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Abstract

Machine Learning Techniques for Rare Failure Detection in Analog and Mixed-Signal

Verification and Test

by

Hanbin Hu

Due to inherent complex behaviors and stringent requirements in analog and mixed-

signal (AMS) systems, verification and testing become key bottlenecks in the product

development cycle. Rare failure detection in a high-dimensional parameter space using

minimal expensive simulation/measurement data is a major challenge.

For rare failure detection in the verification flow, this dissertation proposes to put ma-

chine learning models, that mimic the circuit behavior, under verification, which greatly

relaxes the simulation/measurement requirements and improves the verification efficiency.

We first present a hybrid formal/machine-learning verification technique (HFMV) to

combine the best of the two worlds. HFMV adds formalism on the top of a probabilistic

learning model while providing a sense of coverage for extremely rare failure detection.

On the other hand, we also study Bayesian optimization (BO) based approaches to the

challenging problem of verifying AMS circuits with stringent low failure requirements.

We simultaneously leverage multiple optimized acquisition functions to explore varying

degrees of balancing between exploitation and exploration. Furthermore, this disser-

tation proposes a BO framework under high dimensional space to further improve the

verification efficiency. Two techniques are explored here: 1) random embedding to lin-

early embed input into a low dimensional space and 2) sensor fusion networks to identify

important nonlinear features transformed by reversible neural networks. The proposed

approaches are very effective in finding very rare failures in high dimensional space which

x



existing statistical techniques can miss.

On the subject of AMS testing, this dissertation proposes to utilize self-supervised

learning methods to detect extremely rare customer failure. First, we study a transformation-

based self-labeling technique to reliably screen out rare customer return defects. The

normality score to an unseen input data is the goodness of the multi-class classification

model trained by self-labeled data via a set of reversible transformations. Furthermore,

this dissertation suggests a contrastive learning framework for semi-supervised learning

and prediction of wafer map patterns. Contrastive learning is applied for the unsu-

pervised encoder representation learning supported by augmented data generated by

different transformations (views) of wafer maps. Experimental results demonstrate that

the self-supervised learning framework greatly improves test accuracy compared to tra-

ditional supervised methods.
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Chapter 1

Introduction

Analog and mixed-signal (AMS) systems are prevailing in many popular applications

nowadays. For example, wireless communication or imaging circuits may be used in

automobile applications [1]; biomedical circuits may utilize ADCs and DACs for signal

collection and stimulation [2]; internet of things application may require analog circuit

for energy harvesting or sensing [3]. One important question to be addressed in this

dissertation is how the AMS circuit robustness can be verified and tested in an efficient

and reliable manner.

1.1 AMS Verification and Test

The verification in the digital world has already been mature for decades. With

the popular SystemVerilog [4] and universal verification methodolgy (UVM) [5] in the

verification society, and automatic test pattern generation (ATPG) [6, 7] in the testing

field, the academia and industry have enabled fast automatic testbench generation for

digital systems, greatly boosting the corresponding system robustness and reliability.

However, comparing to the digital counterparts, AMS verification and test are still
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Introduction Chapter 1

under-development. In particular, analog signals are usually more complex than digital

signals due the continuous nature, which brings in a parameter space under verifica-

tion or test infinitely large, leading to curse of dimensionality. Moreover, unlike the

digital circuits which can be characterized by some simple Boolean logics, the behavior

and consideration of AMS circuits and systems are usually highly complex, nonlinear,

and customized, which is almost infeasible to design a common description language for

different designs. All these factors make AMS verification and test extremely hard.

Design Verification TestFabrication Production

Figure 1.1: Analog & mixed-signal design flow.

In addition, we can notice all the safety-critical applications require high requirements

in terms of the AMS circuit/system robustness. Hence, the corresponding AMS verifica-

tion and test become increasingly critical and demand high accuracy and efficiency. As

shown in Fig. 1.1, the verification and test are two major steps during the design flow to

check the circuit robustness under various process-voltage-temperature (PVT) variations.

Therefore, the efficiency, accuracy and coverage of significant can dramatically impact

the turnaround time of the AMS design flow.

1.2 Rare Failure Challenges for AMS Verification

and Test

With increasing design complexity and rising robustness requirement, AMS verifi-

cation and test manifest themselves as the key bottlenecks [8] in the design flow. For

instance, automotive electronics may have an extremely low failure rate requirement, e.g.

2



Introduction Chapter 1

1 DPPM (defective parts per million) or less, making failure detection and design verifica-

tion/testing very challenging. Detecting even a single failure for circuits that are designed

to be extremely robust with typical simulation/testing budgets during design time is a

completely nontrivial problem. Under this case, the rare failure detection problem (e.g.

finding the first failure) is a fundamental and challenging problem to be addressed.

1.2.1 AMS Verification Challenges

For the verification side, it is widely known that there are two major trends in AMS

verification: formal verification, and simulation-based verification.

Formal verification is appealing as it provides a provable “yes/no” answer w.r.t the

specifications under check. However, performing formal verification directly on top of

a detailed low-level (nonlinear) SPICE circuit netlist or model (e.g. a DAE or hybrid

automation) severely limits scalability. To date, formal techniques are only feasible for

small analog blocks described by idealistic models, falling behind the practical industrial

needs [9, 10, 11]. In addition, as formal methods require strict mathematical proof, the

methods are usually not versatile for different circuits and systems.

On the other hand, the simulation-based verification heavily leverages sampling. If

we consider failure rate to be less than 1 DPPM, using simple Monte Carlo sampling, at

least 1 million samples should be collected to obtain a single failure, which is infeasible in

most cases. In recent years, researchers explore smart statistical sampling techniques (e.g.

[12, 13, 14]) to accelerate the sampling process. These methods look promising in term of

fast failure rate estimation, however, when it comes to extremely-rare failure detection,

they usually neglect one fundamental question whether there exists any failure (which

can be extremely rare) at all in a bounded parameter space. These extreme rarity makes

most sampling techniques hard to find any failures. If no first failure is detected, it is hard

3
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to find a good sampling distribution close to the failure region for importance sampling

techniques to use. When failure is extremely rare, failure detection itself becomes a

much more fundamental problem than failure rate estimation for design verification.

Therefore, some state-of-the-art smart statistical sampling techniques (e.g. [12, 13, 14])

are not specifically targeted for providing a guarantee for rare failure detection and can

miss rare failures especially under a limited sampling data budget.

1.2.2 AMS Test Challenges

Screening out all potentially defective parts before shipping to customers is crucial

for minimizing the risk of the products failing in the customer line or field [15]. Typically,

test process consists of wafer probe test, burn-in test with packaged parts, and final test,

as shown in Fig. 1.2. During both the wafer probe and final test phases, a large number of

parametric tests are performed to extract the part performance values. Outlier detection

is applied using the results from the parametric tests to identify abnormal parts. Such

parametric tests and outlier detection are especially important to test analog and mixed-

signal circuits, as a defect in those circuits is more likely to cause a parametric shift

rather than a hard functional failure.

Wafer 

Fab

Wafer

Stress/Tests
Assembly

Final 

Test

Advanced 

Outlier 

Detection

Figure 1.2: Post-silicon production test flow.

The typical measure of design quality is DPPM, i.e., number of Defective Parts which

fail after shipping to the customer (also known as customer failures) Per Million parts

shipped. The target quality level for chips that are deployed in mission-critical applica-

tions, e.g. automotive electrics, can be very stringent. As the complexity of semicon-

4
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ductor products keeps increasing, it is increasingly challenging for post-silicon testing

to screen out all defects without any escape to customers. While it is critical to learn

from extremely rare (in DPPM level) customer failures to improve outlier defect de-

tection to reach the Zero Defect (or zero customer failure) quality, there remain major

challenges in this learning process. 1) Customer failures are rare, as they are escapes

from a rather comprehensive test process. As nearly-all of the defective parts have been

screened out, data on customer failures are extremely scarce, typically at several parts

per million (PPM) level at most. 2) It can be difficult to identify a subset of parametric

tests that expose potential failures. Alternatively, outlier detection may be performed

over a high-dimensional input feature space formed by a large number of parametric test

measurements. 3) It is difficult to catch latent reliability faults by comparing with the

normal chip data distribution, leading to defect escapes.

(a) Defect illustration

1x

2x
(b) Defect distribution

Figure 1.3: Illustration of potential defects types.

As one illustrative example, Fig. 1.3(a) shows different types of defects around parallel

wires (in gray) on a particular metal layer, and Fig. 1.3(b) gives the corresponding

distribution of two parametric test results. The small green defects have no impact

on the circuit performance, which also locate in the center of the distribution of the

parametric test data. The large blue defect can cause catastrophic short-circuit fault

and are typically far away from the center of the distribution, making it easy to screen

5
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it out. The red defects, the so-called latent reliability defects, might not be caught by

post-silicon testing, however, can evolve into early life failures in the customer field due to

aging. Such latent defects are extremely hard to be detected unless a large combination

of different parametric tests is analyzed in detail to distinguish them from normal circuit

behaviors or inconsequential defects during post-silicon testing.

E
ff

e
c

ti
v
e

n
e

s
s

Efficiency

Weak at 

detecting 

poorer parts

Very good at 

detecting 

poorer parts

Good part is also 

screened out with the 

poorer material

Very little good part is 

screened out with the 

poorer material

Figure 1.4: Advanced outlier detection evolution.

Due to the scarcity of failure data, typically there are insufficient defective samples to

validate unsupervised models for outlier detection [16]. As shown in Fig. 1.4, most early

works in this field applied yield based screening strategies like statistical bin limits (SBL)

and below minimum yield (BMY) [17, 18]. In order to more efficiently and effectively

screen out outlier parts and reduce the corresponding yield loss, several univariate outlier

detection methods such as static/dynamic part average test (S/DPAT) [19, 20, 21, 22],

and nearest neighbor residual (NNR) [23, 24, 25], and location average [23, 26] were

proposed and are commonly employed in the industry. Multivariate outlier detection
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Introduction Chapter 1

methods were also proposed for screening rare defects and customer returns [27, 28].

However, with recent advances in the machine learning field, it remains interesting to

study how advanced machine learning techniques can be helpful for outlier detection in

test.

1.3 Dissertation Contributions

This dissertation mainly proposes two directions for efficient and reliable failure detec-

tion for AMS verification and test using machine learning techniques: machine-learning-

based AMS verification and self-supervised test framework. On the verification side,

we put a machine learning model, mimicking the AMS circuits and systems behavior,

under verification, instead of the original system, which greatly improves verification ef-

ficiency. On the test side, the self-supervised learning is studied and embedded into the

test framework for rare failure detection.

1.3.1 Machine Learning Based AMS Verification

Given a variational parameter space Ω, the analog verification attempts finds out the

existence of certain points x ∈ Ω, whose performance value y (x) given by simulation or

measurements fails the specification T . Without loss of generality, the problem can be

formulated as follows.

∃x ∈ Ω, s.t. y (x) ≤ T (1.1)

One of the major challenges of this problem is the huge amount of the simulation for

verification purpose, especially in the rare failure detection. As shown in Fig. 1.5, instead

of directly verifying the AMS circuit itself, machine-learning-based analog verification

proposes to train a machine learning model f (x) with a small number of simulation

7
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AMS System

Machine 
Learning 
Model

Train

Verify

Figure 1.5: Machine learning based AMS verification illustration.

samples, and then verifies the surrogate machine learning model. Assuming the machine

learning model is robust enough to mimic the AMS system behavior, we can see that

the costly simulation is replaced with the efficient model evaluation. Meanwhile, unlike

the black-box simulation y (x) without a closed form, machine learning model f (x) is

usually a white-box function, all kinds of operations like derivative computation can be

executed more transparently and efficiently, which facilitate the verification algorithm

development a lot.

Despite the benefits of machine learning based verification, one question to be an-

swered is how much we can trust the model to be reliable enough to mimic the behavior

model, which can be formulated as follows.

∃x ∈ Ω, s.t. |y (x)− f (x)| ≥ δ (1.2)

If the difference between the simulation and the machine learning model is too large,

it is unlikely to solve (1.1) robustly. The lack of simulation samples and highly-nonlinear

behavior of the certain AMS circuit may even deteriorate the situation more, making the

verification results untrustworthy. Actually, (1.2) can be regarded as a verification prob-

lem as well. Without know the simulation function y (x), the reliability of the machine

learning model is hard to be directly measured. A fully study about the robustness of

8
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machine learning model is required to guarantee the reliability of the verification results.

1.3.2 Self-supervised Testing Framework

Unlike the verification task, when using machine learning techniques for testing, one

critical issue encountered in reality is lack of the labeled data. It usually requires huge

manual effort to correctly label the sample as pass/fail or put them into the right test

bins. In addition to the manual effort, due to the failure scarcity, there may exist no

failures at all during the model training phase, which results in an highly imbalanced

dataset.

Machine 
Learning Model

Input sample
x

Sample distribution
p(x)

Self-supervised learning

Test bins

Pass/Fail

Figure 1.6: Self-supervised testing framework illustration.

Based on the recent development in self-supervised learning [29, 30], we relax the

need of sample labels, and only requires unlabeled test samples to learn a distribution

p (x) of the die under test after fabrication, as shown in Fig. 1.6. Using self-supervised

techniques, the distribution of the fabrication data or the compressed representation can

well captured without providing any data labels. After the distribution is learnt, based on

the probability distribution (or score), we can then assign the input sample as a pass/fail

signal or put it into certain test bins.

1.4 Dissertation Organizations

The dissertation is organized as follows.
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Introduction Chapter 1

Chapter 2, Chapter 3, and Chapter 4 mainly focus on the machine learning based AMS

verification. In particular, Chapter 2 hybridize the formal methods and machine learning

techniques for efficient verification with reliable guarantees. To further improve the

scalability of the proposed methods, Chapter 3 applies Bayesian optimization techniques

by elegantly considering the balance between failure detection and model improvement,

resulting in more effective and efficient rare failure detection. Furthermore, the efficiency

of Bayesian optimization under high dimensional space is discussed and improved in

Chapter 4. Moreover, in Chapter 5, we explore the model robustness issue, which is

critical for machine learning based AMS verification, by proposing a global adversarial

attack method to expose the model vulnerability.

For the self-supervised learning framework, Chapter 6 utilizes a transform-based clas-

sification to acquire the abnormal score of test samples in parametric test, capturing

extremely-rare customer return failures. In addition, contrastive learning concept is ex-

plored in Chapter 7 for wafer pattern recognition, where data labels are hard to be

obtained. With a small subset of labeled data, we demonstrate a great accuracy im-

provement of wafer pattern recognition under a semi-supervised learning configuration.

The dissertation is concluded in Chapter 8.
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Chapter 2

Hybridizing Formal Methods and

Machine Learning for AMS

Verification

This chapter presents a new perspective in AMS verification by proposing a hybrid

formal/machine-learning verification (HFMV) framework that simultaneously exploits

formal and machine learning techniques as shown in Fig. 2.1. In its most abstract form,

HFMV comprises two key elements: a probabilistic machine learning model and formal

verification that acts on top of the machine learning model. It is the interactions between

the two elements that form the promise of HFMV. The probabilistic model is trained from

limited simulation/measurement data and comes with a measure of uncertainty for each

prediction of the circuit performance under verification. Given a bounded verification

space of design or uncertainty parameters, e.g. process variations or operating conditions,

©2018 IEEE. Reprinted, with permission, from Hanbin Hu, Qingran Zheng, Ya Wang, and Peng Li,
“HFMV: Hybridizing Formal Methods and Machine Learning for Verification of Analog and Mixed-Signal
Circuits”, ACM/ESDA/IEEE Design Automation Conference (DAC), 2018.
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formal verification is applied with respect to a symbolic formula derived from the posterior

prediction of the probabilistic learning model to check if the targeted specification is met

across the entire verification space with a sufficiently high confidence.

Pass

FailProbabilistic Machine 

Learning Model

Hybrid Verification

Parameter 

Space

Formal 

Check

Figure 2.1: Hybrid verification framework HFMV.

HFMV has the best of the two worlds: it adds a degree of formalism on top of

learning-based models by utilizing satisfiability modulo theories (SMT) [31, 32] formal

techniques; and it is much more scalable than pure formal techniques at the same time.

Furthermore, to circumvent the inherent uncertainty of machine learning, the proposed

framework “formally” bounds learning model uncertainty and practically verifies design

properties over a high-dimensional space of design uncertainty. HFMV presents several

key contributions to AMS verification:

• Bridges the gap between design complexity and scalability of verification by inte-

grating formal and machine-learning techniques into a general hybrid verification

framework;

• Builds a degree of formalism into machine-learning based verification to safeguard

detection of extremely rare failure under a limited data budget;

• Explores novel formally-guided active learning to iteratively reduce learning model

uncertainty towards rare failure detection;
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• Significantly accelerates formal solutions by efficient one-time preprocessing of SMT

formulas to be checked.

Experimental studies have demonstrated that HFMV can reliably verify AMS de-

sign specifications and identify extremely rare failures under complex high-dimensional

parametric uncertainties for which state-of-the-art smart statistical sampling techniques

fail.

2.1 Probabilistic Model-Based Failure Prediction

We propose a notion of probabilistic model-based failure prediction before presenting

HFMV. Given a bounded D-dimensional parameter space Ω ⊆ RD, the true performance

y (x) at a particular point x ∈ Ω of the design under verification (DUV) can be determined

either by simulation or measurement. Without loss of generality, a point x ∈ Ω is

considered as a (true) failure if y (x) ≥ T , where T is the targeted specification (assuming

greater the value, worse the performance). Verifying a highly robust design for which

failures are extremely rare, finding a failure point in a high-dimensional space can be

extremely challenging and expensive in terms of numbers of measurements and simulation

samples needed. We propose to leverage an efficient probabilistic machine learning model

to replace direct measurements and simulations.

2.1.1 Probabilistic Machine Learning Model

HFMV exploits a large body of popular probabilistic machine learning models where

each inference is probabilistic such as Bayesian additive regression trees [33], kriging

[34], relevance vector machine (RVM) [35], and sparse relevance kernel machine (SRKM)

[36, 37]. The last three fall under the broad family of Gaussian processes.
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Generally, each prediction from a probabilistic model with model parameters θ is

based on a posterior predictive distribution, whose cumulative distribution function

(CDF) FY (y; θ) specifies the probability for true performance y (x) to fall in the range

of [a, b]:

Prob {a ≤ y (x) ≤ b} = FY (b; θ)− FY (a; θ) . (2.1)

We define the P-Prediction ŷ (x, P ; θ) associated with a probability value P for a

certain point x as:

Definition 1 ŷ (x, P ; θ) = F−1
Y (1− P ; θ) .

According to the definition above, it is straightforward to show that the probability for

true performance y (x) to be no less than ŷ (x, P ; θ) is P :

Prob {y (x) ≥ ŷ (x, P ; θ)} = P. (2.2)

Consider SRKM as an example, which is an extension to the relevance vector ma-

chine (RVM) [35] and offers improved accuracy and the appealing probabilistic feature

weighting capability [36, 37]. A trained SRKM model has a posterior Gaussian predictive

prediction with mean ŷest (x) and variance σ̂est (x) at a point x ∈ Ω as:

y ∼ N
(
ŷest (x) , σ̂2

est (x)
)

(2.3)

ŷest (x) = v̄TK (x) (2.4)

σ̂est (x) =
√
σ2 + K(x)TΣvK(x), (2.5)

where σ2 is the estimated intrinsic noise, v̄ and Σv are the posterior D × 1 expectation

and D×D covariance matrix of the feature weights, respectively, and K (x) is the D× 1

design vector based on a chosen kernel function, which will be further discussed in Section
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2.4. The detailed expressions for the above prediction can be found from [36, 37]. The

P-Prediction for SRKM is given by:

ŷSRKM (x, P ; θ) = ŷest (x)− Φ−1 (P ) · σ̂est (x) . (2.6)

where Φ−1 (·) is the inverse function of CDF of a standard normal distribution.

2.1.2 Probabilistic Failure Detection

We leverage a probabilistic model for failure detection. However, instead of using

the optimal posterior performance estimator, which is the mean ŷest (x) of the posterior

predictive distribution, we make use of the P-Prediction to cope with uncertainty of

machine learning and check if x is a failure at a given confidence level by:

ŷ (x, P ; θ) ≥ T. (2.7)

If (2.7) holds true, it is easy to see the following based on the monotonicity of the CDF:

Prob {y (x) ≥ T} ≥ Prob {y (x) ≥ ŷ (x, P ; θ)} = P. (2.8)

Therefore, if a point x satisfies ŷ (x, P ; θ) ≥ T , x is a (true) failure with a probability

at least P . If P is large enough, x can be identified as a true failure (red cross) with

a high confidence as shown in Fig. 2.2. Conversely, if the P-Prediction ŷ (x, P ; θ) < T ,

then

Prob {y (x) < T} ≥ 1− Prob {y (x) ≥ ŷ (x, P ; θ)} = 1− P. (2.9)

Therefore, x is a good design point with a probability at least 1−P . When P is small

enough, x may be identified as a good point (blue dot) with high confidence as shown in
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Figure 2.2: Probability to be a failure/good point by a probabilistic machine learning model.

Fig. 2.2. Based on the satisfiability of (2.7), x can be classified as a failure/good point

with certain model belief determined by P as summarized in Table 2.1.

Table 2.1: Model beliefs based on statisfiability of (2.7).

P ≈ 1.0 P ≈ 0.0
SAT Failure (strong belief) Failure (weak belief)

Non-SAT Good (weak belief) Good (strong belief)

2.2 Formal Problem Formulation

We apply formal verification on top of a trained probabilistic machine learning model

to provide a degree of coverage for failure detection, which is accomplished by exhaus-

tively proving or disproving a given specification T at an adaptively chosen confidence

level P in the entirety of the parameter space Ω. To do so, we make use of the recent

advances in satisfiability modulo theories (SMT) solvers.
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SMT solvers are extensions to Boolean satisfiability (SAT) counterparts which check

the satisfiability of formulas defined on Boolean variables and operations. SMT solvers

come with added expressiveness of uninterpreted function symbols, equality, quantifiers,

and various operations such as arithmetic, datatype and array operations [38]. While

originally developed in 1970s, SMT technology has undergone significant improvements

lately. A number of efficient SMT solvers have emerged, for example Z3[32] and iSAT3

[31].

2.2.1 Two Hybrid Verification Problems

In HFMV, two hybrid verification problems are defined. To exhaustively check the

existence of any failure point according to the machine learning model belief in the entire

parameter space, we define an SMT-based problem called Failure Detection Problem

using (2.7):

∃x ∈ Ω s.t. ŷ (x, P ; θ) ≥ T , P ≈ 1.0. (2.10)

A SAT solution with P close to one returned by the SMT solver is very likely to be a

true failure. If this is verified to be a true failure by a single simulation/measurement, a

“Fail” conclusion is immediately drawn for the verification task, and additional failures

may be obtained by finding more SAT solutions if desired.

We define the Design Certification Problem which is checked when one attempts

to verify that the targeted specification is met across the entire parameter space:

∃x ∈ Ω s.t. ŷ (x, P ; θ) ≥ T , P ≈ 0. (2.11)

A Non-SAT solution from the SMT solver indicates that all points in Ω are believed

to be good by the model at a high confidence level. In practice, we draw a “Pass”
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conclusion of verification only when both P and the model uncertainty (measured by

the prediction variance) are sufficiently low, the latter of which is achieved during the

active-learning guided iterative model re-training process described in Section 2.3. By

tuning the confidence level P and monitoring the model uncertainty while operating on

the two problems, we direct the SMT solver towards solving either the Failure Detection

Problem or the Design Certification Problem.

Note again the HFMV framework can be built upon any probabilistic machine learn-

ing model as long as a posterior predictive distribution FY (y; θ) is provided. Using SRKM

as the underlying machine learning model as an example, assume Ω is a D-dimensional

bounding box with x (i) ≤ x (i) ≤ x (i) along each parameter dimension i, the SMT form

of the Failure Detection Problem or Design Certification Problem at a properly chosen

P is:

∃x ∈ RD

s.t.
{
ŷest (x)− Φ−1 (P ) · σ̂est (x) ≥ T

}
∧
{
x (i) ≤ x (i) ≤ x (i)

}
, i = [1, D] .

(2.12)

2.3 Proposed Active Learning

Based on the fact that failures are extremely rare and hard to detect, a small initial

training dataset may not contain any failure, which results in an initial “lousy” probabilis-

tic model as illustrated in Fig. 2.3. To address this challenge, we propose to iteratively

improve the model accuracy through active learning with the goal of approaching rare

failure regions under a limited data budget. Active learning selects optimal sampling

locations on-the-fly and directs re-training of the machine learning model across multi-

ple iterations. We explore two active learning approaches: 1) max variance learning to

reduce model uncertainty based on max variance values of model prediction, and 2) a

novel formally-guided approach aiming at discovery of rare failure regions.
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Figure 2.3: Proposed active learning.

2.3.1 Max Variance Learning

The posterior predictive distribution FY (y; θ) reveals the essential information of

model uncertainty. In particular, regions with large prediction variance V ar (y; θ) cor-

respond to locations where model uncertainty is high. Additional sampling can be per-

formed at points with the largest variance to improve the overall model accuracy:

argmax
x

V ar (y; θ) , s.t. x ∈ Ω. (2.13)

Since the above Max Variance Learning phase takes place early on in the active

learning process as shown in Fig. 2.3, the optimization needs not to be done exactly.

Instead, we efficiently evaluate the model variance at a large number of randomly chosen

points in Ω, and pick the top Nvar locations for additional simulation or measurement.

Then, the model is retained using the larger training dataset. Experimentally, performing

one or two such iterations is sufficient.
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2.3.2 Formally-Guided Active Learning

Finding extremely-rare failures can be very challenging for designs with stringent

failure-rate requirements. Improving just the overall machine learning model accuracy as

typically done in a standard active learning strategy is far from addressing the rare-failure

detection challenge. Our key idea is to propose a novel formally-guided active learning

approach, where the main objective is to search for the most-probable failure locations

in the entire high-dimensional parameter space as shown in Fig. 2.4.
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 1i
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Figure 2.4: Formally-guided active learning.

