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Diffuse optical tomography using the
one-way radiative transfer equation

Pedro González-Rodrı́guez1 and Arnold D. Kim2,∗
1Gregorio Millán Institute, Universidad Carlos III de Madrid, Leganés 28911, Spain

2Applied Mathematics Unit, School of Natural Sciences, University of California, Merced,
5200 North Lake Road, Merced, California, 95343, USA

∗adkim@ucmerced.edu

Abstract: We present a computational study of diffuse optical tomogra-
phy using the one-way radiative transfer equation. The one-way radiative
transfer is a simplification of the radiative transfer equation to approximate
the transmission of light through tissues. The major simplification of this ap-
proximation is that the intensity satisfies an initial value problem rather than
a boundary value problem. Consequently, the inverse problem to reconstruct
the absorption and scattering coefficients from transmission measurements
of scattered light is simplified. Using the initial value problem for the
one-way radiative transfer equation to compute the forward model, we are
able to quantitatively reconstruct the absorption and scattering coefficients
efficiently and effectively for simple problems and obtain reasonable results
for complicated problems.

© 2015 Optical Society of America

OCIS codes: (030.5620) Radiative transfer; (170.3660) Light propagation in tissues;
(170.3880) Medical and biological imaging.
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12. P. González-Rodrı́guez, B. Ilan, and A. D. Kim, “The one-way radiative transfer equation,” submitted for publi-
cation.

13. P. González-Rodrı́guez and A. Kim, “Comparison of light scattering models for diffuse optical tomography,”
Opt. Express 17, 8756–8774 (2009).
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1. Introduction

In diffuse optical tomography (DOT), one seeks to reconstruct tissue optical properties, such
as the absorption and scattering coefficients, using non-invasive scattered light measurements.
DOT requires the solution of two mathematical problems: the forward model and the inverse
problem. The forward model predicts the scattered light measurements for a particular set of tis-
sue optical properties. Effective forward models take into account specific details about the light
sources, the complex interactions of light with tissues, and the characteristics of the detectors
used to measure the scattered light. The inverse problem uses the forward model to reconstruct
tissue optical properties from scattered light measurements. It is mathematically ill-posed due
to several factors including insufficient data diversity and inherent instabilities to noise. Typical
methods to solve the inverse problem find the optical properties which, when substituted into
the forward model, yield the best fit (in a particular sense) of the predicted measurements to the
actual measurements.

Light propagation in tissues is governed by the radiative transfer equation (RTE) [1, 2]. The
RTE accurately takes into account absorption and multiple scattering of light in tissues. Using
the RTE as a forward model for DOT involves prescribing a boundary value problem for it
that incorporates the specific characteristics of the imaging setup. Posing this boundary value
problem as a forward model is physically intuitive and poses no difficulty. However, computing
solutions for this boundary value problem is challenging. Even computing solutions numeri-
cally requires sophisticated methods and substantial computing resources. While an individual
computation of the forward model may not be too restrictive, solving the inverse problem usu-
ally requires computing the forward model several times for a single reconstruction. In fact,
the forward model is typically the bottleneck in algorithms to solve the inverse problem. It is
for this reason that forward models based on solving boundary value problems for the RTE are
typically considered too computationally intensive to use for practical DOT problems.

For many DOT problems, the diffusion approximation to the RTE is used to compute the
forward model. The diffusion approximation is a simplification of the RTE for optically thick
media in which multiple scattering is dominant [1, 2]. Upon using the diffusion approximation
for the forward model, one obtains a boundary value problem for the diffusion equation, a
partial differential equation which is much simpler than the RTE. Even though the diffusion
approximation suffers from large errors near sources and boundaries, it has been used in forward
models to solve several important DOT problems (see the reviews [3, 4]).

An important problem in biomedical optics requires imaging tissue systems that are in the
so-called mesoscopic scattering regime [5]. Mesoscopic scattering refers to tissue system sizes
that are large enough that light undergoes multiple scattering, but not so large that this scattered
light is diffusive. For mesoscopic scattering, the diffusion approximation is not sufficiently
accurate to make its use in a forward model useful. Instead, one must either methods based on
the RTE [6–9] or forward models that combine radiative transfer with diffusion [10,11]. A new
forward model that is physically intuitive, accurate, and easy to solve would be useful to solve
DOT problems in the mesoscopic scattering regime.

Here, we introduce a new forward model for DOT that uses the one-way RTE. The one-
way RTE is a simplification of the RTE for transmission of a source through an anisotropic,
forward-peaked scattering medium. It is derived simply by restricting limits of integration in
the scattering operator of the RTE to the half-range of directions aligned with the source inci-
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dent on the boundary. Since the derivation of this approximation is based only forward-peaked
scattering, this approximation is valid across a broad range of absorption and scattering coeffi-
cients. Rather than having to solve a boundary value problem, this forward model requires the
solution of a simpler initial value problem. This reduction from a boundary value problem to
an initial value problem makes solving the inverse problem simpler and more efficient.

The purpose of this work is to show that using the initial value problem for the one-way
RTE to compute the forward model for a DOT problem is effective and efficient. Using this
forward model, we reconstruct quantitatively accurate images of the absorption and scattering
coefficients from simulated measurements computed from the solution of the boundary value
problem for the RTE. Our results show that this forward model is quite effective.

