the first step, iSEA collects the aggregate load data of the building through its internet-enabled 

meters. Industry currently offers a variety of low-cost COTS electric meters which can be installed 

in different type of electric panels of small-to-large-sized commercial buildings. These meters 

could appropriately communicate with BEMS for information exchange. It is noteworthy that 
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industry has shifted to use such meters for commercial buildings, specifically for the modern 

buildings, which enables IoT implementation in commercial settings. Accordingly, iSEA utilizes 

high-temporal-resolution data provided by such meters in building operations.  

In this step, iSEA also uses a pre-processing filtering stage for checking the accuracy of 

data in order to identify and filter the data corrupted or/and missed due to network disconnection, 

power loss, or/and electrical noise [127,128]. Since IoT utilizes real-time data instead of trend data 

(typically utilized by conventional data sensing approaches), this filtering stage should be trained 

in a way to identify corrupted/missed data in real time. In this context, historical data collected by 

a meter in a building could be useful to properly train the filtering process for taking real-time 

actions.  

 

Step 2: collect occupancy data from building Wi-Fi networks  

In the second step, iSEA collects the information provided by the building Wi-Fi networks to track 

occupancy. The advent of advanced Wi-Fi hardware technologies (such as access points) allows to 

actively/passively track in real-time any Wi-Fi enabled devices presented within the range of Wi-

Fi networks. In addition, Wi-Fi network interferences are not bounded by building physical 

components which specifically let track devices with a high-level of accuracy [82,129].  

In particular, due to the people continued carrying of smartphones [130,131], iSEA uses 

MAC addresses of occupants’ smartphones to collect the required individualized occupancy data. 

In this step, to protect privacy (which is usually a major concern while using occupancy sensing 

system [132]), iSEA particularly uses a MAC randomization process [133] to produce randomly 

generated IDs (which are fake unidentifiable codes) and mask true MAC addresses (presented in 

network data) with these IDs. The IDs are utilized for data processing and analysis throughout the 

framework. 

 

Step 3: detect last departure events in daily working schedule based on smartphones’ 

information 

In the third step, iSEA detects the last disconnection of smartphones on each day to identify who 

left the building as the last occupant. The information provided by Wi-Fi networks includes the 

connection/disconnections of all Wi-Fi enabled devices (such as laptops and tablets), and 

accordingly, identifying the IDs of smartphones is a challenging task. To address this, based on the 
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experience of the research team working with Wi-Fi-based sensing approaches 

[55,80,84,99,100,115], smartphones connection/disconnections to building Wi-Fi networks 

predominantly occur at occupants’ entry/departure events which is the start/end of building 

working schedule for permanent occupants (i.e., long-term residents such as employees), while 

connections/disconnections of other devices (such as laptops) predominantly occur within working 

schedule. In addition, the smartphones’ IDs of occupants are not present during non-working hours 

(such as night hours) while the IDs of other devices (such as a laptop used in a laboratory) could 

be presented in such hours. Accordingly, such facts are useful in categorizing the information 

delivered by Wi-Fi networks to properly identify smartphones’ IDs.   

Another challenge in this step is to distinguish the events of permanent occupants from 

those of temporary occupants (i.e., short-term residents such as customers/clients). Temporary 

occupants create Wi-Fi connections/disconnections but they may not create energy-load changes 

[27,84] and thereby, wrongly identifying the events of temporary occupants and correlating the 

event with energy-use data could results in biases in data analysis. To ignore the Wi-Fi connections 

of temporary occupants, a minimum number of connections (e.g. ten connections) is empirically 

determined for a building and considered as Wi-Fi threshold, thwi-fi, for iSEA. Then, if an ID is 

presented in data less than thwi-fi, the ID is tagged as a temporary occupant and accordingly, 

removed from data analysis.   

 

Step 4: estimate EEI 

After collecting the required energy data and occupancy information, iSEA correlates the pre-

processed aggregate load data of the building with the departure event of the last smartphone ID 

on a day to estimate the EEI of the ID for that day (see equation 1). Accordingly, the EEI for each 

day is found and 𝑀𝑎𝑡𝐸𝐸𝐼 is constructed. Finally, EEIavg of the IDs are estimated (see equation 2).  

 

Step 5: identify efficient and inefficient behaviors 

In the fifth step, iSEA utilizes the EEIavg values to rank IDs and assign them into categories of 

efficient behaviors (CATEB) and inefficient behaviors (CATIB). In this process, the larger EEIavg 

indicates the more efficient behaviors.  

Literature [22,24,120–122,124–126] demonstrates that the difference between CATEB and 

CATIB should empirically be determined for a building since several factors (such as building type, 
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architectural design, insulation, systems, occupants’ duties, and working hours) functionally affect 

energy-use behaviors. Accordingly, iSEA determines the range of each category on a case by case 

basis. 