For the i-th iteration of the proposed formally-guided approach, denote the pa-

rameters and the posterior predictive distribution of the present model by θ(i) and

FY
(
y; θ(i)

)
, respectively, which are trained on the current dataset X(i). The correspond-

ing P-Prediction is denoted by ŷ
(
x, P ; θ(i)

)
. The Failure Detection Problem of (2.10) is

solved to find the most-probable failure locations with P ≈ 1. It is entirely possible that

a Non-SAT solution is returned, indicating no points can be identified as a failure with

a strong model belief. In this case, P is reduced with a small step gradually to allow for

finding candidate failure points with reduced model confidence. Otherwise, a returned
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SAT solution x
(i)
(k) satisfying (2.10) will be included as the kth sampling point in the i-th

iteration of active learning. We repeatedly solve the following SMT instance to get the

(k + 1)-th point while avoiding getting the same solutions returned before:

∃x(i)
(k+1) ∈ Ω\ ∪ {B1, B2, . . . , Bk}

s.t. ŷ
(
x

(i)
(k+1), P ; θ(i)

)
≥ T,

(2.14)

where each Bj (j = [1, k]) is a D-dimensional bounding box, i.e. we can define a hyper-

cube as Bj =
{

x ∈ Ω
∣∣∣ ∥∥∥x (p)− x(i)

(j) (p)
∥∥∥ ≤ d0, p = [1, D]

}
which encloses x

(i)
(j) at its cen-

ter with a length of 2d0 along each dimension. Assume at each i-th active learning

iteration, a user-defined Ni number of formally guided samples are selected: X
(i)
FS ={

x
(i)
(1), x

(i)
(2), . . . , x

(i)
(Ni)

}
. All points in X

(i)
FS are queried using either circuit simulation or

measurement to obtain the corresponding true performance values. Adding these train-

ing samples to the dataset used in the i-th iteration gives a larger dataset: X(i+1) =

X(i) ∪X
(i)
FS, which is used to re-train the model and update the predictive distribution

FY
(
y; θ(i+1)

)
.

“Actively” finding out the most-probable failure locations in the high-dimensional

parameter space is instrumental for extremely-rare failure detection under limited data

budgets. The proposed active learning process terminates when reaching the set data

limit, when a large percentage of formally determined points are verified to be true

failures, or when a targeted number of true failures have been found. In the event of no

true failure detection during the active learning process, we then attempt to solve the

Design Certification Problem of (2.11) by which we certify the circuit to be good if both

P and model uncertainty are sufficiently low.
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2.4 Acceleration of SMT Solutions

A key computational component of the proposed HFMV framework to solve variants

of (2.10). To significantly boost runtime efficiency, a promising solution is to simplify the

nonlinear SMT formula through novel equivalent transformations or approximations that

can be much more efficiently solved. We propose two numerical preprocessing schemes:

input space re-mapping and linear approximation under the context of SRKM based

probabilistic model. These two techniques only present negligible one-time pre-processing

overhead for each SMT instance but have been shown to speed up SMT solving by a few

orders of magnitude.

2.4.1 Input Space Re-Mapping

SRKM employs a vector kernel function K (x∗) ∈ RD×1 of the following form to

compute the similarity between M training samples and the input vector x∗ at which a

prediction shall be made over D parameter dimensions:

K (x∗) (k) =
M∑
j=1

ω (j) ·Kk (x∗ (k) ,X (j) (k)) , k = [1, D] , (2.15)

where ω (j) is the posterior mean estimation for the j-th sample weight, X (j) (k) is

the k-th feature of the j-th training sample from the training dataset X, and Kk (·, ·)

is a scalar kernel function measuring the similarity of two input vectors over the k-th

dimension, which can be chosen arbitrarily by the user to be, for example, a radial basis

function (RBF) kernel or polynomial kernel.

Important to note that in a trained model, x∗ is the only symbolic vector variable in

(2.15) and other terms are known constants. Furthermore, K (x∗) (k) is only symbolically

dependent on the k-th dimension (parameter) x∗ (k) of the input vector x∗, allowing
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defining new symbolic variables a = [a(1), a(2), · · · , a(D)]T :

a (k) = g(x∗ (k)) = K (x∗) (k) , (2.16)

where function g(·) is introduced to signify the fact that a (k) only depends on x∗ (k).

This allows to re-map the input vector from the original X-space to the new A-space.

The minimum a (k) and maximum a (k) of a (k) for each dimension can be obtained

through a trivial one-dimensional optimization:

a (k) = min
x∗(k)≤x∗(k)≤x∗(k)

K (x∗) (k) , (2.17)

a (k) = max
x∗(k)≤x∗(k)≤x∗(k)

K (x∗) (k) , (2.18)

where x∗ (k) and x∗ (k) specify the bounds of the k-th component of the input vector in

the original parameter space Ω.

X-space A-space

Highly nonlinear

SMT problem

Nonlinearity-reduced

SMT problem

 g

1x

1a

2x 2a

Figure 2.5: Input space re-mapping.

Instead of operating in the the original X-space, the SMT problem can be reformu-
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lated in the A-space as illustrated in Fig. 2.5:

∃a ∈ RD

s.t.
{

v̄Ta− Φ−1 (P ) ·
√
σ2 + aTΣva ≥ T

}
∧
{
a (k) ≤ a (k) ≤ a (k)

}
, k = [1, D] .

(2.19)

The new SMT instance of (2.19) is equivalent to the original problem while having

no strong nonlinearity introduced by the nonlinear kernel function, and hence can be

more efficiently solved. A solution obtained in the A-space is easily mapped back to the

X-space numerically.

2.4.2 Linear Approximation

Note that the formula of (2.19) is nonlinear due to the square root computation for

the model variance and the quadratic term aTΣva. We propose to find a close linear

approximation of (2.19) such that a state-of-the-art fast linear SMT solver such as Z3

[32] can be applied.

Since Σv is a positive semidefinite matrix, the lower bound of aTΣva term can be

efficiently found by a one-time convex quadratic minimization within the bounded hyper-

cube:

la = min
a

aTΣva, with a (k) ≤ a (k) ≤ a (k), k = [1, D] . (2.20)

Inserting the this lower bound into (2.19) leads a safe linear approximation to (2.21):

∃a ∈ RD

s.t.
{

v̄Ta− Φ−1 (P ) ·
√
σ2 + la ≥ T

}
∧
{
a (k) ≤ a (k) ≤ a (k)

}
, k = [1, D] .

(2.21)

24



Hybridizing Formal Methods and Machine Learning for AMS Verification Chapter 2

Our results show that this linear formula is reasonably accurate and can be very

efficiently solved. The identified candidate failure points are further checked by the exact

formula to filter out false solutions. Z3 can solve 1,000 SMT instances of (2.21) in 2 CPU

minutes while solving one instance of (2.19) may take around 9 minutes.

2.5 Experimental Results

We test the proposed HFMV on three analog circuits and compare its performance

with the Monte Carlo (MC) method and Scaled-Sigma Sampling algorithm (SSS) [13, 12]

, a state-of-the-art smart statistical sampling technique that has demonstrated excellent

performance for analog yield estimation. To maximize the possibility of hitting rare

failures based on MC, uniform sampling is adopted in each bounded parameter space.

The prototyped HFMV tool was developed using SRKM as the underlying probabilistic

machine learning model in C++, and compiled by g++ 4.8.5, and runs on a server with

2.8GHz Intel(R) Xeon(R) CPU E5-2680 v2 Processors.
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Figure 2.6: A LDO with 60 transistor-level variations.

The three test circuits are: a differential amplifier (Amp), a low-dropout voltage regu-

lator (LDO) (Fig. 2.6) [39] , and a DC-DC converter (DCDC) (Fig. 2.7) [40] , all designed
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Figure 2.7: A DC-DC converter with 44 transistor variations.

using a commercial 90nm CMOS technology design kit. Simulation data is collected us-

ing Synopsys HSPICE (for Amp and LDO) and Cadence Spectre (for DCDC). A few

specifications for each of the following 10 performances are chosen as verification targets:

GBW, gain and CMRR for the amplifier, OA (output accuracy), OS (overshoot), RS

(ripple size) and PE (power efficiency) for the DC-DC converter, and QC (quiescent cur-

rent), US (undershoot) and LR (load regulation) for the LDO. Three types of transistor-

level variations are considered for each transistor in the amplifier and LDO: channel

length, threshold voltage, and gate oxide thickness, resulting in a 15-dimensional and

60-dimensional verification problem, respectively. Channel length and width variations

are considered for each transistor in the DC-DC converter, resulting in a 44-dimensional

verification problem.

Two 15-D hyper-cubes covering ±4σ and ±8σ variation of each device parameter

around the mean, respectively, are set up as the bounded parameter space for verification

of the amplifier. Similarly, 44-D and 60-D hyper-cubes are set up for ±4σ and ±8σ

verification of the DC-DC converter and LDO, respectively. Based upon the Gaussian

distribution used to model all process variations (not required by HFMV though), the
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probability masses outside each hyper-cube are 0.1%, 0.3% and 0.4% respectively for the

amplifier, DC-DC converter and LDO in the ±4σ case, and 2× 10−12%, 6× 10−12%, and

8× 10−12% for the three designs in the ±8σ case.

2.5.1 Active-Learning Guided Failure Discovery

 

(a)

 

(b)

 

(c)

 

(d)

 

(e)
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Figure 2.8: Selected 6 iterations of proposed active learning projected onto a 2D space
spanned by two device variables for ±8σ failure detection of amplifier CMRR. Gray
crosses: samples from the previous iteration; blue crosses: samples selected in current
iteration; red circle: sampled true failures. (a) Initial dataset; (b) max variance
learning; (c) first iteration of formally-guided active learning; (d) first true failure
found; (e)(f) large numbers of failures found.

By interfacing with HSPICE or Spectre, HFMV starts with 200 initial simulation

samples uniformly sampled in the bounded parameter space. After that, the proposed

active learning strategy performs two rounds of sampling to collect 400 data points with

max variance of model prediction, and then directs failure discovery by collecting around

Ni ≈ 350 samples for each formally-guided learning iteration. During this process, we
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record the number of samples taken for finding the first true design failure. The process

moves on to find additional failures until reaching a user-defined target or sample size

limit. The verification process ended when the 75% of samples in one round of XFS are

true failure points or the training sample size exceeds 4000. Much larger numbers of

random simulation samples are applied to MC and SSS. In case of finding no failure, a

specification is considered satisfied across the entire bounded parameter space if a non-

SAT solution is returned for the SMT formula that checks the nonexistence of any point

at which the performance meets the specification with a probability lower than some

user-specified probability approximating to 100%.

We illustrate the active-learning guided failure discovery process for the challenging

task of ±8σ CMRR verification of the amplifier in Fig. 2.8. The process starts off with

samples having max SRKM model variance to improve the overall model accuracy. The

proposed active learning then directs the sampling process towards rare failure points

in the 15-D bounded parameter space. The effectiveness of the active learning can be

observed by the discovery of a true failure point early on in the process and then many

other failure points later on, which are very rare.

Table 2.2: Comparison on ±4σ failure detection. # Samp: # of training (simulation)
samples used by each method; # 1st Fail: # of samples used for finding the first true
failure by HFMV; # Fail: # of failures found in the bounded parameter space.

Spec. Target
HFMV SSS

# Samp # 1st Fail # Fail # Samp # Fail

Amp
GBW 22MHz 1,307 600 227 6,000 0
Gain 2.5dB 2,307 1,507 155 6,000 0

CMRR 10dB 1,400 1,000 437 6,000 0

DCDC

OA 5.50% 1,200 600 334 4,000 0
OS 0.94% 1,000 600 319 4,000 0
RS 0.598mV 1,000 600 162 4,000 0
PE 83.20% 900 600 198 4,000 0

LDO
QC 16mA 2,486 600 287 6,000 0
US 60% 1,800 1,000 319 6,000 0
LR 55% 1,897 898 435 6,000 0
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Table 2.3: MC results on ±4σ failure detection. Variables defined as in Table 2.2.

Spec. Target
MC

# Samp # Fail Time

Amp
GBW 22MHz 600,000 0

228:10:48Gain 2.5dB 600,000 0
CMRR 10dB 600,000 0

DCDC

OA 5.50% 45,000 0

699:16:48
OS 0.94% 45,000 0
RS 0.598mV 45,000 0
PE 83.20% 45,000 0

LDO
QC 16mA 649,000 0

160:25:12US 60% 649,000 0
LR 55% 649,000 0

Table 2.4: Comparison on ±8σ failure detection. Variables defined as in Table 2.2.

Spec. Target
HFMV SSS

# Samp # 1st Fail # Fail # Samp # Fail
Amp GBW 5MHz 1,000 600 396 9,000 0

DCDC

OA 10.0% 1,300 600 312 9,000 0
OS 1.00% 600 600 85 9,000 0
RS 0.6mV 600 600 87 9,000 0
PE 80.00% 1,000 600 275 9,000 0

LDO
QC 20mA 896 600 140 9,000 0
US 100% 1,897 897 381 9,000 0
LR 80% 1,618 599 382 9,000 0

2.5.2 Rare Failure Detection

All three methods are applied to ±4σ verification of 10 specifications of the three

designs as in Table 2.2 and Table 2.3. Only HFMV and SSS are applied to ±8σ verifica-

tion as shown in Table 2.4 as it is almost completely meaningless to even try MC within

such wide-ranges of parameter variations for finding any extremely rare failure. HFMV

mainly targets at extremely rare failure detection, where the samples are very expensive

to collect. The listed runtimes for MC in Table 2.3 attempt to demonstrate that even
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for relatively small circuits, the simulation cost is huge when requiring a large number of

samples. When facing a fairly large circuit, the simulation time can easily dominate the

overall HFMV runtime. For example, the overall HFMV runtime for output accuracy

of the DCDC converter cost around 14 hours, and around 10 hours were consumed by

simulation for the pre-layout schematic. Hence, the number of simulation runs shall be

minimized as much as possible. As seen from Table 2.2 and Table 2.4, the numbers of

simulation samples used by HFMV are significantly lower than SSS and MC. HFMV can

hit the first true failure point using 600 to about 1,500 samples, which are about 10x

and up to 1,000x lower than used by SSS and MC, respectively. Yet, both MC

and SSS cannot find any true failure in the bounded parameter space. While SSS is

one of the state-of-the-art statistical sampling technique and has been shown to produce

excellent results for yield estimation of analog circuits [13, 12] , it lacks mechanisms specif-

ically targeting for finding extremely rare failure locations in high-dimensional parameter

spaces.
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Figure 2.9: Worst-case performances relative to the specifications found by each
method in the ±4σ region.

Fig. 2.9 and Fig. 2.10 report the worst-case performances normalized with respect

to the corresponding specifications found by each method. It can be observed that
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Figure 2.10: Worst-case performances relative to the specifications found by HFMV
and SSS in the ±8σ region.

since both MC and SSS fail to find any true failure for all targeted performances, they

produce misleading outcomes for verification. In contrast, HFMV is able to find many

specification violations (true failures). The identified worst-case performance values can

be significantly worse than the corresponding specifications.

2.6 Summary

A novel hybrid approach, namely HFMV, has been presented to address rare failure

detection challenges associated with AMS verification. HFMV combines the key benefits

of formal verification and machine-learning based approaches while circumventing their

key limitations in terms of scalability and model uncertainty. It has been demonstrated

that HFMV can provide reliable verification of AMS performance specifications in high-

dimensional parameter spaces for which both Monte Carlo and a state-of-the-art sampling

technique lead to misleading results.
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Chapter 3

Parallelizable Bayesian Optimization

for AMS Verification with High

Coverage

This chapter intends to address the rare failure detection problem by introducing a

sequential experiment design technique called Bayesian Optimization (BO) into AMS

verification field. Popularized by its applications in automatic hyper-parameter tuning

for machine learning [41, 42] and reinforcement learning [43] in recent years, BO is a

powerful tool to find the optimum value for a black-box function [44]. In integrated

circuit design area, BO also gains interest recently in DNN hardware design [45] and

analog circuit optimization [46]. Instead of dealing with the original hard-to-optimize

function, BO optimizes over an easy-to-optimize statistical model learned by a small

number of function samples (i.e., function evaluations) sequentially collected based on

©2018 IEEE. Reprinted, with permission, from Hanbin Hu, Peng Li, and Jianhua Z. Huang, “Par-
allelizable Bayesian Optimization for Analog and Mixed-Signal Rare Failure Detection with High Cov-
erage”, IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2018.
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the iteratively updated learning model.

By balancing between detecting potential failures of the current model (exploitation)

and exploring the highly-uncertain space (exploration), our proposed BO method at-

tempts to optimize the worst performance value using as small number of of samples as

possible. This economical use of samples is attractive for AMS design verification since

data collection is usually very costly. Moreover, unlike standard uses of BO, we go beyond

a pure optimization task (finding the worst failures) by taking into account the coverage

issue (finding multiple failure mechanisms). Since good coverage helps identifying differ-

ent failure regions (or failure mechanisms) and is beneficial for circuit designers to refine

and improve the circuits, the coverage issue is of particular interest to AMS design verifi-

cation, though not a concern in typical BO applications. Our BO method achieves good

coverage by incorporating a novel term in the acquisition function to penalize sample

clustering. The main contributions of this work can be summarized as follows:

• This is the first work adapting Bayesian optimization into AMS design verification

and failure detection (to the best knowledge of the authors);

• Our method efficiently detects the first failure region with a novel criteria function

balancing between exploration and exploitation with a limited simulation budget;

• We propose a novel Bayesian optimization acquisition function which yields high

coverage for detecting multiple failure regions due to different mechanisms;

• We significantly accelerate the Bayesian optimization procedure with parallelizable

simulation.

Our experimental results demonstrate that Bayesian optimization is more suitable

for failure detection compared to traditional statistical sampling methods, and the pro-
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posed methods can expedite the failure detection process while ensure certain coverage

in detecting multiple failure regions.

3.1 Bayesian Optimization for Failure Detection

3.1.1 Failure Detection Problem Formulation

Given a D-dimension parameter space Ω ⊆ IRD, the performance value y (x) at

a particular variational point x ∈ Ω of the design under verification (DUV) can be

determined by circuit simulation or measurement. Without loss of generality, a point x

can be regarded as a failure if the following condition is satisfied,

y (x) < T,x ∈ Ω, (3.1)

where T is the targeted specification (assuming the smaller the value, the worse the per-

formance). Directly verifying (3.1) is usually infeasible since y (x) is highly nonlinear in

a high dimensional space and expensive in terms of simulation or measurement. Instead,

we formulate the original problem as an optimization problem as follows,

min
x∈Ω

y (x) < T. (3.2)

Obviously, if the worst performance value can be obtained through optimization, the

verification conclusion (“Pass” or “Fail”) can be simply drawn by comparing the worst

value with the specification target T . Bayesian Optimization is adopted here to solve

the optimization problem in (3.2) considering the objective function y (x) as a black-box

objective function. Treating y(x) as a black box is a sensible choice as the mapping from

x to y is highly complex and typically no analytical expression exists.
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Note that (3.2) can just tell if the circuit fails the specification or not, but ignores

coverage issue when multiple failure regions appear, which will be addressed and discussed

in Section 3.3.

3.1.2 Overview of Bayesian Optimization

The Bayesian optimization approach is composed of two essential components. The

first component is a statistical surrogate model of the objective function with embedded

model uncertainty prediction. This surrogate model, which serves as an approximation to

the black-box objective function, is gradually improved via re-training with sequentially

collected additional samples. The sequential sampling procedure is guided by optimiz-

ing an acquisition function α (x;D) with the objective of finding the best samples that

can improve the surrogate model and guide the optimization process in the most cost-

efficient manner, as shown in Fig. 3.1. The design and optimization of the acquisition

function is the second key component of Bayesian optimization. The acquisition function

balances between finding the worst performance value (exploitation) and exploring the

undiscovered parameter space (exploration), when it comes to failure detection.

 ; D x

GP

Figure 3.1: Bayesian optimization procedure example. Red line represents the objec-
tive function.

Algorithm 1 provides the detailed flow for failure detection using Bayesian optimiza-

tion with an initial dataset D0 and a limited simulation budget of n. The initial statistical
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Algorithm 1: Bayesian optimization for failure detection

Input : Initial sample dataset D0; Simulation budget n;
Objective function y(x); Target specification T .

Output: Detected failure set F .
1 Construct initial statistical model p (y∗ |x∗, D0);
2 F ← {} ;
3 for i← 1 to n do
4 xi ← arg minx∈Ω α (x;Di−1);
5 yi ← y (xi);
6 if yi < T then
7 F ← {F , (xi, yi)};
8 end
9 Di ← {Di−1, (xi, yi)};

10 update statistical model p (y∗ |x∗, Di);
11 end
12 return F

model is built using D0 and updated by augmented data (xi, yi) in each iteration, where

the query point xi is found in Step 4, and performance value yi is simulated or measured

in Step 5.

Gaussian Process Model

A typical choice of the statistical surrogate model is Gaussian Process (GP) model,

which provides both mean and uncertainty prediction of the black-box objective function

in a closed form. Given any finite collection of N samples X = [x1, · · · ,xN ], we define

variables f = [f (x1) , · · · , f (xN)]T and y = [y1, · · · , yN ] to represent the function values

and noisy observations, respectively. Particularly, for design verification, X can represent

the parameter variations like transistor channel length, f stands for our belief about

performance value like gain or bandwidth, and y is the actual performance value obtained

from simulation or measurement which may contain noise. In GP regression, we assume

that f is jointly Gaussian distributed with prior mean µ0 (x) and covariance k (x,x′)
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functions, giving the corresponding Bayesian generative model [34]1,

f | X ∼ N (m,K) , (3.3)

y | f , σ2 ∼ N
(
f , σ2I

)
, (3.4)

where the element of mean vector and covariance matrix are defined as mi = µ0 (x) and

Ki,j = k (xi,xj).

Provided the datasetD = {(xi, yi)}ni=1, and a new test point x∗, the mean and variance

prediction of the objective function at x∗ given by the GP model can be represented as

follows:

y∗ | x∗,D ∼ N
(
µ (x∗;D) , σ2 (x∗;D)

)
(3.5)

µ (x∗;D) = µ0 (x∗) + k (x∗)T (K + σ2I
)−1

(y −m) (3.6)

σ2 (x∗;D) = k (x∗,x∗)− k (x∗)T (K + σ2I
)−1

k (x∗) (3.7)

where the element of k (x∗) is defined as ki (x
∗) = k (x∗,xi).

Acquisition Function

The acquisition function should be carefully designed to consider both exploitation

and exploration. If the acquisition function concentrates on exploitation too much, the

sequential GP model refinement process may be stuck at the local optimum of the cur-

rent model, which may miss worse performance value in the space; if the acquisition

function is biased towards exploration, the information in the current GP model is not

well utilized in selecting the next set of sample points towards optimization of the tar-

geted objective function, leading to slow convergence. There are a variety of acquisition

1A ∼ N (µ,Σ) means random vector A follows multivariate normal distribution with mean vector µ
and covariance matrix Σ.
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functions discussed in rich literatures [44, 43]. Two typical categories of the acquisition

functions are improvement-based policy and optimistic policy, such as: probability of

improvement (PI) as shown in (3.8) and lower confidence bound (LCB) as shown in (3.9)

below.

αPI (x;Di) = −Pr [y (x) < τ ] = Φ
(
µ(x;Di)−τ
σ(x;Di)

)
(3.8)

αLCB (x;Di) = µ (x;Di)− βσ (x;Di) (3.9)

where Φ (·) is the cumulative distribution function (CDF) for standard normal distribu-

tion. Although the exploitation and exploration are both touched in these two policies

using the mean and uncertainty prediction of the surrogate model, the underneath philos-

ophy is distinct. PI attempts to find the failure points with largest posterior probability

of improvement inside the current surrogate model w.r.t τ , which can be defined as the

target T or the worst performance value y− found so far, while LCB optimistically ex-

periments on the points w.r.t the one-sided lower confidence bound, as long as they have

certain chance to appear.

3.2 Proposed Parallelizable Bayesian Optimization

3.2.1 Limitation of Traditional Bayesian Optimization

Given a limited simulation budget, the design verification demands fast and efficient

failure detection with the smallest amount of required simulation/measurement data

possible. The traditional Bayesian optimization approach only utilizes a single acquisition

function during the entire process, which is potentially shortsighted and can jeopardize

the failure detection efficiency.

A simple illustration of this limitation is shown in Fig. 3.2. Consider two different ob-
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Figure 3.2: Bayesian optimization limitation with single acquisition function considered.

jective functions ya (x) and yb (x) in a bounded one-dimensional space. The two collected

samples for both situations are the same, yielding the same acquisition function value for

both PI and LCB methods. However, we can see that the locations to minimize PI and

LCB are different, denoted as xPI and xLCB, respectively. If we choose LCB for ya (x)

or PI for yb (x), the resulting search direction would be completely misleading. However,

there is no extra information facilitating the decision of which acquisition function to use

before measuring the actual points. This kind of behavior would be much harder and

even infeasible to predict with more complex objective functions in a high-dimensional

space, which can slow down the failure detection process significantly.
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3.2.2 Parallelizable Bayesian Optimization

In order to reconcile the previous discussed limitation, we propose to optimize multiple

acquisition functions simultaneously to explore the entire parameter space in a batch

mode. If we consider PI and LCB at the same time to collect two samples per step

for the example shown in Fig. 3.2, both optimizations for ya (x) and yb (x) can be

handled more properly. Here the key idea is to explore the diversity arising from multiple

acquisition functions at each sampling step of Bayesian optimization. As discussed earlier,

selecting a single optimal acquisition function that works for any given optimization

problem a priori is a very challenging task. Instead, simultaneously collecting multiple

sample points based on multiple acquisition functions practically provides a more robust

solution. Furthermore, this strategy can naturally explore different degrees of exploration

vs. exploitation represented by the multiple acquisition functions, leading to an overall

robust and efficient failure detection process.

Suppose nb acquisition functions α1, . . . , αnb
are preset to be optimized inside a single

batch. The statistical model is updated with nb augmented data in each iteration. The

proposed parallelizable Bayesian optimization flow is presented in Algorithm 2. Besides

the efficient failure detection, the acquisition function optimization and the circuit sim-

ulation/measurement (the for-loop from Step 4 to 10) can be executed in a parallel way

to expedite the overall runtime compared to the serialized simulation in Algorithm 1.