The remainder of this paper is as follows. In Section 2 we describe the imaging system that
we will consider for this study. This imaging system is idealized to some extent, so we list our
assumptions explicitly here. In Section 3 we describe the boundary value problem for the RTE
for this imaging system. In Section 4, we derive the initial value problem for the one-way RTE
that is an approximation of the forward model presented in Section 2. In Section 5 we give a
discrete ordinate/finite difference method to compute the solution of the initial value problem
for the one-way RTE. In Section 6 we describe the inverse problem and the method we use
to solve it to obtain our reconstructions of the absorption and scattering coefficients. Section
7 gives the results of our simulations along with a discussion of those results. We give our
conclusions in Section 8.

2. Imaging system

Consider the two-dimensional imaging system depicted in Fig. 1. An intensity-modulated plane
wave source is incident normally on the source plane, y = 0. At the detector plane, y = y0, we
measure the transmittance by a slab containing a disk, each of which is composed of a uniform
turbid medium except that the disk contains two obstacles. One of those obstacles (labeled as the
“scatterer” in Fig. 1) scatters more than the background turbid medium, and the other (labeled as
the “absorber” in Fig. 1) absorbs more than the background turbid medium. We obtain multiple
transmittance measurements of the disk by rotating it. We focus our attention here on this two
dimensional imaging system to keep the computations manageable and presentation of results
simple.

For this imaging system, we make the following assumptions.

1. The radius of the disk and its location in the slab are known.

2. The optical properties of the slab exterior to the disk and the background optical proper-
ties within the disk are known.

3. The refractive index is the same outside and inside the slab, including the disk, the ab-
sorber, and the scatterer.

4. The anisotropy factor is fixed throughout the slab and is known.

With these assumptions, we seek to reconstruct quantitatively accurate images of the scatterer
and absorber from the multiple transmittance measurements.

3. The radiative transfer equation

Light propagation in tissues is governed by the theory of radiative transfer [1,2]. The RTE takes
into account absorption and scattering due to inhomogeneities. Consider the two dimensional

#234891 - $15.00 USD Received 18 Feb 2015; revised 30 Apr 2015; accepted 1 May 2015; published 8 May 2015 
(C) 2015 OSA 1 Jun 2015 | Vol. 6, No. 6 | DOI:10.1364/BOE.6.002006 | BIOMEDICAL OPTICS EXPRESS 2008 



Fig. 1. The two-dimensional imaging system we are considering here. An intensity modu-
lated plane wave is incident on the source plane, y = 0. We measure the transmittance on
the detector plane, y = y0, due to a slab containing a disk, each of which is composed of a
uniform absorbing and scattering medium except for a scattering obstacle and an absorb-
ing obstacle in the disk. We measure multiple transmittance measurements by rotating the
disk and seek to reconstruct quantitative images of the scatterer and absorber using those
measurements.

slab, {(x,y) :−∞ < x < ∞,0 < y < y0}. For the imaging system described above, we solve the
following boundary value problem for the RTE in this slab

sinθ
∂ I
∂y

+ cosθ
∂ I
∂x

+ i
ω
c

I +μt I−μs

∫ 2π

0
p(θ −θ ′)I(θ ′,x,y)dθ ′ = 0 in 0 < y < y0, (3.1a)

I(θ ,x,0) = I0δ (θ −π/2) on 0 < θ < π, (3.1b)

I(θ ,x,y0) = 0 on π < θ < 2π. (3.1c)

Here, ω is the intensity modulation frequency, c is the speed of light, and μt = μa+μs where μa

is the absorption coefficient and μs is the scattering coefficient. The scattering phase function,
p, gives the fraction of light scattered in direction ŝ = (cosθ ,sinθ) due to light incident in
direction ŝ′ = (cosθ ′,sinθ ′). For this study, we use the Henyey-Greenstein scattering phase
function,

p(θ −θ ′) =
1

2π
1−g2

1+g2−2gcos(θ −θ ′)
. (3.2)

Here, g is the anisotropy factor. The scattering phase function is normalized according to

∫ 2π

0
p(θ −θ ′)dθ ′ = 1. (3.3)

Typically g ∼ 1 in tissues, so scattering is forward-peaked. Boundary condition (3.1b) pre-
scribes a plane wave of intensity I0 incident on the boundary y = 0 in direction ŝ = ŷ. Boundary
condition (3.1c) prescribes that no light enters into the domain from the boundary y = y0.
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Upon solving boundary value problem (3.1), we compute the transmittance, T (x), through
evaluation of

T (x) =
∫

NA
I(θ ,x,y0)sinθdθ , (3.4)

where NA is the set of angles corresponding to the numerical aperture of the detector. Because
of the intensity modulation, I is complex and so T is complex. We will make use of both the
real and imaginary parts of T in the image reconstruction algorithm we describe below.

