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The E-MS Algorithm: Model Selection with Incomplete Data

Jiming Jiang, Thuan Nguyen, and J. Sunil Rao
University of California, Davis, Oregon Health and Science University and University of Miami

Abstract

We propose a procedure associated with the idea of the E-M algorithm for model selection in the 

presence of missing data. The idea extends the concept of parameters to include both the model 

and the parameters under the model, and thus allows the model to be part of the E-M iterations. 

We develop the procedure, known as the E-MS algorithm, under the assumption that the class of 

candidate models is finite. Some special cases of the procedure are considered, including E-MS 

with the generalized information criteria (GIC), and E-MS with the adaptive fence (AF; Jiang et 

al. 2008). We prove numerical convergence of the E-MS algorithm as well as consistency in 

model selection of the limiting model of the E-MS convergence, for E-MS with GIC and E-MS 

with AF. We study the impact on model selection of different missing data mechanisms. 

Furthermore, we carry out extensive simulation studies on the finite-sample performance of the E-

MS with comparisons to other procedures. The methodology is also illustrated on a real data 

analysis involving QTL mapping for an agricultural study on barley grains.

Keywords

backcross experiments; conditional sampling; consistency; convergence; missing data mechanism; 
model selection; regression

1 Introduction

The missing-data problem has a long history (e.g., Afifi and Elashoff 1966, Hartley and 

Hocking 1971). While there is an extensive literature on statistical analysis with missing or 

incomplete data (e.g., Rubin 1976, Dempster et al. 1977, Robins et al. 1995, Rotnitzky et al. 

1998, Little & Rubin 2002), the literature on model selection in the presence of missing data 

is relatively sparse. Existing model selection procedures face special challenges when 

confronted with missing or incomplete data. Obviously, the naive complete-data-only 

strategy is inefficient, sometimes even unacceptable by the practitioners due to the 

overwhelmingly wasted information. For example, in a study of backcross experiments (e.g., 

Lander and Botstein 1989, Zeng 1993, Jansen 1993, Broman and Speed 2002), a data set 

was obtained by researchers at UC-Riverside (personal communications; see Zhan et al. 

2011 for a related work). Out of the 150 or so subjects, only 4 have complete data record. 

Situations like this are, unfortunately, the reality that we often have to deal with, and the 

main motivation for this research project.

Fuchs (1982) proposed to use the E-M algorithm (Dempster et al. 1977) for the ML 

estimation under a log-linear model with missing data, and then test for goodness-of-fit 

based on the ML estimation in order to choose an appropriate model. Motivated by the 
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predictive divergence for incomplete observation models (PDIO; Shimodaira 1994), 

Cavanaugh and Shumway (1998) derived an AIC for model selection in the presence of 

incomplete data. A similar approach was considered by Seghouane et al. (2005), in which 

the authors obtained an unbiased estimator of the complete-data Kullback-Leibler symmetric 

divergence. Bueso et al. (1999) used the E-M algorithm to compute the minimum 

description length (MDL; Rissanen 1983) for model selection, when only incomplete data 

are available. Sebastiani and Ramoni (2001) discussed a Bayesian approach for the selection 

of decomposable models by maximizing the posterior probability of a candidate model, and 

showed how to do this with incomplete data. Hens et al. (2006) considered a modification of 

the AIC based on reweighting incomplete and design-based samples. Claeskens and 

Consentino (2008) proposed some variations on the AIC based on the output of the E-

Malgorithm. The method is applicable to model selection problems with missing covariates, 

but the response variable is assumed to be fully observed. Schomaker et al. (2010) 

considered two approaches of handling the missing data in determining the weights in 

frequentist model averaging. The first is based on adjusting an existing criterion; while the 

second uses the unadjusted criterion but with the missing data replaced by their imputed 

values. Verbeke et al. (2008) offered a review of formal and informal model selection 

strategies with incomplete data, but the focus is on model comparison, instead of model 

selection. As noted by Ibrahim et al. (2008), while model comparisons “demonstrate the 

effect of assumptions on estimates and tests, they do not indicate which modeling strategy is 

best, nor do they specifically address model selection for a given class of models”. The latter 

authors further proposed a class of model selection criteria based on the output of the E-M 

algorithm. Also see Garcia et al. (2010). A potential drawback with the E-M approach of 

Ibrahim et al. (2008) is that the conditional expectation in the E-step is taken under the 

assumed (candidate) model, rather than an objective (true) model. Note that the complete-

data log-likelihood is also based on the assumed model. Thus, by taking the conditional 

expection, again, under the assumed model, it may bring false supporting evidence for an 

incorrect model. The problem is sometimes referred to as “double-dipping”. We illustrate 

this with an example.

Example 1. Suppose that one attempts to select a logistic model, , where pi = 

P(Yi = 1), Y1, …, Yn being independent, binary, observations, and xi is a vector of covariates 

to be selected. Suppose that y1, …, y5 are observed, and the rest of the yi’s are missing. Also, 

for simplicity, assume that all the xi’s are observed. The derivation below in this paragraph 

is based on MAR (Rubin 1976) for simplicity. Let M0 denote the intercept only model and 

suppose that the true model is not M0. The complete-data log-likelihood under M0 is 

, where p0 = eβ0/(1+eβ0) and β0 is the intercept. 

Note that, under M0, we have 

. If yi = 1, 1 ≤ i ≤ 5, then, as p0 → 1, we have . On the other hand, 

under any other model, M, the corresponding log-likelihood is 

, hence , under M. 

This means that the maximized conditional expectation of l under M0 (which is 0) is greater 
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than or equal to the maximized conditional expectation of l under M (which is less than or 

equal to 0). Thus, the first term of any information criterion under M0 is less than or equal to 

that under M. On the other hand, M0 certainly has the smallest dimension. Therefore, M0 

will be selected as the optimal model by the IC criteria of Ibrahim et al. (2008), which, of 

course, is an incorrect model.

To further illustrate numerically, we carry out a simulation study under the following 

specific setting. Suppose that the candidate covariates include a continuous variable, x1, 

whose values are generated from the standard normal distribution, and a binary indicator, x2, 

whose values are generated from the Bernoulli(0.5) distribution. The following candidate 

models are considered: Model 0: , Model j: , and Model 3: 

. Two scenarios are considered. In the first scenario, Model 1 is the 

true underlying model with the true parameters β0 = β1 = 1; in the second scenario, Model 3, 

which is the full model, is the true underlying model with the true parameters β0 = β1 = 1, β2 

= −1. Furthermore, the missing data indicators, Mi, which is 1 if yi is missing, and 0 

otherwise, are generated either under an ignorable mechanism, in which case P(Mi = 1|y) = 

0.5 (case A), or under a non-ignorable mechanism, in which case P(Mi = 1|y) = h(ψ0 + ψ1yi) 

with h(x) = ex/(1 + ex) and the true parameters ψ0 = 0.5 and ψ1 = 0.2 (case B). See Section 6 

for more details. We apply the method of Ibrahim et al. (2008) with the BIC penalty, 

denoted by IZT, under two different sample sizes, n = 50 and n = 100. A comparing method, 

which is what we are going to propose in this paper, called E-MS (to be introduced in the 

next section), here in conjunction with the BIC, is also applied to the same simulated data. 