Note that there exist lots of flexibility w.r.t the acquisition function family to be cho-

sen in this framework, which can be further studied in future work. The final acquisition

function can be chosen from different policies or combine multiple acquisition functions

with different weighting parameters as what we will show in the following section.
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Algorithm 2: Parallelizable Bayesian optimization for failure detection

Input : Initial sample dataset D0;
Simulation budget n; Batch size nb;
Preset nb acquisition functions α1, . . . , αnb

;
Objective function y(x); Target specification T .

Output: Detected failure set F .
1 Construct initial statistical model p (y∗ |x∗, D0);
2 F ← {} ;
3 for b← 1 to n/nb do
4 for i← 1 to nb do
5 xb,i ← arg minx∈Ω αi (x;Db−1);
6 yb,i ← y (xb,i);
7 if yb,i < T then
8 F ← {F , (xb,i, yb,i)};
9 end

10 end
11 Db ← {Db−1, (xb,1, yb,1) , . . . , (xb,nb

, yb,nb
)};

12 update statistical model p (y∗ |x∗, Db);
13 end
14 return F

3.2.3 Proposed Acquisition Function

A new acquisition function is obtained combining PI aiming at finding most probable

failures and LCB exploring potential failures with small probabilities. Since Φ (·) is

monotonically increasing, minimizing αPI (x) is equivalent to minimizing µ(x;Di)−T
σ(x;Di)

where

τ is set to be the target T . Without loss generality, T can always be regarded as 0 by

shifting the entire response y (x). Therefore, we can have the following mixed acquisition

function combining LCB and PI:

α (x;D) = κ [µ (x;Di)− βσ (x;Di)] + (1− κ) σ̄
µ (x;Di)
σ (x;Di)

=

[
κ+ (1− κ)

σ̄

σ (x;Di)

]
µ (x;Di)− κβσ (x;Di)

(3.10)
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where σ̄ is the mean of the posterior uncertain prediction to normalize between two parts

and κ is the weighting parameter. The previous equation can be regarded as the balance

between mean and variance prediction of the current surrogate model. Assume that σ̄ is

comparable to most of σ (x;Di), i.e, σ̄/σ (x;Di) ≈ C, which gives the following equation,

α (x;D) = [κ+ (1− κ)C]µ (x;Di)− κβσ (x;Di) (3.11)

Note that C depends on the variance of the model, and κ and β are hard to be determined

beforehand. Parallelizable Bayesian optimization utilizes multiple acquisition functions

which can cover different configurations of hyperparameters. Therefore, instead of tuning

three hyperparameters, a more concise form capable of incorporating into parallelizable

Bayesian optimization can be formulated as follows.

αi (x;Db) = αpBO (x;Db, wi)

= (1− wi)µ (x;Db)− wiσ (x;Db)
(3.12)

Here αpBO (x;Db, wi) is the i-th acquisition function in b-th batch, weighted by wi. Given

nb preset wi, we can have nb different acquisition functions for parallelizable Bayesian

optimization, exploring the diversity of acquisition functions. The final form is very simi-

lar to LCB acquisition function, however, this new acquisition function can be optimized

solely by the uncertainty of the surrogate model with wi = 1, which is unavailable in

LCB.
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3.3 Bayesian Optimization with High Coverage Con-

sideration

In addition to efficient failure detection, coverage is also a key perspective in design

verification. Not only shall we identify the existence of (single) failure, we shall also

identify different types of failure mechanisms or failure regions to provide a good cov-

erage. A failure detection method with a good coverage property can provide a more

complete picture of different types of failures involved in a given design and assist the

iterative process of verification, debug, and re-design. However, utilizing the standard

Bayesian optimization method to optimize for the worst performance value doesn’t take

coverage into account, usually resulting in clustered detected failures, as demonstrated

in Section 3.4.3. To maximize the failure coverage, one approach is to consider coverage

as another optimization target after the first failure is found in the process, by adding

an additional term (referred to below as the high-coverage term) into the acquisition

function to penalize clustered samples as follows.

αpHCBO (x;Db, wi) = αpBO (x;Db, wi) + αHC (x;Db, wi) (3.13)

Specifically, to avoid redundant data collection in the same failure region, the new

collected point should be far away from the samples optimized by the same acquisition

function in previous batches as shown in Fig. 3.3. A high-coverage term can be formu-

lated with a normalization term NHC and the geometry mean of some distance measure

regarding p previous samples as follows.

αHC (x;Db, wi) = NHC
p

√√√√ p∏
j=1

fHC (‖x− xb−j,i‖ , d) (3.14)
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Figure 3.3: High coverage acquisition function illustration in 2-D space.

Here the normalization term NHC mainly considers the weighting parameter wi and the

scale of collected samples. With dx = ‖x− xb−j,i‖ as the distance between new sample

and previous sample, fHC (dx, d) intends to greatly penalize the new sample which is too

close to the previous collected sample with large value (close to infinity), and encourages

the new sample to be located in an unexplored area with small value (close to one). The

parameter d, named as failure distance resolution, is a user-defined parameter specifying

the failure region size in user’s belief. If the distance between two failure samples is

larger than d, the two samples are induced by different failure mechanisms in designers’

perspective, which makes d an expected failure region size to distinguish different failure

mechanisms. Therefore the resulting function should own the following property.

fHC (dx, d) ≈

 +∞ dx � d

1 dx � d
(3.15)

A sharp transition around d is usually desirable to clearly distinguish the failure
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regions w.r.t d. In particular, the following equation is used in our experiment.

fHC (dx, d) = exp

[(
d

dx

)10
]

(3.16)

Note that Algorithm 1 and 2 can be used without modification when the high-coverage

term is added to any acquisition function.

3.4 Experimental Results

To demonstrate the effectiveness of the proposed Bayesian optimization method, we

applied it to a synthetic mathematical model, a one-stage single-ended differential ampli-

fier, and an under-voltage lockout circuit, and compared with both statistical sampling

techniques and Bayesian optimization methods with several commonly-used acquisition

functions. Specifically, Monte Carlo (MC) method and Scaled-Sigma Sampling (SSS)

algorithm [13, 12], a state-of-art statistical sampling technique, are chosen as compared

sampling techniques. All the parameter variations follow Gaussian distribution, required

by statistical sampling techniques. To maximize the possibility of hitting rare failures

based on MC, uniform distribution is assumed in the bounded hyper-cube space, which

encloses a ±4σ parameter variation space. Expectation of Improvement (EI) [41], Prob-

ability of Improvement (PI) [47] and Lowest Confidence Bound (LCB) [41] are selected

as the acquisition functions for comparison in Bayesian optimization, which are imple-

mented in a popular toolbox called BayesOpt [48].

We considered two alternatives derived from our approach: pBO uses only the pro-

posed parallelizable Bayesian optimization acquisition function balancing between explo-

ration and exploitation as described in Section 3.2; pHCBO further includes the addi-

tional modification of the acquisition function for coverage of multiple failure regions as
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discussed in Section 3.3 after we found first failure using pBO. The batch size for our

parallel Bayesian optimization is set to be 5. The 5 weighting parameters for the 5 cor-

responding αpBO acquisition functions are w = (0, 0.25, 0.5, 0.75, 1)T. For pHCBO, we

set p = 5 in (3.14) to select 5 previous samples to avoid clustering of sequential sampling

points. The distance resolution d is chosen to be 0.1 for the synthetic mathematical

model, and 0.2 for the two circuit examples. The proposed methods are implemented in

C++ under the BayesOpt [48] framework using DIRECT L [49] and BOBYQA [50] in

NLopt library [51] for optimization. All the experiments are conducted on a workstation

with a 3.50GHz Intel(R) Xeon(R) E5-1620 v4 CPU.

3.4.1 Test Case Configuration

Synthetic Mathematical Model

A simple synthetic mathematical model having K unconnected failure regions in D

dimensional space is designed with convenient configuration flexibility for failure detection

as follows:

Y (x) =
K∏
i=1

(‖x− ci‖ − ri) , (3.17)

where the i-th failure region Fi (ci, ri) is defined as a hyper-ball centering at ci with a

range of ri. Each failure region Fi (ci, ri) is carefully chosen to avoid overlapping with

other regions. We define x as a failure point when Y (x) < 0, i.e., x is inside one of the

failure regions Fi as shown in Fig. 3.4. Here we set the model to be a 6-dimensional func-

tion with 2 failure regions whose centers are located at c1 = (0.3, 0.4, 0.5, 0.6, 0.7, 0.8)T

and c2 = (0.5, 0.6, 0.3, 0.4, 0.3, 0.2)T, respectively, each with radius r1,2 = 0.1. The two

failure regions only occupy 10−5 volume of the entire bounded space enclosing [0, 1]6,

making it a hard test case for comparing different failure detection methods. For each

of the considered Bayesian optimization approach, 10 samples are provided to train an
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initial GP model. After that, another 240 samples are sequentially collected for this

verification task.

 1 1 1,F rc

 2 2 2,F rc

1x

2x

1c 1r

2c 2r
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Figure 3.4: A 2D illustration for the 6-dimensional synthetic mathematical test case.

One-Stage Single-Ended Differential Amplifier

The amplifier circuit is designed using a commercial 90nm CMOS technology design

kit, and simulated remotely with Synopsys HSPICE on a server with a 2.80GHz Intel(R)

Xeon(R) E5-2680 v2 CPU. Three specifications, gain-bandwidth product (GBW), gain

and common-mode rejection ratio (CMRR), are chosen as the verification targets for the

amplifier. Three types of transistor-level variations are considered for 5 transistors in

the circuit: channel length, threshold voltage and gate oxide thickness, resulting in a

15-dimensional verification problem. All experiments related to Bayesian optimization

use the same 50 initial samples for the first GP model training and a simulation budget

of 350 samples for sequential experiment designs later on.

CMOS Under-voltage Lockout Circuit

Another circuit example considered is the Under-voltage Lockout (UVLO) circuit

[52] as shown in Fig. 3.5 which monitors the battery voltage and disconnects the battery
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from the load when battery voltage is detected to be lower than a certain threshold.

The circuit is also designed using the commercial 90nm CMOS technology design kit,

and simulated remotely with Cadence Spectre on the server with the 2.80GHz Intel(R)

Xeon(R) E5-2680 v2 CPU. The variation of the turn-off threshold voltage |∆VTHL| is

chosen as the interested verification target for the UVLO circuits, which may undergo

dramatic fluctuations even with small parametric variations, making this circuit an inter-

esting test case. The most relevant variations that have a large impact on the threshold

voltage are the resistances of three resistors in the “Hysteresis Control” part and the

sizings of the 5 transistors in “Hysteresis Control” and “Inverter Pair” of the circuit,

resulting in a 8-dimensional verification problem. 5 initial samples are collected as the

starting points for all the Bayesian optimization experiments, and another 95 samples

are simulated subsequently for failure detection.
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Figure 3.5: A CMOS under-voltage lockout circuit.
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3.4.2 Failure Detection Effectiveness and Efficiency

Table 3.1: Failure detection result comparison for the amplifier verification with a
specification of 22MHz for GBW.

Method # Sim Worst Case 1st Fail # Fail. # Reg. Runtime

MC 600,000 28.7MHz - 0 0 228h10m48s
SSS 6,000 37.8MHz - 0 0 1h59m33s
EI 50init + 350seq 24.6MHz - 0 0 15m44s
PI 50init + 350seq 25.2MHz - 0 0 15m58s

LCB 50init + 350seq 21.9MHz 161 240 1 15m23s
pBO 50init + 5× 70batch 21.9MHz 66 228 1 11m49s

pHCBO 50init + 5× 70batch 20.5MHz 66 181 4 11m40s

Table 3.2: Failure detection result comparison for the amplifier verification with a
specification of 2.5dB for Gain.

Method # Sim Worst Case 1st Fail # Fail. # Reg. Runtime

MC 600,000 7.16dB - 0 0 228h10m48s
SSS 6,000 13.61dB - 0 0 1h59m33s
EI 50init + 350seq 3.75dB - 0 0 16m01s
PI 50init + 350seq 2.17dB 282 74 5 15m53s

LCB 50init + 350seq 2.17dB 264 137 1 16m47s
pBO 50init + 5× 70batch 2.17dB 109 232 3 11m18s

pHCBO 50init + 5× 70batch 1.80dB 109 209 10 11m56s

Table 3.3: Failure detection result comparison for the amplifier verification with a
specification of 10dB for CMRR.

Method # Sim Worst Case 1st Fail # Fail. # Reg. Runtime

MC 600,000 11.42dB - 0 0 228h10m48s
SSS 6,000 16.57dB - 0 0 1h59m33s
EI 50init + 350seq 11.79dB - 0 0 16m03s
PI 50init + 350seq 11.52dB - 0 0 16m08s

LCB 50init + 350seq 11.52dB - 0 0 16m29s
pBO 50init + 5× 70batch 7.48dB 376 20 4 12m01s

pHCBO 50init + 5× 70batch 7.48dB 376 20 4 11m39s

To compare different failure detection methods, we consider two key performance

properties of these methods:failure detection effectiveness and failure detection efficiency.
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Table 3.4: Failure detection result comparison for the UVLO circuit verification with
a specification of 0.9V for |∆VTHL|.

Method # Sim Worst Case 1st Fail # Fail. # Reg. Runtime

MC 10,000 0.77V - 0 0 2h31m36s
SSS 2,000 0.17V - 0 0 29m04s
EI 5init + 95seq 0.95V 63 26 5 4m04s
PI 5init + 95seq 0.07V - 0 0 4m07s

LCB 5init + 95seq 0.17V - 0 0 4m08s
pBO 5init + 5× 19batch 0.95V 26 49 6 1m09s

pHCBO 5init + 5× 19batch 0.95V 26 45 8 56s

The former concerns the fundamental question of whether a method can detect existence

of any (rare) failure given the circuit to be verified is faulty. Furthermore, if a method

is effective, i.e. capable of failure detection, we further consider its efficiency which

measures the number of simulation samples required to find the first failure or a given

number of failures.

Rare Failure Detection Effectiveness

Targeting at rare failure detection scenarios, we can observe from Table 3.1 to Table

3.5 that statistical sampling methods like MC and SSS provision huge simulation budgets

and large amounts of CPU time (10x to 1,000x compared to most Bayesian optimization

methods) while failing to find any failure for all three test cases. As a result, they pro-

vide completely misleading “optimistic” verification results. This suggests that without

specifically targeting the challenges associated with rare failure detection, standard and

advanced statistical sampling techniques like MC and SSS may not be adequate if only

the choice of the sampling distribution is considered or optimized. On the other hand,

most Bayesian optimization methods can find some failures with only hundreds of sim-

ulation budget, demonstrating the effectiveness of Bayesian optimization for rare failure

detection.
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Bayesian Optimization Effectiveness Comparison

Although Bayesian optimization is demonstrated to be effective in general, the per-

formance, however, significantly depends on the design of the acquisition function. From

Table 3.1 to Table 3.4, traditional acquisition functions like PI, EI and LCB fail to detect

failure effectively for several specifications. No such method can identify failures for all

considered specifications, showing the limitations of Bayesian optimization claimed in

Section 3.2.1. However, the proposed pBO and pHCBO can detect failures in all scenar-

ios within a very limited simulation budget, thanks to the design of multiple acquisition

functions.

Bayesian Optimization Failure Detection Efficiency

For the design specifications where all Bayesian optimization methods can detect

failure, the proposed pBO and pHCBO are the most efficient in terms of required simu-

lation data for the first failure detection and almost always the most efficient measured

by the total number of failures found, as shown in “1st Fail” and “# Fail.” columns

in Table 3.1 to Table 3.4. “1st Fail” is the number of samples collected before the first

failure point is found during the process. Fig. 3.6 shows the worst amplifier gain per-

formance reached by each Bayesian optimization method as the search (optimization)

process proceeds. These results demonstrate that by simultaneously considering multi-

ple acquisition functions weighting exploitation and exploration differently the proposed

methods can efficiently identify increasingly worse performance levels as the optimization

process continues, leading to the overall improved efficiency of failure detection.

In terms of runtimes shown in Table 3.1 to Table 3.4, the proposed methods show

advantages over other Bayesian optimization methods due to their amenability to par-

allel data acquisition via circuit simulation parallelization. Clearly, as the simulation
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Figure 3.6: The worst amplifier gain performance reached during the Bayesian opti-
mization process.

data collection gets increasingly expensive for larger circuits, the speedup benefit of the

proposed parallelizable Bayesian optimization will be more significant, for instance in the

case of large industrial AMS designs, for which a single simulation run can easily take

up hours or days.

3.4.3 High Coverage Failure Detection with Multiple Failure

Regions

In order to clearly demonstrate the superiority of the proposed high coverage acqui-

sition function, first, all methods are compared based on the synthetic mathematical

model whose failure locations are known a priori. Table 3.5 reports that pHCBO is the

only method detecting failures in both F1 (c1, r1) and F2 (c2, r2) regions each of which

contains a very small relative volume, whereas other Bayesian optimization methods can
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Table 3.5: Failure region coverage for the synthetic mathematic model.
Method # Sim F1 (c1, r1) F2 (c2, r2)

MC 50,000 0 0
SSS 10,000 0 0
EI 10init + 240seq 31 0
PI 10init + 240seq 201 0

LCB 10init + 240seq 39 0
pBO 10init + 5× 48batch 0 31

pHCBO 10init + 5× 48batch 20 23

only find one of the two failure regions.

Now, we move onto the failure region coverage results for the two circuit test cases

shown in Table 3.1 to Table 3.4. Purely for the ease of counting and comparison, we bisect

the entire parametric variation space into two parts based on the nominal value of every

parameter: one where the parametric value is above the nominal and the other where

the parametric value is below the nominal. As such, for example, the 15-dimensional

parametric space of the amplifier verification problem is divided into 215 = 32768 different

parametric regions. Whenever a failure sample is detected inside a region, the region is

considered as a failure region. Clearly seen in Table 3.1 to Table 3.4, pHCBO provides

more failure region coverage as it detects the largest numbers of failure regions compared

to other methods. Furthermore, pHCBO covers all failure regions which are detected by

other methods w.r.t all four different specifications in the amplifier and UVLO circuit.

We briefly comment on the types of failures detected by pHCBO. Without any prior

knowledge of the circuit, pHCBO recognizes that the mismatch between differential pairs

and current mirror would cause large performance degradation, which forms certain fail-

ure regions. pHCBO also identifies particular combinations of resistor variations to fail

the |∆VTHL| spec for the UVLO circuit.
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3.4.4 Additional Comparison between pBO and pHCBO

A more detailed comparison between pBO and pHCBO is presented in Fig. 3.7

and Fig. 3.8 to illustrate the sequential batch query process for the verification of the

differential amplifier gain. With larger weight w, the new query point is more likely to

jump out of the current local optima to explore the part of the undiscovered parametric

space. In comparison to pBO, pHCBO attempts to avoid large penalty resulted from

the high coverage acquisition function when the query point is close to previous collected

samples. Hence, it has a tendency to minimize redundant data sampling that discovers

the worst failure case in the same failure region, spreading out failure detection over the

entire parametric space and driving the search process towards distinct failure regions.

The two spikes in Fig. 3.7 are caused by a trivial strategy introducing random samples

when detecting too many previous samples trapped in the same local, however, this

phenomenon doesn’t get alleviated without high coverage consideration in acquisition

functions. Moreover, pHCBO is even capable of detecting worser cases compared to pBO

since it covers more failure regions, as shown in Table 3.2.

3.5 Summary

In this chapter, we develop a novel Bayesian optimization procedure for rare failure

detection of analog/mixed-signal circuits. In particular, we design a new acquisition func-

tion for Bayesian optimization to make the procedure particularly effective for multiple

failure region detection. Our experiments show that the proposed Bayesian optimization

procedure outperforms existing statistical sampling techniques in terms of both detection

effectiveness and efficiency. The proposed procedure can find rare design failures much

more efficiently and can discover a large number of failure mechanisms with much less

required sampling data.
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Figure 3.7: Amplifier gain query points for each batch using pBO. The fifth point
(w = 1) inside each batch (based solely on uncertainty measure) is excluded due to
its large response scale for clarity of visualization.
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Figure 3.8: Amplifier gain query points for each batch using pHCBO. The fifth point
(w = 1) inside each batch (based solely on uncertainty measure) is excluded due to
its large response scale for clarity of visualization.
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Chapter 4

Enabling High-Dimensional

Bayesian Optimization

While providing an attractive black-box solution applicable to AMS verification, a

well-known limitation of Bayesian optimization is its limitation in dealing with high-

dimensional problems [44, 53]. When the dimensionality of the black-box optimiza-

tion problem increases, so does the dimensionality of the optimization of the acquisi-

tion function, which is typically non-convex, at each sequential sampling step. Solv-

ing high-dimensional optimization problems can be both computationally expensive and

hard. The high run-time cost and degradation of optimization solution quality for high-

dimensional problems severely limit the scalability of BO.

This chapter aims to extend the applicability of BO to the challenging problem of rare

©2019 IEEE. Reprinted, with permission, from Hanbin Hu, Peng Li, and Jianhua Z. Huang, “En-
abling High-Dimensional Bayesian optimization for Efficient Failure Detection of Analog and Mixed-
Signal Circuits”, ACM/IEEE Design Automation Conference (DAC), 2019.

©2021 IEEE. Reprinted, with permission, from Myung Seok Shim, Hanbin Hu, and Peng Li,
“Reversible Gating Architecture for Rare Failure Detection of Analog and Mixed-Signal Circuits”,
ACM/IEEE Design Automation Conference (DAC), 2021.
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failure detection of AMS circuits with large numbers of design uncertainties. First, we

propose to employ random embedding [54] to effectively reduce the effective dimension-

ality of the verification problem. Dimensionality reduction is possible for AMS circuits

since under many practical situations variational parameters of a circuit do not have equal

significance to a given design performance to be verified [36, 37]. Specific circuit topolo-

gies employed in practical circuits build constrained structures into the way different

circuit/process parameters interact with each other and influence the given design per-

formance. This gives rise to parameters that are statistically insignificant to the targeted

performance. It shall be noted, however, such parametric redundancy in practice may be

only identified in a transformed parameter space. Towards this end, random embedding

provides a systematic way to explore hidden parametric redundancy. As such, parame-

ter redundancy needs not to be specified by the designer a prior, which is very hard in

general. Instead, it can be streamlined in the sequential statistical learning/black-box

optimization framework of Bayesian optimization.

Moreover, to also handle nonlinear manifold, we also propose a RevNet based gat-

ing neural network with the improved performance for the rare failure detection prob-

lem using the BO framework. Our main contributions are: 1) propose a new RevNet

based auxiliary-model regulated gating architecture, called Rev-Gate, to utilize gating fu-

sion weights for efficient dimension reduction; 2) propose a novel dimension embedding

method using RevNet and Bayesian neural network (BNN) to embed low-dimensional

nonlinear internal representation back into the high-dimensional original variation pa-

rameters; and 3) investigate the proposed dimension embedding in a BO framework for

efficient rare failure detection via extensive experimental studies. We demonstrate in the

experimental study that our proposed Rev-Gate architecture efficiently detects rare AMS

failures with significantly less runtime while other methods don’t.
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4.1 Bayesian Optimization Challenges under High

Dimensional Space

A global optimization method assisted with a local gradient-free optimizer is usually

to optimize the D-dimensional acquisition function. Such methods often suffer severely

from the curse of dimensionality. We tested the optimization efficiency of DIRECT L

[49] and COBYLA [55] from the NLopt library [51] on a simple objective function:

ysyn (x) =
‖x− c‖2

‖c‖2

, (4.1)

where c is a D-dimensional vector. Fig. 4.1 shows that the required number of function

evaluations for both methods is super-linear in D. This suggests that in general when BO

is applied to a black-box function the number of acquisition function evaluations can be

much larger than D. The time complexity for evaluating simple acquisition functions like

PI, EI and LCB is O (N2 +ND), where N is the number of training examples. Therefore,

the time complexity for optimizing the acquisition once is greater than O (N2D +ND2)

which is quadratic in D at minimum. Optimizing general non-convex acquisition func-

tions in high-dimensions can be challenging. To force the completion, the number of

acquisition function evaluations is upper bounded, leading to poor optimization quality.

In addition, hyper-parameter tuning for GP models also suffers from high dimensionality.

4.2 High Dimensional Bayesian Optimization

As stated in the previous section, the traditional BO suffers from costly GP training

and poor optimization quality of the acquisition function over high-dimensional space,

which leads to inefficient black-box optimization. One way to mitigate this effect is to
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Figure 4.1: Number of function evaluations per optimization for two optimization methods.

embed the original high dimensional space X ⊆ RD into a low dimension space Z ⊆ Rd,

where d < D, so that both surrogate model and acquisition function can be performed in

a low dimensional space Z for fast training convergence and better acquisition function

optimization. After optimized z∗ is extracted from the acquisition function, it can be

embedded back to the original space X for the actual circuit simulation as shown in Fig.

4.2 via a dimension embedding process x∗ = EZ→X (z∗).
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Figure 4.2: Bayesian optimization for high-dimensional problems.

Here we refer to this scheme as high dimensional Bayesian optimization (HDBO).
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4.3 Random Embedding for HDBO

Our experimental studies in Section 4.1 have shown that the degradation of opti-

mization solution quality and high time complexity of high-dimensional AMS circuits

can make BO fail to detect rare design failures. We address this challenge by exploring

random embedding to effectively reduce the dimensionality motivated by the fact typi-

cally only a subset of circuit parameters and parameter combinations have a significant

impact on a target design performance.

4.3.1 Dimension Reduction: Random Embedding
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Figure 4.3: Random embedding illustration.

Consider that the original D-dimensional parameter space has a de-dimensional effec-

tive linear subspace V such that for all xe ∈ V and xu ∈ V⊥, we have y (xe + xu) = y (xe),

where de is the minimum integer number satisfying this property. Intuitively, parametric

variations in the subspace orthogonal to V with the lowest possible dimensionality de does

not alter the performance value. As proven in [54], with a random matrix A ∈ IRD×d

60



Enabling High-Dimensional Bayesian Optimization Chapter 4

with entries independently sampled according to N (0, 1), where embedding dimension

d ≥ de, for ∀x ∈ IRD, there exists a z ∈ IRd such that y (x) = y (Az) with probability 1.