 

Step 6: learn personal energy-use behavior 

By leveraging the EEI information collected in step 4, iSEA learns each occupant’s energy-use 

actions to identify the set of appliances that she typically leaves on at her departure events; this 

information will be utilized later for feedback. Studies [134–144] have indicated that individual 

occupants have their own energy-use patterns/behaviors and typically follow those over time. This 

provide opportunities to learn their behaviors to monitor/simulate/predict occupants/buildings 

energy consumption. Accordingly, this fact indicates that an occupant with inefficient behaviors 

typically leaves on a same set of appliances (during non-working hours) over time which allows 

to identify the appliances and to ask the occupant to turn those off before leaving the building.  

In this context, iSEA uses a supervised deep learning method to learn each occupant 

behaviors. Compared to the conventional learning methods such as neural network, deep learning 

as a novel subset of machine learning methods allows for more accurate and faster learning of 

complicated and detailed structures even in large datasets [145,146]. Due to existing of multiple 

appliances/systems and occupants (with different/distinct energy-use behaviors) in a building 

which create a challenging task to identify each occupant’s behavior through aggregate energy-

load data, iSEA uses deep learning approach.  

In particular, in a building with n occupants and K appliances, each appliance has a specific 

power usage in watts, 𝑊𝑘 , 𝑘 ∈ {1,2, … , 𝐾}, which is considered as a feature for the appliance. 

Accordingly, these features are used to train the deep learning method. Then, based on the 

differences between 𝐴𝐿𝑡2
 and BL for different days of an occupant, deep learning discovers the set 

of appliances that she predominantly leaves on at her departure events. This process for occupant 

i, 𝑖 ∈ {1,2, … , 𝑛}, on day d, 𝑑 ∈ {1,2, … , 𝐷}, is:  

 

𝑃(𝑖, 𝑑) = [ ∑(𝑊𝑘)𝑖,𝑑 = (𝐴𝐿𝑡2
− 𝐵𝐿)𝑖,𝑑]           𝑘 ∈ {1,2, … , 𝐾}          (3) 
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Where 𝑃(𝑖, 𝑑) represents the probability function which determines the appliances that 

their total energy consumption (in watt) should be equal to the residual load in aggregate data right 

after occupant i’s departure event on day d. 

Accordingly, collecting information form several days of occupant i when she leaves the 

building as the last person, allows deep learning to identify the possible appliances (i.e., the 

appliance with high probability of occurrence) that she typically leaves on at her departure events. 

Thus, the probability function of occupant i of the building is summarized by: 

 

𝑃(𝑖) =  [𝑑 . 𝑃(𝑖, 𝑑)]        𝑖 ∈ {1,2, … , 𝑛}, 𝑑 ∈ {1,2, … , 𝐷}             (4) 

 

Step 7: provide personalized tailored feedback through iSEA smartphone app  

After assigning occupants to CATEB and CATIB (in Step 5) and identifying the appliances each 

occupant typically leaves on at departure events (in Step 6), iSEA allow BEMS users to deliver 

feedback to occupants to enhance their energy-use behaviors. The feedback includes personalized 

tailored graphical messages which not only modifies CATIB members’ behaviors but also 

encourages CATEB  members to continue practicing their energy-saving behaviors.  

In particular, iSEA uses a comparative-historical feedback approach. The comparative 

feature compares an occupant behavior with her peers that provides competitive feelings between 

occupants and the motivation for better performance [147]. The historical feature allows an 

occupant to make a comparison regarding her own energy-use behavior over time [15]. 

To deliver the feedback to occupants, iSEA is planned to use an app developed by research 

team for iOS/Android based smartphones. A web-application is also planned to be utilized by 

BEMS users to track occupants. It is worth mentioning that IDs (generated and assigned to 

smartphones in Step 2) are used for information exchange through the app and web-application to 

protect the occupants’ privacy.  

 

3.3. IoT architecture 

Figure 3 shows the IoT architecture of iSEA framework. As demonstrated, iSEA includes four 

major layers: (1) physical, (2) cloud, (3) service, and (4) communication layers. These layers cover 

hardware, software, network, and integration aspects considered for IoT approaches.  

 

https://doi.org/10.1016/j.apenergy.2020.114892
https://escholarship.org/uc/item/34w088fp


Applied Energy, May 2020  https://doi.org/10.1016/j.apenergy.2020.114892 

https://escholarship.org/uc/item/34w088fp  
16 

 

Figure 3. iSEA IoT architecture  

 

 

3.3.1. Physical layer 

The physical layer includes energy and occupancy sensors which collect the required data from a 

building. The energy sensors are low-cost COTS internet-enabled electric meters that are widely 
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based on the Ethernet technologies (such as Ethernet Powerlink [148] and EtherCAT [149]) and 

typically use IEEE 802.3 standards. Functionally, internet-enabled meters are IP based objects 

interoperating with a variety of external data processors. Low-cost wireless routers which typically 

uses IEEE 802.11 and 802.15 standards, could be used to connect the meters to building wireless 

networks; IEEE802.15.4 standard has recently been utilized for IoT developments [150].  

In addition, the meters should collect power and voltage data. Power data displays the 

building energy usage and should include real power (measured in watts), apparent power 

(measured in volt-amps), or reactive power (measured in volt-amps-reactive). The voltage data 

(measured in volt) allows to identify the noise in data. In addition, such meters generally have their 

own software systems which are typically web applications to allow users to monitor data in real-

time.  

