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RESEARCH PAPER

Epigenome-wide association studies of occupational exposure to benzene and 
formaldehyde
Rachael V. Phillipsa, Linqing Weia, Andres Cardenasa, Alan E. Hubbarda, Cliona M. McHalea, Roel Vermeulenb, 
Hu Weic, Martyn T. Smith a, Luoping Zhanga*, Qing Lanc*, and Nathaniel Rothmanc*

aSchool of Public Health, University of California at Berkeley, Berkeley, CA, USA; bJulius Center for Health Sciences and Primary Care, 
University Medical Center Utrecht, Universiteit Utrecht (UU), Utrecht, The Netherlands; cDivision of Cancer Epidemiology and Genetics, 
Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA

ABSTRACT
Sufficient evidence supports a relationship between certain myeloid neoplasms and exposure to 
benzene or formaldehyde. DNA methylation could underlie benzene- and formaldehyde-induced 
health outcomes, but data in exposed human populations are limited. We conducted two cross- 
sectional epigenome-wide association studies (EWAS), one in workers exposed to benzene and 
another in workers exposed to formaldehyde. Using HumanMethylation450 BeadChips, we inves-
tigated differences in blood cell DNA methylation among 50 benzene-exposed subjects and 48 
controls, and among 31 formaldehyde-exposed subjects and 40 controls. We performed CpG-level 
and regional-level analyses. In the benzene EWAS, we found genome-wide significant alterations, 
i.e., FWER-controlled P-values <0.05, in the mean and variance of methylation at 22 and 318 CpG 
sites, respectively, and in mean methylation of a large genomic region. Pathway analysis of genes 
corresponding to benzene-associated differential methylation sites revealed an impact on the 
AMPK signalling pathway. In formaldehyde-exposed subjects compared to controls, 9 CpGs in the 
DUSP22 gene promoter had genome-wide significant decreased methylation variability and 
a large region of the HOXA5 promoter with 44 CpGs was hypomethylated. Our findings suggest 
that DNA methylation may contribute to the pathogenesis of diseases related to benzene and 
formaldehyde exposure. Aberrant expression and methylation of HOXA5 previously has been 
shown to be clinically significant in myeloid leukaemias. The tumour suppressor gene DUSP22 is 
a potential biomarker of exposure to formaldehyde, and irregularities have been associated with 
multiple exposures and diseases.
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Introduction

Benzene and formaldehyde are major industrial 
chemicals and ubiquitous environmental pollu-
tants. Both chemicals are present in cigarette 
smoke and automobile emissions, and formalde-
hyde is also found in household and consumer 
products[1], [2]. The current U.S. permissible 
occupational exposure limit (time-weighted aver-
age in an 8-hour period) is 0.75 ppm for formal-
dehyde [3] and 1 ppm for benzene [4]. In the U.S., 
occupational benzene exposure levels are typically 
below 1 ppm [5] and formaldehyde exposure in 
certain occupational settings can be relatively high 
[6,7]. For example, short-term exposures to levels 
of 3 ppm and higher were reported for embalmers, 

pathologists, and paper workers [8]. Mean air con-
centrations ranging from less than 1 ppm to 
greater than 3 ppm were reported in factories 
that produced formaldehyde-resins in the 
1980s [9].

Benzene and formaldehyde have been classified 
as carcinogenic to humans (Group 1) by the 
International Agency for Research on Cancer 
(IARC) [10]. Benzene is an established risk factor 
for various myeloid neoplasms, including myelo-
dysplastic syndromes and acute myeloid leukaemia 
(AML) [11]. IARC concluded that there is suffi-
cient evidence to associate formaldehyde with leu-
kaemia, particularly the myeloid subtype [12].

The potential molecular mechanisms by which 
benzene and formaldehyde are currently
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understood to cause leukaemia need further eluci-
dation [13–15]. Benzene and formaldehyde exhibit 
multiple key characteristics (KCs) of carcinogens 
[16]. Although both chemicals could induce epi-
genetic alterations, the fourth KC of carcinogens, 
the strength of the evidence is limited. 
A systematic review of epigenetic changes asso-
ciated with 28 Group 1 carcinogens, including 
benzene and formaldehyde, showed that DNA 
methylation was the most studied epigenetic end-
point [17].

Altered global and candidate gene DNA methy-
lation in peripheral blood cells from workers occu-
pationally exposed to low levels of airborne 
benzene compared with unexposed controls has 
been reported in earlier studies. Small reductions 
in global LINE-1 and Alu DNA methylation, as 
well as hypermethylation in p15 and hypomethyla-
tion in MAGE1, were reported in 77 healthy Italian 
traffic officers and 78 gas station attendants 
exposed to ambient benzene (~20 ppb) compared 
to 58 controls [18,19]. Hypomethylation in LINE-1 
and p15 was associated with urinary 
S-phenylmercapturic acid (SPMA) levels, 
a biomarker of benzene exposure, in 158 
Bulgarian petrochemical workers exposed to ben-
zene (median 0.46 ppm) compared with 50 unex-
posed office workers [20]. LINE-1 methylation was 
significantly lower, and O6-methyl- guanine-DNA 
methyltransferase (MGMT) and human MutL 
Homolog 1 (hMLH1) promoter methylation were 
significantly higher in 83 benzene-exposed (med-
ian 2 ppm) Chinese shoe factory workers, com-
pared with 48 unexposed control workers. 
Hypermethylation of hMLH1 was also found in 
AML-1 cells after treatment with p-benzoquinone 
(BQ). In 96 non-smoking Chinese male petro-
chemical industry workers exposed to benzene 
(median 0.34 ppm) compared with 100 matched 
unexposed control workers, promoter methylation 
in MGMT was negatively associated with urinary 
SPMA [21]. Altered levels of promoter methyla-
tion in IL6, CYP2E1, and iNOS were found in 14 
gas station attendants exposed to benzene (mean 
0.06 ppm) compared with 22 administrative work-
ers with no solvent exposure [22]. Global DNA 
hypomethylation was associated with cumulative 
benzene exposure in 410 Chinese shoe factory 
workers compared with 102 controls [23]. Some 

of these populations may have been exposed to 
factors other than benzene and no findings have 
been published on genome-wide DNA 
methylation.

As a reactive methyl donor known to enter the 
one-carbon metabolism (methyl) pool and interact 
with enzymes in the associated pathway [24,25], 
formaldehyde could alter DNA methylation. Few 
studies have reported on DNA methylation in 
relation to formaldehyde exposure. A time- 
related decrease in global DNA methylation was 
found in human bronchial (16HBE) cells treated 
for 24 weeks with 10 µM formaldehyde for 
24 hours once per week [26]. A 2019 study of 49 
salon workers reported increased global DNA 
methylation in 15 lower-exposed workers (0.03– 
0.06 ppm) and 26 higher-exposed workers (0.08– 
0.24 ppm) compared with 8 workers unexposed to 
formaldehyde (<0.01 ppm) [27].