To compute simulated transmittance data for this study, we solve boundary value problem
(3.1) numerically using a discrete ordinate method along with finite differences which we de-
scribe below in Section 5.4. Because this problem is restricted to two spatial dimensions, this
solution can be computed using reasonable computing resources. However, solving the associ-
ated inverse problem to reconstruct quantitative images of μa and μs requires the computation of
several solutions of boundary value problem (3.1). The computations required to solve bound-
ary value problem (3.1) in that case become prohibitively costly. This issue becomes even more
pronounced for three dimensional computations. Rather than solving boundary value problem
(3.1) for the the image reconstruction algorithm, we describe below the one-way radiative trans-
fer equation to approximate the transmittance.

4. The one-way radiative transfer equation

The one-way RTE is an approximation to the RTE that leads to a simpler initial value prob-
lem [12]. To derive the one-way radiative transfer equation for this problem, we introduce the
following half-range intensities,

I+(θ ,x,y) = I(θ ,x,y), 0 < θ < π, (4.1a)

I−(θ ,x,y) = I(θ +π,x,y), 0 < θ < π. (4.1b)

where I± corresponds to the ±ŷ directions, respectively. Substituting Eq. (4.1) into boundary
value problem (3.1), we obtain

sinθ
∂ I+

∂y
+ cosθ

∂ I+

∂x
+ i

ω
c

I++μt I
+−μsP f I+ = μsPbI−, (4.2a)

−sinθ
∂ I−

∂y
− cosθ

∂ I−

∂x
+ i

ω
c

I−+μt I
−−μsP f I− = μsPbI+, (4.2b)

I+(θ ,x,0) = I0δ (θ −π/2), (4.2c)

I−(θ ,x,y0) = 0. (4.2d)

Here, we have introduced the operators P f , defined as

P f [·] =
∫ π

0
p(θ −θ ′)[·]dθ ′, (4.3)

and Pb, defined as

Pb[·] =
∫ π

0
p(θ −θ ′ −π)[·]dθ ′. (4.4)

We call P f the forward scattering operator because it gives the light scattered in the half-range
of directions aligned with the incident direction. We call Pb the backward scattering operator
because it gives the light scattered in the half-range of directions opposite to the incident direc-
tion. Boundary value problem (4.2) is just a reformulation of boundary value problem (3.1), so
it is equivalent. In fact, we introduce in Section 5, a numerical method to solve boundary value
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Fig. 2. The “mass,” Mf (θ), defined in Eq. (4.6), for the Henyey-Greenstein scattering phase
function defined in Eq. (3.2) computed with respect to θ = π/2.

problem (4.2) rather than one for boundary value problem (3.1). Once we have solved boundary
value problem (4.2), we compute the transmittance through evaluation of

T (x) =
∫

NA
I+(θ ,x,y0)sinθdθ . (4.5)

When scattering is forward peaked, the scattering phase function, p, is peaked about θ = θ ′.
Let Mf (θ) denote the “mass” contained in θ −π/2≤ θ ′ ≤ θ +π/2,

Mf (θ) =
∫ θ+π/2

θ−π/2
p(θ −θ ′)dθ ′. (4.6)

For isotropic scattering with g= 0, Mf = 1/2 since the mass is split evenly between the forward
and backward directions. For forward peaked scattering, Mf ∼ 1 meaning that nearly all of the
mass is contained in the forward scattering directions. In Fig. 2 we plot Mf (θ) for the Henyey-
Greenstein scattering phase function given in Eq. (3.2) for θ = π/2.

In Fig. 2 we find that for g ≥ 0.73 that over 90% of the mass is contained in the forward
directions. For that case, we have

‖P f I±‖� ‖PbI∓‖. (4.7)

In light of Eq. (4.7), we neglect the term involving PbI− in Eq. (4.2a) and obtain

sinθ
∂ I+

∂y
+ cosθ

∂ I+

∂x
+
(

μt + i
ω
c

)
I+−μsP f I+ = 0. (4.8)

Equation (4.8) is decoupled from I−. Therefore, y is a time-like variable that ranges from y = 0
to y = y0. Hence, we need to supplement only Eq. (4.8) with Eq. (4.2c), which now serves an
initial condition for Eq. (4.8). We call Eq. (4.7) with Eq. (4.2c) the initial value problem for the
one-way RTE.

The one-way RTE will be useful for the image reconstruction algorithm we give in Section
6. In preparation for solving the inverse problem, we introduce here the adjoint problem for the
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one-way RTE:

−sinθ
∂ Ĩ+

∂y
− cosθ

∂ Ĩ+

∂x
+
(

μt + i
ω
c

)
Ĩ+−μsP f Ĩ+ = 0, (4.9a)

Ĩ+(θ ,x,y0) = Ĩ0(θ ,x). (4.9b)

This adjoint problem is a final value problem since Eq. (4.9b) gives a final condition at y = y0.
Hence, Eq. (4.9a) is to be solved “backwards” from y = y0 down to y = 0. Notice that this
adjoint problem is the same as the the one-way RTE for I−.