The occupancy sensors are building Wi-Fi access points (APs) and occupants smartphones. 

APs are hardware devices of Wi-Fi networks and are mainly based on IEEE 802.11 and 802.15 

standards. APs usually capture the packets of Wi-Fi enabled devices with a high-resolution (e.g., 

milliseconds) and provide information regarding association/disassociation time of client MAC 

addresses, their status, session durations, IP addresses, and service set identifiers.  

 

3.3.2. Cloud layer 

The second layer is cloud which includes data storage, queries, and processing as well as data 

analysis steps of iSEA. Each of these could be done in real-time to meet the requirement of BEMS 

goals to take immediate actions toward prompting energy-saving behaviors. Figure 4 displays the 

iSEA data ontology and demonstrates the statics and dynamics data. 
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Figure 4. Data ontology 

 

 

In addition, the cloud layer includes the feedback mechanism of iSEA approach. The 

feedback mechanism (in the cloud layer) could act as a semi-automatic or fully-automatic 

mechanism based on the BEMS preferences. The semi-automatic process allows BEMS to check 

and adjust the message notifying occupants regarding the appliances left on, while the fully-

automatic option performs this step automatically. Functionally, the cloud layer acts as the 

decision-making layer for the iSEA.  

While several programming languages could be utilized for data processing and analysis, 

we propose XML or Python for iSEA since they have widely been used for faster and more accurate 

data analysis in IoT approaches and web environments [40,49,151].  

 

3.3.3. Service layer 

The third layer is service which include two different sublayers. The first sublayer is a prototype 

web application developed by HTML. This application is installed on the BEMS computers and 

enables BEMS team to access to the cloud layer. This application visualizes the EEI, EEIavg, and 

category (CATEB and CATIB) of individual occupants for the BEMS team which allows BEMS to 

track each occupant information/index and to compare building occupants’ behaviors. This 

application also provides the information regarding the possible appliances occupants typically 

leave on during non-working hours. It is noteworthy that, as mentioned, the web application 
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tracks/recalls occupants’ information based on their assigned IDs which protect the privacy of 

occupants.  

In addition, the web application allows BEMS to take actions on intervening occupants 

through the feedback mechanism (semi-automatic or fully-automatic) in the cloud layer. In the 

semi-automatic process, a BEMS user selects one of the proposed options of the web applications 

and then this preference is sent to the cloud layer for further actions.  

The second sublayer of service layer is a prototype smartphone app. The app is developed 

based on an application programming interface and is installed on iOS/Android smartphones. The 

app allows each occupant to see her personal energy-use information and category (CATEB or 

CATIB) and to compare her behaviors with her peers. In fact, the BEMS team uses the app to 

communicate with the building occupants. The app is able to receive data through cellular and Wi-

Fi networks.  

 

3.3.4. Communication layer 

The fourth layer is communication which is the most important IoT layer to generate/keep the 

proper flow of data, information, and communication among the other layers. Due to the privacy 

of Wi-Fi information, the proper data transferring which keeps the information secure is also 

required. Accordingly, while there are different protocols (such as CoAP and MQTT), iSEA uses 

the protocols of IP over Ethernet and wireless networks. Functionally, IP6 currently offers more 

efficient routing protocol and self-determining forming/configuration for networks [152].  

In addition, due to the existence of Wi-Fi and Ethernet networks in a building, these 

networks are preferred to be used as the major component of communication layers in iSEA. Wi-

Fi networks are predominantly based on IEEE 802.11 and 802.15 standards and Ethernet networks 

generally uses IEEE 802.3 standards. In addition, other wireless communication technologies such 

as Zigbee and WiMAX could also be utilized for data transferring/exchange (depends to the type 

of building and the BEMS preferences); compared to Wi-Fi, Zigbee uses a lower bandwidth while 

WiMAX uses a higher bandwidth.  

To deliver the feedback to the smartphone app, the communication layer uses the building 

Wi-Fi networks. In this process, iSEA uses the ID assigned to an occupant to recall her and sends 

the feedback to her smartphone. It is noteworthy that for this process, depends to the BEMS 
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preferences, cellular networks could also be utilized. This process requires collecting data about 

cellular specification/address of smartphones to identify and deliver feedback.  

In the communication layer, the building web server allows the web application installed 

on different computers to communicate with each other. The server also provides the 

communication among different components of the communication layer.    

 

4. Pilot Experiment  

To demonstrate the iSEA functionality, a pilot experiment was designed and conducted in a 

commercial office building over a twelve-week duration. Figure 5 displays the floor plan of the 

building. The building included one director room, one main room, one MEP room, one meeting 

room, one storage room, and one lunchroom. The main room included ten cubicles for the building 

employees. In addition, the total number of building occupants was ten during the experiment and 

their working hours were 9:00 a.m.-6:00 p.m.  