Results of the empirical true positive (TP, i.e., the selected model is exactly the true 

underlying model) rates, based on 1,000 simulations, are reported in Table 1. It is seen that 

IZT performs considerably worse than E-MS under all scenarios, cases, and sample sizes. 

Note that both methods perform much worse under Model 3 than under Model 1, which is 

not surprising–the BIC is known to over-penalize “larger” models, especially the full model 

(e.g., Jiang et al. 2008). Furthermore, the performance of E-MS does not seem to be affected 

by the different missing data mechanisms (see Section 6 for more discussion), while IZT 

appears to perform worse under the non-ignorable missing data setting (case B).

2 Outline of our main contributions

The strategic failure as illustrated by Example 1 is due to the double use of the assumed 

model, once in the measure of lack-of-fit (i.e., the negative log-likelihood) and once in the 

conditional expectation of this measure. Note that the assumed model is not necessarily the 

true model, so the conditional expectation under the assumed model is not necessarily the 

true conditional expectation. As mentioned, this may bring false evidence in favor of an 

incorrect model, and, by doing so, the E-M loses its “updating power” when applied to 

model selection problems. In fact, the assumed model should be treated the same way as the 

unknown parameters (the model and the parameters under the model together completely 

specify “the model”), so it is not reasonable to update only the parameters.

Note that the double usage of the assumed model has been shown in the literature to have 

serious consequences. For example, Copas and Eguchi (2005) discuss a similar issue that 
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they term as incomplete-data bias, in which the maximum likelihood estimators can be 

(sometimes severely) biased when incomplete data are present, and an incorrect model is 

being fit, and yet still appears to give a good fit to the available data. Jiang et al. (2011a) 

showed that if one derives the parameter estimators by evaluating the best predictor (BP) 

under the assumed model, say, M, using the distribution also under M, the resulting predictor 

is not robust in the sense that it may perform poorly when M is not the true model. Here, the 

failure of the BP is due to a similar double-dipping strategy, that is, (1) the measure of lack-

of-fit (sum of squared prediction errors), is for the BP under M; and (2) the distribution 

under which the measure of lack-of-fit is evaluated is also under on M.

In this paper, we propose a general strategy for model selection in the presence of 

incomplete or missing data that can be used with any existing model selection procedure that 

is designed for a complete data situation. Our strategy is based on the E-M idea; however, 

unlike Ibrahim et al. (2008), the conditional expectation is evaluated under an objective 

model, which is the same for all the candidate models. A key idea is to include the model, as 

well as the parameters, in the E-M iteration, and the objective model, under which the 

conditional expectations are evaluated in the E-step, is the current model. Another main 

contribution of the current paper is that we establish theoretical properties of the proposed 

E-MS algorithm, including the (numerical) convergence of the algorithm, and consistency of 

the limiting model of the E-MS convergence in terms of model selection. We also 

investigate, from a theoretical standpoint, the impact of the missing data mechanism (MDM, 

e.g., Little & Rubin 2002) on the performance of the E-MS. Furthermore, we provide 

empirical evidence, in terms of simulation studies and real data analysis, that support the 

theoretical findings. More specifically, the simulation results compare the finite-sample 

performance of the E-MS with existing, ad-hoc, or “ideal” procedures. We consider various 

scenarios in our simulation studies, such as different types of MDMs, and the situation that 

the true model is not among the candidate models.

It should be noted that, for the most part, there are three major approaches for model 

selection, namely, the information criteria or, more generally, generalized information 

criteria (GIC; e.g., Nishii 1984, Shibata 1984), the shrinkage methods (Tibshirani 1996, Fan 

& Li 2001, among others), and the fence methods (Jiang et al. 2008). See, for example, a 

recent review by Müller, Scealy and Welsh (2013). However, for the shrinkage methods, E-

MS is the same as the E-M algorithm. This is because the shrinkage methods combine 

variable selection with estimation of the corresponding coefficients (the variables with zero 

estimated coefficients are dropped from the current model). Thus, updating the model is the 

same as updating the parameter estimates; or, from another point of view, the model does 

not change with the iteration–it is always the full model. Therefore, in the subsequent 

development we shall use GIC and the fence as main examples to illustrate our method.

It should also be pointed out that the current development is under the assumption that the 

class of candidate models is finte. Therefore, the methodology may not be applicable if the 

model space is infinite dimensional, such as in semi-parametric modeling.

Following the general convention, throughout this paper we use capital letters, e.g., Y, for a 

random variable, or random vector, and small letters, e.g., y, for the observed, or realized, 
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value of Y (the only exception is when the observed values or realized values are entries of a 

matrix, which, as usual, is denoted with a capital letter).

3 The E-MS algorithm

The E-M is well known for parameter estimation in the presence of missing data. On the 

other hand, model selection, as another component of model identification, may also be 

viewed as parameter estimation, with the parameter being [the identification (ID) number of] 

the model and the parameter space being the (ID numbers of the) model space. Namely, we 

combine the parameters with the model under which the parameters are defined. So, at the 

current stage of the iteration, we have the current model, Mc, as well as the current estimates 

of the parameters, θ̂
c, under Mc. Let Q(M) = Q(Y,M, θM) be a measure of lack-of-fit, where Y 

represents the complete data, M a candidate model, and θM the vector of parameters under 

M. We take the conditional expectation of Q(M) under Mc, with the parameters under Mc, 

θMc ≡ θc, being θĉ, given the observed data, yo, denoted by Ec{Q(M)|yo}. This is the E-step.

In the next step, we carry out model selection using Ec{Q(M)|yo} as the measure of lack-of-

fit. To do so, we first find Q̂
c(M) = infθM∈ΘM Ec{Q(M)|yo}, where ΘM is the parameter 

space under M. We can use Q̂
c(M) in a GIC setting, in which the optimal model, M̂

opt, is 

found by minimizing Q̂
c(M) + λn|M| over M ∈ ℳ, the class of candidate models, where λn is 

a penalty that depends on the sample size, n, and |M| is the dimension of M. Alternatively, 

we may use the fence method (Jiang et al. 2008) based on Q̂
c(M). This is the MS-step, 

where MS stands for “model selection”. We then replace Mc by M̂
opt, found in the MS-step, 

and θĉ by θ̂
opt, where θ̂opt is the parameter vector under M̂

opt corresponding to the minimizer 

of Ec{Q(M̂
opt)|yo} over θM̂opt ∈ ΘM̂opt, and return to the E-step. We illustrate the E-MS 

procedure with some examples.

Example 2 (Backcross experiments). Quantitative trait loci (QTL) mapping in genetics has 

been extensively studied (e.g., Lander and Botstein 1989, Zeng 1993, Jansen 1993). More 

recently, Broman and Speed (2002) modified the BIC and applied it to QTL mapping in 

backcross experiments. The method is for complete-data analysis only. In practice, however, 

missing data are often present. For example, as mentioned earlier, in the data set obtained 

for backcross experiments by the researchers at UC-Riverside, less than 3% of the data have 

the complete records, that is, without the missing values.

