
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Cross platform development using Delphi and Kylix

Permalink
https://escholarship.org/uc/item/3502t2p2

Authors
McDonald, J.L.
Nishimura, H.
Timossi, C.

Publication Date
2002-10-08

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3502t2p2
https://escholarship.org
http://www.cdlib.org/

CROSS PLATFORM DEVELOPMENT USING DELPHI AND KYLIX*

J.L.McDonald, H. Nishimura and C. Timossi

LBNL, Berkeley, CA 94720, USA

Abstract
A cross platform component for EPICS Simple Channel

Access (SCA) has been developed for the use with Delphi
on Windows and Kylix on Linux. EPICS GUI application
programs developed on Windows can run on Linux by
simply rebuilding them, and vice versa. This paper
describes the technical details of the newly developed
component.

1 INTRODUCTION
The Advanced Light Source (ALS) control system has

been continuously migrating from the original x86-based
system [1] to the EPICS-based system [2], which involves
numerous application programs written in various
programming languages to be rewritten or updated
seamlessly as background tasks. A component library is
going to play a major role in this migration task [3].

The first library supporting EPICS SCA as a class at the
ALS is JSca [4] in Java, which was followed by a C++
version, diverging to cover other languages including
Delphi. Since, it has been remodeled as an ActiveX
component, SCAcom [5] supports most of the Windows
application programming in an organized manner. As the
original control system does not use a grouped access to
the devices, SCAcom implements easy switching of
grouped and ungrouped access to encourage the
migration. However, Linux is out of the class scope.

SCAclx is a port of SCAcom to cover both Windows
and Linux in a same manner. It is a cross-platform
component for the use with both Borland [6] Delphi 6 and
C++ Builder 6 on Windows, and Kylix 2 and 3 on Linux.
A program developed by one of them becomes portable
including GUI and EPICS access on both platforms.

2 COMPONENT DEVELOPMENT

2.1 CLX Programs
Component Library for Cross-Platform (CLX) is a part

of Borland development environments (Delphi, C++
Builder and Kylix) to generate applications that can be
built and run natively on either Windows or Linux. All the
non-EPICS parts can be programmed as CLX applications
including GUI that becomes native on both platforms.
Therefore, if an EPICS component becomes available on
both of them, we can develop portable and native EPICS
client programs. The programming languages for CLX
programming are Delphi, a Borland version of Pascal, and

Borland C++. However, we will focus on the Delphi
language in Delphi 6 on Windows 2000 and Kylix 2 on
Redhat Linux 7.3.

2.2 CLX and Native Routines
CLX programs are built only by using libraries that are

portable on both platforms. When developing a CLX
program in Delphi or Kylix environment, the component
palette does not contain any non-portable component.
However, this does not mean that a platform component
cannot be used in a CLX program.

We can use any component or library routine in a CLX
program sacrificing the portability. A CLX program on
Windows can include ActiveX controls by manually
importing and instantiating it. When these external
components or routines are not written in Delphi, they
will be imported as dynamic link libraries (DLL) on
Windows, or shared objects (SO) on Linux. Here the
ActiveX control is a special case of a DLL.

When a CLX component is to cover a function that
involves calls to platform-dependent lower-level routines,
there will be separate implementations and an EPICS call
is one such case.

2.3 CLX Component to Wrap ActiveX Controls
The ActiveX control SCAcom has been in use for years,

and considered to be well established. Therefore, SCAclx,
a CLX port of SCAcom, uses the latter internally on
Windows. We use the same source code QSCAclx.pas for
SCAclx on both platforms by using the compiler
directives {$IFDEF ..} and {$ENDIF} to distinguish the
platform. Here is an example of unit imports at the
beginning of the file to use different units depending on
the platform.

unit QSCAclx;
 interface
uses
{$IFDEF MSWINDOWS}
 Windows,Messages,
 SysUtils, Classes, QControls, QStdCtrls,QExtCtrls,
 ActiveX, SCACOMLib_CLX_TLB;
{$ENDIF}
{$IFDEF LINUX}
 SysUtils, Classes,
 libsharedsca;
{$ENDIF}

*
O
D

The ActiveX control SCAcom is written in C++ and the
interface to it has to be in Delphi. If SCAcom has been

 This work was supported by the Director, Office of Energy Research,
ffice of Basic Energy Sciences, Material Sciences Division, U. S.
epartment of Energy, under Contract No. DE-AC03-76SF00098
already imported to the environment for the use in its

EPICS Channel Access

Simple Channel Access

SCAcom
ActiveX Control

C Wrapper
libscaclx.so

SCAclx
"The CLX Component"

ActiveX wrapper
SCACOMLib_CLX_TBL.pas

Kylix Import Unit
libsharedsca.pas

SCAcom as a Member

Windows
Delphi 6

Linux
Kylix 2

Win32 programming mode, its Delphi interface file
SCACOMLib_COM_TLB.pas will be available to be an
ActiveX wrapper.

SCAclx contains a SCAcom object as its private data
member and accesses it by using the wrapper
SCACOMlib_CLX_TBL.pas that is a modified version of
SCACOMlib_COM_TBL.pas. All the calls to SCAclx are
forwarded to the SCAcom object.

The two extra steps on Windows are: (1) calls to
CoCreate and CoUncreate at the proper moment, and (2)
instantiation of the SCAcom object. The former is done in
the creator and the destructor of the component. The
second must be done prior to any SCAclx call, therefore it
is managed by using an initialization status flag. An
overall porting process is shown in Fig.1.