 

 

Figure 5. Floor plan of the office building  
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With regards to the major appliances and systems, the building included an HVAC system, 

a water heater, ceiling lights, ceiling fans, multifunction copiers, coffee makers, water boilers, a 

microwave oven, and a refrigerator. In addition, the ten cubicles included ten identical desktop 

computers, desk lamps, and desk fans. Except the HVAC system and water heater, all the 

mentioned appliances/systems utilized manual switches. The celling lights of the main room were 

particularly set on four separate electric circuits with four individual switches. In addition, two 

levels of brightness were set for the building ceiling lights in all rooms.   

 

4.1. Data collection 

4.1.1. Energy-load data 

The energy-load data of the building was collected through an internet-enabled meter, 

“TEDProCommercial”. The meter included two parts: a measuring transmitting unit (MTU) and 

an energy control center (ECC). MTU acted as the data logger and was installed inside the main 

electrical panel of the building (Figure 5 displays the location of the panel). In addition, MTU was 

designed for three-phase electrical service (at the sampling rate of 1024 KHz) and was certified to 

deliver data within ±0.01 of displayed value. 

MTU collected building energy-load data including real power (measured in kW) and 

voltage (measured in V) at one-second interval resolution and sent the data to ECC in real time 

through the building ethernet network; ECC was installed at the director room. Both MTU and 

ECC were connected to the building network switch installed at the MEP room. Figure 6 shows 

MTU and ECC.  
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Figure 6. (a) measuring transmitting unit (MTU), (b) energy control center (ECC)  

 

ECC embedded with footprints software [153] which sent the data to building sever in real-

time. In order to collect the data provided by ECC, we installed a laptop computer at the MEP 

room during the experiment. Through a network cable, the laptop was connected to the network 

switch and was able to receive the data send by ECC through using a Python code developed by 

the research team. Accordingly, we collected the energy-load data as CSV files (one file per 45 

minutes). In addition, a free cloud service was utilized as the cloud layer in this research and we 

saved the load CSV data on this cloud layer.  

 

4.1.2. Wi-Fi information  

We utilized the data collected by the ceiling-mounted Wi-Fi access point of the office building. 

The access point was installed in the main room (see Figure 5) and recorded the information of 

Wi-Fi enabled devices (presented within its range) at one-second interval resolution; the range of 

the access point provided full coverage for the building. The information included MAC addresses, 

the association and disassociation time of each address, their session durations, IP addresses, 

status, and service set identifiers. The building director was able to save daily data of the access 

point on his/her computer as CSV files (one file per day). Figure 7 shows a sample of the Wi-Fi 

information. Accordingly, we asked the director to share the CSV files with us and the data was 

saved on the cloud layer.   

https://doi.org/10.1016/j.apenergy.2020.114892
https://escholarship.org/uc/item/34w088fp


Applied Energy, May 2020  https://doi.org/10.1016/j.apenergy.2020.114892 

https://escholarship.org/uc/item/34w088fp  
23 

 

 

 

Figure 7. Sample of Wi-Fi information (SSID: service set identifier) 

 

4.1.3. Smartphone information  

To collect the information about occupants’ smartphone during the pilot experiment, we developed 

a web application and asked the director to email the link of the application to the building 

occupants. Figure 8 shows the application and demonstrates that we asked each occupant to enter 

his/her cell number and the last six digits of the MAC address of his/her smartphone. No more 

information (such as name or cubicle number) was asked. This information was stored on the cloud 

layer as one CSV file. The CSV file only included two columns, one represented the cell numbers 

and one represented MAC addresses.  

 

 

Figure 8. Web application to collect smartphone information 
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4.2. Data analysis 

We utilized the cloud service for the data analysis. In the first step, we used Python and the 

historical data of the meter to develop a filter which was able to check the accuracy of energy-load 

data in real-time and filtered noise and corrupted/missed data. Figure 9 shows a sample of the 

filtering process. It is noteworthy that we also checked the power loss [128] in the building circuits 

and the estimated power loss was 0.00381 watts. Since the power loss was very low, we neglected 

the impact of the loss on energy-load data.   

 

 

 

Figure 9. Sample of filtering process (a) MTU raw data, (b) processed data  

 

In the second step, a Python code was developed to analyze the Wi-Fi information. For this 

reason, the code created one big dataset which included the information provided by building 

access point (see Figure 7) as well as the information of smartphones (including the last 6 digits 

of MAC addresses and cell numbers). Then, through correlating the six digits of the occupants’ 

MAC addresses with the MAC addresses predominantly presented in our data at the departure 

events, the Python code identified each occupant’s MAC address and generated a random ID to 

mask the MAC address with the ID. The ID format included two letters and three digits (e.g., 

BK738). Next, for each day of the experiment, the last disassociation time of each MAC address 

(presented in smartphone information) was identified (from the data provided by access point) and 

considered as the departure event of the address. It is worth mentioning that the Wi-Fi information 
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analysis was completed in the back-end system and we, as the research team, were able to see/track 

only the IDs and the time of their departure events; this let protect the privacy of the occupant.    

In the third step, the last departure event of each day and its responsible ID was found. 