Following Broman and Speed (2002), we have a conditional linear regression model for the 

phenotype variable, Y, such that, given the marker indicators, x, we have 

, where r is the number of chromosomes, Mk is a subset of {1, 

…, q} and q is the number of markers on each chromosome, and εi is a normal error, with 

mean zero and unknown variance σ2. The εi’s are uncorrelated and also independent with 

the Xijk’s. Furthermore, the marker indicators, Xijk, are assumed to be a Markov chain within 

each chromosome with P(Xi1k = 0) = P(Xi1k = 1) = 1/2 (Mendel’s rule) and P(Xi,j+1,k = 1|Xijk 

= 0) = P(Xi,j+1,k = 0|Xijk = 1) = θ, where θ is the recombination fraction. The problem of 

interest is to identify the subset M = (M1, …, Mr), which is viewed as a model selection 

problem as in Broman and Speed (2002).
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We consider the E-MS in conjunction with the BIC procedure. Due to the high 

dimensionality, we consider the forward/backward (FW/BW) BIC procedure of Broman and 

Speed (2002). A detailed description of the latter is given in the Supplementary Material 

(Section A.3). The log-likelihood, under a given model, M, can be expressed as lM = 

lM,y|x+lx, where lx does not depend on the model, 

, c being a constant. Thus, we have 

BIC(M) = −2l̂M +|M| log(n), where l̂M is the maximized lM (over the parameters). It is easy 

to show that the MLE of θ, θ̂, is the same as the maximizer of lx, which does not depend on 

M. Thus, we have

(1)

In addition, the FW/BW requires evaluation of RSS(y,X) = minβ RSS(y,X, β), where

(2)

with . Because both (1) and (2) involve missing data, we replace them by their 

conditional expectations under the current model, Mc, and the current parameter estimates 

under Mc, before the minimization/maximization. This leads to

(3)

(4)

both of which have closed-form expressions (see Subsection A.4.1 of the Supplementary 

Material), where xo and yo denote the observed x’s and y’s, respectively.

In summary, given Mc and the current parameter estimates, the FW/BW, based on (3), is 

used to generate a sequence of models; the BIC, based on (4), is then applied to the sequence 

generated by the FW/BW to update the model as well as parameter estimates.

A reasonable initial model is the full model, Mf. A reasonable initial estimator for θ is θ̂
0 = 

proportion of observed cases in which xijk and xi,j+1,k are different. As for the initial 

estimator of βf, the vector of regression coefficients under Mf, note that the idea of least 

squares (LS) fit in regression is to find the parameter estimates that minimizes 

, where Ef denotes expectation under Mf. Due to the missing data, it 

is natural to replace this by ∑i∈Io {yi−Ef (Yi|xo)}2, where Io denotes the subset of indexes i so 

that yi is observed. Furthermore, we have , where 

xo,i denotes the observe x’s for the ith subject; Ef(Xijk|xo,i) = xijk if the latter is observed, and 

an expression of the conditional expectation can be easily obtained, with θ replaced by θ̂
0, if 

xijk is missing. We then run the LS with yi, i ∈ Io as the responses and Ef(Xijk|xo,i)’s, i ∈ Io, 
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as the predictors, to obtain the initial estimator β̂
f,0, for βf. The initial estimator for σ2, , is 

the RSS of this LS fit divided by |Io| − qr.

Example 3 (Linear regression). The classical linear regression is a conditional model, in 

which the distribution of the covariates (or predictors) is not specified. As is well known, 

such a model may not directly work with the E-M algorithm, if some of the covariates are 

also missing. Little and Rubin (2002) proposed the following model for the joint distribution 

of the response and covariates in a linear regression. Suppose that the candidate predictors 

can be listed as x1, …, xp, xp+1, …, xp+q such that x1, …, xp are continuous and xp+1, …, xp+q 

are discrete or categorical (in case there is an intercept, the corresponding constant, 1, is 

considered as the first discrete/categorical predictor). Furthermore, let υ1, …, υs be all the 

possible (vector-valued) values for xd = (xp+1, …, xp+q)′. Let xi,d be the xd corresponding to 

the ith observation, and xi,c be the vector (x1, …, xp)′ corresponding to the ith observation, 

and . The assumptions are: (i) Yi,Xi, i = 1, …, n are independent; (ii) for each 

i, Xi,d has the probability distribution P(Xi,d = υr) = πr, 1 ≤ r ≤ s, where the πr’s are unknown 

probabilities such that ; (iii) given Xi,d = υr, Xi,c has a multivariate normal 

distribution with mean μr and covariance matrix Ω, where μr, 1 ≤ r ≤ s are unknown vectors, 

and Ω is an unknown covariance matrix that does not depend on r; and (iv) given xi, Yi is 

normal with mean  and variance σ2, where β is an unknown (p + q)-dimensional vector 

of regression coefficients, and σ2 is an unknown variance. These assumptions are for the full 

model. More generally, we are interested in a model, M, for the conditional distribution (iv). 

Write , and . Then, under M, (iv) is replaced by (iv-

M) given xi . The parts (i)–(iii) of the model are unchanged.

Let y, x, xc, xd denote the data for the yi, xi, xi,c, xi,d, respectively, across 1 ≤ i ≤ n. Then, it 

can be shown that the complete-data log-likelihood has the expression

(5)

where c is a constant. Note that the maximum likelihood is a constrained maximization 

problem, namely, max l subject to . Define . Then, the 

MLE of the parameters, plus the Lagrange multiplier λ, is a stationary point of ℒ.

In Example 2 we considered the E-MS with BIC. To see an alternative, let us now consider 

the E-MS in conjunction with the adaptive fence (AF; Jiang et al. 2008). See Jiang (2014) 

for a recent review on the fence methods. Take the initial model, M0, as the full model, Mf, 

and let βf be the β under Mf. Let Ef denote the conditional expectation under Mf and the 

current estimates of parameters, under Mf, including βf, σ2, μr, πr, 1 ≤ r ≤ s, and Ω. Let yo, xo 

denote the observed y, x, respectively. By (5), with M = Mf, we have

(6)
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where c does not depend on βf and σ2. From (6), we obtain the updates for βf and σ2,

(7)

. 

Furthermore, we have (see Subsection A.4.2 of the Supplementary Material)

(8)

(9)

It remains to evaluate the conditional expectations involved in (7)–(9). Let ym, xm, xc,m, and 

xd,m denote the missing parts of y, x, xc, and xd, respectively. Although it is possible to 

obtain the conditional density fM(ym, xm|yo, xo), the result is not a common distribution (e.g., 

normal), under which the conditional expectations can be easily obtained analytically. 

Alternatively, one may consider sampling from the conditional distribution, and use the 

Monte Carlo method to compute the conditional expectations. To do so, first note that it is 

easy to show that one can sample from the joint conditional distribution by sampling 

independently from the conditional distribution for each subject. To sample from the subject 

conditional distribution, note that fM,i(yi,m, xi,m|yi,o, xi,o) ∝ fM,i(yi, xi) ∝

where ∝ means that the expression is up to a function of yi,o, xi,o, which is considered 

constant during the sampling of yi,m, xi,m. Next, we employ the Metropolized independence 

sampler (MIS, e.g., Liu 2004, p. 115), which is a special case of the Metropolis-Hastings 

algorithm. We refer the details to Subsection A.4.2 of the Supplementary Material.