Therefore, the original high dimensional space can be embedded into a low dimensional

space via a random matrix, resulting in a low dimension search space in Bayesian opti-

mization. The optimum solution x∗ ∈ IRD can be found at some point z∗ ∈ IRd, where

x∗ = Az∗.

For example, the 2D objective function in Fig. 4.3 only depends on x1. The 2D

parameter space can be embedded into a 1D space (red solid line) along which the

optimum solution can be found.

4.3.2 Proposed BO with Random Embedding

We define the failure search region for z as Z ⊆ IRd. Typically, the normalized

failure search space Ω for x can be set as a bounded hyper-cube [−1, 1]D. The exact

mapping of Ω in the embedding subspace may be complex, but can be well approximated

by another bounded hyper-cube [−
√
d,
√
d]d [54]. Now BO can operate in the low d-

dimensional space defined by random embedding: both GP modeling and optimization

of the acquisition function take place in terms of z. The sampling of training data for the

GP model is confined in Z. Each sampled z ∈ Z is mapped to a x ∈ Ω via the random

matrix A by:

x = pΩ (Az) . (4.2)

In case that Az locates outside Ω, the projection operation pΩ (·) is performed to constrain

the mapped x within Ω. Then the circuit performance at x is obtained using circuit

simulation.

We summarize our Bayesian optimization algorithm using both random embedding

technique and parallelizable acquisition function (3.12) as shown in Algorithm 3. With
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Algorithm 3: Proposed Bayesian optimization for failure detection in high
dimension space

Input : Original function dimensionality D;
Initial sample dataset D0;
Simulation budget n; Batch size nb;
Preset nb weighting parameters w1, . . . , wnb

;
Objective function y(x); Target specification T .

Output: Detected failure set F .
1 Select an embedding dimension d from D0;

2 Sample a random matrix A ∈ IRD×d;
3 Build the initial statistical model p (y∗ |z∗, D0);
4 F ← {} ;
5 for b← 1 to n/nb do
6 for i← 1 to nb do
7 zb,i ← arg minz∈Z αpBO (z;Db−1, wi);
8 yb,i ← y (pΩ (Azb,i));
9 if yb,i < T then

10 F ← {F , (pΩ (Azb,i) , yb,i)};
11 end

12 end
13 Db ← {Db−1, (zb,1, yb,1) , . . . , (zb,nb

, yb,nb
)};

14 Update statistical model p (y∗ |z∗, Db);
15 end
16 return F .
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the proposed algorithm, the acquisition function optimization is executed in a low di-

mension space Z ⊆ IRd, which can be expected to have better optimization quality and

efficiency. In addition, the GP model is trained under the low-dimensional space as well,

resulting in more efficient GP training and evaluation.

4.3.3 Embedding Dimensionality Selection

Algorithm 4: Proposed embedding dimension selection.

Input : Initial sample dataset D0 = {X,y};
Original function dimensionality D;
Random matrix maximum trial count T .

Output: Embedded dimension d̃.
1 for d← 1 to D do
2 for i← 1 to T do
3 Sample a random matrix A ∈ IRD×d;

4 A† ←
(
ATA

)−1
AT;

5 Build statistical model p
(
y∗ |z∗,

{
A†X,y

})
;

6 Compute msei of the model given
{
A†X,y

}
;

7 end

8 MSEd ← 1
T

∑T
i=1 msei;

9 end

10 Pick the smallest d̃ where MSE stops decreasing from the plot using
{MSE1 · · ·MSED};

11 return d̃.

While [54] provides the general theoretical principle of random embedding, it does

not offer guidance for finding the effective dimensionality de. Selection of the embedding

dimension d must balance two conflicting needs. An overly small d can lead to over-

compression of the original parameters x and hence poor accuracy of the surrogate GP

model, jeopardizing the robustness of failure detection. On the other hand, if d is too

large, we can barely benefit from the dimension reduction brought by random embedding.

We propose the following data-efficient approach to select the embedding dimension-
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ality prior to the BO based failure detection. For this, we collect a small training dataset

to train multiple GP models with varying embedding dimensionalities. To share the same

training dataset for all such GP models, the sampling of the training dataset takes place

in the original D-dimensional parameter space, and the labels (circuit performance val-

ues) are queried using circuit simulation. Then, each sampled vector x ∈ IRD is mapped

to the corresponding vector z ∈ IRd with embedding dimension d via pseudo inverse of

the random embedding:

z = A†x =
(
ATA

)−1
ATx. (4.3)

The above procedure maps one common training dataset in x to a training set for each

embedding dimension d such that a GP model with dimension d can be trained using the

mapped data. We then use the mean-square error (MSE) to evaluate each GP model.

If the dimensionality d is smaller than the unknown effective dimension de, we expect

the MSE of the corresponding GP model would be large. We track the the variation of

MSE as d increases. If the MSE stops decreasing at some dimension d̃, d̃ is likely to be

just somewhat greater than de, and hence a good choice as the embedding dimension

used for the sequential BO process. Since we only want to use a small amount of data

to determine d̃, multiple, say T , GP models with different random matrices are trained

for each d and their MSEs are averaged to minimize the variance of random embedding

with small data. Embedding dimension selection is summarized in Algorithm 4.

4.4 Experimental Results for Random Embedding

4.4.1 Experimental Setups

Two of the same circuits: an under-voltage lockout circuit [52] (19 dimensions) and

a low-dropout regulator [39] (60 dimensions), are used here, as shown in Fig. 3.5 and
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2.6, respectively. Both circuits are designed using a commercial 90nm CMOS technology

design kit, and simulated remotely on the server with the 2.80GHz Intel(R) Xeon(R)

E5-2680 v2 CPU.

The performances of two categories of techniques, i.e. sampling methods and Bayesian

optimization, are studied. Under the first category, we employ Monte Carlo (MC) method

and Scaled-Sigma Sampling (SSS) algorithm [13, 12], a state-of-the-art statistical sam-

pling technique. The parameter variations of interest are bounded inside a large hyper-

cube, which encloses a wide ±4σ range for each parameter. To maximize the possibility of

hitting rare failures within the large hyper-cube, uniform sampling distribution is adopted

for MC. In the second category, Bayesian optimization approaches using different acqui-

sition functions EI, PI, LCB [44] and the parallelizable multi-acquisition functions (pBO)

are selected to compare the proposed BO approach with random embedding. The BO

methods were implemented in C++ under the BayesOpt [48] framework using DIRECT L

[49] for global optimization and COBYLA [55] for local optimization in NLopt library

[51]. All the experiments were conducted on a workstation with a 3.50GHz Intel(R)

Xeon(R) E5-1620 v4 CPU.

For the UVLO circuit, 5 initial samples are collected as the starting points for all the

Bayesian optimization experiments, and another 95 samples are subsequently collected

for failure detection. For the amplifier, all experiments related to Bayesian optimization

use the same 50 samples for the first GP model training and a simulation budget of 350

examples for the sequential experiment design later on.

4.4.2 Random Embedding Dimension Selection

To pick the embedding dimension d̃, Algorithm 4 is performed for both circuits. For

this, 5 initial examples are used for the UVLO circuit, and 50 for the LDO. The GP
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Figure 4.4: Random embedding dimension selection results.

model accuracy corresponding to various dimensions is presented in Fig.4.4, where the

MSE results are normalized into the range of [0, 1] for demonstration convenience. For

the UVLO circuit, the minimum MSE is achieved at dimension 16, which however does

not bring in much benefit from dimension reduction. Instead, we pick d̃UV LO = 8, a good

tradeoff between model accuracy and dimension reduction. For all the three specifications

of the LDO, the MSE reaches the minimal level around dimension 30, therefore we set

d̃LDO = 30.

4.4.3 Failure Detection Effectiveness and Efficiency

Table 4.1: Failure detection result comparison for the UVLO circuit verification (19
dimension).

Spec Target Method # Sim Worst Case 1st Fail Runtime

|∆VTHL| 0.9V

MC 20,000 0.86V - 4h22m07s
SSS 1,000 0.15V - 13m24s
EI 5init + 95seq 0.16V - 8m30s
PI 5init + 95seq 0.04V - 7m56s

LCB 5init + 95seq 0.17V - 7m40s
pBO 5init + 5× 19batch 0.14V - 9m01s

This work 5init + 5× 19batch 0.95V 26 5m32s
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As shown in Tables 4.1 and 4.2, the MC and SSS methods collect thousands to

hundreds of thousands of simulation examples without detecting a single failure. This also

indicates that the failures in these two circuits are extremely rare. Meanwhile, traditional

acquisition functions like EI, PI and LCB or parallelizable Bayesian optimization (pBO)

method cannot detect a single failure as well due to the inherent difficulty in applying BO

in high-dimensional spaces. The proposed failure detection approach is the only method

detecting failures for all specifications. The worst-case performance levels found by our

method are much worse than the given target, while the statistical sampling methods

and the more conventional Bayesian optimization methods are overly optimistic.

Moreover, the number of simulation runs required by the proposed methods is much

less than others. As presented in Tables 4.1 and 4.2, we only need 26 simulation data

points to discover the first failure inside the 19-dimensional space for the UVLO circuit

and hundreds of samples to detect the first failures in the 60-dimensional space for the

LDO. The large reduction of simulation data brought by the proposed technique can be

even more significant for rare failure detection of larger and more complex AMS circuits

for which transistor-level simulation can be prohibitively expensive.

The runtime reported in Table 4.1 and 4.2 is the total runtime for Algorithm 3 in-

cluding circuit simulation in a single thread configuration, i.e., no parallel mechanism is

activated, which offers a clearer view of the runtime reduction provided by random em-

bedding technique. As described earlier, since the original high-dimensional parameter

space is embedded into a space of a lower dimensionality, the Gaussian process model can

be trained at a much reduced cost, which speeds up both its posterior distribution evalu-

ation and hyper-parameter tuning. Meanwhile, since the optimization of the acquisition

function is also executed in the lower-dimensional space, the quality of optimization is

improved and the number of function evaluations is greatly reduced, resulting in signif-

icantly less runtime compared to other Bayesian optimization methods. The runtime
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for Algorithm 4 is typically less than one minute with small sample size, which can be

ignored compared to expensive simulation cost.

4.5 Rev-Gate based Bayesian Optimization

Even though the random embedding method reduces the BO dimension effectively,

there still exist several major concerns for this method. Firstly, since random embed-

ding is agnostic to the black-box function under optimization, it is hard to decide the

low dimension d for random matrix generation beforehand. In addition, the dimension

embedding quality is unknown before the actual BO process. Secondly, the random em-

bedding only performs the dimension embedding in a linear manner, which cannot be

utilized when a non-linear low dimensional manifold is desired. Finally, it provides no

information about the actual important variational parameters, which is essential in as-

pect of failure detection field for circuit designers to gain more insights about the circuit

behavior.

To tackle the challenges introduced by random embedding in BO for high-dimensional

failure detection as mentioned in the previous section, we propose a Rev-Gate architec-

ture for the dimension embedding in the BO framework, which incorporates the RevNet

and the ARGate to effectively identify important variational parameters and reduce the

dimension through the reversibility. In order to learn the low-dimensional manifold prop-

erty from the black-box function under optimization, we pre-train the Rev-Gate architec-

ture before the BO process by using a small amount of data, which extracts the important

feature information and helps choose effective low dimension d for surrogate model con-

struction and acquisition function optimization. During the BO process, the trained

RevNet performs the dimension embedding in Fig. 4.2, recovering the low dimensional

point z∗ to the original input space x∗ for actual circuit simulation via a restoration
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scheme, which will be further discussed in Section 4.6. The rest of this section mainly

talks about how to identify important features for BO dimension embedding via Rev-Gate

pre-training.

4.5.1 ARGate for important feature extraction

For AMS failure detection under high-dimensional space, typically there exists certain

redundancy for the variational parameters under consideration, and only a small number

of them are critical to the final circuit performance. With only important features utilized

and inessential ones removed, the circuit performance can still be predicted nicely via

the surrogate model even with small amount of training data. To efficiently identify the

important variational parameters, we adopt the ARGate [56] using gating architecture

to switch off inessential feature via fusion weights.

In terms of network structure, the ARGate is composed of two networks as shown in

Fig. 4.5: a main model and an auxiliary (aux) model. The fusion weights are extracted

from the grey box (denoted as “Fusion Weight Extraction” in Fig. 4.5) in the main model,

where the fusion happens with pre-processed features after a fully connected (FC) layer

in each feature path.

The key idea of the ARGate is that the importance of features is represented via the

fusion weights. In the main model, the output of each FC layer on each feature path are

multiplied with the corresponding fusion weights to obtain a weighted internal represen-

tation, which is then passed to later network layers to get final classification/regression

output. These weights are normalized between [0, 1] for the feature importance inter-

pretability. For example, assume that there are only four features under consideration.

If the first feature is the only important feature in the datasets, the corresponding first

fusion weight FW1 is the largest fusion weight out of four, which is close to 1. Then, then
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Figure 4.5: The ARGate architecture overview.

the fusion weights of other features FW2, FW3, and FW4 are relatively close to 0. As

the multiplication mechanism of the fusion weights which switches off the unimportant

feature path, the first feature makes a larger impact on the target prediction than the

other features.

The auxiliary model is added here to facilitate the reliable training for the fusion

weights, regularizing the fusion weights with auxiliary losses reflecting the relevance be-

tween the target value and each individual feature.

4.5.2 Bijective RevNet for Non-Linear Representation Learn-

ing

The ARGate identifies the important input features through fusion weights, which

serves as a great tool for dimensionality reduction. However, if we directly apply AR-
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Gate on the raw variation parameters, the reduced dimension is only a subset of orig-

inal variation parameters, which completely ignores the correlation between different

variational parameters. Therefore, we applied reversible residual network (RevNet)

[57, 58, 59, 60, 61] to learn the correlation between multiple features, and forms a non-

linear internal representation for original features. In addition, one of major advantage

of using RevNet is that it avoids information loss between its input and output, giving a

bijective function. Fig. 4.6 gives a typical RevNet block with the feature mixing process

given follows.

un+1 = un + hKT
n,1σ(Kn,1vn + bn,1),

vn+1 = vn − hKT
n,2σ(Kn,2un+1 + bn,2),

(4.4)

where n ranges from [0, N − 1] for a RevNet with N RevNet blocks, un and vn are two

partitions for the nth state with same dimensionality, and h is a scaling factor.

𝒗𝒗𝒏𝒏+𝟏𝟏

𝒖𝒖𝒏𝒏

𝒗𝒗𝒏𝒏

𝒖𝒖𝒏𝒏+𝟏𝟏

𝒙𝒙 𝒓𝒓

Weight matrix 𝑲𝑲𝟏𝟏

Bias 𝒃𝒃𝟏𝟏

Activation 𝝈𝝈

Weight matrix 𝑲𝑲𝟏𝟏
𝑻𝑻 Weight matrix 𝑲𝑲𝟐𝟐

Bias 𝒃𝒃𝟐𝟐

Activation 𝝈𝝈

Weight matrix 𝑲𝑲𝟐𝟐
𝑻𝑻

Figure 4.6: The reversible block.

Here we denote the RevNet nonlinear representation learning with g : x 7→ r, which

goes through N blocks of (4.4) as follows.

x =

u0

v0

 g→

←
g−1

uN
vN

 = r, (4.5)
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where u0 := (x1, ..., x[D/2])
T and v0 := (x[D/2]+1, ..., xD)T are the two partitions of the in-

put vector x, and uN := (r1, ..., r[D/2])
T and vN := (r[D/2]+1, ..., rD)T are the two partitions

of the RevNet output r.

4.5.3 Proposed Rev-Gate architecture

The proposed Rev-Gate architecture connects a RevNet and an ARGate in serial for

efficient dimension reduction. In order to utilize such architecture for high-dimensional

Bayesian optimization, we first pre-train the proposed architecture using a small amount

of data to identify good dimension size d for dimension reduction, and then we utilize the

trained RevNet in the reverse direction to embed the low dimension optimized z∗ from

acquisition function into x∗ in the original high-dimension space.

Dimension Reduction via the Proposed Architecture

Thanks to the nonlinear bijective characteristic of the RevNet, we generate an internal

representation r = g (x) mapped from the original variation parameter x, which share

the same dimensionality D as x. With the feature importance interpretability from the

ARGate, the importance of each internal representation dimension ri can be estimated via

the corresponding trained fusion weight FWi. Given user-defined importance threshold

FWTH , the dimensionality d of low dimension space Z in BO can be determined by the

number of fusion weights larger than FWTH . The corresponding d internal representation

elements can be reassembled into the low dimension feature z = (ri1 , · · · , rid)T used in

BO, with each element rij having FWij ≥ FWTH , achieving the dimension reduction for

surrogate model and acquisition function. The rest D − d elements in r are considered

as noncritical, and marked as rn here.
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Figure 4.7: The proposed Rev-Gate architecture. Important internal representation
features are identified via fusion weight values.

Dimension Embedding using Reverse RevNet

As shown in Fig. 4.2, the BO framework provides a z∗ with a dimensionality of

d during each iteration, which needs to be embedded into the original space X . Here

we use the trained RevNet in a reverse direction to map low-dimensional z∗ back to

x∗ in the high dimensional space. However, to use RevNet for the restoration of the

original variational parameters x∗, it requires the same dimensionality for the input

and the output of RevNet. Therefore, D − d new elements should be generated and

combined with z∗ to obtain the restored internal representation r∗. More details about

this conversion from z∗ to r∗ is discussed in Section 4.6. Given the reversibility of RevNet

without information loss, we can easily recover the original variation parameters using

x∗ = g−1 (r∗) to perform the required dimension embedding in BO as shown in Fig. 4.8.

74



Enabling High-Dimensional Bayesian Optimization Chapter 4

BNN

High Dimension
BO Framework

Dimension Embedding

*x *r *z
…

…

( )1g − ⋅

RevNet

( )*
np r z

Sample*
nr

Feature Combination

Figure 4.8: The proposed BO dimension embedding using RevNet and BNN.

4.6 Enhanced Dimension Embedding via Bayesian

Neural Network

As mentioned in Section 4.5.3, additional elements should be appended to z∗ to ensure

the resulting r∗ sharing the same dimensionality as x∗ for traversing the RevNet in the

reverse direction. As we know from the fusion weights, the additional elements are less

critical for the final circuit performance. Hence, the simplest approach here is to append

zeros to z∗ to the high dimensionality D.

However, the zero appending approach neglects the correlation between z∗ and rn

which both depend on the original input vector x. Instead, we propose to learn a con-

ditional probability distribution p (rn | z∗) to recover r∗ from z∗. Here, the particular

probabilistic model we used for this conditional distribution is a Bayesian neural network

(BNN).

After the Rev-Gate is trained, with the fixed RevNet, we can generate the internal

representation r, and seperate them into important features z and non-important ones
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rn for all the training data. Then the conditional distribution p (rn | z∗) represented by

the BNN is estimated with maximum likelihood estimation using these pre-processed

data. During dimension embedding in the BO process, a new r∗n is randomly sampled

from the learnt p (rn | z∗) using a trained BNN, and then combined with z∗ to obtain

recovered internal representation r∗ for the RevNet conversion. The complete dimension

embedding illustration is presented in Fig. 4.8.

4.7 Experimental Results for Rev-Gate BO

4.7.1 Experimental Setups

We demonstrated our proposed Rev-Gate architecture with BO approach with the

two same circuits as before: a low-dropout (LDO) regulator [39] (60 dimensions) and a

DC-DC converter [40] (44 dimensions).

For the rare failure detection performance comparison, we compared our proposed

architectures with Monte Carlo (MC), expected improvement (EI), probability of im-

provement (PI) in [44], parallelizable Bayesian optimization (pBO) and parallelizable

Bayesian optimization with random embedding (HDBO). The BayesOpt [48] was uti-

lized for implementing BO methods. All the simulations were run on a workstation with

a 3.50GHz Intel(R) Xeon(R) E5-1620 v4 CPU.

The proposed Rev-Gate is implemented with Pytorch 1.2 [62]. To be specific with

the training process, the Rev-Gate is pre-trained with a small amount of the circuit

simulation samples which are uniformly distributed in a pre-defined hyper-cube space.

For a fair comparison with different BO based methods, we matched total simulation

budget for all the BO methods including the number of training samples for the Rev-

Gate. After the training phase, fusion weight values were examined for top-d indexes
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of important features extraction and screening out some non-important features. With

the indexes of the important features, a simple BNN is trained for the non-essential

component conditional distribution estimation. Finally, with the trained RevNet and

the BNN, the BO framework is operated so that the z∗ vector is computed with BNN

and RevNet in reverse direction to generate x∗. The x∗ is used as input sample for the

circuit simulation and the simulation output y∗ is passed onto the BO surrogate model.

Low-dropout Regulator

The number of essential features extracted from the proposed architecture is 26 out

of 60 for quiescent current and load regulation, 30 for undershoot. The same dimension

reduction is used for HDBO. Furthermore, in the light of circuit aspects, the Rev-Gate

identify the actual important features from the inputs while HDBO cannot. We observe

that most important parameters are located on the output stage in the LDO regulator,

which is close to the circuit designers’ insights.

DC-DC converter

Through our proposed Rev-Gate, we could reduce the number of dimension from 44

to 14 for output accuracy, and 16 for overshoot, which is far less than half of the total

number of input features. Detailed simulation budget setup is included in Table 4.4.

4.7.2 Failure Detection Results

From Table 4.3 and 4.4, MC, EI, PI, pBO and HDBO methods cannot detect a failure

case due to the challenging rare failure detection in the high-dimensional parameter space.

On the other hand, our proposed Rev-Gate based BO framework successfully find the

worst case for all specifications with in the simulation budget thanks to proposed Rev-
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Gate architecture for dimension embedding in BO. In terms of the magnitude of the

worst case detected, MC, EI, PI typically cannot find any worse case near the target for

most specification under consideration. pBO and HDBO presents a better performance

with its good exploration and exploitation balancing, while the proposed architecture

presents the worst case detected than all other methods for all the specifications with

the help of effective dimension embedding given by the Rev-Gate architecture.

Regarding simulation running time, overall BO based methods like EI, PI and pBO

take much longer than our proposed Rev-Gate with BNN due to high overhead introduced

by surrogate model and acquisition function in high dimension. HDBO suffers from its

simple dimension embedding mechanism to achieve poor failure detection efficiency. With

a smart sampling budget allocation for Rev-Gate pre-trained dimension reduction, the

BO search efficiency is significantly improved leading to short runtime. Note that the

runtime for Rev-Gate with BNN includes pre-training phase.

4.7.3 Worst Case Trend Analysis

Finally, the worst case trend is analyzed as shown in Fig.4.9. BO based methods

such as EI and PI found the worst case slowly comparing to pBO and HDBO. During the

first 500 samples, EI, PI, and pBO shows similar failure detection performance but the

worst case of pBO rises after the 500 samples. The worst case of HDBO was bit larger

than other BO based methods but it is stuck at local minima around 600 samples. Our

proposed Rev-Gate shown in green color in the graph starts with the lowest worst case,

it found its worst case much more rapidly than the other methods at the initial search

process. Note that 500 samples are used for pre-training Rev-Gate architecture. From

this result, it is clear that pre-training process shows significant benefits for the improved

failure detection performance and efficiency.
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Figure 4.9: A plot of the worst case found in quiescent current in the LDO regulator.
Note that Rev-Gate with BNN only runs 300 samples on the BO framework for fair
comparison.

4.8 Summary

In this chapter, we present two different high-dimensional Bayesian optimization pro-

cedures for rare failure detection of analog/mixed-signal circuits. First, we utilized ran-

dom embedding techniques to remove redundant features and reduce the dimensionality

of Bayesian optimization search space, resulting highly-efficient failure detection. Fur-

thermore, we present the Rev-Gate architecture with a novel restoration scheme via

Bayesian neural network. The proposed algorithm works under Bayesian optimization

for rare failure detection of analog mixed-signal circuits. The ARGate is adopted for the

identification of important features and the RevNet is utilized for input restoration via

backward computation without loss of information. The Bayesian neural network is ap-

plied for non-essential parameter estimation under the nature of conditional probability

distribution given essential variational inputs. The experimental results show that both
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of our proposed algorithms detect rare failure cases in high dimensional space with less

amount of time, while Bayesian optimization with traditional and improved acquisition

function does not find anomaly during the circuit simulation.
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Chapter 5

Global Adversarial Attacks for

Assessing Deep Learning Robustness

In this chapter, we propose a new concept of global adversarial examples and several

global attack methods to verify the robustness of neural networks. Specifically, we (a)

propose a novel concept called global adversarial example pairs and formulate a global

adversarial attack problem for assessing the model robustness over the entire input space

without extra data labeling; (b) present two families of global adversarial attack methods:

(1) alternating gradient adversarial attacks and (2) extreme-value-guided MCMC sam-

pling attack, and demonstrate their effectiveness in generating global adversarial example

pairs; (c) using the proposed global attack methods, demonstrate that DNNs hardened

using strong projected gradient descent (PGD) based (local) adversarial training are vul-

nerable towards the proposed global adversarial example pairs, suggesting that global

robustness must be considered while training DNNs.

©2019 arXiv. Reprinted, with permission, from Hanbin Hu, Mit Shah, Jianhua Z. Huang, and Peng
Li, “Global Adversarial Attacks for Assessing Deep Learning Robustness”, arXiv:1906.07920, 2019.
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5.1 Local Adversarial Attacks

Deep neural networks (DNNs) have been applied to many applications including

safety-critical tasks such as autonomous driving [63] and unmanned autonomous vehicles

(UAVs) [64], which demand high robustness of decision making. However, recently it has

been shown that DNNs are susceptible to attacks by adversarial examples [65]. For image

classification, for example, adversarial examples may be generated by adding crafted

perturbations indistinguishable to human eyes to legitimate inputs to alter the decision

of a trained DNN into an incorrect one. Several studies attempt to reason about the

underlying causes of susceptibility of deep neural networks towards adversarial examples,

for instance, ascribing vulnerability to linearity of the model [65] or flatness/curvedness

of the decision boundaries [66]. A widely agreed consensus is certainly desirable, which

is under ongoing research.