5. Numerical method

In what follows, we give numerical methods to solve the initial value problem for the non-
homogeneous one-way RTE,

sinθ
∂ I
∂y

+ cosθ
∂ I
∂x

+
(

μt + i
ω
c

)
I−μsP f I = q in 0 < y≤ y0, (5.1a)

I = f (θ ,x) on y = 0, (5.1b)

and the final value problem for its adjoint

−sinθ
∂ Ĩ
∂y
− cosθ

∂ Ĩ
∂x

+
(

μt + i
ω
c

)
Ĩ−μsP f Ĩ = q̃ in 0 < y≤ y0, (5.2a)

Ĩ = f̃ (θ ,x) on y = y0. (5.2b)

In doing so, we will be able to describe a numerical method to solve boundary value problem
(4.2) for the radiative transfer equation. The numerical methods involve the following compo-
nents.

• Discrete ordinate method for θ using an odd-ordered Gauss-Legendre quadrature rule
mapped to 0 < θ < π .

• Centered, second-order finite differences for x with periodic boundary conditions.

• Crank-Nicolson to advance the solution in y.

In what follows, we describe each of the items above to solve initial value problem (5.1) and fi-
nal value problem (5.2). Then we describe an iterative method to solve boundary value problem
(4.2).

5.1. Discrete ordinate method

The 2M+1 point Gauss-Legendre quadrature rule takes the form

∫ 1

−1
f (x)dx≈

2M+1

∑
m=1

f (xm)wm, (5.3)

where xm are the quadrature abscissae and wm are the quadrature weights. Let θm = π(xm +
1)/2. We use an odd number of points for this quadrature rule to ensure that θM/2 = π/2 is a
quadrature abscissa identically. Having this quadrature abscissa is convenient for this particular
study involving the imaging system depicted in Fig. 1 since the plane wave is incident normally
on the y = 0 boundary corresponding to θ = π/2. We now introduce

P2M+1
f I(θ ,x,y) =

π
2

2M+1

∑
m=1

p(θ −θm)I(θm,x,y)wm, (5.4)
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which is an approximation to P f .
For the discrete ordinate method, we replace P f in Eqs. (5.1a) and (5.2a) by P2M+1

f given
in Eq. (5.4), and evaluate those resulting equations at the quadrature abscissae, θm for m =
1, · · · ,2M+1. Let Im(x,y)≈ I(θm,x,y) and Ĩm(x,y)≈ I(θm,x,y) denote the approximate values
of I and Ĩ, respectively. Applying the discrete ordinate method to initial value problem (5.1)
yields

sinθm
∂ Im

∂y
+ cosθm

∂ Im

∂x
+
(

μt + i
ω
c

)
Im−μsP

2M+1
f Im = qm, (5.5a)

Im(x,0) = f (θm,x), (5.5b)

for m = 1, · · · ,2M+1. For final value problem (5.2), we obtain

−sinθm
∂ Ĩm

∂y
− cosθm

∂ Ĩm

∂x
+
(

μt + i
ω
c

)
Ĩm−μsP

2M+1
f Ĩm = q̃m, (5.6a)

Ĩm(x,y0) = f̃ (θm,x), (5.6b)

for m = 1, · · · ,2M+1.

5.2. Finite differences

For the interval −Lx/2 ≤ x ≤ Lx/2, we introduce the equi-spaced grid xi = −Lx/2+(i− 1)h
for i = 1, · · · ,N with h = Lx/N denoting the mesh width. Let Im,i ≈ Im(xi,y) and Ĩm,i ≈ Ĩm(xi,y)
denote the approximations of Im and Ĩm, respectively, evaluated at grid point xi. We apply peri-
odic boundary conditions so that Im,0 = Im,N and Ĩm,0 = Ĩm,N . Consequently, Im,N+1 = Im,1 and
Ĩm,N+1 = Ĩm,1. Using these numerical boundary conditions, we apply the centered, second order
finite difference approximation in x for initial value problem (5.5) and obtain

sinθm
∂ Im,i

∂y
+ cosθm

(
Im,i+1− Im,i−1

2h

)
+
(

μt,i + i
ω
c

)
Im,i−μs,iP

2M+1
f Im,i = qm,i, (5.7a)

Im,i(0) = f (θm,xi), (5.7b)

for m = 1, · · · ,2M + 1 and i = 1, · · · ,N. Because μa and μs are functions of x and y, we have
added subscripted indices to them to indicate that we are to evaluate them at grid point xi in
Eq. (5.7a). Similarly, for final value problem (5.6), we obtain

−sinθm
∂ Ĩm,i

∂y
− cosθm

(
Ĩm,i+1− Ĩm,i−1

2h

)
+
(

μt,i + i
ω
c

)
Ĩm,i−μs,iP

2M+1
f Ĩm,i = q̃m,i, (5.8a)

Ĩm,i(y0) = f̃ (θm,xi), (5.8b)

for m = 1, · · · ,2M+1 and i = 1, · · · ,N.
We now introduce some notation that will allow us to proceed with the numerical method

more easily. Let DN
x be the N×N matrix defined as

DN
x =

1
2h

⎡
⎢⎢⎢⎢⎢⎣

0 1 −1
−1 0 1

. . .
. . .