Given the limited information on genome-wide 
DNA methylation effects in benzene- and formalde-
hyde-exposed populations, we sought to perform 
epigenome-wide association studies (EWAS) to 
assess DNA methylation in two occupational studies 
of factory workers in China exposed to benzene and 
formaldehyde, with extensive personal monitoring, 
in which hematotoxicity [28–31] and perturbed 
expression of many genes and pathways were pre-
viously reported [32–35]. As DNA methylation bio-
markers are stable and represent a potential link 
between environmental exposure and disease [36], 
identification of DNA methylation biomarkers of 
lower-dose exposure to benzene and formaldehyde 
would be a useful step towards improving risk 
assessment and minimizing adverse health effects. 
We examined differences in the mean and variance 
of DNA methylation. Increased DNA methylation 
variability has been associated with cancer progres-
sion [37], Type 1 diabetes in three immune effector 
cell types [38], and chronic obstructive pulmonary 
disease [39].

Materials and methods

Study design, sample collection, and exposure 
measurement and definition

Detailed information on study design, exposure 
assessment, and haematological data for the
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benzene and formaldehyde studies was previously 
reported [28–31]. In brief, the benzene study was 
conducted in Tianjin, China, on 250 exposed 
workers from two shoe manufacturing facilities 
and 140 unexposed workers from other factories. 
Personal benzene exposure was repeatedly moni-
tored using 3 M organic vapour passive monitor-
ing badges that were worn by workers for a full 
work shift for a period up to 16 months. The 
formaldehyde study was conducted in 
Guangdong, China, on 43 exposed workers in 
two factories that used or manufactured melamine 
and 51 unexposed workers from separate factories 
in the same geographic region that were matched 
to the exposed workers by sex and age (± 5 y). 
Personal formaldehyde exposure was monitored 
with SKC UMEx 100 passive samplers, that were 
worn by workers in the exposed factories for a full 
work shift for around 3 workdays across a 3-week 
period.

Questionnaires were administered to subjects in 
both studies to gather information on occupational 
and medical history, environmental exposures, and 
current tobacco and alcohol use. Blood and urine 
samples, and other biologic specimens were col-
lected from every worker. Informed consent was 
obtained from all subjects, and the studies were 
approved by Institutional Review Boards at the 
U.S. National Cancer Institute, the Guangdong 
National Poison Control Centre and the Chinese 
Center for Disease Control and Prevention.

The larger number of study subjects and the 
wider range of exposure in the benzene study 
provided adequate exposure contrasts for the con-
tinuous exposure evaluation. The smaller formal-
dehyde study consisted of relatively highly exposed 
workers and as such did not provide sufficient 
variability for continuous exposure evaluation. 
Instead, the formaldehyde study design was ana-
lysed based on dichotomized exposure analysis, 
i.e., either exposed to formaldehyde or unexposed 
to formaldehyde.

DNA methylation assay

Peripheral blood samples were collected and deliv-
ered to the processing laboratory within 6 hours. 
The complete blood count and differential were 
analysed using a Beckman-Coulter® T540 blood 

counter (benzene) or a Sysmex XT-1800i auto-
mated haematology analyser (formaldehyde). 
Lymphocyte subsets were measured using 
a FACS Calibur flow cytometer (Software: 
SimulSET v. 3.1).

Genome-wide DNA methylation was analysed 
in 107 benzene samples (53 controls and 54 
exposed workers) and 74 formaldehyde samples 
(43 controls and 31 exposed workers) assay. The 
sample numbers include technical replicate pairs 
(9 for benzene and 1 for formaldehyde) selected 
from study samples with the highest available 
DNA mass. DNA was extracted from blood cells 
using the phenol-chloroform extraction method. 
DNA (1000 ng), quantitated by Quant-iT 
PicoGreen dsDNA kits (Life Technologies, Grand 
Island, NY), was treated with sodium bisulphite 
using the EZ-96 DNA Methylation MagPrep Kit 
(Zymo Research, Irvine, CA) according to manu-
facturer-provided protocol. Bisulphite-converted 
DNA samples were hybridized to the 12 sample 
Illumina HumanMethylation 450 BeadChips using 
the Infinium HD Methylation protocol 
(Document 15,019,519 v01). The methylation β- 
value, the proportion of DNA methylation at each 
CpG site, is obtained as a ratio of the intensities of 
fluorescent signals. A β-value of 0 indicates 
a completely unmethylated CpG site and a β- 
value of 1 indicates a fully methylated CpG site. 
The M-value, the logit2 transform of the β-value, 
was utilized in downstream statistical analyses.

DNA methylation data preprocessing

Data preprocessing for methylation arrays com-
monly considers quality control, probe and sample 
filtering, normalization, and batch effect correc-
tion [40]. The quality control report provided by 
the minfi software [41] on Bioconductor [42] was 
used to evaluate the quality of the raw data from 
the benzene and formaldehyde experiments.

For the benzene data, experimental abnormal-
ities, such as bisulphite conversion outliers, were 
not detected from the strip plots of internal con-
trol probes. According to the density plots, the 
samples did not exhibit an irregular distribution 
of methylation values. All samples had less than 
1% of failed probes and no sample had a low raw 
signal intensity (>13 average log median signal in
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the methylated and unmethylated channels). Based 
on these various sample-specific quality control 
metrics, no samples were filtered out of the ben-
zene data, aside from filtering out one of the 
technical replicates from each pair (details 
below). The relative proportion of leukocytes 
within each sample was estimated from the DNA 
methylation data with the minfi function, 
estimateCellCounts: an algorithm that implements 
a regression calibration approach for deconvolu-
tion of heterogeneous tissues by integrating refer-
ence data that is sorted into pure cellular 
populations [43]. This function returns estimates 
of the relative proportions of lymphocytes, mono-
cytes, B-cells, and neutrophils, using reference data 
provided by the FlowSorted.Blood.450k software 
on Bioconductor. To reduce any batch effects pre-
sent in the provided and sorted reference data cell- 
type discriminating probes, stratified quantile nor-
malization of the provided data with the reference 
data is performed. This stratified quantile normal-
ization [44] also corrects for probe-type bias [40]. 
Probe filtering consisted of omitting probes that 
failed to hybridize to the array (detection P-value 
>0.01), non-CpG probes, SNP-related probes 
according to Zhou [45], multi-hit (i.e., cross- 
reactive) probes, and probes located on sex chro-
mosomes (Table S1) [40].