The initial estimates of μr, 1 ≤ r ≤ s,Ω, πr, 1 ≤ r ≤ s are , 1 ≤ 

r ≤ s, where Ir,o = {1 ≤ i ≤ n : xi is observed and xi,d = υr}, and nr,o = |Ir,o|; 

, where  and no = |Io|, and 

, 1 ≤ r ≤ s. 

Furthermore, the initial estimate of βf is the LS estimate based on the all-observed data, that 

is,  (assuming, without loss of generality, that  is 

nonsingular), where  with Iao = {1 ≤ i ≤ n : xf,i, yi observed}, and yao = 

(yi)i∈Iao. The initial estimate of σ2 is .
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For any candidate model M, let , where S0 is the same as that below 

(7), and Sj, j = 1, 2 are the same as those below (7) with xi,f replaced by xi,M. Note that the 

conditional expectation, Ef, will be done by the conditional sampling method mentioned 

above, with M = M0. Run the AF, with Q(M) being the measure of lack-of-fit. Denote the 

model selected by AF by M̂. Let , where Sj, j = 1, 2 are given below (7) with xi,f 

replaced by xi,M̂. Next, let σ2̂ be given by (7), where Sj, j = 0, 1, 2 are given below (7) with 

xi,f replaced by xi,M̂. Also, let μ ̂
r, 1 ≤ r ≤ s,Ω̂, π̂

r, 1 ≤ r ≤ s be given by (8), (9) (note that these 

depend only on M0 = Mf, but not on M̂).

Replace M0 by M̂, and the initial estimates by β̂, σ̂2, μ̂
r, 1 ≤ r ≤ s, Ω̂, π̂

r, 1 ≤ r ≤ s, and repeat 

the process. Note that, after this iteration, the Ef is replaced by EM̂, evaluated by the 

conditional sampling method with M = M̂.

Keep updating the model and parameters iteratively until convergence (see below).

Note. The AF procedure is potentially time-consuming due to the need for bootstrapping 

(Jiang et al. 2008). In this regard, we refer to some recent development on improving the 

computational efficiency of the AF. See Pang et al. (2013).

The convergence of the E-MS algorithm, as mentioned above, is a key theoretical issue that 

we address in the next section.

4 Convergence and consistency of E-MS

In this section, we state the results regarding two importantxi theoretical properties of the E-

MS: The numerical convergence and consistency, in terms of model selection, of the limit of 

the E-MS convergence. We term the latter as consistency of the E-MS. The details, 

including proofs and interpretation of conditions, are deferred to Subsection A.1.3 of the 

Supplementary Material. Also, we shall focus on E-MS with GIC, and defer similar results 

for E-MS with AF to the same subsection in Supplementary Material.

The GIC, which include AIC, BIC, and other information criteria, is defined as

(10)

where Q is a measure of lack-of-fit that depends on M, a candidate model, θ, the parameter 

vector under M (strictly speaking, it should be denoted by θM; we suppress the subscript for 

notation simplicity), and Y, the vector of complete data, and p(·) is a penalty function on the 

complexity of M. If Y were observed, the model selection would be done by minimizing 

c(M, θ, Y), first over θ ∈ ΘM, the parameter space under M, and then over M ∈ ℳ, the space 

of candidate models. Note that, we have

(11)

where in the right side minimization, θ is confined to ΘM. Because Y contains missing 

values, we cannot really do (11). Instead, we replace (10) by its conditional expectation, 
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given the vector of observed data, yo, under the current model, M(t), and the current 

parameter vector, θ(t), which is defined under M(t), that is,

(12)

(11) is then carried out with c(M, θ, Y) replaced by the right side of (12), or Q(M, θ, Y) 

replaced by E{Q(M, θ, Y)|yo,M(t), θ(t)}, resulting the minimizer M(t+1) and θ(t+1).

Suppose that there is an observed version of (10), g(M, θ, yo) = Qo(M, θ, yo) + p(M). Denote 

ψ = (M, θ), where θ is understood as the parameter vector under M. Let Ψ denote the model/

parameter space for ψ. We assume the following regularity conditions.

A1 The model space ℳ is finite; the parameter space ΘM is compact for any M ∈ 

ℳ.

A2 For any fixed Mj ∈ ℳ, j = 0, 1, as θj, θ̃
j ∈ ΘMj and θ̃

j → θj, j = 0, 1, we have 

E{Q(M1, θ̃1, Y) − Q(M1, θ1, Y)|yo,M0, θ̃0} → 0 and E{Q(ψ1, Y)|yo,M0, θ̃0} − 

E{Q(ψ1, Y)|yo,M0, θ0} → 0.

A3 For any M, M̃, we have

.

A4 {Ψ\Ψ0}∩ Ψ1 = ∅, where Ψ0 = argminΨ ∈Ψ{Qo(ψ, yo) + p(M)} and Ψ1 = {ψ1 ∈ 

Ψ : ψ1 ∈ a(ψ1)} with a(ψ1) = argminΨ ∈Ψ[E{Q(ψ, Y)|yo, ψ1} + p(M)].

A5 |Ψ0| = 1, where | · | denotes cardinality.

Theorem 1. Under assumptions A1–A5, the E-MS with GIC converges globally.

Note. The assumption about the parameter spaces being compact in A1 may be removed, 

with a probability statement being added to the conclusion of Theorem 1. This is because 

one can often consider a compact subspace of the parameter space, if the latter is not 

compact, and let the subspace expand as the sample size increases (similar to the method of 

sieves; e.g., Jiang 1997). Meanwhile, the other assumptions of Theorem 1 are expected to 

hold with probability tending to one, as the sample size increases, under regularity 

conditions. Thus, by applying Theorem 1, we conclude that, with any initial point, the 

probability that the E-MS converges goes to one as the sample size increases. We show this 

with an example in the Supplementary Material (see Section A.2).

Following the classical assumptions for consistency of model selection, we assume the 

existence of an optimal model, Mopt ∈ ℳ, which is a true model that has the minimum 

dimension among all true models in ℳ. The corresponding true parameter vector is denoted 

by θopt. Suppose that ℳ is divided into subclasses, ℳu and ℳo, such that ℳ = ℳu ∪ 

{Mopt} ∪ ℳo. Here the subscripts u and o stand for “underfit” and “overfit”, respectively. 

We use w.p.→ 1 for “with probability tending to one”.
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Theorem 2. Under the assumptions of Theorem 1, if, in addition, we have

A6 for any M ∈ ℳu, we have w.p.→ 1 that Qo(M, Yo) > Qo(Mopt, θopt, Yo), and 

{p(M) − p(Mopt)}{Qo(M, Yo) − Qo(Mopt, θopt, Yo)}−1 = oP(1), where Qo(M, yo) = 

infθ ∈ΘM Qo(M, θ, yo); and

A7 for any M ∈ ℳo, we have w.p.→ 1 that p(M)−p(Mopt) > Qo(Mopt, Yo)−Qo(M, 

Yo), then, we have, w.p.→ 1, that the limiting model of the E-MS convergence is 

Mopt. In other words, the E-MS with GIC is consistent.