5.1.1 Target global adversarial attack problem.

The main objectives of this work are to reveal potential vulnerability of DNNs by

presenting a new type of attacks, namely global adversarial attacks, propose methods

for generating such global attacks, and finally demonstrate that DNNs enhanced by

conventional (local) adversarial training exhibit little defense to the proposed global

adversarial examples. While several adversarial attack methods were proposed [65, 67,

68, 69, 70] in recent literature, we refer to these methods as local adversarial attack

methods as they all aim to solve the local adversarial attack problem defined as follows.

Definition 2 Local adversarial attack problem. Given an input space Ω, one le-

gitimate input example x ∈ Ω with label y ∈ Y, and a trained DNN f : Ω → Y, find

another (adversarial) input example x′ ∈ Ω within a radius of ε around x under a dis-

tance measure defined by a norm function ‖·‖ : {xa − xb |xa ∈ Ω,xb ∈ Ω} → R≥0 such
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that f (x′) 6= y, ‖x′ − x‖ ≤ ε.

Typically, the above problem is solved via optimization governed by a loss function,

L : Y × Y → R, measuring the difference between the predicted label f (x′) and y:

x′∗ = arg max
‖x′−x‖≤ε,x′∈Ω

L (f (x′) , y) . (5.1)

Importantly, the above problem formulation has two key limitations. (1) it is deemed

local in the sense that it only examines model robustness inside a local region centered

at each given input x, which in practice is chosen from the training or testing dataset.

As such, local adversarial attacks are not adequate since evaluating the DNN robustness

around the training and testing data does not provide a complete picture of robustness

globally, i.e. in the entire space Ω. On the other hand, assessment of global robustness is

essential, e.g. for safety-critical applications. (2) local attack methods assume that for

each clean example x the label y is known. As a result, they are inapplicable to attack

the DNN around locations where no labeled data are available.

In this paper, we propose a notion of global DNN robustness and a global adversarial

attack problem formulation to assess it. We evaluate global robustness of a given DNN

by assessing the potential high sensitivity of its decision function with respect to small

input perturbation leading to change in the predicted label, globally in the entire Ω. By

solving the global attack problem, we generate multiple global adversarial example pairs

such that each pair of two examples are close to each other but have different labels

predicted by the DNN. The detailed definitions are presented in Section 5.2.

5.1.2 Related works.

Apart from the local adversarial attacks, several other approaches for DNN robust-

ness evaluation have been reported. The Lipschitz constant is utilized to bound DNNs’
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vulnerability to adversarial attacks [71, 72]. As argued in [73, 74], however, currently

there is no accurate method for estimating the Lipschitz constant, and the resulting

overestimation can easily render its use unpractical. [75, 76] propose to train a genera-

tive model for generating unseen samples for which misclassification happens. However,

the ground-truth labels of generated examples must be provided for final assessment and

these examples do not capture model’s vulnerability due to high sensitivity to small input

perturbation.

5.2 Global adversarial attacks

We formulate a new global adversarial attack problem as follows.

Definition 3 Global adversarial attack problem. Given an input space Ω and an

DNN model f : Ω → Y, find one or more global adversarial example pairs (x1,x2) ∈

Ω × Ω within a radius of ε under a distance measure defined by a norm function ‖·‖ :

{xa − xb |xa ∈ Ω,xb ∈ Ω} → R≥0 such that f (x1) 6= f (x2) , ‖x1 − x2‖ ≤ ε.

When no confusion occurs, global adversarial example pair and global adversarial exam-

ples are used interchangeably throughout this paper. The above problem formulation

can be cast into an optimization problem w.r.t. a certain loss function L : Y × Y → R

in the following form:

x∗1,x
∗
2 = arg max

‖x1−x2‖≤ε,(x1,x2)∈Ω×Ω

L (f (x1) , f (x2)) (5.2)

For convenience of notation, we use Lf (x1,x2) to denote L (f (x1) , f (x2)). The above

definition and problem formulation have several favorable characteristics. A robust DNN

model should be insensitive to small input perturbations. Therefore, two nearby inputs

shall share the same (or similar) model output. Conversely, any large Lf (x1,x2) value of
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two nearby inputs reveals a sharp transition over the decision boundary in a classification

task or an unstable region in a regression task.

: Global Adversarial Example

: Local  Adversarial Example

Learned 

Decision

Boundary 

Training

Example

Training

Example

Figure 5.1: Global vs. local adversarial examples.

Loosely speaking, the maximum of Lf (x1,x2) over the entire input space can serve as

a measure of global model robustness. If it is larger than a preset threshold, the DNN may

be deemed as vulnerable towards global adversarial attacks. On the other hand, (5.2) is

a global optimization problem for which multiple near-optimal solutions may be reached

by starting from different initial solutions or employing different optimization methods.

Practically, any pair of two close inputs x1,x2 with different model predictions in the

case of classification or a sufficiently large value of Lf (x1,x2) in the case of regression

may be considered as a global adversarial example pair.

It is important to note that our problem formulation doesn’t restrict adversarial ex-

amples to be around a certain input example as in the case of the existing local adversarial

attacks; it only sets an indistinguishable distance between a pair of two input examples

in order to examine the entire input space, e.g. at locations far away from the training or

testing dataset. Fig. 5.1 contrasts the conventional local adversarial examples with the

proposed global adversarial examples. Importantly, our global attack formulation does

not require additional labeled data; it directly measures the model’s sensitivity to input
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perturbation and be applied globally in the entirety of the input space.

We propose two families of attack methods to solve (5.2) as a way of generating global

adversarial examples: 1) alternating gradient global adversarial attacks and 2) extreme-

value-guided MCMC sampling global adversarial attack, as discussed in Section 5.3 and

Section 5.4, respectively.

5.3 Alternating gradient global adversarial attacks

( )0

1x
( )0

2x

( )1

1x
( )1

2x

( )2

1x
( )2

2x

( )
2

n
x

( )
1

n
x

Figure 5.2: Alternating attack illustration.

For global adversarial example pair generation per (5.2), a pair of two examples

(x1,x2) shall be be optimized to maximize the loss Lf (x1,x2) under a distance constraint.

We propose a family of attack methods called alternating gradient global adversarial at-

tacks which proceed as follows: 1) start from an initial input pair; 2) fix the first example,

and then attack (move) the second under the distance constraint while maximizing the

loss Lf (x1,x2) using a gradient-based local adversarial attack method, referred to as a

sub-attack method here, 3) swap the roles of the first and (updated) second examples,

i.e. fix the second example while attacking the first, 4) repeat this process for a number

of iterations, as shown in Fig. 5.2.
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Given a DNN model f and a loss function L, a sub-attack method can be characterized

using a function x′ = fs attk (x, y,Rx,ε; f,L) constructing an adversarial example x′ w.r.t

example x and its corresponding label y, where Rx,ε = {x + δ| ‖δ‖ ≤ ε} specifies the

region for adversarial sample generation. Suppose we start with an initial example pair(
x

(0)
1 ,x

(0)
2

)
, then we get the (i+ 1)-round example pair from the (i)-round sample pair

by:

x
(i+1)
1 = fs attk

(
x

(i)
1 , f

(
x

(i)
2

)
,R

x
(i)
2 ,ε

; f,L
)

(5.3)

x
(i+1)
2 = fs attk

(
x

(i)
2 , f

(
x

(i+1)
1

)
,R

x
(i+1)
1 ,ε

; f,L
)

(5.4)

Here, to attack one example, we use the other example’s model prediction as the label

when applying the sub-attack method fs attk so that the difference between two examples’

model predictions is maximized. In the meanwhile, the search region for attacking one

example is constrained (centered) by the other example. Hence, the distance between

the two examples is always less than ε. Equations 5.3 and 5.4 are invoked to alternately

attack x
(i)
1 and x

(i)
2 to generate an updated example pair for the next round. As the

global attack continues, multiple global adversarial sample pairs may be generated along

the way.

5.3.1 Choice of sub-attack methods.

We leverage the popular gradient-based local adversarial attack methods as sub-

attack methods under the above family of global attacks. Particularly, the fast gradient

sign method (FGSM) [65], iterative FGSM (IFGSM) [69], and projected gradient descent

(PGD) [70] may be considered for sub-attack method fs attk. As one example, we present

the algorithm flow for the global PGD (G-PGD) attack targeting classifiers with PGD

employed as the sub-attack in Algorithm 5, where the Clip (x,R) function drags the input
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Algorithm 5: Global PGD attack algorithm for classification.

Require:

Initial starting example pair
(
x

(0)
1 ,x

(0)
2

)
; Example vector dimension D; distance

constraint ε; Number of total rounds N ; Number of sub-attack steps S; Step size a
for the sub-attack.

Ensure: The set of generated global adversarial sample pairs T ;
1: T = {}
2: for i← 1 to N do
3: Sample a uniform distribution perturbation δ ∼ U [−ε, ε]D

4: x
(i)
1 ← Clip

(
x

(i−1)
1 + δ,R

x
(i−1)
2 ,ε

)
5: for j ← 1 to S do

6: x
(i)
1 ← Clip

(
x

(i)
1 + a · sign

(
∇x1Lf

(
x

(i)
1 ,x

(i−1)
2

))
,R

x
(i−1)
2 ,ε

)
7: end for
8: Sample a uniform distribution perturbation δ ∼ U [−ε, ε]D

9: x
(i)
2 ← Clip

(
x

(i−1)
2 + δ,R

x
(i)
1 ,ε

)
10: for j ← 1 to S do

11: x
(i)
2 ← Clip

(
x

(i)
2 + a · sign

(
∇x2Lf

(
x

(i)
2 ,x

(i)
1

))
,R

x
(i)
1 ,ε

)
12: end for
13: T ← T ∪

{(
x

(i)
1 ,x

(i)
2

)}
14: end for
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x outside the preset region R onto the boundary of R. The global IFGSM (G-IFGSM)

skips the random noise perturbations (steps 3 and 8). The global FGSM (G-FGSM) sets

the number of sub-attack steps S to be 1 and the step size for sub-attack a to be ε in

addition to ignoring the random noise perturbation steps.

5.4 Extreme-value-guided MCMC sampling attack

While the family of alternating gradient global adversarial attacks discussed in Sec-

tion 5.3 can work effectively in practice, such methods may get trapped at a local max-

imum, degrading the quality of global attack. To this end, we propose a stochastic op-

timization approach based on the extreme value distribution theory and Markov Chain

Monte Carlo (MCMC) method, which is more advantageous from a global optimization

point of view.

5.4.1 Extreme value distribution.

Consider sampling a set of i.i.d input example pairs {(x1,1,x2,1) , · · · , (x1,n,x2,n)} in

the input pair space Ω × Ω. The greatest loss value L∗ = maxi∈[1,n] Lf (x1,i,x2,i) can

be regarded as a random variable following a certain distribution characterized by its

density function pL∗ (l). The Fisher-Tippett-Gnedenko theorem says that the distribution

of the maximum value of examples, if exists, can only be one of the three families of

extreme value distribution: the Gumbel class, the Fréchet and the reverse Weibull class

[77]. Hence, pL∗ (l) falls into one of the three families as well, whose cumulative density

function (CDF) FL∗ (l) can be written in a unified form, called the generalized extreme
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value (GEV) distribution:

FL∗ (l) =

 exp
(
−
(
1 + ξ l−µ

σ

)−1/ξ
)

ξ 6= 0

exp
(
− exp

(
− l−µ

σ

))
ξ = 0

(5.5)

where µ, σ and ξ are the location, scale, and shape parameter for the GEV distribution

and may be obtained through the maximum likelihood estimation (MLE).

Assuming that the desired generalized extreme value (GEV) distribution of the loss

function is available, multiple large loss values, corresponding to potential global adver-

sarial example pairs, may be generated by sampling the GEV distribution. The added

benefit here is that the inherent randomness in this sampling process may be explored to

find more globally optimal solutions. Nevertheless, since the GEV distribution may not

be easily sampled directly, We adopt the Markov Chain Monte Carlo (MCMC) method

to sample the GEV distribution [78]. In reality, the GEV distribution is not known a

priori and shall be estimated using MLE based on a sample of data as described below.

5.4.2 Extreme-value-guided MCMC sampling algorithm (GEVM-

CMC).

The proposed GEVMCMC algorithm is shown in Algorithm 6 for the case of clas-

sification problems. There exist two essential components for MCMC sampling: the

target distribution, which is in this case the desired GEV distribution, and the proposal

distribution, which is a surrogate distribution easy to sample. For each MCMC round,

we collect an example from the proposal distribution, and then accept this example or

discard it while keeping the previous one based on an acceptance ratio pA in Step 6 of Al-

gorithm 6 [78]. In order to sample the block maximum for the extreme value distribution,

a block of example pairs are collected from the proposal distribution in each round as
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in Step 3 of the algorithm instead of a single example. As the MCMC sampling process

proceeds, the actual sampling distribution implemented converges to the target (GEV)

distribution.

Algorithm 6: Extreme-value-guided MCMC sampling algorithm (GEVMCMC)
for global attack.

Require: Initial starting example pair
(
x

(0)
1 ,x

(0)
2

)
; Number of total rounds N ;

Number of warm-up rounds Nw; Block size B; Number of example pairs k used for
GEV distribution update;

Ensure: The set of the generated global adversarial example pairs T ;
1: Apply G-PGD for Nw rounds to warm-up and update T.
2: for i← Nw + 1 to N do

3: Sample B i.i.d. samples
{(

x
[1]
1 ,x

[1]
2

)
, · · · ,

(
x

[B]
1 ,x

[B]
2

)}
from the proposal

distribution q
(
x1,x2|x(i−1)

1 ,x
(i−1)
2

)
4: (x∗1,x

∗
2)← arg maxj∈[1,B] Lf

(
x

[j]
1 ,x

[j]
2

)
5: Update the GEV distribution pL∗ (l) using top k loss values in the history.

6: pA ← min

{
1.0,

pL∗(Lf(x∗1,x∗2))q
(
x
(i−1)
1 ,x

(i−1)
2 |x∗1,x∗2

)
pL∗

(
Lf
(
x
(i−1)
1 ,x

(i−1)
2

))
q
(
x∗1,x

∗
2|x

(i−1)
1 ,x

(i−1)
2

)
}

7: Sample a uniform random variable α ∼ U [0, 1]
8: if α ≤ pA then

9: Accept the new example.
(
x

(i)
1 ,x

(i)
2

)
= (x∗1,x

∗
2)

10: else
11: Reject and keep the previous example.

(
x

(i)
1 ,x

(i)
2

)
=
(
x

(i−1)
1 ,x

(i−1)
2

)
12: end if
13: T ← T ∪

{(
x

(i)
1 ,x

(i)
2

)}
14: end for

Importantly, the generalized extreme value (GEV) distribution pL∗ (l) of the loss

function doesn’t exist at the beginning of the algorithm. Therefore, it is estimated

during the sampling process. Two techniques are considered to obtain an accurate GEV

distribution. A warm-up procedure (Step 1 in Algorithm 6) using a few rounds of G-PGD

is performed first to collect a few global adversarial example pairs of large loss values.

In each round, the top k loss values among all example pairs in the history including
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the ones in the current block are selected to estimate pL∗ (l) based on MLE in Step 5 of

Algorithm 6.

5.4.3 Proposal distribution design.

The convergence speed of MCMC sampling towards the target distribution critically

depends on the proposal distribution [78]. To efficiently generate high-quality global

adversarial example pairs, we consider the following essential aspects in designing the

proposal distribution: (1) finding large loss values; (2) enabling global search; (3) con-

straining two examples in each pair to be within distance ε.

p
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p
x
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Figure 5.3: MCMC proposal distribution design illustration.

We decompose the sampling of an example pair into two sequential steps: sample the

center location xc and sample the difference vector ∆ between the two examples. Then,

we construct the example pair by x1 = xc + ∆,x2 = xc −∆, as shown in Fig. 5.3. The

two sampling steps are independent of each other, and hence, the proposal distribution

conditioning on the previous example pair (xpc ,∆
p) is split into a product of a center
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proposal and difference proposal distribution:

q (xc,∆|xpc ,∆p) = qxc (xc|xpc ,∆p) q∆ (∆|xpc ,∆p) . (5.6)

As such, the distance constraint for the two examples is only taken into consideration in

the design of q∆ (∆|xpc ,∆p) and no distance constraint is necessary when sampling the

center.

We speed up the convergence of MCMC by incorporating the (normalized) gradient

information

g =
∇xcLf (xpc + ∆p,xpc −∆p)

|∇xcLf (xpc + ∆p,xpc −∆p)|
(5.7)

into the proposal distribution design. We design the center proposal distribution to be

a multi-variate Gaussian distribution centered at xpc with a covariance matrix biasing to

sampling along the gradient direction g to increase the likelihood of finding large loss

values while allowing sampling in other directions during the same time:

qxc (xc|xpc ,∆p) = N
(
xpc , λ

2
0I +

(
λ2
m − λ2

0

)
ggT

)
, (5.8)

where λ2
m sets the largest eigenvalue and λ2

0 < λ2
m sets all other eigenvalues of the

covariance matrix. The absolute values of λ0 and λm control the size of the search

region while the ratio between λm and λ0 determines to what extent we want to focus

on the gradient direction.

The gradient sign information is incorporated into the difference proposal distribu-

tion considering the distance constraint ε. Particularly, for the l∞ norm based distance

measure, we propose a Bernoulli distribution with parameter pB > 0.5 for each element
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of the difference vector:

∆i =


ε
2
sign (gi) with probability pB

− ε
2
sign (gi) with probability 1− pB,

(5.9)

which ensures that the pair (x1,x2) be within distance ε and each difference component

is more likely to be set according to the corresponding gradient sign component.

5.5 Experimental results

5.5.1 Experimental settings.

We investigate several local and global methods on two popular image classification

datasets: MNIST [79] and CIFAR10 [80]. To evaluate DNN robustness globally in the

input space, we create an additional class “meaningless” and append 6,000 and 5,000

random noisy images (one tenth of the original training dataset) under this “meaningless”

class into the original MNIST and CIFAR10 training datasets, respectively, and refer to

the expanded training datasets as the augmented training datasets. All trained DNNs

perform classification across 11 classes.

For MNIST, we train a neural network with two convolutional and two fully-connected

layers with an accuracy of 99.43% with 40 training epochs. For CIFAR10, a VGG16 [81]

network is trained for 300 epochs, reaching 94.25% accuracy. Furthermore, we globally

attack adversarially-trained models, which are trained using adversarial training based on

local adversarial examples. In each epoch of adversarial training, the adversarial samples

are generated by attacking the DNN model from the last epoch using a 30-step local

white-box PGD attack, which is considered a strong first-order attack [70]. And then

an updated model is trained using both the augmented training set and the generated
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adversarial images. Adversarial training process is performed for additional 40 epochs

for the MNIST model and 30 epochs for the CIFAR10 model, respectively. The ratio of

the weighting parameters between the losses of the examples in the augmented training

set and adversarial examples are 1 : 1.

5.5.2 Adversarial attack parameter settings.

The l∞ norm based perturbation limit (the maximum allowed difference between two

close images) is set to εMNIST = 0.1 for MNIST and to εCIFAR10 = 0.005 for CIFAR10.

We add another 10,000 random images with the “meaningless” class label into the original

testing dataset (10,000 samples) to create an augmented testing dataset. We experiment

three common local adversarial attack methods: FGSM [65], IFGSM [69], and PGD [70],

referred to as L-FGSM, L-IFGSM and L-PGD in this paper. Both L-IFGSM and L-PGD

perform a 30-step attack with a l∞ step size of ε/10. All local attacks are performed on

the augmented testing set.

All four proposed global adversarial attack methods are considered: alternating gra-

dient global adversarial attack with different sub-attack methods of FGSM (G-FGSM),

IFGSM(G-IFGSM) and PGD (G-PGD); extreme-value-guided sampling global attack

(GEVMCMC). For all global attack methods, we randomly pick 100 images from the

original testing dataset and from the appended random testing dataset, respectively, to

form the first images of the 100 starting pairs. The second image of each pair is obtained

by adding small uniformly-distributed random noise bounded by perturbation size ε to

the first image. 100 rounds of optimization are performed by all global adversarial attack

methods, generating a two sets of 10,000 adversarial example pairs, one set for each of

the two starting conditions: start with the 100 original testing images, start from the

100 appended random testing images. G-IFGSM and G-PGD share the same parameter

97



Global Adversarial Attacks for Assessing Deep Learning Robustness Chapter 5

x
(0)
1 output: N x

(0)
2 output: N

x
(100)
1 output: airplane x

(100)
2 output: truck

(a)

x
(0)
1 output: ship x

(0)
2 output: ship

x
(100)
1 output: truck x

(100)
2 output: automobile

(b)

x
(0)
1 output: truck x

(0)
2 output: truck

x
(100)
1 output: N x

(100)
2 output: truck

(c)

x
(0)
1 output: N x

(0)
2 output: N

x
(100)
1 output: frog x

(100)
2 output: bird

(d)

x
(0)
1 output: frog x

(0)
2 output: frog

x
(100)
1 output: bird x

(100)
2 output: cat

(e)

x
(0)
1 output: frog x

(0)
2 output: frog

x
(100)
1 output: cat x

(100)
2 output: automobile

(f)

Figure 5.4: Global adversarial sample pairs for the CIFAR10 model generated by
GEVMCMC.

settings with their local attack counterparts L-IFGSM and L-PGD, respectively. The

number of GEVMCMC initial G-PGD warm-up rounds is 10 for MNIST and 30 for CI-

FAR10. The block size B is set to be 59. Three parameters for the proposal distribution

for MNIST are λm = 1.2εMNIST , λ0 = 0.3εMNIST , pB = 0.95, and for CIFAR10 they are

set to be λm = 4.8εCIFAR10, λ0 = 0.6εCIFAR10, pB = 0.99.

5.5.3 Generated global adversarial sample pairs.

The proposed global adversarial attack methods can generate diverse global adversar-

ial pairs which are rather different from typical local attacks, representing a new type of
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Figure 5.5: Global adversarial sample pairs for the MNIST model generated by GEVMCMC.
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DNN vulnerability. Fig. 5.4 and Fig. 5.5 show a set of global adversarial example pairs

generated by GEVMCMC for the two datasets. In each sub-figure, the two images on

the top are the starting pair of two identical starting images. The two at the bottom are

the final global adversarial pair generated after 100 rounds of optimization steps. “N”

indicates that the class label predicated by the model is “meaningless”.

Compared to standard local adversarial attacks, the proposed global adversarial pairs

are much more diverse and intriguing. For instance, it is possible to start with two

identical random meaningless image but end up with some other two random images

that are very similar to each other but have different legitimate class labels predicted by

the model such as ones in Fig. 5.4(a) and 5.4(d). We can also start from two identical

images of a legitimate predicted class, and end up with two images with predicated labels

that are different from each other and are also different from the starting label, as shown

in Fig. 5.4(b), 5.4(e), 5.4(f), 5.5(b) and 5.5(e). Clearly, the existing local attacks such

as FGSM, IFGSM, and PGD are not able to generate such complex global adversarial

scenarios, which reveal additional hidden vulnerabilities of the model.

Importantly, the existing local adversarial attacks cannot explore the input space

beyond the training or testing dataset due to the perturbation constraint. In contrast,

the proposed global adversarial attacks are very appealing in the following way: they may

find a path towards unseen input space and check the model robustness along the way.

For instance, we may start from some random testing image (Fig. 5.5(a)) or original

testing image (Fig. 5.5(c)), and end up with a completely different image pair which

may be both recognized by the humans as a legitimate class, however, the model predicts

different labels for them. For instance, the final pairs in the Fig. 5.5(a) and Fig. 5.5(c)

may be recognized as “8” and “4”, respectively, which are completely different from their

starting label.
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Table 5.1: Natural MNIST model (w/o local adversarial training) adversarial attack results.

Method
Start from Original Test Image Start from Random Test Image

Attack Rate Max L Avg. L Attack Rate Max L Avg. L

L-FGSM 18.18% 20.94 0.77 5.82% 6.43 0.16
L-IFGSM 29.80% 21.76 1.17 51.96% 7.64 1.18
L-PGD 29.59% 21.73 1.16 49.44% 7.57 1.13

G-FGSM 99.14% 23.40 10.78 99.01% 20.04 9.62
G-IFGSM 99.92% 22.21 9.19 100.00% 12.05 5.94
G-PGD 99.94% 20.44 10.18 100.00% 11.94 6.58

GEVMCMC 99.93% 24.93 14.91 100.00% 19.98 12.67

Table 5.2: Adversarially-trained MNIST model adversarial attack results.

Method
Start from Original Test Image Start from Random Test Image

Attack Rate Max L Avg. L Attack Rate Max L Avg. L

L-FGSM 3.28% 15.14 0.11 0.00% 0.00 0.00
L-IFGSM 3.89% 15.56 0.13 0.00% 0.06 0.00
L-PGD 3.88% 15.57 0.13 0.00% 0.05 0.00

G-FGSM 98.07% 17.79 8.19 97.50% 19.09 7.63
G-IFGSM 99.47% 14.25 7.84 99.56% 17.81 11.43
G-PGD 99.50% 18.08 8.61 99.58% 19.59 12.07

GEVMCMC 99.38% 18.28 9.91 99.55% 18.06 12.04

Table 5.3: Natural CIFAR10 model (w/o local adversarial training) adversarial attack results.

Method
Start from Original Test Image Start from Random Test Image

Attack Rate Max L Avg. L Attack Rate Max L Avg. L

L-FGSM 26.77% 11.42 1.90 0.00% 0.01 0.00
L-IFGSM 44.80% 12.06 3.58 0.00% 0.02 0.00
L-PGD 43.92% 12.04 3.51 0.00% 0.02 0.00

G-FGSM 95.96% 12.75 8.72 95.15% 11.10 5.48
G-IFGSM 99.68% 12.90 11.02 98.36% 10.76 6.45
G-PGD 99.71% 13.55 11.30 98.33% 11.02 6.70

GEVMCMC 99.58% 13.18 8.94 98.37% 11.02 7.18
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Table 5.4: Adversarially-trained CIFAR10 model adversarial attack results.