The criteria for selecting the technical replicate 
to retain from the pair was based on the quality of 
the methylation data, in particular the sum of 
detection P-values across all retained probes. The 
technical replicate with the lowest total detection 
P-value, and thus highest quality of methylation 
across all probes, was retained. After filtering 
407,241 probes and 98 samples remained (48 
unexposed to benzene and 50 exposed to benzene). 
Lastly, batch effects remained in the data due to 
the sample plate, as is common, so methylation 
M-values were adjusted to account for sample 
plate batch effects using the sva ComBat algorithm 
[46] on Bioconductor.

Probe filtering, normalization, batch effect cor-
rection, and cell count estimation procedures for 
the formaldehyde EWAS mirrored the approach 
detailed above for the benzene EWAS. For the 
formaldehyde data, two samples with failed signal 
intensities (<13 average log median signal in the 
methylated and unmethylated channels) were 

removed (Supplemental Figure S1). One technical 
replicate was also selected at random and 
removed. Afterwards, 402,327 probes and 71 for-
maldehyde samples remained (40 controls and 31 
exposed subjects).

Assessment of associations of DNA CpG 
methylation with exposure

Genome-wide differential methylation analysis of 
the benzene and formaldehyde data was per-
formed with limma [47] and missMethyl [48] soft-
ware, both available on Bioconductor. The 
identification of differentially methylated CpG 
positions (DMPs), i.e., regressing CpG mean 
DNA methylation on exposure and confounders 
and then examining the coefficient in front of the 
exposure variable, is a standard analytical 
approach to identify CpG sites associated with an 
exposure of interest when confounders are held 
constant. Differentially variable CpG positions 
(DVPs) can identify larger differences in CpG 
methylation than DMPs [38].

To assess DMPs in the two studies (separately), 
linear models were fit to the methylation probe 
M-values. For the benzene EWAS, the linear mod-
els included as main terms the continuous expo-
sure measurement as well as the following 
confounders: estimated blood cell counts (mono-
cytes, granulocytes, B cells, NK cells, CD4 cells, 
CD8 cells), body mass index (BMI), age, smoking, 
and sex. For the formaldehyde data, the linear 
models included as main terms the binary formal-
dehyde exposure, the estimated blood cell counts 
(granulocytes, B cells, NK cells, CD4 cells, CD8 
cells) and individual characteristics (BMI, age, 
sex). Since smoking was confounded with sex in 
the formaldehyde study (no females smoked), it 
was not included as a main term in the regression. 
To assess DVPs, missMethyl was used to first 
calculate the variance of DNA methylation probe 
M-values and then linear models were fit to each 
CpG probe’s variance [49]. The same set of vari-
ables that were included as main terms in the 
DMP analyses were included as main terms in 
both DVP analyses.

After fitting linear models for DVP and DMP 
analyses in both the formaldehyde and benzene 
studies, we performed a stabilization of the

2262 R. V. PHILLIPS ET AL.



t-statistics. This procedure results in increased sta-
tistical power and better performance compared to 
ordinary t-statistics, which are highly prone to false 
discoveries in high-dimensional data [50]. A family- 
wise error rate (FWER) threshold of 0.05 for 
Bonferroni corrected P-values was used to define 
genome-wide significance. CpGs that met a false 
discovery rate (FDR) threshold of 0.05, i.e., 
Benjamini-Hochberg corrected P-value <0.05, were 
filtered for single nucleotide polymorphisms (SNPs) 
specific to the East Asian super-population (EAS) 
and then matched to genomic features and consid-
ered in pathway analysis. The population-specific 
SNP annotation is provided by the omicsPrint soft-
ware [51] on Bioconductor. We also calculated the 
genomic inflation factor (λGC) [52] from the results 
returned by the DMP and DVP analyses, which 
compares the genome-wide distribution of the 
P-values with the expected null distribution.

Analysis of differentially methylated regions 
associated with exposure

We used the bumphunter algorithm [53] methods 
within the minfi software to examine differences in 
mean DNA methylation across smaller regions of 
CpG probes (DMRs) and blocks (DMBs), large- 
scale regions comprised of open-sea CpG probe 
clusters. A maximum separation of 1,000 base 
pairs defined potential clusters of probes in the 
DMR analysis. A total of 1,000 bootstrap samples 
were used to simulate a null distribution for both 
DMR and DMB analysis.

In both the benzene and formaldehyde DMR 
analyses, the 99th quantile of the bootstrap 
sampled null distribution defined the cutoff to 
select candidate regions; loess smoothed regression 
coefficients above (in absolute value) this quantile 
were selected as candidates. For the DMB analyses, 
absolute loess smoothed regression coefficients 
above 0.1 defined the cutoff to select candidate 
blocks. For both the regional and block analyses, 
regressions adjusted for the same confounders 
included in the DVP/DMP analyses. A bootstrap- 
based FWER <0.05 was used as the cutoff to 
denote genome-wide significance of regions and 
blocks, and an unadjusted P-value <0.05 was the 
cutoff for individual significance.

Mapping significant probes and regions to genes

Probe-wise results (DMPs and DVPs) that 
achieved a BH-corrected P-value <0.05 and did 
not match to EAS SNPs were annotated to gene 
information, and regional results (DMRs and 
DMBs) that achieved an unadjusted P-value 
<0.05 were annotated to gene information. The 
450 K array annotation file provided by Illumina 
(HumanMethylation450 v1.2 Annotation File) was 
used to match these significant regions and CpGs 
to genes.

Biological pathway analysis with genes mapped 
to significant results

For the genes identified from significant results, as 
defined above, we performed gene set enrichment 
analysis (GSEA), specifically biological pathway 
analysis with the online Enrichr interactive soft-
ware [54,55]. We examined enrichment of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways. There is a probe bias that is introduced 
by having a different number of CpG probes for 
each gene, and Enrichr does not account for this 
bias because it takes genes as input. With Enrichr, 
we were able to consider all candidate genes (i.e., 
those matching to both probe-wise and region/ 
block significant results). Therefore, the Enrichr 
biological pathway analysis is more comprehensive 
than the probe-wise approach, but it may be 
biased. However, since the gene list in this GSEA 
was established from results deemed significant 
after multiple testing corrections, the impact of 
probe bias here is likely less severe than previously 
reported analyses that aimed to investigate this 
bias [56].