5 More simulation study

We have carried out a number of simulation studies to evaluate the finite-sample 

performance of E-MS as well as its comparison with other strategies. One study is presented 

in this section. More studies are presented in Section A.6 of the Supplementary Material.

We consider the backcross experiment model, described in Example 2, Section 3, with q = 6 

and r = 5, so there are 5 chromosomes with 6 markers on each chromosome. There are 6 true 

QTLs, which are located at markers 1, 2, 3 on chromosome 1, markers 1, 2 on chromosome 

2, and marker 1 on chromosome 3. The coefficients at the true markers are equal, and the 

value varies according to Table 2; so does the true value of σ. The true value for θ is 0.2. 

The complete data are generated as follows: First generate the Markov chain Xf with θ = 0.2; 

then generate e from N(0, In); let Y = βXopt(1, 1, 1, 1, 1, 1)′ + e, where Xopt has 6 columns 

corresponding to the true QTLs. Next, we randomly assign 10% of the values in each 

column of the data matrix as missing. This leaves less than 4% of the complete-data records, 

on average (similar to the backcross experiment data obtained by the researchers at UC-

Riverside; see Example 2). Let Io = {1, …, n} \ Im and Ojk = {1, …, n}\Mjk, 1 ≤ k ≤ r, 1 ≤ j ≤ 

q. The subsets I’s, M’s and O’s are fixed throughout the simulations. The observed data are 

yi, i ∈ Io, and xijk, i ∈ Ojk, 1 ≤ k ≤ r, 1 ≤ j ≤ q.

We study the performance of E-MS with BIC, as described in Example 2. The full model Mf 

was used as the initial model. The result is compared with the complete-data BIC (CDBIC), 

that is, the BIC result using the complete data. The latter is not available, of course, in 

practice, but the goal was to see how much loss of efficiency there is in the presence of 

missing data. As another comparison, we have included results of same-data comparison 

with a standard imputation-based approach (IM), working in conjunction with the BIC 

(IMBIC). A description of the IM is provided in Subsection A.6.1 (also see Subsection A.

6.4) of the Supplementary Material. Part of the IMBIC results are included in Table 2, and 

part of the results are deferred to Subsection A.6.4 of the Supplementary Material due to the 

space limitation. We consider the following measures of performance: TP – empirical 

probability of correct identification of exactly all the true QTLs (and nothing else); MC – 

empirical mean number of correctly identified true QTLs (s.d.); and MIC – empirical mean 

number of incorrectly identified “QTLs” (s.d.). In addition, we compute the percentage ratio 

(% Ratio) of the TP of E-MS over the TP of CDBIC as a measure of relative efficiency of 

the E-MS in terms of model selection. The % Ratio for IMBIC is computed in a similar way. 

The results, based on 100 simulation runs, are presented in Table 2. It is seen that the E-MS 

results improve when either the sample size increases, or the value of β (the signal) 
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increases, or the value of σ (the noise) decreases, by all of the performance measures. This 

makes sense because larger n means more information about the true underlying model; 

larger β (or stronger signal) makes it easier to detect the true underlying model; and smaller 

σ (or weaker noise) makes the sample size more effective and signal relatively stronger. The 

IMBIC results are not quite comparable to the E-MS, especially in terms of the % Ratio. In 

particular, unlike the E-MS results, the IMBIC results do not seem to improve when n 

increases from 250 to 500 (with the same β and σ).

More results of simulation studies are presented in the next section. Furthermore, we have 

carried out simulation studies on the performance of E-MS in terms of parameter estimation. 

The results are presented in Subsection A.6.5 of the Supplementary Material.

6 Missing data mechanism

In a way, there are three cases that the MDM may be involved. The first case, case I, is that 

the MDM is known, which is rarely the case in practice; the second case, case II, is that the 

MDM is also of interest, and subject to model selection; the third case, case III, is that the 

MDM is unknown, but is not of interest; in other words, in case III, there is an underlying 

MDM, but the latter is something that one wishes to avoid dealing with. In our experience, 

the third case is encountered most frequently in practice.

The presented E-MS method applies to cases I and II without any change. This is because, in 

those cases, the observed data include both yobs, which is what we normally call “the data” 

without considering the MDM, and the missing data indicators, mind. In other words, the full 

(observed) data is (yobs, mind). Under either case I or case II, one has a complete 

specification of the distribution of (Yobs, Mind), that is,

(13)

The first factor inside the integral on the right side of (13) corresponds to the distribution of 

the complete data, Y = (Yobs, Ymis), where Ymis represents the missing data; the second 

factor, f(mind|y, ψ), corresponds to the MDM. Here θ and ψ denote the parameter vectors that 

are involved in the distribution of Y and the MDM, respectively. Therefore, from a 

methodology point of view, there is nothing new and (13) is just a special case to which the 

E-MS applies, that is, a set of data and a distribution for the data under an assumed model, a 

part of which is the MDM. Note that, sometimes, the integration in (13) can be computed 

either analytically, or numerically fairly easily. In such cases, the E-MS is not needed; in 

other words, the model selection can be carried out by directly using the likelihood function 

based on the full data, given by (13), which yields the same result as the converged E-MS, 

had the latter been carried out, at least asymptotically (Theorems 1 & 2).

A more challenging case seems to be case III, in which one is interested in the model on Y 

only, and would avoid dealing with the MDM if possible. As noted, this case is encountered 

most frequently in practice. Of course, one may always consider some candidate models for 

the MDM, and treat the case the same way as case II; once a joint model is selected, one 

simply takes the part regarding the distribution of Y, which is of main interest. The question 
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is: How does the latter approach compare to the E-MS that focuses on the Y model only? 

Another related question is: How is the performance of the E-MS, which ignores the MDM, 

affected by the true underlying MDM? In this section, we address these questions from both 

empirical and theoretical standpoints.

We refer to Rubin (1976) and Little & Rubin (2002) for the well known theory about 

missing data, including the notions of MCAR, MAR, NMAR; and ignorable and non-

ignorable MDM. According to Little & Rubin (2002, sec. 6.2), the frequentist’s methods of 

inference that ignore the MDM are still valid, even if the MDM is non-ignorable, although 

there may be a loss of efficiency. It follows that the E-MS, as a frequentist’smethod, is valid 

even without considering the MDM; on the other hand, there may be a loss of efficiency in 

terms of model selection performance. Furthermore, if the true MDM is ignorable, there is 

no loss of efficiency in any likelihood-based inference, including model selection, by 

ignoring the MDM. Therefore, the case of interest is when the MDM is non-ignorable.

6.1 Empirical studies

Let us begin by considering a simple model of the analysis of covariance (ANCOVA) with 

two treatment groups and a control variable. The model can be expressed as

(14)

i = 1, 2, j = 1, …, k, where Yij is the response; μi is the unknown effect for group i; β is an 

unknown coefficient; xij is a covariate used as the control variable; and εij is the error. The 

εij’s are assumed to be independent N(0, σ2), where σ2 is an unknown variance, and 

independent with the Xij’s. Our interest is in selecting a model for Yij. There are four 

candidate models:

I. (14) with μ1 = μ2 = μ and β = 0. The true parameters are μ = σ2 = 1.

II. (14) with μ1 = μ2 = μ. The true parameters are μ = β = σ2 = 1.

III. (14) with β = 0. The true parameters are μ1 = 1, μ2 = −1, and σ2 = 1.

IV. (14) with no restriction. The true parameters are μ1 = 1, μ2 = −1, and β = σ2 = 1.

Again, we consider the E-MS with BIC. We assume that the distribution of Xij does not 

depend on the above models or parameters. Thus, as far as the BIC is concerned, only the 

conditional log-likelihood, ly|x, matters. In each simulation run, the xij’s are generated from 

the standard normal distribution; the εij’s are then generated, and the Yij obtained under the 

true model.