Method
Start from Original Test Image Start from Random Test Image

Attack Rate Max L Avg. L Attack Rate Max L Avg. L

L-FGSM 19.29% 10.97 0.83 0.00% 0.00 0.00
L-IFGSM 21.25% 11.03 0.92 0.00% 0.00 0.00
L-PGD 21.19% 11.03 0.92 0.00% 0.00 0.00

G-FGSM 95.29% 9.62 4.11 90.47% 6.57 2.52
G-IFGSM 98.23% 9.83 4.60 95.85% 6.99 2.94
G-PGD 98.26% 10.54 4.77 95.88% 6.97 3.03

GEVMCMC 98.25% 10.89 5.47 95.89% 6.66 3.67

5.5.4 Local vs. global adversarial attacks

Table 5.1-5.4 show the global adversarial attack results for the MNIST and CIFAR10

models without and with local adversarial training. If the model predictions for the two

examples in a generated global adversarial pair are different, we regard this pair as one

successful global attack. In these tables, the attack rate is defined as the ratio between

the successful number of attacks over the total number of trails which is 10,000. The Max

loss and Avg. loss are the maximum loss and average loss found in the attack process.

Attacking the natural MNIST and CIFAR10 models using a local attack method

can reach a reasonablly high attack rate. For instance, L-PGD has an attack rate of

29.59% in the case of the natural MNIST, which drops down to 3.88% for the case of

the adversarially-trained MNIST model, showing that adversarial training using local

adversarial examples does improve the defense to such local attacks. However, all global

adversarial attack methods achieve almost 100.00% attack rate and produce much higher

average loss values compared to the local attack methods, regardless whether local adver-

sarial training is performed or not. It is evident that adversarial training based on local

adversarial examples shows none or little defense to global attacks. This indicates the

effectiveness of the proposed global attack methods, and equally importantly, suggests
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Table 5.5: Comparison between GEVMCMC and other proposed global attacks when
starting from the same 100 original test (“Test”) or 100 random testing (“Rand”)
example pairs. Each entry shows the number of cases out of the total 100 cases where
the final adversarial pair generated by GEVMCMC has a loss higher than the one
generated by the other method.

Method
MNIST CIFAR10

Natural Adv.-Trained Natural Adv.-Trained

Test Rand Test Rand Test Rand Test Rand

G-FGSM 86 95 69 81 33 72 76 67
G-IFGSM 98 100 92 90 69 85 84 92
G-PGD 97 100 80 67 12 73 74 90
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Figure 5.6: Loss value found by global adversarial attack in each round for the natural
MNIST model.

that global adversarial examples defined in this paper must be coped with when training

robust DNN models.

5.5.5 Comparison of the proposed global adversarial attack meth-

ods

Table 5.5 compares the two types of the proposed global attack methods when starting

from the same 100 original test (“Test”) or 100 random testing (“Rand”) example pairs.
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Figure 5.7: Loss value found by global adversarial attack in each round for the adver-
sarially-trained MNIST model.
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Figure 5.8: Loss value found by global adversarial attack in each round for the natural
CIFAR10 model.
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Figure 5.9: Loss value found by global adversarial attack in each round for the adver-
sarially-trained CIFAR10 model.

Each entry shows the number of cases out of the total 100 cases where the final adversarial

pair generated by GEVMCMC has a loss higher than the one generated by the other

method. Most entries in the table are larger than 50, implying that GEVMCMC finds

worse adversarial example pairs than other global adversarial attack methods. We further

show the maximum loss value and average loss value of the adversarial example pairs in

each round in Fig. 5.6 - 5.9. After the initial warm-up rounds using G-PGD, the loss

found by GEVMCMC increases rapidly, and ends up with a much larger value compared

to that of the other global adversarial attack methods, which tend to converge at a local

maximum. The only case in which GEVMCMC does not beat other global adversarial

attack methods is the attacking of the natural CIFAR10 model starting with the original

testing images, showing the overall better effectiveness of GEVMCMC.

5.6 Summary

We propose a new global adversarial example pair concept and formulate the corre-

sponding global adversarial attack problem to assess the robustness of DNNs over the
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entire input space without human data labeling. We further propose two families of global

adversarial attack methods: (1) alternating gradient global adversarial attacks and (2)

extreme-value-guided MCMC sampling global attack (GEVMCMC), demonstrating that

DNN models even trained with local adversarial training are vulnerable to this new type

of global attacks. Our attack methods are able to generate diverse and intriguing global

adversarial which are very different from typical local attacks and shall be taken into

consideration when training a robust model. GEVMCMC demonstrates the overall best

performance among all proposed global attack methods due to its probabilistic nature.
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Chapter 6

Advanced Outlier Detection Using

Unsupervised Learning for Screening

Potential Customer Returns

This chapter aims to study modern machine learning techniques on outlier detection in

view of screening defect escapes to customers. The purposes of this chapter are two-fold.

First, we assess the application of the advancements in anomaly detection [82, 83] from the

field of machine learning to the targeted testing problem and observe their limitations. We

consider several popular unsupervised anomaly detection methods trained using normal

data and proposed in machine learning. Tree-based methods such as isolation forest [84]

flag a detected anomaly when the average path length to the leaves in the forest falls

below a threshold. One-class support vector machine (OCSVM) [85, 86, 87] bounds the

normal training data within a tight boundary, which is used to separate normal data

©2020 IEEE. Reprinted, with permission, from Hanbin Hu, Nguyen Nguyen, Chen He, and Peng Li,
“Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns”,
IEEE International Test Conference (ITC), 2020.
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from abnormal data. Autoencoders [88, 89] or generative adversarial networks (GAN)

[90, 91] are among the most successful methods where any observed large reconstruction

error signifies anomaly.

While demonstrating certain degrees of success in other anomaly detection problems,

we show that the aforementioned methods do not work well for the challenging problem of

identifying extremely-rare customer failures so as to minimize defect escape to customers.

Hence, the second purpose of this chapter is to bring a new perspective to post-silicon

testing by adapting the geometric transformation based deep anomaly image detection

approach [29], which leverages supervising learning for solving the unsupervised learning

problem. More specifically, [29] creates a set of self-labeled images by transforming each

example in the given raw training dataset using a number of geometric transformations.

Each transformed image is labeled using the index of the transformation applied. A

multi-class classifier is trained using the self-labeled training data. During inference,

an unseen image is first transformed using the same set of geometric transformations.

The resulting transformed images are classified by the trained multi-class classifier. The

goodness of the classification decisions is considered as a normality score, which is used

to signify detection of abnormality when the normality score drops to a low value. We

introduce two key modifications to make this self-labeling approach viable for the in-

tended extremely-rare customer failure detection problem. First, we replace geometric

transformations used for images by nonlinear transformations suitable for processing test

data. Second, we introduce a family of reversible information lossless transformations

to boost the performance and robustness of the self-labeling methods. Experimentally,

we demonstrate that the proposed self-labeling approach significantly outperforms the

other methods in terms of prediction accuracy and robustness using a large set of public

datasets and real industrial post-silicon test data.
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6.1 Unsupervised Outlier Detection

6.1.1 Problem Formulation

Consider a D-dimensional input space X ⊆ RD containing all potential inputs, e.g.

parametric post-silicon test results. Let XN ⊆ X and XA ⊆ X represent normal and

abnormal inputs, e.g. the test results of good vs. failing (outlier) chips, with XN ∩

XA = ∅ and XN ∪ XA = X . To classify an input x ∈ X as normal or abnormal, an

unsupervised learning method learns a binary classification function f : X → {0, 1},

where “0” indicates normality (true negative example), i.e., x ∈ XN ; “1” represents

outlier (true positive example), i.e., x ∈ XA.

Without labeled outlier data due to its scarcity, well developed supervised learning

cannot be applied. Instead, as shown in Fig. 6.1, one learns a score function s : X →

R through certain unsupervised learning algorithm to assess the normality of the seen

normal data. During inference phase, the larger value of s (x), the more likely the unseen

data is normal. With a specified decision threshold sTh, the binary classification model

f trained without supervision is

fTh (x) =

 0 s (x) ≥ sTh

1 s (x) < sTh

(6.1)

Note that the input features may not fully reveal the outlier information in practice,

implying XN ∩XA 6= ∅. However, the score function definition still works properly under

this case, indicating how likely the given input x appears to be an outlier.
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Figure 6.1: Unsupervised outlier detection illustration.

6.1.2 Performance Metric of Machine Learning Models

The choice of the decision threshold sTh in (6.1) has a large impact on the quality of

outlier detection. It is unfair to select specific thresholds when comparing different outlier

detection methods since the scale and the distribution of the score function value vary

widely from methods to methods. We apply the widely adopted Area Under Receiver

Operation Characteristic (ROC) curve (AUROC) to compare different models without

relying on specific thresholds.
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Figure 6.2: ROC curve and AUROC.
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As shown in Fig. 6.2, the ROC curve characterizes the true positive rate (TPR) and

false positive rate (FPR) of a model as the threshold sTh is swept. If sTh exceeds the

maximum score function value of a testing dataset, all data will be considered as outliers,

making both TPR and FPR 1.0; the other way around will make both TPR and FPR 0.

The ROC curve is monotonically increasing between (0, 0) and (1, 1). Improved outlier

detection performance leads to larger TPR and lower FPR values. Correspondingly, the

ROC curve would be pushed towards the top left corner as shown in Fig. 6.2(a), with

the best possible AUROC value of 1.0. For example, there is only one customer failure

in the industrial automotive microcontroller datasets we use. Correspondingly, there is a

sharp transition in the ROC as shown in Fig. 6.2(b), where the green area (1−AUROC

where only one failure exists) can be interpreted as the yield loss when no defect escape

occurs.

Compared to other metrics like Area Under Precision-Recall (AUPR), AUROC takes

a more balanced consideration over both abnormal and normal data, which efficiently

captures outliers and minimizes yield loss.

6.1.3 Review of Traditional Unsupervised Learning Models

Here gives a brief review of 4 different unsupervised anomaly detection methods:

Gaussian model, One-class SVM, Isolation forest and Autoencoder.

Gaussian Model

One typical category of anomaly detection methods is to estimate the data distri-

bution given the training samples, and then mark low-probability instances as anomaly.

Gaussian model [92] is one of the most popular assumptions for the data distribution,

which especially suits for the post-silicon test, as most of data follows a Gaussian dis-
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tribution. Specifically, given N normal training samples
{
x(1), · · · ,x(N)

}
, the mean and

covariance matrix are estimated as follows.

µ̂ =
1

N

N∑
i=1

x(i) (6.2)

Ĉ =
1

N

N∑
i=1

(
x(i) − µ̂

) (
x(i) − µ̂

)T
(6.3)

Thus, clearly, the score function is defined as the probability distribution of the

estimated Gaussian distribution as below.

s (x) = N
(
x; µ̂, Ĉ

)
(6.4)

One-class SVM

One-class support vector machine (OCSVM) proposed in [85] separates all the data

from the origin with maximum margin in the feature space corresponding to the kernel

function. In general, instead of directly looking at the probability distribution of the

normal sample occurrence, one-class SVM attempts to map the data into a feature space

and enclose the normal data into a small region. This results in a binary function which

captures regions in the input space where most of the normal data live. The training

process of one-class SVM is governed by a quadratic programming minimization problem

as stated below.

min
ω,ξi,ρ

1

2
‖ω‖2 +

1

νN

N∑
i=1

ξi − ρ; (6.5)

s.t. ω · φ
(
x(i)
)
≥ ρ− ξi; (6.6)

ξi ≥ 0, (6.7)
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where φ (·) specifies the kernel function to be used for which radial basis function (RBF) is

a common choice, ν is a hyperparameter characterizing the solution by setting the upper

bound of the outliers inside the training dataset and the lower bound for the number of

support vectors. According to the distance to the decision boundary in the feature space,

represented by ρ, the score function can be depicted using

s (x) = ω · φ
(
x(i)
)
− ρ (6.8)

Note that the signed version of the previous function is used to give a binary classification

of the anomaly detection in [85].

Isolation forest

In addition to the distribution estimation and data separation in the feature space, a

tree-based method called isolation forest [84] takes a disparate approach to distinguish the

anomaly from the normal data. The isolation forest consists of an ensemble of isolation

trees (iTrees). More formally, for each node T in an iTree, T is either an external node

with no child or an internal node with one test and exactly two children (TL, TR). The

test at node T consists of an attribute q and a split value p, and based on whether q < p it

will traverse the data point to either TL or TR. In order to build such an iTree, a subset

of entire dataset X′ ⊂
{
x(1), · · · ,x(N)

}
is randomly selected. The iTree is generated

by recursively partitioning, and then a training algorithm recursively partitions X′ by

randomly selecting an attribute q and a split value p until there is only one data point

in the node or all the data share the same value.

The underlying principle of anomaly detection for isolation forest is that the anomaly

data is more likely to reach an external node with a smaller height (distance to the

iTree root), as all the iTrees are generated randomly. Therefore, its score function is
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characterized by the average height to reach the external nodes in the ensemble of iTrees

as follow.

s (x) = −2−Eh(x)/c(N), (6.9)

where c (N) is a constant normalization factor related to the sample size N . The negative

sign is added to be consistent with the definition of score function in this chapter.

Autoencoder

x

z

xEncoder DecoderEF DF

Reconstruction Error

Figure 6.3: Autoencoder illustration.

There exists another popular anomaly detection method which is reconstruction-based

enabled by an autoencoder. Similar ideas using reconstruction for anomaly detection are

widely used in recent work [83, 88, 89]. First, the original data x ∈ X ⊆ RD is encoded

(compressed) into a latent variable z = FE (x) ∈ Z ⊆ Rd with d � D typically, and

then decoded (reconstructed) into the original space with x′ = FD (z), as illustrated in

Fig. 6.3. The encoder and the decoder are usually fully-connected neural networks for

numerical data processing or convolutional neural networks for image processing. The

entire autoencoder is trained to minimize the overall reconstruction error (loss function

for training as shown below) so that a good embedding representation of the normal data
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can be learnt in the low-dimensional latent space Z.

L =
N∑
i=1

∥∥x(i) − x′(i)
∥∥2

(6.10)

With an outlier data, since it doesn’t follow the normal data embedding representa-

tion, it is expected to observe a large reconstruction error, which is used to defined the

score function for the autoencoder.

s (x) = −‖x− FD (FE (x))‖2 (6.11)

6.2 Self-Labeling Unsupervised Outlier Detection

6.2.1 Self-Labeling via Transformation

Based on the discussions in the Section 6.1, we aim to learn a robust and reliable

score function s : X → R using normal training data only. Unsupervised learning for

extremely-rare failure detection is challenging. Motivated by the self-labeling approach

for anomaly image detection of [29], we convert this unsupervised learning problem to

one that is based on multi-class classification with self-labeled training data.

Consider K distinct transformation functions T (1), T (2), · · · , T (K), each defining a

mapping to a m-dimensional feature space: T (i) : Rn → Rm, where i ∈ [1, K]. For

a given training dataset X with N examples, we apply all K transformations to each

sample, resulting in a transformed training dataset with KN examples. Each newly

transformed example is labeled by its corresponding transformation applied. Formally,

the resulting labeled training dataset is

{(
T (i)

(
x[j]
)
, T (i)

)
|i ∈ [1, K] , j ∈ [1, N ]

}
(6.12)
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Note that each label is given by the type of the transformation performed without in-

volving any actual labeling effort nor abnormal data. The adopted transformations can

be regarded as an approach for nonlinear feature extraction through which the original

input space X ⊆ Rn is mapped into a feature space F ⊆ Rm.

6.2.2 Proposed Self-labeling Unsupervised Outlier Detection

Transformed Data 

Transformed Data 

Transformation Functions

Input X

( )1
T

( ) ( )1
T X

( ) ( )2
T X

( )2
T

( )K
T

Transformed Data ( ) ( )K
T X

Supervised Classification

1p

2p

np

( )s X

Figure 6.4: Self-labeling unsupervised outlier detection framework.

Fig. 6.4 highlights the proposed self-labeling outlier detection approach. During train-

ing, self-labeling is executed first per (6.12) to generate the transformed training dataset

over which a multi-class classifier is trained to well classify each example to the corre-

sponding label (transformation). During inference, similarly, given an input x, K trans-

formed inputs
{
T (1) (x) , T (2) (x) , · · · , T (K) (x)

}
are obtained by applying the K transfor-

mation functions. For each transformed T (i) (x), the classifier outputs a K-dimensional

probability vector p
(
T (i) (x)

)
with each k-th element specifying the predicted likelihood

for T (i) (x) to fall under class k, i.e. transformed by k-th transformation.

When the classifier is well trained using the normal data, it would classify a new

unseen normal input x by outputting: pi
(
T (i) (x)

)
≈ 1 and pi

(
T (k) (x)

)
≈ 0, i 6= k as

the transformed unseen normal data is likely to locate within the transformed normal
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training data distribution. However, for an abnormal input, it is likely that pi
(
T (i) (x)

)
is significantly lower than 1.0 as the transform outlier data may deviate from the trans-

formed normal data distribution. Accordingly, we select the following score function

s (x) =
K∑
i=1

pi
(
T (i) (x)

)
(6.13)

An input is detected as an outlier if s (x) � K. This self-labeling outlier detection is

illustrated in Fig. 6.5.

Transform T1

Transform T2

Transform
T3

Original Input Space Mapped Input Space

Class 1
Class 3

Class 2

Figure 6.5: Outlier detection via 3 transformations. Gray points: normal data;
Red/pink points: outliers. Yellow arrows: misclassification of mapped outliers sig-
nifies anomaly detection.

6.3 Design of Transformation Functions

One major challenge in the proposed self-labeling approach is to select proper trans-

formation functions. For example, if T (i) = T (j), the classifier cannot distinguish between

the i-th and j-th class as they correspond to identical transformed input data location.

Our key idea is to select a set of distinct information lossless transformation functions
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to retain sufficient statistics for the original data. Consider that our original data x,

the transformed data T (x), and the final score function s (x) formulate a Markov chain

s (x) ←→ T (x) ←→ x. According to the data processing inequality, we have the mu-

tual information follows I (s (x) ;T (x)) ≤ I (s (x) ; x). In order to maximize the mutual

information after the transformation, our method is to make the transformed data fully

recoverable, without information loss, after the transformation.

Inspired by the recent developments in reversible neural networks [61, 57], we propose

an reversible architecture for the transformation functions to fully retain the original data

information. Suppose x = (x1, x2, · · · , xD)T has D features, we partition the indices of

the D features into two sets p1 and p2 with equal size (add one artificial feature if D is

odd), where p1 ∩ p2 = ∅ and p1 ∪ p2 = [1, D] ∩ N. With that, we can obtain two new

vectors with the corresponding features as xp1 and xp2. Then the transformed data y

(combining two parts yp1 and yp2) is given by the reversible transformation as follows.

yp1 = xp1 +G (yp2) (6.14)

yp2 = xp2 + F (xp1) (6.15)

where F and G are two arbitrary functions. Through solving the previous equations,

the original input x can be fully recovered with knowing the output y, showing the

information lossloss property of the reversible transformation block. In order to easily

generate a large number of distinct transformations, the transformation function should

be flexible enough to be configured. We considered three different approaches to increase

the flexibility of the transformation: 1) function choices for the reversible block; 2) feature

permutation; 3) cascade architecture.
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Figure 6.6: Reversible lossless transformation block.

6.3.1 Function Choices for the Reversible Block

The arbitrariness of the two functions F and G provides a lot of freedom to be

designed. Without adding additional training and computational cost for F and G,

which are usually two neural networks, from our empirical experience, we suggest to

apply two simple univariate nonlinear functions f and g for each element of the input

vector. Therefore, we have F (x) =
(
f (x1; θf ) , f (x2; θf ) , · · · , f

(
xD/2; θf

))T
and G (x) =(

g (x1; θg) , g (x2; θg) , · · · , g
(
xD/2; θg

))T
, where θf ∈ Θ and θg ∈ Θ are the parameters

for the two univariate functions from a parameter space Θ. Hence, we can create a pool

of function choices, for each reversible block, we can randomly assign two functions to f

and g and sample the parameters θf and θg from Θ to generate a large number of distinct

transformations before training phase.

In particular, for our experimental settings, a pool of three different polynomial func-

tions with randomized order parameter θ uniformly chosen from Θ = [2, θmax] ∩ N is

applied, including: power polynomial functions,

p(θ) (x) = xθ (6.16)
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Legendre polynomial functions,

l(0) (x) = 1 (6.17)

l(1) (x) = x (6.18)

l(θ) (x) =
2θ − 1

θ
xl(θ−1) (x)− θ − 1

θ
l(θ−2) (x) (6.19)

and Chebyshev polynomial functions,

c(0) (x) = 1 (6.20)

c(1) (x) = x (6.21)

c(θ) (x) = 2xc(θ−1) (x)− c(θ−2) (x) . (6.22)

6.3.2 Feature Permutation

Beyond the function choice for each reversible block, we also add one more permu-

tation block, as shown in Fig. 6.6, to boost the feature mixing and increase flexibility

for distinct function generation. For the input of each reversible block, a random feature

permutation (partition) is generated before training process and then fixed during the

training and inference phase to produce two groups of data.

This technique boosts the diversity among different reversible blocks. Furthermore,

with the help of the cascade architecture (introduced in the next section), this permu-

tation will also boost feature mixing among multiple features, which serves a nonlinear

feature extraction process providing a distinct view of the normal data for each transfor-

mation.
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Figure 6.7: Reversible transformation architecture.

6.3.3 Overall Cascade Reversible Architecture

The overall reversible lossless transformation architecture is illustrated in Fig. 6.7.

Each reversible block is marked in different color to indicate they are all distinct. We

apply both techniques: function choices and feature permutation, described in Section

6.3.1 and 6.3.2, to generate a large number of distinct reversible blocks.

Here, a cascade architecture is applied. Note that the reversible lossless tranformation

block can be repeated multiple times to get a single tranformation. Hence, the data will

go through R reversible blocks to acquire T (i+1) (x) from T (i) (x). In order to generate K

different transformations, this computation is performed K − 1 times, assuming the first

transformation is the original data point T (1) (x) = x, which is already available. Thus,

there exists (K − 1)R different reversible blocks in the entire architecture, providing a

large number of distinct transformations without losing any information.
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6.4 Experimental Results

6.4.1 Methods and Datasets

Using six public outlier detection datasets [93, 94] and post-silicon testing datasets for

six real customer failures/returns of an advanced industrial automotive microcontroller,

We demonstrate and compare the performances of several unsupervised learning methods:

Gaussian model [92], one-class SVM [85], isolation forest [84], autoencoder [83], and four

configurations of the proposed self-labeling outlier detection method.

Table 6.1: Public anomaly detection datasets.
Public # Samples # Features # Anomaly
thyroid 3772 6 93 (2.5%)
glass 214 9 9 (4.2%)

Satimage-2 5803 36 71 (1.2%)
shuttle 49097 9 3511 (7%)
smtp 95156 3 30 (0.03%)

speech 3686 400 61 (1.65%)

For the industrial cases, the six customer failures were from several millions of parts

shipped, showcasing the real-life challenges in extremely-rare defect detection. We pulled

out the post-silicon testing data for the wafer lot containing the customer failure to be

learned. There were around tens of thousands of parts in a wafer lot which were all

manufactured around the same time with similar tools as the customer failure chip, thus

providing relevant data for statistical outlier analysis. Parts in a wafer lot went through

wafer test and final test at different temperatures, which we call test inserts. Each dataset

(with one customer failure chip) consists of five to six test inserts. In total, we had 32 test

inserts corresponding to the 6 datasets for the 6 customer failure chips. Each test insert

contains up to a few thousands of parametric tests for tens of thousands of parts from the

wafer lot which contains the single customer failure part. In addition, we also generate

6 additional datasets using the test inserts containing only the “critical” parametric
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Table 6.2: Industrial automotive microcontroller datasets.
Datasets Entire tests “Critical” tests

Chip Insert # Samples # Features # Samples # Features

Chip 1

A 47006 104 50101 6
B 45617 1134 45658 103
C 41828 989 42694 28
D 38940 769 42396 28
E 42293 1054 42293 31

Chip 2

A 44579 104 50498 6
B 46529 1135 46563 103
C 44833 989 45472 28
D 42905 780 44843 28
E 44586 1051 44586 31

Chip 3

A 38897 102 39840 6
B 37826 695 37831 327
C 34544 369 34544 181
D 34245 352 34246 153
E 34228 1377 34228 690

Chip 4

A 16115 184 17356 6
B 14892 379 15238 24
C 13581 2558 13692 128
D 13169 2587 13169 58
E 13272 2396 13272 47
F 7889 5592 7888 59

Chip 5

A 44282 105 50029 6
B 47257 1151 47350 117
C 43007 982 44862 32
D 43893 800 44522 32
E 44036 1108 44036 37

Chip 6

A 16591 241 18403 6
B 16514 1521 16530 255
C 15268 3009 16157 129
D 15916 2645 16081 60
E 16068 4224 16068 47
F 16054 5526 16054 63
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Figure 6.8: Dataset example visualization.
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tests (features) suggested by expert engineers empirically based on the customer failure

modes, which we call “critical” tests (inserts). Hence, the number of parametric tests

(features) varied from 6 to 5,592 in the test inserts. The detailed numbers of features

and examples of the public and industrial datasets are listed in Table 6.1 and Table 6.2,

respectively. Furthermore, the samples with missing or invalid test values are discarded

here. Therefore, For each test insert, the number of samples in the “critical” tests are

larger than or equal to the one for the entire tests.

Fig. 6.8 provides the visualization of the data distribution of one example test insert

(Chip 6 with the “critical” test insert A), with the single customer failure marked in

orange. As we can see, the outlier point almost locates at the center of the data distribu-

tion in every dimension, which makes it extremely challenging to separate the anomaly

from the normal data by only checking each single parameter or test feature.

6.4.2 Experimented method settings

For each test insert, we trained a machine learning model based on each method to

screen out the customer failure part. 90% of the normal data were randomly sampled

using a uniform distribution as the training dataset, and remaining 10% of normal data

and the single customer failure were used as testing data.