. . .
−1 0 1

1 −1 0

⎤
⎥⎥⎥⎥⎥⎦
, (5.9)
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which corresponds to the centered, second-order finite difference approximation. Let Tc and Ts

denote the following (2M+1)× (2M+1) diagonal matrices:

Tc = diag[cosθ1,cosθ2, · · · ,cosθ2M+1], (5.10)

Ts = diag[sinθ1,sinθ2, · · · ,sinθ2M+1]. (5.11)

Furthermore, let A(y) and S(y) denote the N×N diagonal matrices

A(y) = diag[μa(x1,y),μa(x2,y), · · · ,μa(xN ,y)], (5.12)

S(y) = diag[μs(x1,y),μs(x2,y), · · · ,μs(xN ,y)]. (5.13)

The operator P2M+1
f , defined in Eq. (5.4), is a (2M + 1)× (2M + 1) matrix with entries

[P2M+1
f ]m,m′ =

π
2 p(θm−θm′)wm′ . We now rewrite initial value problem (5.7) for the (2M+1)N-

vector I(y) = [I1,1(y), I2,1(y), · · · , I2M+1,1(y), I1,2(y), · · · , I2M+1,N(y)] and obtain

B
dI(y)

dy
+C(y)I = q(y), I(0) = f. (5.14)

The (2M+1)N× (2M+1)N matrices, B and C, are defined as

B = IN ⊗Ts, (5.15)

C(y) = DN
x ⊗Tc +

[(
A(y)+S(y)+ i

ω
c

)
⊗ I2M+1

]
+S(y)⊗P2M+1

f . (5.16)

Here, I2M+1 and IN are the (2M+1)× (2M+1) and N×N identity matrices, respectively, and
⊗ denotes the Kronecker product. Similarly, we can rewrite final value problem (5.8) in terms
of the (2M+1)N vector Ĩ as

−B
dĨ(y)

dy
+C̃(y)Ĩ = q̃(y), I(y0) = f̃, (5.17)

with
C̃(y) =−DN

x ⊗Tc +
[(

A(y)+S(y)− i
ω
c

)
⊗ I2M+1

]
+S(y)⊗P2M+1

f . (5.18)

5.3. Crank-Nicolson

The Gauss-Legendre quadrature rule used above is an open rule, so the quadrature abscissas do
not include the end points. Nonetheless, because sinθ → 0 as θ → 0,π , we find that the matrix
B has very small diagonal entries. The contrast between these very small entries and the others
for which sinθ ∼ 1 cause initial value problem (5.14) and final value problem (5.17) to be stiff.
Consequently, we apply the Crank-Nicolson method, which is an implicit, second order, and
unconditionally stable method, to solve these problems.

Let y j = jΔy for j = 0, · · · ,J with Δy = y0/J. Furthermore, let I j ≈ I(y j) and Ĩ j ≈ Ĩ(y j) for
j = 1, · · · ,J. Applying the Crank-Nicolson method to initial value problem (5.14), we obtain

[
B+

Δy
2

C(y j+1)

]
I j+1 =

[
B− Δy

2
C(y j)

]
I j +

Δy
2
[q(y j+1)+q(y j)], (5.19)

with I0 = f. The (2M+1)N× (2M+1)N linear system given in Eq. (5.19) is to be solved for j
increasing starting at j = 1 up to j = J. Similarly, applying the Crank-Nicolson method to final
value problem (5.17), we obtain

[
B− Δy

2
C̃(y j)

]
Ĩ j =

[
B+

Δy
2

C̃(y j+1)

]
Ĩ j+1 +

Δy
2
[q̃(y j+1)+ ˜q(y j)], (5.20)
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with ĨJ = f̃. Equation (5.20) is to be solved for j decreasing starting at j = J down to j = 1.
The matrices in the linear systems above are sparse. Exploiting their sparsity reduces the

demand for computational resources and allows for more computationally efficient solutions.

5.4. Iterative method to solve the radiative transfer equation

We can use the numerical method described above to solve the boundary value problem (4.2)
for the RTE. To do so requires iterating forward and backward one-way RTEs for I+ and I−,
respectively. We use this iterative method to compute simulated data from which we reconstruct
quantitative images.

We denote the kth iteration of I± by I(k)±. Let P2M+1
b be the (2M + 1)× (2M + 1) matrix

with entries [P2M+1
b ]m,m′ =

π
2 p(θm−θm′ −π/2)wm′ . We set k = 1 and I(0)− = 0. Then, we start

the following iterative procedure.

1. Solve the initial value problem

sinθ
∂ I(k)+

∂y
+ cosθ

∂ I(k)+

∂x
+
(

μt + i
ω
c

)
I(k)+−μsP f I(k)+ = μsPbI(k−1)−,

I(k)+(θ ,x,0) = I0δ (θ −π/2),

using the numerical method given in Eq. (5.19).

2. Solve the final value problem

−sinθ
∂ I(k)−

∂y
− cosθ

∂ I(k)−

∂x
+
(

μt + i
ω
c

)
I(k)−−μsP f I(k)− = μsPbI(k)+,

I(k)−(θ ,x,y0) = 0,

using the numerical method given in Eq. (5.20).