Results

In the benzene study, we analysed genome-wide 
DNA methylation in the blood of 48 controls, 
non-occupationally exposed subjects (<0.035 ppm 
benzene exposure), and 50 occupationally exposed 
subjects (benzene exposure mean of 6.02 ppm and 
standard deviation of 12.9 ppm) [30]. 
Demographic characteristics were comparable 
among these two groups (Table 1). As ambient 
benzene levels were below the level of detection
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in the control subjects, we estimated benzene 
exposure using unmetabolized urinary benzene 
levels as described previously [57]. We previously 
reported that urinary benzene and mean indivi-
dual air levels of benzene were strongly correlated 
(Spearman correlation coefficient = 0.88, P-value 
<0.0001) in the epidemiologic study population 
[30]. This continuous benzene exposure measure-
ment was used for the benzene EWAS, as this was 
the intention of the benzene study’s design. Also, 
continuously defined exposures are the most faith-
ful representation of exposure, and continuous 
exposure–response relationships offer the potential 
to be more informative than a binary (control vs. 
exposed) classification because they provide 
insight regarding how the response changes 
under small, 1-unit increases in exposure.

For the formaldehyde study, we examined 
genome-wide DNA methylation in the blood 
of 40 controls, non-occupationally exposed sub-
jects (<0.020 ppm formaldehyde exposure), and 
31 occupationally exposed subjects (formalde-
hyde exposure mean of 1.26 ppm and standard 
deviation of 0.62 ppm). Demographic charac-
teristics were comparable among the binary 
comparison groups (Table 2). In the formalde-
hyde EWAS, we defined formaldehyde exposure 
as a binary variable because this study consisted 
of relatively highly exposed workers, and 
a smaller sample size; it did not provide ade-
quate exposure contrasts for continuous expo-
sure evaluation.

Association between exposure and DNA CpG 
methylation

In the benzene study, we identified differentially 
methylated CpGs positions associated with con-
tinuous benzene exposure measurements, where 
differential CpG methylation was examined in 
terms of both the mean (DMPs) and variance 
(DVPs). For the DMP and DVP analyses, we 
adjusted for estimated blood cell counts (mono-
cytes, granulocytes, B cells, NK cells, CD4 cells, 
CD8 cells), BMI, age, smoking, and sex. After BH 
P-value adjustment to control the FDR, 61 DMPs 
remained significant and 26 DMPs were signifi-
cant after the more conservative Bonferroni cor-
rection, which controls the FWER. Larger 
numbers of significant DVPs remained after BH 
and Bonferroni P-value corrections, 1,688 DVPs 
and 324 DVPs, respectively. All significant DVPs 
exhibited increased variance of DNA methylation 
with increased exposure to benzene. The genomic 
inflation factor (λGC)λ for the DMP results was 
1.04, suggesting no inflation of the DMP 
P-values. The λGCλ value for the DVP results 
was 0.70, suggesting deflated DVP P-values. 
Manhattan plots of the DMP and DVP results 
are shown in Supplemental Figure S2. Filtering 
out EAS-specific SNPs from the BH-significant 
CpG probes led to the removal of 6 of the 61 
significant DMPs and 32 of the 1,688 significant 
DVPs, leaving 55 significant DMPs (Table S2), 
and 1,656 significant DVPs (Table S3). After

Table 1. Demographic characteristics and benzene occupa-
tional exposure level.

Subjects Controls (n = 48) Exposed (n = 50)

Demographic characteristics
Age, mean (SD) 30.56 (8.35) 28.96 (7.39)
BMI, mean (SD) 22.79 (4.63) 21.78 (3.14)
Sexa, n (%)

Female 32 (67) 28 (56)
Male 16 (33) 22 (44)

Current smokera, n (%)
Yes 11 (23) 9 (18)
No 37 (77) 41 (82)

Benzene air level (ppm)b

Mean (SD) 0.035 (0) 6.023 (12.9)

Note: BMI, body mass index; SD, standard deviation. 
aNumber (percent). 
bBenzene air level is the arithmetic mean (±SD) of an average of two 

measurements per subject collected during the month before phle-
botomy [30]. This time period was chosen because granulocytes have 
relatively short half-lives in peripheral blood. 0.035 ppm was the limit 
of detection of benzene [30]. 

Table 2. Demographic characteristics and formaldehyde occu-
pational exposure level.

Subjects Controls (n = 40) Exposed (n = 31)

Demographic characteristics
Age, mean (SD) 29.6 (7.43) 31.7 (5.99)
BMI, mean (SD) 21.8 (3.21) 21.7 (2.67)
Sexa, n (%)

Female 7 (17) 5 (16)
Male 33 (83) 26 (84)

Current smokera, n (%)
Yes 17 (42) 13 (42)
No 23 (58) 18 (58)

Formaldehyde exposure 
(ppm)b

Mean (SD) 0.020 (0.007) 1.26 (0.619)

Note: BMI, body mass index; SD, standard deviation. 
aNumber (percent). 
bFormaldehyde exposure is the arithmetic mean (±SD) of an average of 

two measurements per subject collected during the month before 
phlebotomy [31]. This time period was chosen because granulocytes 
have relatively short half-lives in peripheral blood. 

2264 R. V. PHILLIPS ET AL.



filtering out EAS SNPs and applying Bonferroni 
P-value correction, there were 22 significant 
DMPs (Table 3) and 318 significant DVPs, the 
top 25 of which are listed in Table 4 (in order of 
decreasing significance). Thirty-two of the 55 

remaining BH-based significant DMPs (58%) 
were also BH-based significant DVPs (Table S2).

In the formaldehyde study, we looked for 
DMPs and DVPs that were differentially methy-
lated between the exposed and unexposed groups.

Table 3. Genome-wide significant (Bonferroni corrected P-value <0.05) differentially mean methylated probes (DMPs) from a cross- 
sectional study of occupational exposure to benzene, where differential methylation was assessed with respect to continuous 
benzene exposure.

Probe ID
Methylation change for 

Δ 1 ppm benzene P-value
Bonferroni adjusted 

P-value Chromosome Gene(s)

cg01799560 1.0315 1.46E-18 5.96E-13 17 TBCD
cg17670477 1.0379 1.30E-13 5.29E-08 8
cg14075413 0.9881 3.87E-12 1.58E-06 14 SERPINA4
cg17905084 1.0226 6.86E-12 2.79E-06 1 FCRLB
cg21394778 0.9901 7.65E-12 3.11E-06 1 PRDM16
cg20536921 0.9797 1.00E-11 4.09E-06 15
cg13459303 0.9871 5.47E-11 2.23E-05 7 TMEM176A; TMEM176B
cg18552413 0.9938 3.28E-10 1.34E-04 1 DARC
cg16619049 1.0316 4.01E-10 1.63E-04 1 FAM41C
cg14051111 0.9848 4.49E-10 1.83E-04 7 PTPRN2
cg06169961 0.9858 4.88E-10 1.99E-04 10 C10orf26
cg20159193 0.9867 7.36E-10 3.00E-04 6 NUDT3
cg09912079 0.9907 7.82E-10 3.18E-04 4 RGS12
cg04759112 0.9859 9.02E-10 3.67E-04 16 CMIP
cg25608626 0.9913 9.84E-10 4.01E-04 11 DSCAML1
cg06713830 0.9827 2.88E-09 1.17E-03 19 PPAN; 