We compared our proposed self-labeling method with several popular families of ex-

isting outlier detection techniques as reviewed in Section 6.1. Under the category of

input-distribution-based approaches, we applied a Gaussian distribution model [92] to

capture the mean vector and covariance matrix of normal data, and employed the proba-

bility density function as the score function. Furthermore, we adopted one-class support

vector machine (OCSVM) [85] which utilized the radial basis function (RBF) kernel and

its decision function as its score function. The isolation forest method [84] generated a
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forest of 250 trees with a resampling size of 1024, the average path length metric sug-

gested in [84] was regarded as the score function. Moreover, we also investigated the

popular reconstruction-based method, autoencoder [83]. An autoencoder with a latent

size of 32 and a hidden layer of size 64 was trained over 100 epochs with a batch size

of 64, and the reconstruction error of the autoencoder was selected as its corresponding

score function.

For the proposed self-labeling outlier detection method, we experimented four vari-

ants of the proposed self-labeling outlier detection method. This first one, marked as

PolyTrans later, directly used the polynomial functions as the transformation functions,

and the other three adopted the reversible lossless transformation blocks. As mentioned

in Section 6.3, the function pool for reversible block consists of three families of univariate

polynomial functions including polynomial functions, Legendre functions and Chebyshev

functions. The detailed configurations for the three reversible transformations are listed:

1) θmax = 4 and R = 1 for RevTransA; 2) θmax = 5 and R = 1 for RevTransB ; 3) θmax = 5

and R = 2 for RevTransC. In order to obtain a fair number of distinct transformations,

all the experimented variants used K = 22 transformations. The classifier used was an

artificial neural network with two hidden layers of size 64 and 16 trained over 20 epochs

using a batch size of 64. The same settings were used for all the public datasets and

all the real industrial automotive microcontroller datasets. Furthermore, we applied L2

regularization with a weight decay factor of 0.0005 for the classifier training to avoid

overfitting and improve the overall performance.

6.4.3 Public Dataset Performance

Table 6.3 provided a detailed comparison of different methods for all the public

datasets. As discussed in Section 6.1.2, we use AUROC as a measure of performance
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for fair comparison between different methods. Although the public datasets in 6.1 don’t

have extremely rare outliers compared to the industrial post-silicon testing datasets, they

still serve as good basis for general outlier detection method comparison. Among all the 8

methods considered, RevTransC gives the best AUROC results on average. Although the

other three variants of the proposed methods didn’t outperform isolation forest in terms

of average AUROC, they are still comparable (within 1%) to it, which is the best refer-

ence method, and surpass other three reference methods a lot, demonstrating that the

proposed methods can be applied as a robust general-purpose outlier detection method

as well.

6.4.4 Industrial Dataset Performance

The performance comparison for the the industrial automotive microcontroller datasets

are reported in Table 6.4, 6.5 and 6.6. Each industrial dataset (chip) contains multiple

test inserts with a single customer failure, and we learnt a machine learning model for

each test insert to screen out the particular customer failure based on each method or

setting.

During the advanced outlier detection phase performed at the very end of the testing

process, as shown in Fig. 1.2, experienced engineers may determine whether it is worth-

while to discard a certain number of chips, i.e. at a given yield loss level, in order to

screen out the customer failure based on outlier detection results collected from all test

inserts. As long as the outlier detection results from one of the test inserts can screen out

the customer failure, the outlier detection performance based on other test inserts doesn’t

matter. Therefore, we report the best performance value among all the test inserts for

each method in these three tables.

Beyond AUROC introduced in Section 6.1.2, we also used another performance met-
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ric, estimated yield, to evaluate different methods for the industrial datasets in Table 6.5

and 6.6. We define the estimated yield of each outlier detection method as one minus

the percentage of normal chips we will reject together with the customer failure from the

corresponding wafer lot. Recall that the proposed machine learning based advanced out-

lier detection takes place after the preceding wafer/package/final test steps (Fig. 1.2) in

which each test insert will reject a certain number of chips based on functional tests and

hard limits in parametric tests. The normal chips that we will reject together with the

customer failure by performing the outlier detection at a specific test insert (e.g. wafer

test) might have already failed in a subsequent test insert (e.g. final test). Hence, the

estimated yield of each outlier detect method is calculated excluding those chips which

already failed in subsequent test inserts. As stated before, the final decision of advanced

outlier detection process is largely based on engineering experience. The estimated yield,

in some sense, reflects the minimum over-reject we can expect in order to remove the

particular customer failure in the advanced outlier detection phase.

Note that the adopted industrial datasets only have a single customer failure for each

dataset. For each dataset, the reported AUROC and estimated yield value varies for

different methods and different datasets, manifesting the real life challenges in extremely-

rare defect detection. On average, the reference Gaussian method produces the worst

AUROC and estimated yield performance, which mispredicts examples close to the center

of the normal data distribution to be abnormal. This suggests that directly characterizing

normal data using a Gaussian distribution is not effective in separating out hard latent

defects. As for the other reference methods, isolation forest and autoencoder tend to give

a relatively good performance among all the reference methods, as shown in Table 6.4 to

6.6.

In general, the four variants of the proposed self-labeling outlier detection method are

among the very best of all the experimented methods. Specifically, the variant RevTransC
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reports best performance values in Table 6.4 and 6.5, and the variant PolyTrans reports

the best estimated yield in Table 6.6. Under this extremely-rare outlier detection context,

the proposed self-labeling approach is able to expose the uniqueness of the hard-to-detect

outliers and maximize the chance of detecting such extremely-rare (latent) defects (e.g.

the targeted customer failure part) as well as minimize the overkill (false positive) rate.

In practice, for cost reason, test engineers may set a minimum yield goal for an

outlier detection method to screen out potential customer failures or returns. In Table

6.5 and 6.6, the number of customer failures out of the total six that can be screened out

under a yield goal of 93% by each method is reported under the row “# Y≥93%”. In

other words, “# Y≥93%” counts all the chips with the estimated yield no less than the

yield goal (93%) for each method. Given the fact that the customer failures under this

study escaped from the original production testing on several millions of parts shipped,

robustly screening out even one or two of these customer failures is already challenging.

Among all the methods, our proposed self-labeling outlier detection methods screen out

the most number of customer failures under the given yield goal. In particular, in Table

6.5 RevTransB and RevTransC can catch five customer failures out of the total six, and

in Table 6.6 PolyTrans can catch four customer failures while meeting the minimum 93%

yield goal.

As we can observe from Table 6.5 and 6.6, the overall estimated yield and the number

of customer failures captured under the given yield goal reduce as we only consider the

“critical” parametric tests. This may suggest that manual selection of critical test features

based on empirical experiences can lead to sub-optimal outcomes and exploiting powerful

machine learning techniques capable of considering a large number of features may be

advantageous. Even with less information (parametric tests) about the failure part, the

proposed methods still retain a high estimated yield and surpass most of the reference

methods as shown in Table 6.6. Specifically, PolyTrans gives the best average estimated
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yield of 93.9% among all the experimented methods.

We compare the four variants of the proposed method based on the results from Table

6.3 to 6.5. The three variants of self-labeling method based on reversible transformations

achieve a better average AUROC and estimated yield on average compared to PolyTrans,

suggesting that maintaining the raw feature information is critical to achieve good outlier

detection performance when designing the transformations for the self-labeling method.

Furthermore, RevTransC achieves the best performance among all three reversible trans-

formation variants, demonstrating that more distinct transformations with higher order

and more complex transformations tend to work better. There exists one exception.

Table 6.6 reports that PolyTrans gives the best yield among all methods while not all

available parametric tests are considered. We expect that the the test inserts included

in those datasets may not contain all information relevant to the particular customer

failure, making the reversible transformations less effective.

6.5 Summary

We presented a machine learning enabled outlier detection methodology in order to

facilitate the screening of extremely-rare failures that have escaped from the standard

post-silicon testing flow. We proposed a self-labeling technique for unsupervised outlier

detection through transformations of available test data, effectively exposing the abnor-

mal behaviour of extremely-rare chip failures in a high-dimensional test feature space.

Based on public-domain outlier detection and challenging industrial automotive micro-

controller test datasets, we demonstrated through extensive experimental studies that our

proposed method consistently outperforms other popular outlier detection algorithms in

terms of accuracy and robustness, leading to reduction of yield loss and test escape.
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Chapter 7

Semi-supervised Wafer Map Pattern

Recognition using Domain-Specific

Data Augmentation and Contrastive

Learning

This chapter presents a domain-specific application of contrastive learning for wafer

pattern recognition. While the existing contrastive learning techniques have primarily

focused on conventional image recognition and natural language processing tasks, the

unique characteristics of the wafer pattern recognition task presents new challenges and

opportunities. First, we investigate the relevance of the transformations proposed in

the literature, which act as a mechanism for data augmentation, and identify a near-

optimal subset of transformations that are well-suited for meaningful characterization of

©2021 IEEE. Reprinted, with permission, from Hanbin Hu, Chen He, and Peng Li, “Semi-supervised
Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and Contrastive Learning”,
IEEE International Test Conference (ITC), 2021.
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similarities and dissimilarities of practical wafer pattern data. Furthermore, we study

rotation-based transformations, which are rarely employed in conventional image data

analysis. We propose a novel rotation operation that transforms a given wafer pattern

into a similar pattern by performing non-uniform rotations of the dies on the wafer for

which the angle of rotation is a smooth function of the radius. Our proposed new rotation-

twist transformation acts as a domain-specific data augmentation technique and enables

automated generation of high-volumes of similar wafer data while retaining the struc-

ture of the original wafer pattern. Experimental results demonstrate that the proposed

semi-supervised learning framework greatly improves recognition accuracy compared to

traditional supervised methods, and the rotation-twist transformation further enhances

the recognition accuracy in both semi-supervised and supervised tasks.

7.1 Wafer Map Pattern Recognition

As the crucial step of turning a chip design into a real product, robust semiconductor

manufacturing process shall manifest high performance and yield of integrated circuits

(ICs). However, the manufacturing process may suffer from different sources of system-

atic issues, such as stress cracking in chemical-mechanical polishing or contact to gate

misalignment caused by a broken photo tool. Therefore, it is required that the manufac-

turing issues can be efficiently recognized and fixed; otherwise, the yield can be severely

reduced and the production process quality is compromised.

One typical approach to detect such systematic manufacturing issues is via wafer map

pattern recognition, which observes the die failure pattern on the wafer. Fig. 7.1 gives a

few commonly-seen wafer map patterns, where each green pixel indicates a good die which

passes all wafer tests, and each yellow pixel indicates a bad die which fails any wafer test.

Different wafer map patterns might indicate different systematic manufacturing issues for
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None Center Donut

Edge-Ring Edge-Loc Loc

Scratch Random Near-Full

Figure 7.1: Wafer map patterns.

a specific technology node. Certain wafer patterns’ implications might be straightforward

and technology independent. For instance, the scratch failure pattern may imply some

unexpected sharp edges touching and slipping on the surface of the wafer during the

manufacturing or wafer test process. Regardless, being able to identify the wafer pattern

quickly and automatically is important for manufacturing process issue detection and

root cause analysis.

In order to recognize such failures on the fly, several machine learning techniques are

investigated to automate the wafer map pattern recognition. [95, 96] applied support

vector machine (SVM) to recognize wafer map patterns with preprocessed features using

Radon transformation and geometric feature extraction. In recent years, [97, 98, 99, 100]

leveraged the strong image recognition power from convolution neural networks to identify

wafer map patterns.

However, there are two major challenges which are not yet fully addressed by the

previous works. First, it requires huge manual effort to correctly label a large wafer map
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dataset. If a wafer map is unlabeled, it cannot be utilized in the traditional supervised

learning setting, severely reducing the effective number of training samples for learning.

On the other hand, the unlabeled data may contain unrecognized patterns, which may

provide extra information for wafer pattern learning. [101] proposed an unsupervised ap-

proach to recognize wafer map patterns using a set of recognizers trained by generative

adversarial networks (GAN); however, the learning process of the multiple recognizers

was heavily guided and tuned manually. The second main challenge comes from that fact

that wafer map pattern data is typically highly imbalanced. Stable manufacturing pro-

cesses mostly produce wafer maps that show no patterns at all. The ones with patterns

only constitute a small chunk in the entire dataset. Such imbalance may bias a trained

recognizer towards making only correct decisions on the dominant wafers without a pat-

tern in the dataset while more important problematic patterns are mis-predicted, causing

systematic failure escape. [100, 97] suggested using an auto-encoder (AE) architecture to

augment under-represented patterns; however, such augmentation still requires the data

label, which may be unrealistic in many cases.

In order to fully use the unlabeled data for wafer map pattern recognition, we pro-

posed a semi-supervised learning framework to first learn a good representation of all

wafer map patterns presented in a (potentially large) unlabeled dataset, and then rec-

ognize wafer map patterns in a supervised manner with a small labeled dataset. Our

methodology has been motivated by the recent development in contrastive learning for

unsupervised representation learning in the machine learning community. Contrastive

learning is a framework to learn good representation of given data in several applications

like image recognition and natural language processing [102, 103, 30]. SimCLR [103] is

one contrastive learning technique which achieves comparable or even better performance

compared to its supervised counterpart for image recognition tasks demonstrated using

the popular ImageNet dataset [104]. The representation is learnt in a self-supervised
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manner via comparison, i.e., different transformations (views) of the original data are

compared to extracted an informative representation. The contrastive learning has been

explored in the wafer map pattern detection field in [105], while no novel domain-specific

transformations were proposed.

7.2 Semi-Supervised Wafer Map Pattern Recogni-

tion

7.2.1 Problem Formulation

A wafer map of width W and height H can be denoted by x ∈ X = {−1, 0, 1}W×H ,

where 0 is used for good dies, 1 is used for bad dies, and -1 indicates that there is no die

in the current location.

Consider a labeled dataset DL =
{
· · · ,

(
x(l), y(l)

)
, · · ·

}
with NL labeled samples with

each x(l) standing for the l-th wafer map and each y(l) ∈ Y for its corresponding pattern.

In addition, since labeling all wafer maps requires huge manual effort, we consider another

unlabeled dataset DU =
{
· · · ,x(k), · · ·

}
with NU unlabeled samples. Typically, NU �

NL.

To learn a wafer map recognizer, we optimize a model represented by f : X → Y ,

which is parameterized by θ, to minimize the difference between the recognizer prediction

ŷ = f (x;θ) and the true data label y governed by a loss function L : Y × Y → R as

follows.

θ∗ = arg minE [L (f(x;θ), y) | DL,DU ] (7.1)

Note that in supervised learning, the model prediction ŷ is directly compared with

the true label y via the loss function. Therefore, the unlabeled dataset DU cannot be
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used to compute the loss function, wasting a large number of unlabeled data in the wafer

map pattern recognition. If the model is constructed using a neural network with θ as its

model weights, as shown in Fig. 7.2(a), only the comparison between model prediction

and data label is used to tune the model weights θ for the entire neural network, resulting

in a huge search space and a potentially over-fit recognizer.

… Data LabelPrediction

Learn

(a) Supervised learning.

Encoder
Internal representation
v

Fixed 
Encoder Data LabelPrediction

Learn

Representation Learning Phase

Supervised Head Training Phase

(b) Semi-supervised learning.

Figure 7.2: Supervised and semi-supervised learning comparison.

7.2.2 Semi-Supervised Learning

In order to fully utilize the unlabeled dataset DU , a semi-supervised learning frame-

work is introduced here. Instead of directly learning the recognizer model f , we can

rewrite the recognizer as a composition of two functions f = hs ◦ v. Here v : X → V ,
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parameterized by θe, encodes the origin wafer map into an internal representation space

V , and hs : V → Y , parameterized by θs, is a head predicting the data label using the

internal representation. Correspondingly, the original model learning procedure is split

into 2 phases as follows, which is also shown in Fig. 7.2(b).

f (x;θ) = hs (v (x;θe) ;θs) (7.2)

A good representation v of the original wafer map is learnt using unlabeled data DU ,

of a potentially large size, in the first phase so that it can ease the downstream task of

supervised head hs training. How to learn a good representation from unlabeled data

depends on what property the representation is expected to extract and possess. For

example, a typical consideration in AE is that the representation should compress all

information to reconstruct the original data. In contrastive learning, which is further

described in Section 7.3, we would like ensure that representations of similar wafer maps

are close to each other. The resulting proxy task to learn good representation is typically

different from (7.1), eliminating the needs to use the same loss function requiring labeled

data and enabling unsupervised learning for wafer map pattern recognition using DU .

Note that in the second phase, the encoder parameters θe is fixed, and the labeled

data is only used to learn the supervised head model hs to recognize wafer map patterns.

With a fixed θe, the parameter space for θ is greatly reduced, accelerating the opti-

mization process for the supervised head parameters θs. In addition, fixing the internal

representation avoids disrupting the learnt representation during the learning process of

the second phase. If the encoder weights are tuned, it is highly likely that the learnt

representation is overwritten with the new information provided by the labeled data,

degrading the model into a simple supervised learning model.
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7.3 Semi-supervised Representation Learning via Con-

trastive Learning Framework

7.3.1 Learning Similarity via Data Augmentation

Recently, a novel self-supervised learning framework called contrastive learning sug-

gests extracting a good data representation by learning the similarity among samples

[103, 102, 30]. Consider two wafer maps x1 and x2. If they are similar (sharing the same

wafer map pattern), their internal representations v1 and v2 should be “close” to each

other.

However, as most data labels are unavailable, the similarity among samples is not

revealed explicitly by data labels. Instead, contrastive learning introduces transforma-

tions to create similar variants of each given sample and maintain similarities among

these variants as part of the unsupervised representation learning. Incorporating these

augmented data leads to a larger dataset with more samples. Consider a transformation

T : X → X sampled from a transformation set T . The transformations are well selected

to make each transformed variant x̃ similar (sharing the same wafer map pattern) with

the original sample x. Therefore, for two transformations T and T ′, the resulting internal

representations

v = v (T (x) ;θe) , v′ = v (T ′ (x) ;θe) (7.3)

should be made close to each other. The “closeness” between internal representations is

governed by a contrastive loss in an unsupervised manner. For two similar samples, their

corresponding internal representations should be close to each other, suggesting a small

contrastive loss; otherwise, a large contrastive loss should be generated for dissimilar

samples.
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7.3.2 Semi-supervised Contrastive Learning Framework

Encoder

Encoder

Encoder

Projection 
Head

Projection 
Head

Projection 
Head

1v

2v

3v

1z

Metric

Contrastive 
Loss

2z

3z

Representation

1T

2T

3T

1x

2x

3x

Phase 1) Unsupervised Contrastive Learning

Phase 2) Supervised Head Learning

Encoder Supervised 
Head

x v
Fixed

y

Supervised 
Loss Function

Data Label

ŷ

Figure 7.3: Semi-supervised contrastive learning architecture.

Framework Overview

Fig. 7.3 gives a brief illustration of how semi-supervised contrastive learning works.

As mentioned in Section 7.2, the semi-supervised learning is conducted in two phases. For

the first unsupervised contrastive learning phase, we carefully design a transformation set

T to identify the similarity among samples. Each sample x ∈ X is first transformed to

multiple variants x̃ in the original sample space X . For simiplicity, let’s say x̃ and x̃′ are

transformed through two randomly-selected transformations T ∼ T (e.g., rotation) and

T ′ ∼ T (e.g., flipping); then they go through the same encoder to obtain their internal

representations v and v′ in the internal representation space V ; finally, the internal

representation v is mapped into a metric embedding space Z through a projection head.

The training of contrastive loss, requiring no data label, learns the similarity among
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samples to formulate a good internal representation via comparing the metric embeddings

z from different variants of multiple samples in the metric embedding space Z.

In the second supervised head training phase, the encoder is inherited and fixed from

the previous phase to obtain the trained internal representation v ∈ V . An additional

supervised head is added to make prediction ŷ from v. The loss function is defined by

the true data labels over a small labeled dataset to guide the supervised head learning

to predict the correct wafer map pattern.

During the inference stage, only the encoder and the supervised head are utilized for

recognizing the patterns of the previously-unseen wafer maps, while The projection head

is discarded after the first training phase.

Contrastive Learning Objective

Note that the internal representation v is employed in both training phases where

two different learning objectives are targeted as shown in Fig. 7.3. We disentangle the

unsupervised contrastive learning objective from that of the supervised head learning

by introducing the projection head hp : V → Z that is parameterized by θp and maps

the internal representation v to the metric embedding space Z in which the contrastive

loss is defined. This is more beneficial than defining the contrastive loss directly based

on the internal representation v. This approach avoids overly constraining the internal

representation learning towards the minimization of the contrastive learning loss and

allows for more flexible learning of the internal representation to better support the

supervised learning task in the second phase.

To this end, the “closeness” in the internal representation space we discussed in Sec-

tion 7.3.1 shall be interpreted broadly. Two internal representations can be considered

“close” as long as their mapped metric embeddings are close enough. Hence, the con-

trastive loss between two metric embeddings zi and zj from the same sample within a
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batch of metric embeddings {zk}Bk=1 can be defined as

Lcl (zi, zj) = − log
exp (zi · zj/τ)∑

k∈{i}′ exp (zi · zk/τ)
, (7.4)

where τ is a temperature coefficient to characterize the relative distance among metric

embeddings. Here {i}′ denotes the set complement {1, · · · , B} \ {i} excluding element

i. To minimize the contrastive loss Lcl, the similarity (inner product) between metric

embeddings zi and zj should be as large as possible, while the similarity (inner product)

with other embedding zk should become small, implying a good representation learnt by

the encoder v.

Note that the metric embedding z is usually normalized with z/ ‖z‖ to avoid scaling

issues among different sample views.

7.3.3 Semi-supervised Contrastive Learning Algorithm

With the contrastive learning framework described previously, Algorithm 7 summa-

rizes the detailed procedure of the entire semi-supervised wafer pattern recognition al-

gorithm. Note that for each sample xk, two parts of contrastive loss Lcl (zk, z
′
k) and

Lcl (z
′
k, zk) are computed, as the two metric embeddings zk and z′k from the two views

x̃k and x̃′k of the sample sample xk are symmetric to each other in terms of contrastive

loss computation.
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Algorithm 7: Semi-supervised contrastive learning.

Input : Unlabeled dataset DU ; Labeled dataset DL.
Output: Model prediction parameters θe and θs.
Hyperparameters: Transformation set T , epochs TU , batch size BU , and
temperature coefficient τ for unsupervised contrastive learning; Epochs TL and
batch size BL for supervised head learning;

/* unsupervised contrastive learning */

1 for t← 1 to TU do

2 for a sampled minibatch {xk}BU

k=1 from DU do
3 for k ← 1 to BU do
4 Sample transformations T ∼ T , T ′ ∼ T ;
5 x̃k ← T (xk) ; x̃′k ← T ′ (xk);
6 vk ← v (x̃k;θe) ; v′k ← v (x̃′k;θe);
7 zk ← hp (vk;θp) ; z′k ← hp (v′k;θp);
8 Compute contrastive loss using

lk ← − log
exp(zk·z′k/τ)∑

i∈{k}′ exp(zk·zi/τ)+
∑BU

i=1 exp(zk·z′i/τ)
;

9 Compute other contrastive loss using

l′k ← − log
exp(zk·z′k/τ)∑BU

i=1 exp(z′k·zi/τ)+
∑

i∈{k}′ exp(z′k·z′i/τ)
;

10 end

11 LU ← 1
2BU

∑BU

k=1 (lk + l′k);

12 Update θe and θp to minimize LU ;

13 end

14 end
/* supervised head learning */

15 Fix encoder θe and drop projection head θp;
16 for t← 1 to TL do

17 for a sampled minibatch {xk, yk}BL

k=1 from DL do
18 for k ← 1 to BL do
19 ŷk ← hs (v (xk;θe) ;θs);
20 lk ← L (ŷk, yk);

21 end

22 LL ← 1
BL

∑BL

k=1 lk;

23 Update θs to minimize LL;

24 end

25 end
26 return encoder parameters θe and supervised head parameters θs.
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7.4 Relevance of Existing Contrastive Learning Trans-

formations for Wafer Pattern Recognition

7.4.1 Consideration for Domain Specific Transformations

One important component to determine the performance of the unsupervised con-

trastive learning is the transformation set T . Transformations included in T suggest

what kind of similarity should be maintained after the transformation, i.e., what simi-

larity among samples should be learnt for a good representation mapped by the encoder.

For example, in the image recognition task, if we consider only color distortion transfor-

mation without affine transformation in the contrastive learning, the dogs with different

colors can be well coded in the internal representation space V , however, the dogs with

different sizes and locations in images may be considered distinct in V . We consider three

traits for a good transformation to be considered for the representation learning task as

follows.

Suitability for the task

Obviously, the transformations under consideration should be suitable for the data

under analysis. If the transformation cannot be applied to the data sample space X , it

should not be considered.

Capability to maintain similarity among samples

This is the most critical characteristic for a good transformation. The transformation

should maintain the major sample property unchanged after transformation. Here, in our

application, wafer map patterns should be kept the same, while the detailed good/bad

die distribution in a wafer map can be varied by the transformations.
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Flexibility to be randomized

Finally, the transformations should be easy to be randomized, adding more flexibility

when transforming the details of samples, so that the similarity among samples can be

fully captured by the transformations.

7.4.2 Existing Contrastive Learning Transformations

One of the most well-known works in contrastive learning, SimCLR [103], studied a

large set of transformations for general image recognition tasks like ImageNet [104]. In

particular, four transformations are recommended for standard image recognition tasks:

1) random horizontal flipping, 2) random resized cropping, 3) color jitter, and 4) Gaussian

blur.

For the wafer map pattern recognition application, however, not all of the four trans-

formations in SimCLR [103] are suitable. Since a single location xij in a wafer map may

only contain three possible values {−1, 0, 1}, clearly, the Gaussian blur and the color

jitter cannot be applied to the wafer map dataset. On the other hand, we argue that

the other two transformations are suitable for the wafer map recognition task. 1) The

random horizontal flipping augments the unlabeled wafer data by introducing symmetric

variants of wafer maps without changing their patterns. 2) The random resized cropping

crops a random portion of the wafer map and resize the cropped portion back to the

original wafer size. It creates new variants of wafer data by extracting a local view of an

original wafer map and re-projecting that onto the full wafer.
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Figure 7.4: Several adopted transformations for wafer map pattern recognition. Note
that only random horizontal flipping and random resized cropping were chosen in the
SimCLR work [103] for traditional image recognition.