3. Check convergence. If convergence has not been reached, set k← k+1, and repeat.

We compute the transmittance T (x) defined in Eq. (4.5) using the numerical approximation

T (k)(xi)≈ ∑
θm∈NA

I(k)+m,i (y0)sinθmwm, i = 1, · · · ,N. (5.21)

The sum in Eq. (5.21) is over all θm values within NA. Let t(k) denote the vector whose en-
tries are given by T (k)(xi) defined in Eq. (5.21). To check for convergence, we check to see if√

h‖t(k)− t(k−1)‖2 < ε for convergence where ε is some user-defined tolerance value. In the
results we show below in Section 7, we have set ε = 10−8.

In contrast to the conventional source iteration method [15], this iteration scheme is the same
as the improved source-iteration introduced by Gao and Zhao [16]. The one-way RTE is the
leading order approximation associated with this iteration method.

6. Inverse problem

We now have all of the components in place to specify and solve the inverse problem for the
imaging system described in Section 2.

To simulate measured data, we solve the full RTE using the iterative method described in
Section 5.4. In doing so, we obtain a collection of transmittance measurements for each orien-
tation of the sample as it is rotated. Let d denote the vector of measured data whose components
are di j = TRTE(xi;ϕ j), the transmittance computed on the detector plane using the RTE sampled
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at the points xi, for i = 1, · · · ,N of the finite differences grid introduced in Section 5.2., for each
of the As rotations of the sample defined as ϕ j = 2π( j− 1)/As for j = 1, · · · ,As. Therefore, d
contains As×N transmittance measurements. For the numerical results shown in Section 7, we
have set Lx = 12.8 and y0 = 5 and used M = 16 for the quadrature rule, N = 128 for the x-grid,
and J = 50 for the y-grid so that Δx = Δy = 0.1. In addition, we have used As = 25 rotations for
measurements. Also, we have set the source’s modulation frequency to ω = 600MHz.

To model this measured data, we solve the one-way RTE, Eq. (4.8) using the method de-
scribed in Sections 5.1 – 5.3 using the same grid used to compute the measurements. Even
though we have used the same discretizations for the measurements and forward model, we
are solving two completely different problems for the measurements and the forward model.
The corresponding modeling error dominates over truncation error of the numerical methods
used. Consequently, we do not anticipate artificially optimistic results in what follows. Let m
denote the vector whose components are mi j = Tone-way(xi;ϕ j), the transmittance computed on
the detector plane using the one-way RTE sampled at the same points as for the measured data.
To make explicit the dependence of m on the absorption and scattering coefficients, we write
the model as m(μa,μs).

The inverse problem is as follows.

Reconstruct the absorption and scattering coefficients of the sample given the
measured data, d, and the model, m(μa,μs).

Let

K(μa,μs) =
1
2
‖R(μa,μs)‖2L2

, (6.1)

be the cost functional for the residual R, defined as

R(μa,μs) = m(μa,μs)−d. (6.2)

We compute reconstructions of the absorption and scattering coefficients by seeking the dis-
tributions of μa and μs that minimize the cost functional given in Eq. (6.1). To minimize the
cost functional, we start with an initial guess and update that guess along a descent direction of
K until we approach the minimum value within some tolerance. This descent direction is found
by writing the parameters, μa and μs, as perturbations to their background values, μ̄a and μ̄s:

μa = μ̄a +δ μa, (6.3)

μs = μ̄s +δ μs. (6.4)

Doing so leads to the following linearized residual operator,

R(μa,μs)≈ R(μ̄a, μ̄s)+R′(μ̄a, μ̄s)(δ μa,δ μs), (6.5)

where R′ is the Fréchet derivative of R. By setting the right hand side of Eq. (6.5) to zero,
we obtain a set of equations for δ μa and δ μs. The minimum norm solution of these resulting
equations is given by

(δ μa,δ μs) =−R̃′(μ̄a, μ̄s)
[
R′(μ̄a, μ̄s)R̃

′(μ̄a, μ̄s)
]−1

R(μ̄a, μ̄s). (6.6)

Here R̃′(μ̄a, μ̄s) denotes the adjoint of R′(μ̄a, μ̄s). It can be proved that Eq. (6.6) is a de-
scent direction of the cost functional K (see Appendix A in [13]). However, the functional
[R′(μ̄a, μ̄s)R̃′(μ̄a, μ̄s)]

−1 is very time consuming to calculate. Instead, we typically replace it by
a multiple of the identity operator [13] to obtain

(δ μa,δ μs)≈−β R̃′(μ̄a, μ̄s)R(μ̄a, μ̄s), (6.7)
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which is also a descent direction of K.
To compute Eq. (6.7) we first solve Eq. (4.8) with optical parameters μ̄a and μ̄s, subject to ini-

tial condition (4.2c) to obtain I+. Then, we use that result to compute the residual ρ = R(μ̄a, μ̄s)
through comparison with the measured data. To compute R̃′(μ̄a, μ̄s)ρ , we solve Eq. (4.9) using
ρ in the final condition in Eq. (4.9b). In particular, the final condition prescribes that Ĩ(θ ,x,y0)
is equal to the complex conjugate of ρ distributed uniformly over the set of directions making
up the numerical aperture, NA, of the detectors, and zero for all other directions.