PPAN-P2RY11; SNORD105B
cg06530725 0.9821 2.95E-09 1.20E-03 1 DIO1
cg08175635 0.9850 5.91E-09 2.41E-03 20 ZBTB46
cg16211055 1.0110 7.11E-09 2.89E-03 1 TRIM11
cg07832006 0.9855 4.29E-08 1.75E-02 1 SYCP1
cg25114611 1.0066 5.84E-08 2.38E-02 6 LOC285847; FKBP5
cg19539385 0.9871 8.24E-08 3.36E-02 7 EIF2AK1

Table 4. Top 25 out of 318 genome-wide significant (Bonferroni corrected P-value <0.05) differentially methylated probes, where 
differential methylation was defined in terms of the variance of CpG probe methylation (DVPs), from a cross-sectional study of 
occupational exposure to benzene, and differential methylation was assessed with respect to continuous benzene exposure.

Probe ID
Methylation change for 

Δ 1 ppm benzene P-value
Bonferroni adjusted 

P-value Chromosome Gene(s)

cg17670477 1.0958 3.73E-33 1.52E-27 8
cg05668674 1.0681 2.07E-31 8.45E-26 16 GPR56
cg14051111 1.0561 2.62E-31 1.07E-25 7 PTPRN2
cg04759112 1.0615 6.83E-29 2.78E-23 16 CMIP
cg17905084 1.0561 4.88E-28 1.99E-22 1 FCRLB
cg08175635 1.0545 8.33E-28 3.39E-22 20 ZBTB46
cg06169961 1.0491 1.24E-27 5.07E-22 10 C10orf26
cg16619049 1.0465 1.25E-25 5.08E-20 1 FAM41C
cg23383531 1.0416 8.00E-24 3.26E-18 12 CAMKK2
cg14075413 1.0398 8.38E-23 3.41E-17 14 SERPINA4
cg16211055 1.0384 1.99E-21 8.12E-16 1 TRIM11
cg25608626 1.0433 4.42E-21 1.80E-15 11 DSCAML1
cg05308829 1.0422 1.24E-20 5.06E-15 7 GNA12
cg06530725 1.0445 9.41E-20 3.83E-14 1 DIO1
cg20159193 1.0362 4.45E-18 1.81E-12 6 NUDT3
cg03246570 1.0303 3.32E-17 1.35E-11 16 RHOT2
cg21394778 1.0322 5.70E-17 2.32E-11 1 PRDM16
cg20780546 1.0332 7.86E-17 3.20E-11 17 KRT33A
cg21161253 1.0373 9.31E-17 3.79E-11 20 BHLHE23
cg17531776 1.0470 4.65E-16 1.89E-10 2
cg12648759 1.0348 1.03E-15 4.21E-10 1 ATF6
cg11640569 1.0302 1.22E-15 4.96E-10 22
cg00347518 1.0297 1.49E-15 6.07E-10 20
cg05311119 1.0382 1.88E-15 7.67E-10 4 FGFR3
cg05258139 1.0443 2.01E-15 8.17E-10 11 FAU
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For both the DMP and DVP analyses, linear 
models were adjusted for sex, BMI, age, and 
estimated granulocytes, monocytes, CD4 cells, 
CD8 cells, NK cells, and B cells. We identified 
25,035 DMPs with an unadjusted P-value <0.05, 
none of which remained significant after BH- 
based P-value correction (Table S4). Of 19,970 
DVPs identified with an unadjusted P-value 
<0.05, 9 – located in the dual specificity protein 
phosphatase 22 gene (DUSP22) – remained sig-
nificant after Bonferroni P-value correction and 
exhibited decreased variance of DNA methylation 
in the formaldehyde-exposed workers relative to 
controls (Table 5 and Figure 1a). An additional 
DVP in DUSP22 was also significant after BH- 
based P-value correction (Table S5). A Manhattan 
plot of the DVP results is shown in Figure 1b. 
The λGC values for the DMP results were 1.125, 
and for the DVP results 1.018, suggesting no 
inflation of the P-values for probe-wise results 
in the formaldehyde EWAS. For both the formal-
dehyde and benzene EWAS, the full list of probe- 
wise results is available on GitHub (https://github. 
com/rachaelvp/EWAS-BZ-FA) and Open Science 
Framework (https://osf.io/exqzy/).

Association between exposure and regions of 
DNA methylation

We identified differential mean methylation across 
small-scale regions of CpG probes (DMRs) and large 
open-sea regions, or ‘blocks,’ of CpG probes (DMBs), 
where differences were defined with respect to asso-
ciations with continuous benzene exposure measure-
ments and the binary formaldehyde exposure 
classification. DMR and DMB analyses were adjusted 

for the same measured variables as in the DMP and 
DVP analyses. For both the formaldehyde and ben-
zene EWAS, the full list of regions and blocks identi-
fied is available on GitHub (https://github.com/ 
rachaelvp/EWAS-BZ-FA) and Open Science 
Framework (https://osf.io/exqzy/).

In the benzene DMR analysis, 1,202 candidate 
regions were identified, 144 achieved significance 
based on an unadjusted P-value <0.05 (Table S6), 
and no DMRs achieved genome-wide significance 
based on an FWER threshold of 0.05. For the benzene 
DMB analysis, 440 candidate blocks were identified 
and 60 achieved significance based on an unadjusted 
P-value <0.05 (Table S7). One DMB containing four 
CpG probes, and exhibiting slight hypomethylation 
with increased benzene exposure, achieved genome- 
wide significance with an FWER-controlled P-value of 
0.018 and was annotated to the following three genes: 
C19orf53, CCDC130, and MRI1 (Table S7).

In the formaldehyde DMR analysis, we identi-
fied 1,349 candidate DMRs, 147 of which were 
significant based on an unadjusted P-value <0.05 
(Table S8). We identified one genome-wide signif-
icant DMR (FWER-controlled P-value of 0.01), 
consisting of 2,174 base-pairs and located in the 
HOXA5 promoter (Figure 2a). This DMR exhib-
ited hypomethylation in the exposed group com-
pared to controls. The second most significant 
DMR, consisting of 1,598 base-pairs and located 
in the DUSP22 gene (Figure 2b), exhibited hyper-
methylation and nearly reached genome-wide sig-
nificance (FWER-controlled P-value of 0.063). The 
DMB analysis led to the identification of 367 can-
didate DMBs, 52 of which were significant based 
on an unadjusted P-value <0.05 (Table S9). No 
DMB achieved significance after adjustment for 
multiple comparisons.