Accordingly, by using the preprocessed energy-load data, the EEI of each day was estimated (see 

Equation 1). In this step, based on the collected data and information received from the director of 

the building, t1 and t2 were empirically estimated and set on 210 and 600 seconds, respectively, for 

all the occupants of the building. To estimate the base line (BL), the energy-load data at morning 

from 8:30 a.m. to 9:00 a.m. was utilized. As mentioned, the working days of the office started at 

9:00 a.m. during the experiment and the director mentioned that HVAC systems was set to turn on 

at 8:30 a.m. Accordingly, the time-window of 8:30-9:00 presented the background energy load 

(including HVAC system usage) for the unoccupied time of the office which was used as BL. After 

estimating EEI, 𝑀𝑎𝑡𝐸𝐸𝐼 was constructed and used to calculate the EEIavg of each ID (see Equation 

2).  

In the fourth step, CATEB and CATIB were empirically defined and occupants were assigned 

to one of the categories; higher EEIavg indicated more efficient behaviors. In fact, based on the 

building type, appliances/systems, building occupants’ duties, the discussion with the director, and 

the literature methodologies [22,24,55,121–126], we finally considered two equal quantiles for 

CATEB and CATIB. To determine the boundary of each quantile, based on the data of the first four 

weeks, we estimated the EEIavg of each ID and based on the smallest and largest EEIavg values, the 

boundary of each category was identified. It is noteworthy that we divided the experiment duration 

(twelve weeks) to two sub-durations: (1) First four-week sub-duration, and (2) last eight-week sub-

duration. The data of the four-week sub-duration was utilized to understand the behavior of each 

occupant while the feedback was implemented during the last eight weeks.  

In the fifth step, the power usage (in watts) of office appliances/systems were found 

through their nameplates/labels and used as input information to train the deep learning approach 

for identifying the set of appliances that an occupant typically left on at his/her departure events 

(see Equation 3 and 4).  

In the last step, a tailored personalized feedback message was developed and sent through 

a text application to each ID’s smartphone. It is worth mentioning while a series of prototype 

smartphone apps were developed and tested for iSEA, we decided to use a text application to 

deliver feedback to the occupants in this study (based on the request/preference of the director and 

https://doi.org/10.1016/j.apenergy.2020.114892
https://escholarship.org/uc/item/34w088fp


Applied Energy, May 2020  https://doi.org/10.1016/j.apenergy.2020.114892 

https://escholarship.org/uc/item/34w088fp  
26 

occupants of the building). The text application was an opensource and free-to-use software 

without licensing constraints.  

The structure of the message was comparative-historical and included texts and figures. 

Figure 10 shows the samples of message delivered to occupants of each category. In order to find 

the frequency at which feedback messages should have been provided to the occupants, we 

conducted a pre-survey before the experiment. The results revealed that occupants preferred to 

receive up to two messages per week. The occupants also determined on which day of week they 

prefer to receive the feedback message. Accordingly, we decided to provide two messages (on 

Monday’s and Thursday’s mornings) to occupants. The messages content was developed in a way 

to encourage the occupants of CATEB to continue with their energy efficient behaviors and to 

motivate the occupants of CATIB to follow the energy efficient behaviors. In addition, based on the 

literature recommendation [26,63], we provided the occupants with positive comments rather than 

negative ones (e.g., using “saved” instead of “wasted”).  

 

 

 

Figure 10. Samples of feedback message (a) for occupants with efficient energy-use behaviors, 

(b) for occupants with inefficient energy-use behaviors 
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Before the feedback period, we provided the occupants with the description of the feedback 

figure. The green area demonstrated CATEB and the red area demonstrated CATIB; this was 

considered as the comparative feature of the feedback. In addition, by using EEIavg, the progress 

of each occupant was demonstrated with a dot plot which was considered as the historical feature. 

It is worth mentioning that the message contents sent to each occupant included few typographical 

errors (e.g., “dato” instead of “day to” in Figure 10-b) which was resulted from the text application.  

 

5. Results  

Figure 11 summarizes the results of the energy-use behavior variations over time; the vertical axis 

presents EEIavg. As mentioned, the data of Week 1-to-4 was utilized to estimate the initial EEIavg 

of the occupants and these values are presented for these weeks on Figure 11. In addition, based 

on these four weeks, Occupant 4 with EEIavg of 0.850 was identified as the occupant with the most 

energy efficient behavior while occupant 8 with EEIavg of 0.177 was tagged with the worst 

behavior. Accordingly, based on these two values, the ranges of CATEB and CATIB were estimated 

in a way that both have equal quantiles. Overall, Figure 11 displays that we influenced occupant 

energy usage.  

 

 

Figure 11. EEIavg of the occupants during the experiment (Occ.: occupant, CATEB: category of 

efficient energy-use behaviors, CATIB: category of inefficient energy-use behaviors,) 
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Figure 11 shows that four occupants followed non-energy-saving behaviors before the 

feedback and five occupants from CATEB had potentials for presenting better energy-saving 

behaviors (since their EEIavg were close to the minimum EEIavg of CATEB).  In addition, as the 

figure indicates, by the end of the experiment, the minimum and maximum of EEIavg were 0.537 

and 0.889, respectively, which means that the feedback was able to modify the behaviors of the 

CATIB to energy efficient behaviors.  