Upon solution of this final value problem, we obtain Ĩ+. Having calculated I+ and Ĩ+, we
then compute the updates

δ μa(x,y) = β
∫ 2π

0
Ĩ+(θ ,x,y)I+(θ ,x,y)dθ , (6.8)

δ μs(x,y) = β
∫ 2π

0
Ĩ+(θ ,x,y)

[
I+(θ ,x,y)−P f I+(θ ,x,y)

]
dθ . (6.9)

With the updates given by Eqs. (6.8) and (6.9) defined, we now give the procedure for recon-
structing images of μa and μs.

For each ϕ j with j = 1, · · · ,As, we perform the following reconstruction procedure with μ̄a

and μ̄s denoting the current absorption and scattering coefficients, respectively.

1. Solve the initial value problem

sinθ
∂ I+

∂y
+ cosθ

∂ I+

∂x
+
(

μ̄a + μ̄s + i
ω
c

)
I+− μ̄sP f I+ = 0, in 0 < y≤ y0

I+(θ ,x,0) = I0δ (θ −π/2) on 0 < θ < π,

to obtain I+ and use it to model the measured transmittance by computing Tone-way(xi;ϕ j)
for i = 1, · · · ,Ns.

2. Compute the residual

ρi = Tone-way(xi;ϕ j)−TRTE(xi;ϕ j), i = 1, · · · ,Ns.

3. Solve the adjoint problem

−sinθ
∂ Ĩ+

∂y
− cosθ

∂ Ĩ+

∂x
+
(

μ̄a + μ̄s + i
ω
c

)
Ĩ+− μ̄sP f Ĩ+ = 0, in 0≤ y < y0

I+(θ ,x,y0) =

{
ρ∗/Δθ on −x0/2≤ x≤ x0/2, and (π−Δθ)/2≤ θ ≤ (π +Δθ)/2,

0 otherwise,

to obtain Ĩ+. Here, Δθ sets the angular width of the numerical aperture, NA, about θ =
π/2, and ρ∗ denotes the complex conjugate of ρ .

4. Compute δ μ̂a and δ μ̂s through evaluation of Eq. (6.8) and Eq. (6.9), respectively.

5. Compute the updates

μ̄a← μ̄a +δ μa,

μ̄s← μ̄s +δ μs.

We repeat this procedure until the value of the cost functional given in Eq. (6.1) reduces below
a user-defined tolerance value. We initialize this reconstruction procedure by setting μ̄a and μ̄s

to the known optical properties of the background medium in the disk.
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(a) The true image of μa. (b) The true image of μs.

(c) The reconstructed image of μa. (d) The reconstructed image of μs.

Fig. 3. Reconstructions of a sample containing one absorber and one scatterer.

7. Numerical results

We show reconstructions computed using the procedure described above in Section 6. For all
of the results shown here, the absorption and scattering coefficients of the slab background
are μa = 0.01cm−1 and μs = 1.0cm−1, respectively. The disk containing the sample to be
reconstructed has radius r = 2cm. Within that disk the background absorption and scattering
coefficients are μa = 0.015cm−1 and μs = 1.1cm−1, respectively. The anisotropy factor is set
to g = 0.9.

Figure 3 shows reconstructions of a sample containing one absorber and one scatterer. Fig-
ure 3(a) shows the true image of μa, and Fig. 3(b) shows the true image of μs for a fixed
orientation of the sample. The absorption coefficient inside the absorber is μa = 0.1cm−1 and
the scattering coefficient inside the scatterer is μs = 1.5cm−1. Figure 3(c) shows the recon-
structed image of μa and Fig. 3(d) shows the reconstructed image of μs. Although there are
artifacts in both reconstructions, we find that they clearly identify the absorber and scatterer.
The artifacts are more apparent in the reconstruction of the absorption coefficient. The quantita-
tive accuracy of these reconstructions are good. In particular, the root mean square (RMS) error
for the scattering coefficient reconstruction is 2%. The RMS error for the absorption coefficient
reconstruction is 27% which is much higher. The reconstruction of the absorption coefficient
suffers from cross-talk with the reconstruction of the scattering coefficient. Cross-talk in recon-
structed images is typical in DOT [13]. It is not necessarily a feature associated with using the
one-way RTE as the forward model. This cross-talk contributes to the higher RMS error for the
reconstruction of the absorption coefficient. Nonetheless, we find that the one-way RTE pro-
vides an effective forward model to compute reconstructions of the absorption and scattering
coefficients.

In Fig. 4, we show reconstructions for a sample containing two absorbers and one scatterer,
each situated in a distinct region in the sample. The smaller of the two absorbers which appears
near the top of Fig. 4(a) has absorption coefficient μa = 0.115cm−1. The larger of the two ab-
sorbers which appears near the bottom of Fig. 4(b) has absorption coefficient μa = 0.135cm−1.
The scatterer shown in Fig. 4(b) has scattering coefficient μs = 1.4cm−1. Figure 4(c) shows the

#234891 - $15.00 USD Received 18 Feb 2015; revised 30 Apr 2015; accepted 1 May 2015; published 8 May 2015 
(C) 2015 OSA 1 Jun 2015 | Vol. 6, No. 6 | DOI:10.1364/BOE.6.002006 | BIOMEDICAL OPTICS EXPRESS 2018 



(a) The true image of μa. (b) The true image of μs.