Table 5. Genome-wide significant (Bonferroni corrected P-value <0.05) differentially variable probes (DVPs) from a cross-sectional 
study of occupational exposure to formaldehyde, where differential methylation was assessed with respect to binary, exposed versus 
controls, comparison groups.

Probe ID Variance change (regression coefficient) P-value
Bonferroni adjusted 

P-value Chromosome Gene(s)

cg15383120 0.0574 1.66E-11 6.64E-06 6 DUSP22
cg18110333 0.0377 1.83E-11 7.33E-06 6 DUSP22
cg21548813 0.0601 5.61E-11 2.24E-05 6 DUSP22
cg05064044 0.0862 6.14E-11 2.45E-05 6 DUSP22
cg03395511 0.0697 7.30E-10 2.92E-05 6 DUSP22
cg26668828 0.0666 1.60E-10 6.41E-05 6 DUSP22
cg01516881 0.0565 2.19E-10 8.74E-05 6 DUSP22
cg11235426 0.1170 1.05E-09 4.20E-04 6 DUSP22
cg07332563 0.1032 4.32E-09 1.73E-03 6 DUSP22
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Figure 1. Formaldehyde-associated differential DNA methylation in the DUSP22 gene, highlighting nine differentially variable probes 
(DVPs) that exhibited significant (Bonferroni-adjusted P-values <0.05) decreased variance of DNA methylation in formaldehyde- 
exposed workers compared to controls (a). All CpG probes on the 450 K array that are annotated to the DUSP22 gene (excluding any 
that might have been filtered out) are shown, with the nine significant DVPs being those in the red box (A). The pronounced 
significance of these 9 DVPs can be seen in the Manhattan plot, where the red and blue lines represent the family-wise error rate 
(FWER) and false discovery rate (FDR) thresholds, respectively, for statistical significance (b).
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Mapping significant probes and regions to genes

Significant differentially methylated probes, 
regions, and blocks identified in the benzene 
EWAS were mapped to genes. The criteria for 
probe-wise significance were probes that did not 

match to EAS SNPs and achieved BH-based sig-
nificant P-values <0.05, and the criteria for region- 
and block-wise significance were regions/blocks 
that achieved unadjusted P-values <0.05. Out of 
the 55 significant DMPs and 1,656 significant

a 

b 

Figure 2. Genomic annotation of two regions exhibiting differential mean methylation (DMRs) in formaldehyde-exposed subjects 
versus controls. A 2,174 base-pair region on chromosome 7, comprised of 44 CpG probes, and located in the promoter of HOXA5 
exhibited significant hypomethylation in formaldehyde exposed workers compared to controls, with a family-wise error rate (FWER)- 
controlled P-value = 0.01 (a). A 1,598 base-pair region on chromosome 6, comprised of 10 CpG probes, and located in the DUSP22 
gene exhibited nearly genome-wide significant hypermethylation in formaldehyde exposed subjects compared to controls, with an 
FWER-controlled P-value = 0.063 (b).

2268 R. V. PHILLIPS ET AL.



DVPs; 44 and 1,346 were located within 52 and 
1,299 genes, respectively (Tables 2 and 3). A total 
of 89 genes and 63 genes were mapped to the 
significant DMRs and DMBs, respectively (Tables 
S6 and S7). Some genes were identified in com-
mon across these various analyses with consistent 
directionality of differential methylation, which 
was significantly associated with increasing ben-
zene exposure. One gene, PTPRN2, was found 
among three of the four analyses of differential 
methylation. With increased benzene exposure, 
a DMR (unadjusted P-value <0.05) and a DMP 
(Bonferroni-adjusted P-value <0.05) in PTPRN2 
exhibited hypomethylation, and seven significant 
DVPs (two with Bonferroni-adjusted P-value 
<0.05 and five with BH-adjusted P-value <0.05) 
in PTPRN2 exhibited increased variability. Genes 
ARPP21 and TRPC3 overlapped across the signifi-
cant DMR and DMB-identified genes (unadjusted 
P-values <0.05), both exhibiting a relationship of 
hypomethylation with benzene exposure (Table 
S5). There was overlap of 37 genes across those 
annotated to significant DVPs and DMPs (Table 
S2). In addition to PTPRN2, 11 other genes were 
annotated to both significant DVPs (Bonferroni or 
BH-adjusted P-values <0.05) and significant 
DMRs (unadjusted P-values <0.05): UNC45A, 
MUC4, CIDEB, LTB4R2, BRF1, BTBD6, F11R, 
EHHADH, TXNRD1, GTDC1, ACTA1 (Table S3). 
Lastly, the following 11 genes were mapped to 
both significant DVPs (Bonferroni or BH- 
adjusted P-values <0.05) and significant DMBs 
(unadjusted P-values <0.05): CCDC130, FUT10, 
STK35, TMEM155, CCNA2, SLC23A2, INSR, 
YTHDF1, SNORD50A, SNHG5, SNORD50B 
(Table S3).

Mapping the significant DMRs and DMBs 
(unadjusted P-values <0.05) in the formalde-
hyde EWAS to genes resulted in 114 DMR 
genes and 75 DMB genes (Tables S8 and S9, 
respectively). None of these genes were found 
in both types of endpoints. The DUSP22 gene, 
which was shown to have nine genome-wide 
significant DVPs in the promoter region was 
identified as a DMR, nearly reaching genome- 
wide significance with an FWER-controlled of 
P-value 0.063.

Association of benzene exposure with biological 
pathways

We performed pathway analysis using the genes 
that matched to significant differentially methyla-
tion regions and probes. This resulted in the iden-
tification of 16 significantly (P-value <0.05) 
enriched KEGG pathways (Table S10). The KEGG 
pathway ‘AMPK signaling pathway’ (hsa04152) was 
the most significant KEGG pathway GSEA 
(P-value = 0.0004, BH-adjusted P-value = 0.1086). 
A total of 20 genes identified from significant 
regions/probes of differential methylation were 
found in the AMP-activated protein kinase 
(AMPK) signalling pathway (Figure 3).

Discussion

In these first reported, to the best of our knowl-
edge, observational EWAS in human study popu-
lations occupationally to exposed benzene or 
formaldehyde, we assessed epigenome-wide DNA 
methylation, incorporated individual-level expo-
sure assessment data, and adjusted for demo-
graphic variables as well as detailed blood cell 
and subset counts in our analyses. We found that 
benzene and formaldehyde exposure were each 
distinctly associated with DNA methylation.