We first investigate the impact of different MDMs on the performance of E-MS. Assume 

that there are no missing xij’s but some of the responses, Yij, are missing. Define Mind,ij = 1 

if Yij is missing, and Mind,ij = 0 if Yij is observed. It is assumed that the Mind,ij’s are 

independent given Y. Furthermore, the following MDMs are considered:

A. P(Mind,ij = 1|y, ψ) = ψ. The true ψ is 0.5.

B. P(Mind,ij = 1|y, ψ) = h(ψ0 + ψ1xij), where h(u) = eu/(1 + eu). The true parameters 

are ψ0 = 0.5, ψ1 = 0.2.
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C. P(Mind,ij = 1|y, ψ) = h(ψ0 + ψ1μi), where the μi’s are the same group effect 

introduced above. The true ψ’s are the same as in B.

D. P(Mind,ij = 1|y, ψ) = h(ψ0 + ψ1yij). The true ψ’s are the same as in B.

In a way, the models are motivated by the examples considered in Little & Rubin (2002, ch. 

6). The basic idea is to consider different types of MDMs including ignorable and non-

ignorable missingness. It is clear that both A and B are ignorable. On the other hand, C is a 

case of MCAR, but no distinctness of parameters, and therefore non-ignorable; D is a case 

of NMAR, and hence non-ignorable. As mentioned, one expects no loss of efficiency for E-

MS under A or B, but the purpose is to see the difference under different situations.

The results, based on 1,000 simulation runs for each combination of the model and MDM, 

and for two different sample sizes, n = 10 and n = 50, where n = 2k is the total number of 

observations, are reported in Table 3. As we can see, the performance of E-MS depends 

heavily on the underlying true model, but to a much lesser extent on the MDM. More 

specifically, when model I is the true model, the performance of E-MS somehow decreases 

as the MDM gets more complex. On the other hand, when the true model is III, or IV, there 

is a significant drop in the performance once the MDM moves away from A, but not much 

of a difference between B, C, D. Finally, when model II is the true model, the performance 

of the E-MS is fairly stable across all the MDMs.

Another aspect of the performance that seems to be affected by the MDM is the 

improvement as the sample size increases. In almost all the cases the performance of E-MS 

improves as the sample size gets larger; however, the improvement is much more significant 

under II, III and IV than under I. In fact, in one case under I when the MDM is NMAR, the 

performance even gets worse as n gets larger. One explanation is that the MDM is, in this 

case, confounded with some of the candidate models that leads to incorrect model selections. 

In general, missing data reduces the effective sample size. However, additional covariate 

data are available under II, III and IV, namely, the xij’s (under II and IV) and the group 

indicators (as another covariate, under III and IV), which are not affected by the missing 

data. The covariate information helps to improve the performance as the sample size 

increases. In fact, the largest improvement is seen under IV, which has both of the covariates 

(xij and the group indicator) under the true model.

In our next simulation study, we focus on the efficiency of E-MS (in model selection), and 

compare its performance with the approach based on the full-data-likelihood (13). To make 

a fair comparison, both procedures are based on the BIC. The candidate models for f(y|θ) are 

the same as above. The candidate MDMs are A–C plus

E. P(Mind,ij = 1|y, ψ) = h(ψ0 + ψ1μi + ψ2xij), where the μi’s are the same as in (14).

A motivation for not using model D as a candidate MDM is that we would like to see what 

happens when a NMAR missingness (that is, model D) is not considered as a candidate 

MDM, but is actually at play. Model E also has the features that (i) it is non-ignorable, and 

(ii) it is a full model when considered together with A, B, C. Let us term the E-MS with BIC 

as E-MS, and the full-data BIC as FBIC. Note that, in this case, the FBIC can be carried out 

directly without using the E-MS, as noted earlier. We compare the E-MS with FBIC for two 
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cases where the true underlying MDM is among the candidates, namely, II-B and IV-B, in 

which case the FBIC would be considered efficient, and two cases where the true underlying 

MDM is not among the candidates: namely, II-D and IV-D, in which case the FBIC may not 

be efficient. Note that IV is a full model for f(y|θ). We increase the sample size slightly from 

the previous simulation, namely, n = 40 and n = 80 now. Results based on 500 simulation 

runs are reported in Table 4.

Before the results are revealed, one might speculate that E-MS would outperform FBIC 

when the true MDM is not among the candidates, that is, II-D and IV-D, and the pattern 

would reverse when the true MDM is among the candidates, that is, II-B and IV-B. Thus, 

the way that the results turn out to be might have surprised someones, including ourselves. 

However, there are some explanations. First, in FBIC, one first targets the joint model then 

marginalize to the model of interest, that is, f(y|θ). This is not necessarily a better approach 

than targeting directly the model of interest. See, for example, Claeskens and Hjort (2003). 

Another example, in the context of parameter estimation, is the restricted maximum 

likelihood (REML; e.g., Jiang 2007), which targets the parameters of direct interest, that is, 

the variance components. This often works better than the straight maximum likelihood, 

which estimates all the parameters, some of which may be considered nuisance.

Secondly, the BIC is known to have the tendency of over-penalizing “larger” models, and 

this is especially the case when the full model is the true underlying model (e.g., Jiang et al. 

2008). For E-MS, model IV is, simply, the full model, therefore, the BIC-based E-MS 

suffers from over-penalizing. However, model IV is not necessarily (part of) the full model 

for FBIC. This is because the full model for FBIC is the joint model (IV,E). For example, 

suppose that (IV,B) is selected by the FBIC, then, obviously, it is not the full model, even 

though it is “full” for the first component. The point being made is that the E-MS would 

suffer more from over-penalizing than the FBIC once IV is the true underlying model.

Thirdly, the true underlying MDM can affect the performance of E-MS in positive or 

negative ways, as shown by the earlier simulation result. In fact, if the MDM works in the 

right direction, the E-MS can have a “super-performance”, as shown in the next study.