To assess the feedback progress, we compared the arithmetic mean of EEIavg of the 

occupants before and after the feedback (the first and the last week) which were 0.521 and 0.789, 

respectively. Accordingly, based on the EEIavg, there was 34% improvement in energy-use 

behaviors at departure events when the occupants left the office as the last occupants (which does 

not necessarily mean 34% reduction in energy consumption). 

Furthermore, through the deep learning approach, iSEA revealed that occupants typically 

left on ceiling lights of the main room, storage room, and lunch room as well as the desk fans over 

the experiment. Due to (1) having two levels of brightness for the building ceiling lights, (2) 

existing four separate electric circuits (with four individual switches) for the main room lights, and 

(3) different locations of the cubicles, occupants displayed different behaviors in controlling over 

the lights. Such differences in behaviors resulted in distinct EEIavg demonstrated in Figure 11.  

In particular, the deep learning approach revealed that Occupant 8 (as the occupant with 

worst energy-use behavior) predominantly controlled over the celling light which covered his/her 

cubicle and did not change the state of the other lights at his/her departure events (when he/she left 

as the last occupant). In addition, the approach did not detect any in-use lighting systems after the 

departure events of Occupant 4 over the experiment which indicates this occupant followed 

efficient behaviors over time; Occupant 4’s EEIavg on Figure 11 highlights this type of behavior. 

Furthermore, the deep learning identified that Occupant 5, 6, 9 and 10 did not regularly turned off 

the ceiling lights of the lunch room (while controlled over the other lighting systems) at the 

departure events before the feedback implementation. This resulted to roughly similar EEIavg for 

these occupants for the first-four weeks (see Figure 11).  

In addition, Figure 11 shows the maximum EEIavg achieved during the experiment was 

0.889 while based on the definition of this index, the maximum value could be 1. This difference 

could have been resulted from the BL estimation in this study (see Equation 1). In addition, there 
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was a possibility that some occupants left their desktop computers on after working hours and such 

appliances went to sleep mode during non-working hours. Accordingly, even if the last occupant 

of a working day followed energy-saving actions, there were still residual loads (at his/her 

departure events) which did not allow EEIavg to achieve to the maximum value of 1.  

 

6. Discussion  

While current literature [52–55] of occupant-related IoT studies mainly focuses on occupancy 

sensing approaches and does not necessarily improve energy-use behaviors, this study introduced 

an IoT-based approach, iSEA, with the ultimate goal of enhancing individual occupants energy 

usage in commercial buildings. iSEA uses the occupants’ smartphones to track them and correlates 

this information with building energy consumption to understand each occupant’s comprehensive 

energy-use behavior on personal and shared appliances in a non-intrusive manner; this point has 

not been well studied in the current literature of non-intrusive monitoring [55,76–81] since the 

available approaches predominately provide the usage of personal appliances. In addition, iSEA 

utilizes an IoT-based technique to provide each occupant with tailored personalized feedback to 

promote energy-saving behaviors in real-time. The results of the polit experiment revealed the 

iSEA capability in addressing the current gaps of literature [9,22–25] in collecting personalized 

data, identifying anomalous behaviors, delivering personal tailored information, and tracking 

behavior change in real-time.  

Occupants directly and indirectly control appliances and systems of commercial buildings 

and modifying their behaviors contributes to save one-third of energy consumption in such 

buildings [9]. We believe that iSEA improves such behaviors at minimal costs, without installing 

new hardware in commercial built environments. Conventional personalized feedback techniques 

predominantly install individual power meters per cubicle/workstation (i.e., intrusive methods) to 

collect personalized energy-use data in commercial buildings [26]. Accordingly, these techniques 

demand large capital investments to purchase, install, and maintain the power meters (roughly 

$100.00 per meter according to our information/experience working with these devices). This 

demonstrates that it is often impossible for BEMS to economically estimate the accurate 

personalized usage in commercial building. Comparatively, iSEA provides more pleasant 

information for BEMS since this method only utilizes the data provided by existing sensing 

infrastructure of commercial building.  
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The cost of purchasing the internet-enabled meter used in this study (including the MTU 

and ECC parts) was around $600.00 which was approximately three times as much as that of a 

conventional building-level power meter for office buildings. In addition, the building director 

mentioned that during the major renovation of the building, the meter was installed inside the main 

electrical panel and the installation cost was approximately similar to the installation of a 

conventional meter. The director also indicated that the maintenance cost of the meter (including 

its network services) is very low and can be neglected. Therefore, compared to the conventional 

building-level meters, this meter has costed around $400.00 more (resulted from purchasing) for 

the entire process of purchasing, installation, and maintenance. However, considering that prices 

are subject to fluctuations and the prices of internet-enabled devices are dropping (due to 

popularization of such devices), the aforementioned difference in purchasing prices has reduced 

with time. In addition, as mentioned, internet-enabled meters provide data with higher resolution 

and enable the execution of IoT-based approaches which benefits to move toward smart buildings 

(with the ultimate goal of energy saving in the built environments). Such facts justify the additional 

costs that internet-enabled meters provide compared to the conventional building-level meters. 