The findings of differential variability among 
many genes in the benzene EWAS support the 
links between benzene exposure and cancer 
[11,58]. Increased epigenetic variability is consid-
ered to result from epigenetic instability or the loss 
of epigenetic control of genomics [59], and it has 
been described in cancer [60], rheumatoid arthritis 
(RA) [61] and Type 1 diabetes [38]. It has also 
been associated with exposure to trichloroethylene 
[62]. Whereas all the genome-wide significant 
DVPs showed increased variance (Table S3) with 
increased continuous benzene exposure, the 
deflated λGC (0.70) λGC is suggestive of underpow-
ered genome-wide testing or other population 
stratification and thus results must be interpreted 
with caution. Many benzene DVPs (32) were also 
DMPs, and this pattern has previously been 
reported [62], but it remains unclear if there is 
a relationship between differential variability and 
differential mean methylation. Additional research 
is required to determine if benzene-induced health
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outcomes are related to benzene-induced epige-
netic drift. The majority of genome-wide signifi-
cant DMPs showed decreased methylation with 
increased benzene exposure.

Several genes identified by the DVP/DMP ana-
lyses have previously been associated with ben-
zene, AML, or lymphoma. For example, in the 
same benzene study population, we previously 

reported that benzene exposure increased the 
mRNA expression of PHLPP2, ARRDC2, and 
EIF4ENIF1 (all significant DVPs in the current 
benzene study) and decreased mRNA expression 
of TRIM11 (significant DVP and DMP in the 
current benzene study) [63]. TRIM11 gene expres-
sion was shown to be elevated in lymphoma cell 
lines and may act as an oncogene in lymphoma by

Figure 3. Benzene occupational exposure-associated enrichment of the AMP-activated protein kinase (AMPK) signalling pathway. 
This was the most significant finding from the gene set enrichment analysis (GSEA) of Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways. The 20 genes that corresponded to sites exhibiting significant, benzene exposure-associated differential DNA 
methylation are highlighted in pink.
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activating the β-catenin signalling[64]. Expression 
of the tumour suppressor PHLPP2 [65] is reduced 
in certain AML subtypes and is regulated by the 
oncomiR-17–92 [66]. Expression of RUNX2 (sig-
nificant DVP in the current benzene study), an 
AML oncogene [67], was increased in human 
bone marrow mesenchymal stem cells after treat-
ment with benzene and its metabolites 
P-benzoquinone (BQ) and hydroquinone (HQ) 
[68]. A mutation in ZBTB7A (significant DVP in 
the current benzene study) in AML with t(8;21) 
translocation [69], may cooperate with t(8;21) to 
drive leukaemogenesis[70].

The AMPK signalling pathway was signifi-
cantly impacted by benzene exposure in the 
more comprehensive gene-wise pathway analysis 
of genes corresponding to significant probe-wise 
(DMPs and DVPs) and regional (DMRs and 
DMBs) results. The effect may be driven by 
increased variance, as several AMPK pathway 
genes were significant in the DVP analysis 
(INSR, PPP2R3A, CAMKK2, CCNA2, and FASN) 
whereas none were significant in the DMP ana-
lysis. AMP-activated protein kinase (AMPK) is 
a master regulator of cellular energy homoeosta-
sis that is activated in response to cellular ATP 
depletion by stressors such as low glucose. 
Activated AMPK regulates metabolic pathways 
and affects the activity of various proteins 
involved in ageing, cell growth and apoptosis, 
and it promotes autophagy [71,72] and longevity 
[73,74]. AMPK plays a key role in the differentia-
tion of haematopoietic stem cells (HSCs), pro-
genitors, and myeloid cells, through the 
induction of autophagy, and the AMPK pathway 
is a potential clinical target to subvert dysregu-
lated differentiation during myeloid malignancy 
[75]. AMPK can act as both a tumour suppressor 
and tumour supporter. Drugs that inhibit mTOR 
and activate AMPK have beneficial effects in pro-
moting differentiation and blocking proliferation 
of AML [76]. Liver B Kinase (LKB1) is a tumour 
suppressor that activates AMPK in response to 
energy stress. The Liver kinase B1 (LKB1)-AMPK 
axis was shown to potentially mediate the biolo-
gical effects (proliferation and differentiation 
inhibition, G1 cell cycle arrest, and apoptosis 
induction) of HQ on murine foetal liver and 
bone marrow HSCs [77].

The key relationships of formaldehyde and dif-
ferential DNA methylation were in the promoter 
region of tumour suppressor gene, DUSP22, in 
which we found decreased variability of DNA 
methylation across 9 CpGs (many of which were 
encompassed in a DMR exhibiting increased 
mean methylation, FWER-controlled P-value of 
0.063). Dual specificity phosphatase (DUSP) pro-
teins are major modulators of critical signalling 
pathways that are dysregulated in various diseases 
[78]. DUSP22 inactivates various protein kinases 
and transcription factors through dephosphoryla-
tion and influences the duration and intensity of 
multiple signalling pathways [79–85] including 
mitogen-activated protein kinase (MAPK), T-cell 
activation [86], oestrogen receptor [82] and epi-
dermal growth factor (EGF) and androgen recep-
tor (AR) signalling[87]. Loss of DUSP function 
may lead to aberrant proliferation, inflammation, 
or malignancy [87]. DUSP22 genetic rearrange-
ments or loss of function have been associated 
with anaplastic lymphoma kinase–negative ana-
plastic large cell lymphoma [88,89], prostate can-
cer progression [87] and systemic lupus 
erythematosus [86]. Altered methylation of 
DUSP22 in association with environmental stres-
sors and disease has been reported. Increased 
methylation in the same region of the DUSP22 
gene (Chr6: 291687–293285) as detected in our 
formaldehyde study was previously shown to be 
involved in the response to early-life exposure to 
famine and was associated with schizophrenia 
regardless of famine exposure [90]. 
Hypomethylation was found in erosive RA in 
immune cell subpopulations [91], and was asso-
ciated with post-traumatic stress disorder (PTSD) 
symptoms in deployed military servicemen over 
time [92] and with duration of service in fire-
fighters [93]. Hypomethylation was also reported 
in newborns prenatally exposed to perfluoroalkyl 
substances (PFAS) [94], and maternal diabetes or 
obesity [95]. The overlapping combination of 
decreased methylation variability and increased 
mean methylation in DUPS22 is unique. This 
pattern of decreased variance accompanying 
mean methylation alterations may suggest con-
trolled epigenetic reprogramming. Further stu-
dies are needed to understand the potential 
contribution of these effects to formaldehyde 
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toxicity and disease. DUSP22 was identified as 
a DMR (but not a DVP, DMP, or DMB) in the 
benzene study, exhibiting decreased mean methy-
lation, but did not reach significance based on 
FWER control.