(c) The reconstructed image of μa. (d) The reconstructed image of μs.

Fig. 4. Reconstructions of a sample containing two absorbers and one scatterer situated in
distinct regions in the sample.

(a) The true image of μa. (b) The true image of μs.

(c) The reconstructed image of μa. (d) The reconstructed image of μs.

Fig. 5. Reconstructions of a sample containing two absorbers and one scatterer situated
with overlapping regions in the sample.

reconstruction of μa and Fig. 4(d) shows the reconstruction of μs. For this more challenging
case, we find that the artifacts in the reconstruction of μa interfere more with the reconstruction.
There still remains some cross-talk. Nonetheless, we can identify two absorbers and observe
some quantitative differences between them with the lower absorber having larger values. The
RMS error for the reconstruction of the scattering coefficient is 2% and for the reconstruction

#234891 - $15.00 USD Received 18 Feb 2015; revised 30 Apr 2015; accepted 1 May 2015; published 8 May 2015 
(C) 2015 OSA 1 Jun 2015 | Vol. 6, No. 6 | DOI:10.1364/BOE.6.002006 | BIOMEDICAL OPTICS EXPRESS 2019 



(a) The regularized reconstructed image of μa. (b) The regularized reconstructed image of μs.

Fig. 6. Reconstructions using the heat kernel for regularization of the sample shown in
Fig. 5.

of the absorption coefficient is 21%.
In Fig. 5, we show reconstructions for two absorbers and one scatterer situated with overlap-

ping regions in the sample. The absorption and scattering coefficients in each of the absorbers
and scatterer are the same as those shown in Fig. 4. We have just changed their locations so
that there is a non-trivial overlapping region. For this very challenging case, we obtain reason-
able images. The scatterer can be identified and its quantitative accuracy is reasonable given
the severe image artifacts. However, we have lost both qualitative and quantitative accuracy
for the reconstruction of the absorbers. The RMS error for the reconstruction of the scattering
coefficient is 6% and for the reconstruction of the absorption coefficient is 30%.

To attempt to reduce the severe image artifacts appearing Fig. 5, we use L2-regularization
using the heat kernel, as explained in [14]. Figure 6 shows reconstructions for the same sample
as in Fig. 5, but using the regularization mentioned above. This regularization has improved
the qualitative and quantitative results, especially for the reconstruction of the absorption coef-
ficient. Some of the image artifacts seen in Fig. 5 have been suppressed. However, cross-talk
with the reconstruction of the scattering coefficient still remains. The RMS error for the re-
construction of the scattering coefficient is 2% and for the reconstruction of the absorption
coefficient is 32%. It is possible that using other regularization techniques may be more use-
ful here. For example, using total variation (TV) regularization may be useful for segmenting
distinct regions of the reconstructed images.

8. Conclusions

For transmission problems, the one-way RTE approximates the RTE when scattering is
anisotropically forward-peaked. It is derived by neglecting backscattering thereby reducing the
boundary value problem for the RTE to an initial value problem for the one-way RTE. This
initial value problem is physically intuitive, accurate, and much more efficient to solve than the
full boundary value problem.

The imaging system studied here is slightly idealized in that boundaries are index-matched.
More practical systems include index-mismatched boundaries. These boundaries reduce the ac-
curacy of the one-way RTE, but early results have shown that the one-way RTE is still effective
for index-mismatched boundaries [12]. The reason for this is as follows. At the boundary where
light is transmitted, partial reflection due to the index-mismatched boundary will redistribute
a fraction of the forward flowing power backwards. For this light to eventually contribute to
transmission, it must backscatter. But the argument in deriving the one-way RTE is that back-
scattering is negligible due to anisotropic forward-peaked scattering. Thus, the contribution of
light partially reflected at boundaries due to index-mismatch is a small, higher order correction
to the one-way RTE.
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Extending this work to three dimensions is conceptually straight-forward. For this case, the
RTE is different because the scattering phase function is different. Nonetheless, the one-way
RTE approximation is derived in exactly the same way shown here. One simply neglects the
hemisphere of directions corresponding to backscattering and obtains an initial value problem.
In addition, the numerical method used to solve the RTE and the one-way RTE can be readily
extended for three dimensional problems. The main challenge associated with extending this
work to three dimensions is that the size of the numerical computations increases significantly
and may require modifications to the computational methods used. For example, the linear
system given in Eq. (5.19) is small enough that it is solved directly. For the three dimensional
problem, directly solving the corresponding linear system will likely be prohibitively expensive.
Instead, one will need to use an iterative method along with an appropriate pre-conditioner that
exploits the inherent sparsity of the system to obtain greater efficiency.

Using this initial value problem for the one-way RTE to compute a forward model, we have
reconstructed quantitatively accurate images. Since the one-way RTE is a simplification of the
RTE, it does not rectify issues in the inverse problem inherent also to the RTE such as cross-talk
and the need for regularization. Moreover, its resolution is the same or worse than that inherent
to the RTE. Nonetheless, we conclude from these results that the one-way RTE is an effective
and efficient approximation for use in DOT problems.
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