During our study, the cost of electricity was roughly 10.50¢/kWh and daily non-working 

hours were around 15 hours (due to working hours of 9:00 a.m.-6:00 p.m.). In addition, the deep 

learning approach identified that building ceiling lights with approximately 515 watts typically left 

on during non-working hours for four nights per week (before the feedback implementation). 

Accordingly, this wasted at least $13.00 per month for the studied office building (which was a 

small-sized building) and we were able to save it through the feedback experimental period; the 

building director mentioned that it was a considerable cost in monthly building electric bill. 

Nowadays, lighting systems account for more than one-fourth of building energy usage 

[47,154,155] and our results, similar to feedback literature (e.g., [26,55,119,120,156–160]), 

demonstrated that commercial building occupants typically leave lighting systems on at departure 

events (which could be considered as the main source of wasting energy during non-working 

hours). Due to using of manual switches for lighting systems in most commercial buildings, 

occupants’ energy-use behaviors thereby critically control these system operations (compared to 

other major appliances/systems -e.g., HVAC system- which are typically automatic-programmable 

systems). Considering this aspect in future feedback studies provide better opportunities to build 

more efficient tools to modify behaviors.  
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Through the pilot experiment, we have taken an initial step in applying iSEA. While the 

smartphone app was developed and initially tested before the experiment, due to the occupants’ 

preferences, we used the text software to deliver feedback messages to occupants (see Figure 10). 

In addition, during the experiment, we controlled over the iSEA web application. Thus, there was 

no opportunity to ask the occupants to use the iSEA app and web application and to evaluate their 

user-friendliness to make sure they are simple and straightforward to use. With this in mind, the 

experimental period allowed us to assess the back-end of iSEA and we were able to properly test 

the physical, cloud, and communication layers (see Figure 3). Further assessing of the iSEA service 

layer will therefore be conducted in our future study.  

In addition, due to the privacy concern and occupants’ preferences in this research, we did 

not collect occupancy ground-truth data and therefore, we were not able to report the accuracy of 

occupancy. However, literature [90–98] has demonstrated that Wi-Fi networks determine 

occupancy presence with a high level of accuracy (at least 83%). Thanks to the literature and based 

on our experience in working with Wi-Fi-based occupancy sensing methods 

[55,80,84,99,100,115], we believe that the data analysis in this study might have been slightly 

impacted, but was not distorted by occupancy information provided by Wi-Fi networks.  

While the need to use MAC addresses might be considered a privacy issue, iSEA requires 

no personal information about the owners of MAC addresses. During the pilot experiment, as 

Figure 8 shows, we only collected the last six digits of MAC addresses of the occupants through 

the web application and no personal information was collected. In addition, iSEA generated 

random IDs and masked the MAC addresses with the IDs. This process was done in the back-end 

system on the cloud layer and thereby the occupants’ privacy was protected. It is worth mentioning 

that as Figure 7 shows, existing Wi-Fi networks of commercial buildings typically track data from 

different Wi-Fi enabled devices, which let find and track a specific MAC address to see how many 

days and when (in each day) that MAC address appeared in a building. Thus, such information 

(regardless of the privacy) always exists and iSEA was not specifically monitoring any extra 

information. 

Due to the similarity of the workstation and shared appliances controlled over by the 

occupants, similar energy-use behaviors had been expected before the experiment. However, 

Figure 11 revealed that occupants displayed distinct energy-use behaviors before the feedback 

implementation (over the first four weeks) and showed individual difference in working patterns. 
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In addition, Figure 11 demonstrated the entropy in each occupant behavior over the feedback 

duration. Occupant 2, 5, 6, and 8 had a drop in their EEIavg during the feedback period. Also, the 

EEIavg of Occupant 2 at the first and last weeks were approximately similar which might indicate 

we did not properly identify his/her behavior and accordingly, the feedback messages delivered to 

him/her might negatively have impacted his/her behavior. Such results might also be due to the 

human flexible/changeable behaviors [75,161]. More investigation into the explanation of such 

behavior changes will be done in our future research.  

With such findings in mind, while Figure 11 visually demonstrates the proper performance 

of the feedback to modify behaviors, we further investigated whether the behavior changes were 

statistically significant or not. For this reason, we developed a hypothesis to statistically assess the 

differences in energy-use behaviors before and after feedback implementation. The null hypothesis 

was defined as no statistically significant difference among the EEIavg of the occupants before and 

after the feedback implementation while the alternative hypothesis was defined as statistically 

greater EEIavg for the occupants after the feedback implementation. Due to having two groups of 

data for the hypothesis, we utilized a two-sample t-test and a Mann-Whitney U test to test the 

hypothesis. The test statistic was 5.247 and 4.362 for the t-test and U test, respectively. In addition, 

the level of significance resulted from each test was significant (P-value < 0.00001) which 

statistically confirmed that occupants displayed larger EEIavg after receiving feedback. 