In Section 5, the missing data indexes were generated randomly independent of the data; 

thus, the MDM was ignorable. We now repeat the simulation study but with the missing data 

indexes generated according to the following two scenarios. Let Mind,i be the missing data 

indicator for Yi, and mind,ijk that for xijk. Scenario MA: Given the data Y and x, (i) generate 

the Mind,i’s independently with P(Mind,i = 1) = 0.1; (ii) generate the mind,ijk’s independently 

so that P(mind,ijk = 1) = 0.05 if xijk = 0, and P(mind,ijk = 1) = 0.1 if xijk = 1. Scenario MB: 

Given the data Y and x, (i) generate the Mind,i’s independently with P(Mind,i = 1) = h(ψ0 + 

ψ1Yi), where h(u) = eu/(1 + eu), ψ0 = −2.5, and ψ1 = 0.1; (ii) generate the mind,ijk’s the same 

way as Scenario MA. It is clear that both scenarios are non-ignorable. Scenario MA is 

MCAR in terms of the Y data, but NMAR in terms of the Y, x data; Scenario MB is NMAR 

in terms of both Y and x data. Thus, in a way, Scenario MB has a more serious non-ignorable 

MDM than Scenario MA. Due to the space limitation, the simulation results are presented in 

Subsection A.6.3 of the Supplementary Material. Comparing with the results reported in 

Table 2, it is seen that, in some cases (5 out of 10), the E-MS performed worse, but in some 
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cases (5 out of 10) the E-MS performed better (note that these simulations used the same 

random seeds, so the results are completely comparable). In particular, there are a couple of 

cases of super-performance, in which the E-MS actually outperformed the CDBIC. An 

interpretation is that the missing data indicators may carry additional information to the 

complete data, which the E-MS is able to make use of (while the CDBIC cannot), if the 

MDM functions in the right way.

The apparent interaction between the E-MS and MDM observed in the simulation studies is 

quite interesting. To demonstrate this theoretically, we explore the connection between E-

MS and MDM from a large sample point of view.

6.2 Large sample consideration

For simplicity, let us assume that the observations Yi are independent Gaussian with mean 

EM,θM(Yi), where M indicates the assumed model for the mean, and θM the vector of 

parameters under M, and unknown variance σ2. Consider selection of M using the E-MS 

with BIC, which, at the current iteration, amounts to minimize n log{Ec(QM|yobs)} + log(n)|

M|, where , |M| is the dimension of θM, and Ec denotes 

conditional expectation under the current model and parameters under the current model. 

Because the penalty term, log(n)|M|, is not affected by the MDM, we can focus on the first 

term, which, eventually, leads to consideration of Ec(QM|yobs). The derivation below 

requires, of course, some regularity conditions (e.g., Jiang, Lahiri & Wan 2002); however, 

we shall bypass these technical conditions and focus on the insight of the result.

Let mind,i denote the missing data indicator. Then, we have

(15)

Suppose that the current model is correct, but not necessarily optimal. For example, if the 

space of candidate models includes a true model, then the full model, Mf, is correct, but not 

necessarily optimal in that it may include extraneous variables. Furthermore, suppose that 

the current estimator of parameters is consistent. Then, the conditional expectation, Ec, can 

be replaced by the true conditional expectation, E, resulting a difference that is of lower 

order. Another situation is when the E-MS results in consistent model selection (see 

Theorem 2). Then, asymptotically, one can replace Ec by E. Furthermore, by Theorem 2 of 

Jiang et al. (2011a), the minimizer of (15), with Ec replaced by E, θ̂M, converges in 

probability to some limiting vector, say, θM, and this is true regardless whether M is a 

correct model. Thus, by considering the leading term, we can focus on (15) with Ec replaced 

by E, and θM being the limiting vector. Let P(Mind,i = 1|y) = 1 − h(yi) be the true underlying 

MDM; in other words, h(yi) = P(Mind,i = 0|y), where y is the complete data. Define ci = 

E{Yih(Yi)}/E{h(Yi)} (again, E without subscript represents the true expectation). It is shown 

in Seciton A.5 of the Supplementary Material that

(16)
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where δ consists of lower-order terms, or terms that do not depend on M. Let Mopt denote 

the optimal model. Then, for M = Mopt, the second term on the right side of (16) disappears. 

Thus, we have (again, see Section A.5 of the Supplementary Material)

(17)

where δ1 denotes terms of lower-order, and δ2 consists of terms of lower-order, or terms that 

do not depend on the MDM. (17) is a key result that shows how the performance of the E-

MS is influenced by the MDM through its leading term, namely, the larger this term (i.e., 

more positive), the easier to distinguish a non-optimal model from the optimal one. It is 

interesting to note that the leading term is a sum of products, where the first factor of the 

product, cov{Yi, h(Yi)}, depends on the MDM but not on M, while the second factor of the 

product, E(Yi) − EM,θM(Yi), depends on M but not on the MDM.

Expression (17) may help to explain, for example, the interesting pattern observed in Table 

3. Note that h(yi) is the probability that yi is observed. Therefore, among the four MDMs 

considered, case D is likely the case that the covariance, cov{Yi, h(Yi)}, is largest in absolute 

value, but the sign is negative because h(yi) is decreasing with yi in this case. Thus, if we 

denote the difference EM,θM(Yi) − E(Yi) by dM, the summand in (17) can be written as the 

product of the positive covariance, cov{Yi, 1 − h(Yi)}, and dM. Note that dM is likely to be 

much larger when M is underfitting than overfitting. Now look at Table 3, case D, with n = 

50 to imitate the large sample behavior. Under model I, none of the candidate models are 

underfitting; thus, their dM contributions are likely to be relatively small, hence it is more 

difficult to identify a non-optimal model. Similarly, under model III, none of the other 

models appear to be underfitting. On the other hand, under model II, models I and III are 

underfitting; under model IV, all of the other models are underfitting. This explains why the 

empirical TPs are much higher under models II and IV. It should be noted that, as is well 

known, a BIC-based approach tends to suffer when the full model is the underlying model, 

which may explain why the empirical TPs under model II are higher than those under model 

IV. Similar explanations also apply to cases C and B. The behavior under case A is 

somewhat different, and there is, again, an explanation. Note that, under case A, the 

probability of missing is a constant. It follows that cov{Yi, h(Yi)} = 0. Therefore, in this 

case, the leading term in (17) has disappeared.

7 Real data example

Recall the data set obtained by the UC-Riverside researchers mentioned in Section 1. The 

gene expression data were originally published by Luo et al. (2007). The phenotypic values 

of eight quantitative traits of barley were published by Hayes et al. (1993). Detailed 

description of the experiment can be found in the latter reference, which involved 150 

double haploid (DH) lines derived from the cross of two spring barley varieties, Morex and 

Steptoe. The DH lines are considered as the subjects here. In all there were 495 SNP 
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markers on seven chromosomes that are under investigation. As mentioned, there are 

significant missing values in the data so that only 4 of the 150 subjects have complete 

genotype records. On the other hand, there are no missing values in the phenotypic data.

We consider a Markov-chain model as in Example 2. However, the high-dimensional nature 

of the data presents a problem for the direct application of the E-MS, because the total 

number of markers (495) is much larger than the sample size (n = 150). More specifically, 

the least squares (LS) fit is unfeasible when the number of predictors is larger than the 

sample size. To overcome this difficulty, we use the following idea of conditional modeling, 

described under a more general setting.

Suppose that, conditional on , one has a linear regression Y = Xβ + ε, where Y 

= (Yi)1≤i≤n are the observations, and ε = (εi)1≤i≤n are the errors such that the components of ε 

are independent with mean 0, and ε is independent of X. Furthermore, suppose that X = [X(1) 

X(2)] with , r = 1, 2 such that X(1), X(2) are independent [e.g., 

Broman & Speed (2002)]. Then, it is easy to show that X(1) is independent of [X(2), ε]. Note 

that we can express the regression model as Y = X(1)β1 + X(2)β2 + ε. Without loss of 

generality, we assume that X(1)β1 does not involve an intercept [which, if exist, belongs to 

X(2)β2].