Formaldehyde was also associated with 
a genome-wide significant DMR in HOXA5, with 
decreased mean methylation in the exposed group 
compared to controls. HOXA5 encodes 
a transcription factor that regulates differentiation 
of the myeloid and erythroid lineages [96,97]. 
Aberrations in HOXA gene family members as 
well as their cofactor, homeobox protein Meis 1 
(MEIS1), occur in AML [98]. Irregular expression 
and methylation of HOXA5 has been shown to be 
clinically significant in AML. HOXA5 is frequently 
hypermethylated in adult AML and its consequent 
inactivation has prognostic value [99,100]. HOXA5 
expression distinguished between AML with muta-
tions in nucleophosmin 1 (NPM1) compared to 
wild-type AML and increased HOXA5 expression 
was correlated with poor survival [101]. Patients 
with favourable chromosomal aberrations had 
decreased expression levels of HOXA5 and 
MEIS1 compared with normal-karyotype AML 
and the adverse cytogenetic risk patients [102]. 
The role of DNA methylation and dysregulation 
of HOXA5 in formaldehyde-induced hematotoxi-
city, and the potential for AML induction requires 
further study.

The results should be considered in the context 
of the study’s strengths and limitations. Strengths 
include the use of study populations with well- 
characterized exposures, and a rigorous study 
design that incorporated phenotypic information 
for each subject [28–31]. A conservative analytical 
pipeline, which considered genome-wide signifi-
cance on the basis of Bonferroni corrected 
P-values <0.05 (FWER threshold of 0.05), and 
stabilized t-statistics, which have been shown to 
confer increased statistical power and enhanced 
performance compared to ordinary t-statistics 
[50], minimized the likelihood of false discoveries. 
Evaluation of differential DNA methylation was 
comprehensive, assessed in terms of mean and 
variance, and at the level of individual CpGs and 
genomic regions. These strengths support the 
reliability of the findings for benzene and 
formaldehyde.

In the formaldehyde study, differential DNA 
methylation considered the binary comparison 
groups (exposed vs. controls), so it cannot be 
interpreted how DNA methylation changes with 
increased formaldehyde exposure. Further work 
in larger sample sizes with a greater range of 
exposure will be needed to address this open 
question. However, the exposed workers experi-
enced relatively high levels of formaldehyde, pro-
viding a striking contrast to unexposed controls, 
and as such the study is useful for its intended 
purpose for initial exploratory comparisons. The 
benzene study, a larger study with a wide range of 
exposure that was designed to assess the expo-
sure–response relationship with biomarker end-
points, was able to assess differential DNA 
methylation with respect to continuous benzene 
exposure, taking advantage of the additional 
power this provides. In the formaldehyde study, 
none of the mean comparisons for individual CpG 
sites (DMPs) were significant after accounting for 
multiple testing. However, we did observe signifi-
cant variability comparisons for individual CpG 
sites (DVPs) after multiple hypothesis correction 
in both the benzene and formaldehyde data. 
Whereas no DMPs were reliably significant in 
the formaldehyde study, 22 DMPs achieved gen-
ome-wide significance in the benzene study. Also, 
9 DVPs achieved genome-wide significance in the 
formaldehyde study and 318 DVPs achieved gen-
ome-wide significance in the benzene study. The 
reduced number of genome-wide significant 
results in the formaldehyde EWAS compared to 
the benzene EWAS could reflect differences in 
sample size (71 for FA vs. 98 for benzene) and 
lower statistical power to detect differential 
methylation. Alternatively, relatively high levels 
of workplace benzene exposure might have 
a greater impact on peripheral blood cell DNA 
methylation compared to relatively high levels of 
workplace formaldehyde exposure. Also, due to 
the number of sites assayed by the 450 K array, 
we likely missed some associations for both expo-
sures. For example, the fact that only nine DMPs 
in the formaldehyde study covered a 1,136-base- 
pair-long region (Figure 1) is a technicality, and 
limitation, of the 450 K microarray.

Smoking is a potential source of exposure to both 
benzene and formaldehyde. However, occupational 
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exposure to benzene and formaldehyde in the study 
factories was substantially greater than exposure 
that could result from tobacco smoking [103,104]. 
Further, the proportion of current smokers in the 
exposed and control factories in both the benzene 
study and the formaldehyde study were comparable, 
and in addition, statistical analyses were adjusted for 
smoking status. As such, it is highly unlikely that 
benzene or formaldehyde from smoking could have 
influenced the study results or conclusions.

As differential DNA methylation in blood cells 
may be confounded by blood cell composition 
variations [105], and since occupational exposure 
to benzene and formaldehyde in these populations 
has been previously associated with altered blood 
cell subset counts [30,31], it was critical to account 
for differences in cell counts in these studies. 
When linear models were fit to methylation 
probes, we adjusted for estimated blood cell counts 
(granulocytes, monocytes, B cells, NK cells, CD4 
cells, CD8 cells), in addition to sex, smoking, BMI, 
and age. Estimated counts have been experimen-
tally validated to reflect actual cell counts 
[106,107]. For all fitted models, the coefficient in 
front of the exposure variable of interest (benzene 
or formaldehyde) corresponds to the relationship 
between this exposure and DNA methylation 
when blood cell counts, BMI, age, smoking, and 
sex are fixed. Therefore, by including these factors 
in the models, estimates of the association of the 
exposure (to benzene or formaldehyde) on DNA 
methylation are not confounded by them in the 
fitted model. Nonetheless, it is important to repli-
cate these findings in larger studies and in other 
exposed populations, given the limited diversity in 
these studies’ populations. Also, we acknowledge 
that confounding might not be adequately cap-
tured, and associations between DNA methylation 
and these exposures might be missed or biased, by 
assuming a linear model. A final limitation inher-
ent in the cross-sectional design is the inability to 
evaluate temporal changes in endpoints, here 
DNA methylation, including possible reversibility 
of those associations over time. Future longitudi-
nal studies with repeated sampling during an 
extended time of workplace exposure, as well as 
after exposure ceases, will be especially valuable.

In conclusion, these EWAS provide new 
insights into potential genes and pathways that 

may be involved in the human response to ben-
zene and formaldehyde exposure. The findings 
provide additional evidence that DNA methylation 
may play a role in the pathogenesis of benzene and 
formaldehyde-related diseases. Further validation 
of these findings in larger and independent study 
populations is warranted, as well as examination of 
the downstream effects of the benzene- and for-
maldehyde-induced DNA methylation patterns on 
gene and protein expression. Our findings suggest 
that DNA methylation may play a role in the 
pathogenesis of benzene and formaldehyde expo-
sure-related diseases, via distinct mechanisms.
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