While we conducted a comparative-historical feedback technique to modify behaviors, 

peer pressure might also have influenced the behaviors; the peer pressure displays the fact that 

occupants influenced by feedback could interact with other occupants of their built environment 

to modify their energy-use behaviors [26]. In the studied building, occupant shared a working 

space and accordingly, word-of-mouth (which represents informal, occupant-to-occupant, face-to-

face communication [162]) might have been effective in encouraging peers following energy-

aware behaviors. Future studies are thereby recommended to study the peer pressure influence and 

to determine the changes generated by this factor (considering that social influence might be less 

effective when occupants use single-occupant rooms in a building). Utilizing emerging modeling 

methods introduced in the social and computer sciences could be helpful in peer pressure analysis.  

In order to ascertain that we were providing feedback with an appropriate frequency (to 

avoid information overload discouraging occupants from properly reacting to the feedback), based 

on the occupants’ preferences, we provided two messages per week to each occupant and our 
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results demonstrate that all the occupants were active to positively response to the feedback during 

the experimental period. This could demonstrate that future studies might use this frequency for 

their feedback in small-sized commercial buildings. In addition, higher frequencies might be 

helpful when occupants predominantly follow inefficient behaviors, and/or where there is a large 

population (such as large-sized buildings). In a large-size commercial building, it is often 

impossible for the last occupant to control over all the in-use appliances/systems (such as ceiling 

lights) at her departure events. Therefore, other occupants (leaving nearly close to the last departure 

event) should also be remind to take energy-saving actions at the end of their working hours. 

Accordingly, in such cases, researchers are recommended to study the behavior of a group of 

occupants (instead of one occupant) at departure events.   

 

7. Limitations and Future Research 

While our results demonstrate that we properly modified energy-use behaviors during the 

experiment, literature [14,60,156,163–166] points out that the promoted energy-saving behaviors 

during feedback experimental periods could rarely be remained over time by occupants and they 

typically get back to their original behaviors after the experimental periods. In our research, due 

to the request/permission of the building director, we were able to collect data only for the twelve-

week duration and we decided to use this duration for studying and modifying energy-use 

behaviors (since literature [26] indicates that eight-to-sixteen-week duration should be considered 

for properly understanding/modifying energy-use behaviors). Given that, we failed to check a 

long-term energy-saving contribution of iSEA. Thereby, future studies are recommended to assess 

and evaluate the long-term effectiveness of feedback. A long-term technique could be flyers 

displayed in public settings of a building to remind the occupants about the main energy-saving 

tips identified during the feedback experimental period. Accordingly, in our future study, we will 

divide the duration to three major steps; (1) collecting preliminary data for understanding energy-

use behaviors, (2) implementing feedback for improving behaviors, and (3) tracking behaviors 

(after feedback experimental period) for assessing the long-term effectiveness of the feedback. In 

particular, during Step 3, we will utilize flyers/posters including energy-saving tips identified 

during Step 2.  

In addition, we acknowledge that the findings of this study regarding iSEA performance 

and energy-use behaviors could be benefited from a larger sample size of commercial buildings. 
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Accordingly, in our future study, we will utilize medium- and large-sized buildings for further 

iSEA evaluation, especially for testing its service layer (the web application and smartphone app). 

In particular, in a medium-/large-sized building, there is a high possibility of overlapping of 

departure events that could adversely impact iSEA performance due to the difficulty raised from 

properly identifying the last departure events and correlating the aggregate energy-load data with 

the events. To address this, in our future study, we will focus to enhance the resolution of 

occupancy sensing to a zone level in medium-/large-sized buildings (compared to the building 

level utilized in this study). Since such buildings are equipped with multiple Wi-Fi APs, we will 

divide a building to several zones (each zone is covered by one AP) and leaving each zone will be 

considered as departure events. This granularity in events is therefore expected to address the 

difficulty of identifying the last departure events.  

 

8. Conclusion 

This paper proposed iSEA which is an IoT-based energy assistant tool providing personalized 

tailored feedback to the smartphones of commercial building occupants to enhance their energy-

use behaviors. In addition, this tool enables the BEMS to monitor individual occupants and their 

energy-usage changes. Compared to the conventional feedback techniques installing additional 

sensors for data collection steps, iSEA collects the required data from existing IoT sensors in a 

web-based commercial setting which allows to implement feedback at minimal costs. The results 

from the pilot experiment conducted in a building with ten occupants over a twelve-week duration 

demonstrated the proper performance of iSEA for engaging occupants to feedback and enhancing 

their behaviors. In particular, through the experiment, we properly tested the back-end system of 

iSEA that includes physical, cloud, and communication layers.  

iSEA could be implemented into small-to-large sized commercial buildings with the 

ultimate goal of enhancing building energy consumption. In addition, iSEA contributes into IoT-

based building energy management efforts by demonstrating how IoT can save energy in built 

environments through modifying individualized energy-use behaviors. Our future work will 

mainly seek to assess the front-end system of iSEA (the service layer) through iSEA execution in 

test beds of commercial buildings.  
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