Now suppose that Xi2, i = 1, …, n are independent, and that E(Xi2) does not depend on i. 

Then,  is a constant, say, β0. Let . It is easy to 

show that ei, i = 1, …, n are independent with E(ei) = 0, and , e being 

independent of [1n X(1)]. In other words, conditional on X(1), we, once again, have a standard 

linear regression model (i.e., the errors are independent with mean zero, and independent 

with the predictors).

The point is that X(1) can be of much lower dimension than X. For the barley cross data, we 

can let X(1) correspond to markers on any particular chromosome. The number of markers 

on the 7 chromosomes are 60, 78, 81, 60, 93, 56 and 67, respectively, all of which are 

smaller than the sample size 150. Within each chromosome, we apply the E-MS in 

conjuction with the IF (Jiang et al. 2011b; also see Jiang 2014). The number of bootstrap 

samples is chosen as B = 100.

It is known that, for high-dimensional data the IF may suffer from the so-called dominant 

factor effect (Jiang et al. 2011b, sec. 3.3). For the most part, this means that the IF frequency 

(i.e., the empirical probability of the most frequently selected model; e.g., Jiang 2014) tends 

to be in favor of a lower dimensional model than the true model, if the “signals” are 

relatively weak due to the limited sample size. This problem is dealt with naturally by the E-

MS. First we apply the IF, under the full model, that is, all the markers on a given 

chromosome, to obtain the IF frequencies at different dimensions, say, , where 

 is the IF frequency at dimension j, and q is the total number of markers, for the 

chromosome. If the frequencies show a “peak”, that is, there is a 1 < j < q such that 

and , the E-MS shall continue; otherwise, we conclude that there is no more than 
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one QTL on the chromosome. In the latter case, the highest IF frequecy must take place at 

the boundary, that is, either at dimension one or at the highest dimension corresponding to 

all the markers on the chromosome. However, it is unlikely that all the markers are QTLs; 

therefore, dimension one is chosen, and the E-MS stops.

If the frequency plot show a “peak”, and therefore the E-MS is to continue, we first look for 

the last peak, that is, the highest dimension that corresponds to a peak in order to be 

conservative. This is similar to the AF (Jiang et al. 2009), where the first significant peak is 

chosen in order to determine the cut-off for the fence (e.g., Jiang 2014). The first peak for 

the AF corresponds to the last peak for the IF. The markers corresponding to the last peak 

are selected, the current model is updated, and the updated model is treated as the (new) full 

model for the next step of iteration. The procedure is repeated until either the updated model 

is identical to the current model, or no peak is found during the current step; in both cases, 

the current model is chosen as the final model. For the latter case, when no peak is found, 

we choose the highest dimension, instead of dimension one as above in the initial step. This 

is because, at this stage, we have already determined that there are more than one QTLs on 

the chromosome (the E-MS would not have continued otherwise); furthermore, the highest 

dimension possibly has been updated, so it no longer corresponds to all of the markers on 

the chromosome.

The results for the grain protein phenotype are presented in Table A.10 of the 

Supplementary Material. The results show some consistency with the foundings of Zhan et 

al. (2011). For example, the latter authors found that chromosomes 2, 3, 5 “seem to control 

more genes than other chromosomes”. According to our results, those three chromosomes 

contain nearly 60% of all the QTLs found. In particular, chromosomes 3 and 5 are the top 

two according to the number of QTLs found. It should be noted that the number of QTLs 

found on a chromosome is not the only thing that represents the relative importance of the 

chromosome; the magnitude of the QTL effect is also important. In this application, 

however, our focus is identification of the QTLs, rather than estimation of the QTL effects.

8 Discussion

George Box once famously said that “essentially, all models are wrong, but some are useful” 

(Box 1979). Practical use of statistical modeling involves using the model as an 

approximation to the real-life problem, rather than the truth for the problem. Thus, model 

selection, correspondingly, should be understood as finding the optimal model that most 

efficiently approximates the problem of practical interest. Although, in the simulation 

studies presented in this paper, we have looked at cases where there is a true model among 

the candidate models, we have, indeed, considered situations where there is no true model 

among the candidate models. More specifically, Nguyen et al. (2013) considered a situation 

where the true underlying model is not among those considered as candidate models. 

Namely, all of the candidate models assume that the true QTLs are at the exact locations of 

some of the markers under consideration. In practice, however, this may not be true; in other 

words, the true QTLs may be at locations between the markers. The authors considered the 

case where the true QTLs are located in the middle of their flanking markers; therefore, the 

true underlying model is not a candidate model. Nevertheless, the goal was to identify, 
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among the candidate models, the one that best approximates the true model in the sense that 

the identified markers are closest to the true QTLs. We consider a setting similar to those of 

Nguyen et al. (2013). Our simulation results show that E-MS, here in conjunction with the 

FW/BW BIC (see Section A.3 of the Supplementary Material), is still capable of identifying 

the best approximating model in case that the true model is not among the candidates. See 

Subsection A.6.2.1 of the Supplementary Material for detail.

Our investigation on the E-MS has revealed other interesting properties of the procedure that 

deserve further studies. In particular, there have been studies on adjusting the penalty 

parameter in the information criteria to make the latter “more aggressive”, in some sense. 

For example, Mueller and Welsh (2005) finds that a modified BIC procedure with the 

penalty 2 log n instead of log n works better in some cases. Similar findings were reported in 

Broman & Speed (2002). Mueller and Welsh (2010) treats the problem through a unified 

approach by considering the selection curves in GIC, in which the criterion function is 

viewed as a linear function of the penalty parameter. On the other hand, the fence methods 

(e.g., Jiang 2014) is able to avoid dealing with the penalty by letting the data speak on how 

to choose a cut-off, or a tuning parameter. Potentially, another way of letting the data speak 

in choosing the tuning parameter is through the E-MS, as suggested by the simulation study 

in Subsection A.6.1 of the Supplementary Material. Namely, as the E-MS iteration proceeds, 

one is having a clearer picture about the data-generating mechanism. This would help one in 

knowing whether one should be “more aggressive”, or “less aggressive”, in choosing the 

penalty.

There has been recent interest in (joint) selection of fixed and random effects in mixed 

effects models. See Bondell et al. (2010), Ibrahim et al. (2011). The authors of latter 

references used Cholesky-type decompositions, which allow them to use the approach of 

shrinkage selection methods. The E-M algorithm is used (in both references) to deal with the 

fact that the random effects are not observable. See Jiang (2014) for further discussion. As 

noted (see second to last paragraph of Section 2), for shrinkage methods, the E-MS and E-M 

are the same. Alternatively, one may treat the problem as joint selection of the fixed effects 

and variance-covariance structure of the random effects, as in Mou (2012). The point is that 

one may treat the random effects as incomplete data, as in the traditional approach of mixed 

model analysis via the E-M algorithm (e.g., Jiang 2007, sec. 4.1.1). The E-MS procedure 

developed in the current paper seems to fit naturally to the latter approach. This would be a 

very interesting problem of future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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