2.4 SCAclx on Linux
SCAcom is not usable on Linux since it is an ActiveX

control. SCAclx has to be implemented on Linux at much
lower level than using SCAcom. We created a plain C
shared object library libscaclx.so in gcc to wrap SCAcom
but not as a class. The unit that imports this library to the
Delphi language on Linux is libsharedsca.pas. SCAclx
uses routines through this import library on Linux.

2.5 Inside SCAclx
Fig.1 SCAclx Porting Process Each member function of SCAclx has dual

implementation for the two platforms. Here is an example
of getFloat.

2.6 Higher level classes
SCAclx is a class for an SCA access. It keeps multiple

items initiated by a channel name (PVname). However,
the channel itself is not supported as a class. A PVname is
always required to get values from the channel. When the
number of items is large, it becomes inconvenient to
attach the PVname to each call. A higher level class is
desired on top of SCAclx. SCAitem class is an example.
It can be initialized with a PVname and can be accessed
without it. The merit of using SCAclx is that these efforts
at higher level can be completely portable.

function TSCAclx.getFloat(
 const pv_name: String): Single;
 var x:single;
begin
{$IFDEF LINUX}
 ErrorCode:=_getFloat(PChar(theGroupName),mode,
 PChar(pv_name),x);
{$ENDIF}
{$IFDEF MSWINDOWS}
 x:=Sca1.getFloat(PChar(pv_name));

 ErrorCode:=Sca1.error_code;
{$ENDIF}

2.7 Support for C++ Programs result:=x;
Borland C++ 6.0 has been supporting CLX and the C++

version of SCAclx is in progress. The porting process is
the same as that in Delphi. On Linux, Kylix has started
supporting the Linux version of Borland C++ since Kylix
3. Therefore, SCAclx is just going to cover C++ in a
similar manner.

end;

All the platform-dependent calls are done in this way by
keeping the interface identical. Client programs can be
entirely portable even including the project itself if the file
paths and case dependencies are considered. An EPICS
application program developed on Windows can be
simply rebuilt on Linux and runs natively there.

We have ported about 80% of SCAcom public members
to SCAclx and comfirmed on both platforms. It does not
show any visible degradation of the run-time performance
compared with that of SCAcom, which is the merit of
native programs.

3 APPLICATIONS

3.1 Basic Features
Let us show how to use SCAclx by using a simple

example. It is found on the palette of the development
environment. By allocating it on a Delphi Form, it will be
declared in the program as:

 SCAclx1 : TSCAclx;

This should be linked to a particular PVname at the
beginning of the execution, for example, in the
FormCreate routine:
 SCAclx1.addDoubleItem(‘cmm:beam_current’);

There are also methods to associate a PVname as float
or integer. We have tested using more than 13,000 items
to cover most of the EPICS channels at ALS. These
values can be accessed, for example, as:

 Fig 3. A Test Program on Linux

4 DISCUSSION
 X:=SCAclx1.getDouble(‘cmm:beam_current’);

There have been several cross-platform environments
that are interpreter-based such as Perl, Python, LabView
and Matlab. When the run-time performance is not
severely required, or for a quick prototyping or simple
tasks, they can be quite sufficient. On the other hand, once
a run-time performance and GUI are both required, native
programs has to be developed. SCAclx allows one to
develop such programs effectively on both platforms. It is
complementary to these interpreters.

For efficiency, the grouped access becomes crucial

when reading a large number of items. The scagroup
property determines the group mode. We can seamlessly
switch between grouped and ungrouped modes.

3.2 An Example on Both Platforms

A simple program was developed on Windows. It reads
the beam position monitors via SCAclx and displays the
values in a string grid. The cells of the grid change their
colors depending on their values using a given formula.
After confirming its function on Windows as shown in
Fig.2, the program was rebuilt and run on Linux. as
shown in Fig.3. During that process, no source code was
changed.

5 ACKNOWLEDGEMENT
We thank to A. Biocca and N. Smith for their advices and
suggestions, and to ALS operators for their useful
comments.

6 REFERENCES
[1] S. Magyary et al, ‘The Advanced Light Source

Control System,’ Nuclear Instruments & Methods in
Physics Research A 293 (1990) 36-43, North Holland.
S. Magyary, “Anatomy of a Control System; A
System Designer’s View”, IEEE PAC93, 93CH3279-
7,1811,1993.

[2] L.R. Dalesio, et al., “The Experimental Physics and
Industrial Control System Architecture”, ICALEPCS
’93, Berlin, Germany, 1993.

[3] C. Timossi and H. Nishimur, “Accelerator Control
Software Construction Based On Software
Components”, PAC 1997

[4] C. Timossi, www-controls.als.lbl.gov/epics_
collaboration/ sca/win32/JSca/SCA.JSca.html

[5] C. Timossi, J. McDonald and H. Nishimura,
“Experience with ActiveX Control for Simple Channel
Access”, These Proceedings.

[6] http://www.borland.com

 Fig 2. A Test Program on Windows

http://www.cern.ch/accelconf/
http://www.cern.ch/accelconf/
http://www.cern.ch/accelconf/
http://www.cern.ch/accelconf/

	CROSS PLATFORM DEVELOPMENT USING DELPHI AND KYLIX*
	1 INTRODUCTION
	2 COMPONENT DEVELOPMENT
	2.1 CLX Programs
	2.2 CLX and Native Routines
	2.3 CLX Component to Wrap ActiveX Controls
	2.4 SCAclx on Linux
	2.5 Inside SCAclx
	2.6 Higher level classes
	2.7 Support for C++ Programs

	3 APPLICATIONS
	3.1 Basic Features
	3.2 An Example on Both Platforms

	4 DISCUSSION
	5 ACKNOWLEDGEMENT
	6 REFERENCES