7.5 Proposed Domain-Specific Data Augmentation

for Wafer Pattern Recognition

As mentioned in Section 7.4, we adopt random horizontal flipping and random resized

cropping used in traditional image recognition [103] for wafer map pattern recognition,

as shown in Fig. 7.4(b) and 7.4(c), respectively. In addition, we propose three domain-

specific transformations.

7.5.1 Random Wafer Rotation

Rotations are not suitable for traditional image analysis tasks in which images often

maintain a proper orientation, e.g., an upside-down pedestrian is unlikely in a realistic

visual scene. However, as illustrated in Fig. 7.4(d), rotating a wafer does not alter its

circular shape, but can change the orientation of the good and bad dies while maintaining

the same basic wafer map pattern. To generate a variety of rotated wafer maps, we

consider two random rotation schemes as follows. The first scheme rotates wafers with

a degree randomly selected from a continuous range [0◦, 360◦), denoted as “Continuous”

in Table 7.2. The second scheme rotates wafers with a degree randomly selected from a

finite set {0◦, 90◦, 180◦, 270◦}, denoted as “Discrete” in Table 7.2.
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7.5.2 Random Die Noise

Adding Gaussian noise to images as a way of transformation was shown to be inef-

fective for traditional image recognition tasks [103]. Differently, as shown in Fig. 7.4(e),

we randomly flip good and bad dies at position (i, j) where a valid die (xij 6= −1) locates

as follows.

x̃ij =

 1− xij with a probability of pn

xij with a probability of 1− pn
(7.5)

With a small pn value, we largely maintain the present wafer map pattern while intro-

ducing a certain degree of perturbation to the wafer. In our experiments, pn is set to be

0.05.

7.5.3 Rotation-Twist Transformation

Although the previous domain-specific transformations extract good similarity among

samples for contrastive learning, these transformations don’t change the detailed shape

significantly in wafer maps. For example, a scratch pattern cannot be curved no matter

which transformation is adopted. With the detailed shape twisted, the relative posi-

tioning and the correlation among close dies in wafer maps are modified. Note that the

detailed wafer map shapes may vary a lot even for the same wafer map pattern.

Here we propose a novel transformation to twist the detailed shape inside wafer

maps while maintaining the pattern for recognition unchanged. Specifically, the proposed

transformation performs non-uniform rotations of the dies on the wafer for which the

angle of rotation is a smooth function of the radius. As shown in Fig. 7.5, the proposed

transformation can transform a straight scratch into a curved scratch. In order to do so,

three steps are executed to accomplish the entire twisting. First we randomly generate a

smooth angle function to provide certain randomness to the transformation. Then, the
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wafer map is twisted via rotation based on the generated smooth angle function. Finally,

the wafer map is regularized to make it valid. The details of each step are given below,

and several examples are provided at the end of the section.

Random Angle Generation

Rotation-Twist Transformation

Figure 7.5: Rotation-twist transformation illustration.
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Figure 7.6: Random angle generation examples with m = 3.

Random Smooth Function Generation

To add a certain degree of randomness to the final wafer map twisting results, a

random function is first generated, and then the detailed twist shape is based on the

generated random smooth function. To avoid the wafer map pattern altered due to
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the abrupt function value change, we apply a Fourier-transform-based random function

sampling method in [106] to generate a random smooth function as follows.

θ (d) = a0 +
√

2
m∑
j=1

[
aj cos

2πjd

D
+ bj sin

2πjd

D

]
, (7.6)

where D is the sum of the wafer width and height, and m is the order of the Fourier

transform. Each aj and bj is an independent Gaussian variable from N (0, 1/ (2m+ 1)).

As shown in Fig. 7.6, the 2 examples of generated random function with m = 3 is

relatively smooth within the radius of the wafer.

Twist via Rotation

After the random angle function is generated, the actual twisting is mainly executed

via rotation. All the dies with the same radius to the center of the wafer map are rotated

with an angle determined by the generated random angle function and its corresponding

radius, ending up with the following equation to relocate the die at (i, j).

 i′

j′

 =

 cos θ
(√

i2 + j2
)
− sin θ

(√
i2 + j2

)
sin θ

(√
i2 + j2

)
cos θ

(√
i2 + j2

)

 i

j

 (7.7)

However, we may notice that the resulting location (i′, j′) is not guaranteed to be an

integer. Here the nearest neighbor is taken by rounding the location to the closest integer

grid. Therefore, we can map the goodness of a particular die at (i, j) in the original wafer

map x to (bi′e, bj′e) in the twisted wafer map x̃ as follows.

x̃bi′ebj′e = xij (7.8)
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Wafer Map Regularization

After twisting the wafer map, a few additional steps are proceeded to make sure the

resulting wafer map is a valid one.

Maintain wafer map shape First, we ensure that the shape of the twisted wafer map

matches the original one by guaranteeing that the resulting wafer x̃ doesn’t have die at

(i, j) where xij = −1.

Fill in Holes using Majority Votes Secondly, according to (7.7) and (7.8), the

resulting wafer map may have a few locations with no corresponding original wafer map

locations. For those unfilled positions (holes) in the wafer map, we determine its die

goodness via a majority vote of its surrounding 4 dies. The new wafer map is kept

updating until no change occurs in two consecutive updates.

Final check Finally, we set all the remaining unfilled-in locations with good dies. With

that, a valid randomly-twisted wafer map x̃ is generated.

Algorithm 8 summarizes the entire procedure for the rotation-twist transformation.

7.5.4 Rotation-Twist Transformation Examples
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(c) m = 3.
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(d) m = 4.
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(e) m = 5.
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Figure 7.7: Rotation-Twist transformation with different order m.
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Algorithm 8: Rotation-Twist transformation flow.

Input : A wafer map x.
Output: The transformed wafer map x̃.
Hyperparameters: Order m for random smooth angle function generation;
/* Random smooth function generation */

1 Sample ai ∼ N (0, 1/ (2m+ 1)) for i = 0, · · · ,m;
2 Sample bi ∼ N (0, 1/ (2m+ 1)) for i = 1, · · · ,m;
3 Construct the angle function θ (d) using (7.6);
/* Twist via rotation */

4 Generate a new wafer map x̃ using (7.7) and (7.8);
/* Wafer map regularization */

5 Let x̃ij = −1 where xij = −1;
6 do
7 Update undefined die x̃ij with a majority vote using the surrounding four

dies x̃i+1,j, x̃i−1,j, x̃i,j+1, and x̃i,j−1;

8 while no update in x̃ is observed ;
9 Let all remaining undefined dies as good dies;

10 return The transformed wafer map x̃.
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Figure 7.8: Rotation-Twist transformation examples for all the considered wafer map
patterns with m = 3.
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As the twisting effect of the rotation-twist transformation is determined by the gen-

erated random smooth angle function, we first check how different orders m affect the

resulting twisted wafer maps. Fig. 7.7 gives a few examples of the resulting wafer maps

after applying the rotation-twist transformation with different orders to the same wafer

map with a single line pattern. For each order, the first plot is the generated random

angle function, and the rest two images are the original wafer map and the twisted one.

When m = 1, the proposed transformation is degraded into simple rotation, which pro-

vides no additional information to contrastive learning; when m = 2, the scratch in the

wafer map starts to be twisted, but in a relatively small scale. As the order grows, more

twisted detailed shapes can be observed in the wafer maps, which changes the relative

positioning of close dies in wafer maps while maintaining the wafer map patterns when

m = 3 or m = 4. However, if we keep increasing the order, we can see the wafer map

pattern can be destroyed as higher frequency components are added into random angle

function, resulting abrupt function changes like m = 10.

Furthermore, Fig. 7.8 gives several wafer map examples after applying the proposed

rotation-twist transformation for all the patterns under consideration with an order of

m = 3. For each pattern in Fig. 7.8, the first image is the original wafer map in the

dataset, the second and the third images are two examples of the twisted views. In

general, it can be observed that all the wafer map patterns have been kept after the

transformation while the detailed shape in each wafer map is significantly changed. For

example, in Fig. 7.8(g), although we can treat all the three wafer maps as “Scratch” pat-

tern, the original scratch is perpendicular to the wafer edge, while the twisted scratches

are not. In addition, the generated scratches are a bit curved compared to the origi-

nal one. In addition, the localized die failure patterns are significantly changed after

transformation, such as the “Edge-Loc” and “Loc” patterns in Fig. 7.8(e) and 7.8(f).

These wafer map examples demonstrate the effectiveness of the proposed transformation
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to twist wafer maps while maintaining their patterns.

7.6 Experimental Results

7.6.1 Experimental Settings

Methods under Comparison

We compared our proposed semi-supervised contrastive learning method with two

sets of baseline methods. The first set of baseline methods mainly adopts a supervised

learning methodology, including the support vector machine (SVM) [95], and the convolu-

tional neural network (CNN) architectures, which are widely adopted in [97, 98, 99, 100].

The second baseline method adopts the semi-supervised contrastive learning method

with random horizontal flipping and random resized cropping chosen as transformations.

These two transformations are the only transformations used in SimCLR [103] that are

suitable for wafer pattern recognition. Hence, the second baseline corresponds to the

existing state-of-the-art contrastive learning technique when applied to wafer map data.

We consider two variants of our proposed semi-supervised contrastive learning method.

The first variant adopts four adapted transformations: random horizontal flipping, ran-

dom resized cropping, random wafer rotation, and random die noise, which is denoted by

“4TCLWMPR” (4 transformations in contrastive learning for wafer map pattern recog-

nition). The second variant includes the rotation-twist transformation in addition to the

four transformations included in the first variant, denoted by “5TCLWMPR” below.

Dataset and Metric for Comparison

We experimented on a public wafer map pattern dataset: WM-811K [107], containing

wafer maps collected from real-world manufacturing process in our experimental stud-

156



Semi-supervised Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and
Contrastive Learning Chapter 7

ies. As shown in Table 7.1, we used 54,355 labeled wafer maps in the dataset, and

split them into a training dataset and a testing dataset with a percentage of 90% and

10%, respectively. In order to perform the proposed semi-supervised contrastive learning

framework, all the 48920 wafer maps in the training dataset are used to construct the

unlabeled dataset DU . Only a small portion pd% of the training dataset is collected to

build the labeled dataset DL, containing both wafer maps and the corresponding pat-

terns, which is applied for both the proposed semi-supervised learning method and the

supervised learning methods for comparison. A wide range of labeled data percentage

pd% is experimented as shown in Table 7.3.

Table 7.1: WM-811K dataset statistics.

Wafer map patterns Training Testing

None 33051 3679
Center 3113 349
Donut 372 37

Edge-Loc 2150 267
Edge-Ring 7735 819

Loc 1458 162
Random 546 63
Scratch 446 54

Near-full 49 5

Total 48920 5435

Note that the number of samples for each wafer map pattern is highly imbalanced

in Table 7.1. For example, the majority pattern, “None” pattern (wafers without any

failure pattern), constitutes 67.6% of the whole dataset. Therefore, a traditional accuracy

metric doesn’t give much information about the wafer map pattern recognizer quality.

Even a recognizer predicting all wafer maps as “None” patterns gives an accuracy of

67.6%, which obviously exaggerates the recognizer performance. Instead, we choose a
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balanced accuracy metric defined as follows.

BAC =

∑N
i=1wi1 [ŷi = yi]∑N

i=1wi
, (7.9)

where yi and ŷi is the true data label and the prediction result for a wafer map xi,

respectively. The sample weight wi balances the imbalance among all the pattern types

using wi = 1/Nyi , where Nyi is the number of samples with the same pattern yi in

the dataset. Note that here a trivial recognizer (predicting “None” for all inputs) can

only give a balanced accuracy of 11.1% (= 1/9), more fairly presenting the recognizer

performance. Furthermore, for the wafer map pattern recognition, a higher balanced

accuracy indicates the recognizer is more likely to capture systematic manufacturing

failure patterns, which is more meaningful in the semiconductor fabrication.

Detailed Hyperparameter Settings

For the SVM, we followed [95] extracting features using Radon-based transform and

geometric-based statistics, and trained the SVM recognizer with a radial basis function

(RBF) kernel.

For the neural network architecture used in the CNN and the contrasive learning

methods, in order to make a fair comparison, the same CNN architecture is used for

both the supervised CNN training and the semi-supervised contrastive learning, although

different neural network architectures are used in [97, 98, 99, 100]. In particular, the

composition of the encoder v (·;θe) and the supervised head hs (·;θs) used in the con-

trastive learning forms the CNN architecture f (·;θe,θs) used in a supervised setting.

The detailed neural network architectures for the encoder, the projection head, and the

supervised head are given in Fig. 7.9. We resize all the wafer maps to a size of 128×128,

and use a vector space with a dimensionality of 256 for the internal representation space
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V . The entire architectures are implemented using PyTorch v1.8.0 [62] on a workstation

with an AMD Ryzen Threadripper 3970X 32-Core processor and an NVIDIA GeForce

RTX 3090 GPU.

1×128×128
Wafer Map

64×64×64
Conv2D

MaxPool2D
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MaxPool2D
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ŷ
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Prediction
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Figure 7.9: Neural networks architectures for semi-supervised contrastive learn-
ing framework. Note that the supervised CNN uses the same architecture as
f (x; θe, θs) = hs (v (x; θe) ; θs).

We experimented two different batch sizes for the semi-supervised contrastive learning

BU = 256 and BU = 512 (denoted as “SB” and “LB” in Table 7.3). The training of the

encoder uses a maximum epochs of TU = 100 with an early stopping mechanism [108].

The temperature coefficient is set to be 0.1 here. For the supervised head training,

another TL = 20 epochs are assigned for finetuning the supervised head with a batch

size of BL = 64. Note that in order to alleviate the imbalance issue as shown in Table

7.1, we adopt a weighted batch sampler to balance the occurrence probability of each

wafer map pattern during the supervised head training. The same setting is applied to
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the supervised CNN training with longer epochs TL = 100 to train the entire networks.

Moreover, to give more favors to SVM [95] over BAC metric, similar consideration for

balancing weighting among different patterns is applied (denoted as “Weighted SVM”

in Table 7.3). All the neural network optimization is conducted via an Adam optimizer

[109] with a learning rate of 1× 10−3 and a weight decay of 1× 10−4.

7.6.2 Performance Evaluation of Transformations in

4TCLWMPR

In order to justify the usage of the four domain-specific transformations used in

4TCLWMPR, a comprehensive study of the four adopted transformations is performed

in Table 7.2. We consider all variants of the possible transformation combinations, with

each transformation enabled or not. In total, 24 (= 2× 2 × 3 × 2) possible transforma-

tion combinations are considered (2 from random horizontal flip, 2 from random resized

cropping, 3 from random wafer rotation, and 2 from random die noise, ). Each row

in Table 7.2 gives the averaged balanced accuracy of the transformation combinations

with the enabled transformation category. For instance, the row of random “Discrete”

wafer rotation averages the balanced accuracy from the corresponding 8 transformation

combinations.

As shown in Table 7.2, three of selected transformations: random horizontal flipping,

random resized cropping, and random die noise, always improve the resulting prediction

accuracy for all the labeled data percentages considered. For the random wafer rotation,

although the “Discrete” variant’s performance is slightly lower than the ”Continuous”

one for a labeled data percentage of 20%, a relatively large drop 0.46% of ”Continuous”

variant can be observed at a labeled data percentage of 10% compared to disabling wafer

rotation. With that, we include the “Discrete” version of random wafer rotation in the
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final selected transformations.

Table 7.2: Averaged balanced accuracy performance from 24 variants of different
transformation combinations in 4TCLWMPR.

Category Enabled
Labeled data percentage
5% 10% 20%

Flip
No 80.71% 80.61% 82.53%
Yes 80.90% 81.42% 83.02%

Crop
No 80.02% 79.93% 80.99%
Yes 81.59% 82.09% 84.56%

Rotation
No 80.60% 81.05% 82.17%

Continuous 80.68% 80.59% 83.09%
Discrete 81.14% 81.40% 83.07%

Noise
No 80.26% 80.24% 81.73%
Yes 81.35% 81.79% 83.82%

7.6.3 Semi-supervised Learning Performance

The wafer map pattern recognition performance over the WM-811K dataset for the

semi-supervised learning method is given in Table 7.3. The first three rows are the bal-

anced accuracy metric for the three supervised methods: SVM [95], Weighted SVM, and

the CNN architecture. The next 6 rows are the performance for the baseline SimCLR and

the proposed semi-supervised contrastive learning variants with different transformation

combinations and batch sizes. As we can see from the table, the recognition balanced

accuracy for the supervised methods is relatively low. For the traditional SVM classifier

in [95], the recognition balanced accuracy is even lower than 50%. Even with balanced

sample weights to train the SVM, the recognizer can be hardly to be used in a real appli-

cation to identify wafer map failure patterns, although the averaged balanced accuracy

of weighted SVM gets improved by 4.56% compared to the vanilla SVM. With the help

of modern neural network architectures like CNN, the recognition power gets greatly
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enhanced by another increase of 19.89% in terms of the average balanced accuracy.

Thanks to the good representation learnt by the contrastive learning using an unla-

beled dataset, the proposed semi-supervised learning framework significantly improves

the recognition performance with a boost around 7% for the balanced accuracy on av-

erage. For instance, we can observe a recognition accuracy boost of 9.77% using the

proposed contrastive learning with the selected transformations, compared to CNN, even

for a small labeled data percentage like 1%. These significant wafer map pattern recogni-

tion performance improvements can be attributed to two aspects: 1) Good representation

for wafer maps is well extracted by comparing different transformations of wafer maps to

learn the similarity among samples; 2) The unlabeled data is fully utilized, which cannot

be learnt by supervised methods, greatly reducing the manual labor to label all the wafer

map patterns.

The effect of different transformation combinations is also studied for the semi-

supervised contrastive learning framework. It is observed from Table 7.3 that there still

exist certain performance gaps between different transformation combinations, although

even the baseline SimCLR transformations’ performance already surpasses the supervised

CNN a lot. With the domain-specific transformations (4TCLWMPR), the average bal-

anced accuracy over all labeled data percentages get improved by 1.23% for small batch

size and 1.65% for large batch size. Another 0.76% boost can be observed when ap-

plying the proposed rotation-twist transformations (5TCLWMPR). With the additional

proposed rotation-twist transformation (5TCLWMPR), there are 5 cases outperforming

all other methods using a small batch size for all the 7 experimented labeled data per-

centages, and 6 out of 7 using a large batch size. Such domain-specific transformations

suggest the similarity among wafer maps are well captured by these selected transfor-

mations, enhancing the representation learnability for the wafer map pattern recognition

application. The proposed rotation-twist transformation further refines the representa-
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tion learning by identifying similar samples with distinct detailed failure pattern shapes.

As suggested in [103], a large batch size is beneficial for the contrastive learning,

as more dissimilar views of samples can be used in (7.4) to identify the dissimilarity

among samples. As shown in Table 7.3, with a large batch size, the balanced recognition

accuracy can be slightly improved on average, however, we still suggest a case-by-case

study for the batch size to be used in contrastive learning when applying different labeled

data percentages.

Note that we also experimented another variant of contrastive learning which also

finetunes the encoder during the second phase of the semi-supervised learning. However,

a similar performance is observed as the one for supervised CNN, implying that the

finetuned encoder forgets the representation learnt during the unsupervised contrastive

learning and degrades to a simple supervised learning.

7.6.4 Rotation-Twist as Data Augmentation

Table 7.4: Performance boost of rotation-twist transformation as data augmentation
in a supervised learning setting.

Labeled data percentage CNN CNN+RoTwist Improvement

1% 64.87% 68.19% +3.32%
5% 66.10% 73.25% +7.15%
8% 71.41% 73.10% +1.69%
10% 66.74% 73.60% +6.86%
20% 77.90% 81.39% +3.49%
30% 74.62% 80.62% +6.00%
50% 74.20% 78.06% +3.86%
Avg. 70.83% 75.46% +4.62%

To boost the recognition power for a supervised learning model, one common strat-

egy is to augment a small dataset by adding more samples transformed from the original

dataset with the corresponding data labels. To validate the effectiveness of our pro-
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posed rotation-twist transformation, we experiment the same CNN architecture, and

train them in a supervised manner with each sample randomly transformed by the pro-

posed rotation-twist transformation with an order of m = 3. Table 7.4 gives the resulting

balanced accuracy performance with rotation-twist data augmentation at different la-

beled data percentages. Compared to the vanilla CNN, a great accuracy improvement

can be observed with 4.62% on average, indicating the effectiveness of the proposed

transformation, which well extracts the similarity among wafer maps.

Compared to the semi-supervised contrastive learning results as shown in Table 7.3,

the proposed contrastive learning recognition still outperforms data-augmented super-

vised CNN for all the experimented labeled data percentages, demonstrating that the

proposed semi-supervised contrastive learning can efficiently learn good representations

for wafer maps to build a robust wafer map pattern recognizer.

7.7 Summary

In this chapter, we proposed a semi-supervised contrastive learning framework for

wafer map pattern recognition. Contrastive learning is adopted to learn good represen-

tation in an unsupervised manner via comparing different views of wafer maps generated

by a set of selected domain-specific transformations. In addition, a novel rotation-twist

transformation is proposed to change the detailed shape of wafer maps while maintain-

ing the original patterns. Our experimental results demonstrate the effectiveness of the

semi-supervised contrastive learning over the supervised learning methods, and present

the performance boost for the proposed domain-specific transformations.

165



Chapter 8

Conclusion

With verification and testing becoming key bottlenecks in the product development cycle,

this dissertation focuses on the rare failure detection in a high-dimensional parameter

space using minimal expensive simulation/measurement data.

On the verification side, this dissertation proposes to place machine learning mod-

els, mimicking the circuit behavior, under verification, which significantly relaxes the

simulation/measurement requirements and improves the verification efficiency.

First, we present a new direction in AMS verification by proposing a hybrid formal/

machine-learning verification technique (HFMV) to combine the best of the two worlds.

HFMV adds formalism on the top of a probabilistic learning model while providing a

sense of coverage for extremely rare failure detection. HFMV intelligently and iteratively

reduces uncertainty of the learning model by a proposed formally-guided active learning

strategy and discovers potential rare failure regions in complex high-dimensional param-

eter spaces. It leads to reliable failure prediction in the case of a failing circuit, or a

high-confidence pass decision in the case of a good circuit. We demonstrate that HFMV

is able to employ a modest amount of data to identify hard-to-find rare failures which are

completely missed by state-of-the-art sampling methods even with high volume sampling
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data.

Later, we present a Bayesian optimization (BO) based approach to the challeng-

ing problem of verifying AMS circuits with stringent low failure requirements. At the

heart of the proposed BO process is a delicate balancing between two competing needs:

exploitation of the current statistical model for quick identification of highly-likely fail-

ures and exploration of undiscovered design space so as to detect hard-to-find failures

within a large parametric space. To do so, we simultaneously leverage multiple optimized

acquisition functions to explore varying degrees of balancing between exploitation and

exploration. This makes it possible to not only detect rare failures which other techniques

fail to identify, but also do so with significantly improved efficiency. We further build in

a mechanism into the BO process to enable detection of multiple failure regions, hence

providing a higher degree of coverage. Moreover, the proposed approach is readily par-

allelizable, further speeding up failure detection, particularly for large circuits for which

acquisition of simulation/measurement data is very time-consuming. Our experimental

study demonstrates that the proposed approach is very effective in finding very rare fail-

ures and multiple failure regions which existing statistical sampling techniques and other

BO techniques can miss, thereby providing a more robust and cost-effective methodology

for rare failure detection.

Furthermore, this dissertation proposes BO frameworks under high dimensional space

to further improve the verification efficiency. Two techniques are explored here. On one

hand, we utilize random embedding to effectively reduce the dimensionality of a given

verification problem in a linear manner to improve both the quality of BO-based optimal

sampling and computational efficiency. On the other hand, we combine a reversible

network and a gating architecture to identify essential features from datasets and reduce

feature dimension for fast failure detection. While reversible residual networks (RevNets)

have been actively studied for its restoration ability from output to input without the loss
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of information, the gating network facilitates the RevNet to aim at effective dimension

reduction. We incorporate the proposed reversible gating architecture into Bayesian

optimization (BO) framework to reduce the dimensionality of BO embedding important

features clarified by gating fusion weights so that the failure points can be efficiently

located. Furthermore, we propose a conditional density estimation of important and

non-important features to extract high-dimensional original input features from the low-

dimension important features, improving the efficiency of the proposed methods.

On the subject of AMS testing, this dissertation proposes to utilize self-supervised

learning methods to detect extremely rare customer failure, which addresses the lack of

labels.

In the first effort of this direction, we propose to train a more robust unsupervised

learning model by self-labeling the training data via a set of transformations. Using the

labeled data we train a multi-class classifier through supervised training. The goodness

of the multi-class classification decisions with respect to an unseen input data is used as a

normality score to defect anomalies. Furthermore, we propose to use reversible informa-

tion lossless transformations to retain the data information and boost the performance

and robustness of the proposed self-labeling approach.

Finally, this dissertation suggests a contrastive learning framework for semi-supervised

learning and prediction of wafer map patterns. Our framework incorporates an encoder

to learn good representation for wafer maps in an unsupervised manner, and a supervised

head to recognize wafer map patterns. In particular, contrastive learning is applied for the

unsupervised encoder representation learning supported by augmented data generated by

different transformations (views) of wafer maps. We identified a set of transformations to

effectively generate similar variants of each original pattern. We further proposed a novel

rotation-twist transformation to augment wafer map data by rotating each given wafer

map for which the angle of rotation is a smooth function of the radius. Experimental re-
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sults demonstrate that the proposed semi-supervised learning framework greatly improves

recognition accuracy compared to traditional supervised methods, and the rotation-twist

transformation further enhances the recognition accuracy in both semi-supervised and

supervised tasks.
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